
Live heap space bounds for real-time systems

Martin Kero, Pawe l Pietrzak, and Johan Nordlander

Department of Computer Science and Electrical Engineering
Lule̊a University of Technology

{martin.kero, pawel.pietrzak, johan.nordlander}@ltu.se

Abstract. Live heap space analyses have so far been concerned with
the standard sequential programming model. However, that model is
not very well suited for embedded real-time systems, where fragments
of code execute concurrently and in orders determined by periodic and
sporadic events. Schedulability analysis has shown that the programming
model of real-time systems is not fundamentally in conflict with static
predictability, but in contrast to accumulative properties like time, live
heap space usage exhibits a very state-dependent behavior that renders
direct application of schedulability analysis techniques unsuitable.

In this paper we propose an analysis of live heap space upper bounds
for real-time systems based on an accurate prediction of task execution
orders. The key component of our analysis is the construction of a non-
deterministic finite state machine capturing all task executions that are
legal under given timing assumptions. By adding heap usage information
inferred for each sequential task, our analysis finds an upper bound on
the inter-task heap demands as the solution to an integer linear program-
ming problem. Values so obtained are suitable inputs to other analyses
depending on the size of a system’s persistent state, such as running time
prediction for a concurrent tracing garbage collector.

1 Introduction

Recent years have seen a respectable development in techniques for analysis of
live heap space usage of programs [3, 14, 9, 18]. The common goal of this line
of research is to obtain an a priori upper bound on the size of heap memory
reachable from various points in a program, expressed as a function of its input
data. To this end, a standard sequential programming model has been assumed,
where a program reads all its input initially, computes internally without further
interaction, and eventually terminates with a deterministic result.

Unfortunately, very few embedded real-time systems – for which static pre-
dictability and failure-free operation are of particular concern – fit such a tradi-
tional programming model. Instead of terminating with a result, an embedded
system typically maintains an ongoing interaction with its environment, execut-
ing fragments of code at predefined intervals or in response to sporadic events.
Moreover, code fragments are often allowed to execute in parallel or under arbi-
trary interleaving, which introduces another source of non-determinism in such

systems. It is clear that both these deviations from purely sequential execution
adds significant complexity to the problem of predicting heap space usage.

The substantial body of results in real-time scheduling theory has however
demonstrated that sporadic events and concurrent execution are not fundamen-
tally at odds with static predictability. What is required is just some carefully
chosen restrictions on how tasks (i.e., code fragments) may interact with each
other, and what time-patterns external events may exhibit [16]. In this paper
we present a technique for lifting live heap space analysis to a real-time pro-
gramming model of a similar vein, sufficiently restricted to make static analysis
feasible, but still expressive enough to fit a large class of real-world systems.

However, unlike schedulability analysis – which is only concerned with the
number of CPU cycles a task needs to be allocated before its deadline expires
– a prediction of heap space usage cannot ignore the order in which deadline-
avoiding tasks actually execute at run-time. For an example, consider a task A
that allocates heap memory and a task B that frees up any previous allocations.
To the combined heap demand of these tasks, it makes a fundamental difference
whether an A is always followed by a B or if two A can sometimes occur in a row,
even if this distinction might be irrelevant for the purpose of meeting deadlines.
For the same reason, heap space analysis cannot ignore the actual interleaving
of tasks that are allowed to run concurrently, unless the effect each task has on
live memory can be considered atomic.

The main contribution of this paper is a technique for calculating upper
bounds on live heap memory of real-time systems, that is safe even in the pres-
ence of state- and order-dependent tasks driven by external sporadic events. Our
strategy for doing so consists of the following key ideas:

1. We impose a modest restriction on the tasks we consider: every root of live
memory must be protected by some locking mechanism, and all the locks a
task requires must be held throughout its whole execution (Section 2). This
is arguably a stronger restriction than necessary to guarantee atomicity, but
it is appealingly simple and ”obviously” correct for our purpose. We further
elaborate on the realism of our task model at the end of Section 2.

2. We assume a uniform event model where each task is characterized by a
minimum and (possibly infinite) maximum distance in time between the
events that may trigger it. This allows us to employ techniques from timed
automata [5] to construct a non-deterministic finite state machine (FSM)
for every given task set, which adequately models all possible task execu-
tion orderings that are possible according to the given timing assumptions
(Section 3).

3. We apply a standard variant of abstract interpretation to each task for in-
ferring size relations [11], which capture how each individual task affects an
abstract notion of size for every persistent state variable (Section 5). The
input to this step is a variant of the rule-based representation (RBR) in-
troduced in [2] for describing sequential imperative code that may involve
iterative or recursive computations (Section 4).

4. We combine the results from the FSM construction and the size relation
analysis in order to obtain an integer linear programming problem, whose
solution includes a provably safe upper bound on the total live heap size
observable between all possible task executions (Section 6). A set of examples
illustrating how the implemented analysis algorithm behaves in practice are
also given in Section 7.

Our interest in this paper is to bound the size of the heap-allocated state a
system needs to preserve between its event-triggered activations, to serve as input
to other analyses that crucially depend on this value, like worst-case execution
time estimation for an idle time garbage collector, for example. The related
problem of finding a size-bound on the total memory that must be set aside for
a system’s heap is not directly addressed, but we will return to the question of
how our analysis fits this larger picture in Section 9.

2 Real-time system model

Here we define the model of execution we will work with in the rest of the paper.
Our model connects fairly well to task models used in the real-time scheduling
literature [16], while drawing its concrete inspiration from the execution princi-
ples underlying the real-time programming language Timber [17].

We consider a real-time system to consist of a finite set τ = {t1, . . . , tm} of
tasks, and a finite set σ = {s1, . . . , sn} of shared state variables. Each task is
supposed to be triggered by a recurring event whose origin we know nothing
about, but for which we can make timing assumptions. To this end we assume
that each task ti ∈ τ is characterized by a minimum and a maximum inter-arrival
time between activation events (Pmin

i , Pmax
i ∈ N). Furthermore, we assume that

there is a deadline (Di ∈ N) associated with each task, and that every task is
scheduled correctly (that is, every task will execute to completion within Di

time units after each triggering event). A task set is well-formed if the following
is true:

Definition 1. A task set τ is well-formed iff ∀ti ∈ τ . 0 < Pmin
i ≤ Pmax

i and
0 ≤ Di ≤ Pmin

i .

In other words, aperiodic tasks are excluded from our model (i.e., tasks for
which Pmin

i = 0), motivated by the unbounded load such tasks can place on the
processor as well as on the heap. For technical reasons we also exclude tasks for
which the permissible execution window of one instance is allowed to overlap
with the next one (i.e., where Di > Pmin

i).
Periodic tasks are captured in this model by letting Pmin

i = Pmax
i , and

fully sporadic tasks by Pmax
i = ∞. Note that the model allows a continuum of

behaviors between these extremes, even though the typical cases will be found
at either end of the scale.

Shared state. Each shared state variable sj is assumed to be protected by some
mutual exclusion mechanism, and we furthermore require every task that either

reads or writes to sj to maintain exclusive access to sj throughout its whole
execution. This way every pair of tasks with any state variables in common
will be forced to execute in some sequential order rather than in a potentially
interleaved fashion. Tasks which do not share any state variables are allowed
to execute under arbitrary interleaving, but the effect such tasks have on the
global state is consequently independent of the interleaving pattern, and thus
equivalent to their sequential execution in some arbitrary order.

Furthermore, we make our analysis independent of the actual processing
power of the chosen execution platform by assuming that tasks may run arbi-
trarily fast1; that is, task execution can be associated with a point in time rather
than a time interval. What we achieve under these hypotheses is that we may
approximate the concurrent execution of a real-time system by a set of sequential
task orderings, strictly governed by the underlying inter-arrival time assumptions
and deadline requirements, and notably independent of any task execution times
and scheduling policies. In Section 3 we will show how to concretely represent
this set of task orderings in the form of a non-deterministic finite state machine.

Keeping all accessed state variables locked for the duration of full task exe-
cutions is of course detrimental to the concurrent schedulability of a system, and
thus not a very realistic model of concrete real-time software. However, we argue
that for the purpose of the specific analysis of this paper, our simplistic model
is an accurate description of a much more general class of concurrent systems
that actually do occur in practice. Indeed, the Timber language that we target
in our analysis implementation uses a run-time model that closely follows the
principles of Baker’s Stack Resource Policy [6]: state variables are partitioned
into logical units called resources (or objects), each resource uses a common lock
for its set of variables, and tasks (or methods) are required to lock and unlock
resources in a stack-like fashion according to a total resource order (a resource
may only be acquired if it is of less rank than those already held).

The only restriction this paper effectively adds to the SRP model is that we
prohibit non-nested sequential resource access: new resources may not be locked
once a previously held resource has been released. Under this assumption we
are able to describe all relevant state update sequences of a system in terms of
its possible task orderings, which is a key to the tractability of our technique
and from an analysis point of view equivalent to locking all resources at once.
In our experience, this additional restriction is not very burdening in practice;
in the Timber language it simply corresponds to limiting the use of synchronous
inter-object method calls to at most one per metod. Nevertheless, we do consider
lifting the nesting requirement as an important topic for future work, and one
approach we have been pondering is to automatically split tasks not conforming
to the restriction into smaller parts until they do. This approach does however
require that the FSM construction algorithm can be modified to take the implied
sequential order of such sub-tasks into account.

Task bodies. The sole purpose of a task is to modify the contents of the system
state variables σ = {s1, . . . , sn}. For the purpose of this paper, external ports

1 Or arbitrarily slow, provided that all deadlines are still met.

and other observable state containers such as operating system services also
count as state variables. Apart from these global state variables, we require that
variables and data structures are immutable and thus never change their values
once they are assigned. To better capture the freedom from arbitrary side-effects
during task runs, we make threading of the system state through each task ti
explicit by representing it as a procedure ti(x, y) that maps an input state vector
x to an output state vector y. The intention is then that the global scheduling
mechanism of a system uses the output state vector to destructively update the
system state, which we henceforth never need to make explicit. The exact format
of each task body is further explained in Section 4.

Worked example. Throughout the paper we will work with the following ex-
ample through the steps of our analysis. Suppose we have two tasks, a and b,
sharing two lists x1 and x2 in the following manner:

– a extends x1 with one element, leaving x2 as is.
– b sets x2 := x1 and x1 := [] (empty list), i.e. x2 becomes the list that x1 was,

and x1 becomes empty.
– Initially, x1 and x2 are both empty.

For the purpose of the example, let a and b have the following timing character-
istics:

task Pmin Pmax D

a 10 ∞ 10
b 10 20 10

Our underlying analysis question is: what is the maximum sum of the sizes of
x1 and x2 that ever may occur?

3 FSM representation

As a core technical idea of our approach we choose to express the behaviour of
a given task set as a Timed Automaton, itself constructed as the parallel com-
position of timed automata representing every individual task. The observable
transitions of this automaton are the execution points of the tasks, i.e., the mo-
mentary points in time where we consider a task to perform its mutation of the
system state. We then apply standard techniques for obtaining a finite untimed
representation of the timed automaton, representing all possible task execution
orders of the system in a compact form.

3.1 Real-time systems as Timed Automata

We follow a notation similar to Bengtsson and Yi [7] for representing the legal
orders of execution for a real-time task set. A timed automaton is defined by a
tuple A = 〈L, l0, A, C, I, E〉, where L is a set of locations, l0 an initial location,
A a set of labels (including the silent label ε), C a set of clock variables, I a
mapping from locations to clock variable constraints, and E a set of transitions

(characterized by a label, a transition guard, and a set of clock variables to reset
as a side-effect).

For a well-formed task set τ , let each task ti ∈ τ be represented by a timed
automaton Ai = 〈Li, l0i, Ai, Ci, Ii, Ei〉 defined as follows:

Li = {idle, released}
l0i = idle

Ai = {ti, ε}
Ci = {ci}
Ii = {(idle, ci ≤ Pmax

i), (released, ci ≤ Di)}
Ei = {(idle, ci ≥ P

min
i , ε, {ci}, released), (released, true, ti, ∅, idle)}

Fig. 1 shows the the definition above in a graphical notation.

idle released

ci ≤ P
max

i

ci ≥ P
min

i

ci ≤ Di

ci := 0

ti

Fig. 1. Timed automaton Ai capturing the execution
points of task ti

The transitions of Ai cap-
ture the execution points of
ti: either the silent arrival
of a triggering event for ti,
or the observable execution
of ti. Location idle denotes
the state when the task is
neither executing nor pend-
ing. Clock variable ci in-
creases in synchrony with
real time and is reset when-
ever an event transition is
taken, thus the invariant
(ci ≤ Pmax

i) ensures that
the time between two triggering events for ti never exceeds Pmax

i . Moreover,
the guard (ci ≥ Pmin

i) on the event transition forces the inter-arrival time to be
at least Pmin

i . The invariant in the released location guarantees that execution
must take place within the deadline (ci ≤ Di). Because of the well-formedness
assumption we know that Di ≤ Pmin

i , which means that we can capture the
timing constraint of the deadline with the same clock used for inter-arrival times
(i.e., whenever the execution transition is taken, we know that ci ≤ Di ≤ Pmin

i).
The timed automaton of the whole task set τ is then constructed by parallel

compositionAτ = ‖
ti∈τ
Ai. The resulting automaton is entirely straightforward,

with locations and invariants being conjunctions of the individual automata
counterparts (see [4] for further details on parallel automata composition).

3.2 Untimed automata

Our goal is to construct a compact FSM that accurately captures all legal orders
of task executions. In reachability analysis for timed automata, such faithful
constructions of FSMs are usually referred to as untimed automata.

The operational semantics of timed automata is described as a transition
system of which states are pairs 〈l, u〉 where l is a location in the original timed
automaton and u is a clock valuation mapping clock variables to real values [5].

Fig. 2. Minimal FSM representation of the execution
orders of the worked example.

State space and transitions
are defined based on the lo-
cations and transitions in
the timed automaton, com-
bined with the condition
that u satisfies the implied
clock constraints from in-
variants, guards, and resets.
The state space of this tran-
sition system can efficiently
(and finitely) be quotiented
by configurations 〈l, Dϕ〉,
called zones, where Dϕ is a
convex set of clock valua-

tions (called clock zone) defined by the clock constraint ϕ. The transitions of
the zone graph is defined as follows.

〈l, Dϕ〉 −→ 〈l, [Dϕ
⇑ ∩DI(l)]〉

〈l, Dϕ〉
α
−→ 〈l′, [δ(Dϕ ∩Dψ) ∩DI(l′)]〉 if (l, ψ, α, δ, l′) ∈ E

The operations on clock zones in the definition are: delay (Dϕ
⇑) which computes

the strongest post condition of ϕ (i.e., the clock zone containing all valuations
after an arbitrary delay); reset (δ(Dϕ)) which computes the new clock zone
to capture the resets of δ; and normalization ([Dϕ]) which widens the clock
zone based on the maximum constants used in clock constraints of the timed
automaton.

The zone graph accurately accepts all legal sequences of untimed labels as
of the original timed automaton, while faithfully keeping track of both locations
and clock valuations. However, our analysis only requires a faithful representa-
tion of the untimed language accepted by the zone graph (i.e., reachability of
particular locations and clock valuations are irrelevant), we may apply standard
FSM transformation techniques (such as determinization and minimization) to
possibly improve the automaton. The raw zone graph of our worked example
contains 31 zones and 59 transitions of which 34 are ε-transitions (delays and
events). After determinization and minimization we get a FSM of 6 states and
11 transitions. The minimized FSM is shown in Fig. 2.

However, as we will see in Section 7, it is not necessary an improvement of
performance of our analysis to make these quite costly transformations.

4 Rule-based representation

Following [1, 2] we express the actual code a task executes in a rule-based rep-
resentation, or RBR for short. Our RBR is essentially a slight simplification of
the format used in [2]. We assume four distinct name-spaces: ordinary variables
ranged over by x and y, procedure names ranged over by p and q, as well as

constructor names and field names (ranged over by c and f , respectively). The
syntax of our rule-based language is given in Fig. 3.

Variables can take atomic values (we limit ourselves to integers), or com-
pound values (lists, trees, etc.), in which case the variable is a reference to a
constructed and possibly heap-allocated object. A program consists of a set of
procedures, of which some are designated as tasks. A procedure with a head
p(x, y) has input (x) and output (y) parameters, and is defined by one or more
rules. Each rule is guarded by a boolean applicability condition g, which may be
either the unconditional constant true, a simple arithmetic comparison, or the
special form type(x, c), which tests whether x is a reference to a constructed c ob-
ject. The guard is followed by the procedure body, which might contain a variable
assignment, an object creation instruction (with a vector of field initializations
within braces), an assignment with field selection, or a (possibly recursive) pro-
cedure call. Since we do not support mutation of any other data than the system
state vector, we make it an implicit condition that all variables in a procedure
body are assigned only once.

P ::= R1, . . . , Rn

R ::= p(x, y)← g, b1, . . . , bn

g ::= true | e op e | type(x, c)

b ::= x := e | x := new c {f := e} | x := y.f | q(x, y)
e ::= x | n | e− e | e + e | e ∗ e | e/e

op ::= > | < | ≥ | ≤ | = | 6=

Fig. 3. Syntax of rule-based representation

With the rule-based representation, the code of the tasks of our worked ex-
ample looks as shown in Fig. 4 (assuming value is some suitable integer element).
We use constructors cons and nil for building lists, where new nil {} denotes a
”null pointer” (i.e., a zero-arity constructed value requiring no additional heap
space).

a(〈x1, x2〉, 〈x
′

1, x
′

2〉) ← x′

1 := new cons {head := value, tail := x1}, x
′

2 := x2

b(〈x1, x2〉, 〈x
′

1, x
′

2〉) ← x′

2 := x1, x
′

1 := new nil {}

Fig. 4. The worked example in the rule-based representation

In addition to rules defining tasks, we always include a predefined procedure
init with just a single vector of output parameters carrying the initial values for
a system’s state variables. For the worked example we have:

init(〈x1, x2〉)← x1 := new nil {}, x2 := new nil {}

From [2] we also adopt an operational semantics for our rule-based programs,
as depicted in Fig. 5. A value v is either an integer constant or a tagged heap
reference rc, where c is a constructor name. A heap h maps references to objects
o, which in turn are mappings from field names to values. Execution steps are
described as transitions S ; S′, where S is a configuration A : h containing

a stack A of activation records (of the form 〈p, bs, ρ〉, where p is a procedure
name, bs a sequence of instructions, and ρ an environment mapping variables
to values), and a heap. We write ρ(x) for the value referred to by x in ρ, and
ρ[x 7→ v] for the mapping identical to ρ except that x maps to v. Both notations
extend to vectors of variables and values, and also apply to mappings o and h

in a similar manner.
Rule (1) deals with evaluating expressions and storing the resulting value in

the environment. We assume that function eval(e, ρ) evaluates exp in the context
of ρ. Rule (2) shows extension of the heap with a new tagged object reference rc,
mapped to an object associating each field with its evaluated value. Field access
is shown in rule (3). Rules (4) and (5) illustrate calling and returning from
a procedure, respectively. The notation p[y, y′] stands for a saved association
between the formal and actual output parameters of p.

b ≡ x := e v = eval(e, ρ)

〈p, (b, bs), ρ〉 ·A : h ; 〈p, bs, ρ[x 7→ v]〉 ·A : h
(1)

b ≡ x := new c {f := e} v = eval(e, ρ) rc 6∈ dom(h)

〈p, (b, bs), ρ〉 ·A : h ; 〈p, bs, ρ[x 7→ rc]〉 ·A : h[rc 7→ [f 7→ v]]
(2)

b ≡ x := y.f h(ρ(x)) = o

〈p, (b, bs), ρ〉 · A : h ; 〈p, bs, ρ[x 7→ o(f)]〉 ·A : h
(3)

b ≡ q(x, y) q(x′, y′)← g, bs′ is a rule ρ′(x′) = ρ(x) eval(g, ρ′) = true

〈p, (b, bs), ρ〉 ·A : h ; 〈q, bs′, ρ′〉 · 〈p[y, y′], bs, ρ〉 ·A : h
(4)

〈q, ǫ, ρ〉 · 〈p[y, y′], bs), ρ′〉 · A : h ; 〈p, bs, ρ′[y 7→ ρ(y′)]〉 ·A : h
(5)

Fig. 5. Operational semantics of rule-based programs

Note that since we model state variables as explicit input and output param-
eters, we can avoid mutation of the heap altogether in the formal semantics.

Executions can be seen as traces S0 ; S1 ; · · · ; Sm. Let
∗
; denote a

transitive closure of ;. Complete execution of a single task ti corresponds to
the trace (called complete trace) 〈⊥, ti(σ, σ), ρ〉 : h

∗
; 〈⊥, ǫ, ρ′〉 : h′, where ⊥

stands for the ”scheduler” procedure, σ contains the names of the global state
variables, and ρ and ρ′ hold the state variable values before and after executing
ti, respectively.

5 Inferring size relations

The notion of size of a heap allocated object can vary depending on what exact
purpose our analysis will serve. Let sizeX (o) denote size of a heap-allocated
object o, where the size is determined by the cost model X and may denote M
(memory size occupied by o), R (number of reference fields in o), and O (number
of objects in o – i.e., 1).

The above notation also extends over sequences of objects: sizeX (o) =
[sizeX (o1), . . . , sizeX (on)]. Inferring size relations, similarly to e.g. [8, 1, 2] is

performed in two steps. The first one is abstract compilation of rules into linear
constraints capturing relations between sizes of program variables. In the second
step the fixpoint of the linear constraints system is computed in a bottom-up
fashion. We apply the approach and implementation of [8], which originally was
designed to compute size relations in logic programs. Since we represent the
tasks as rules rather than logic programs, we do compile our rules to constraint
logic programs (CLP), but we use a different abstract compilation scheme, as
described in the following section.

Abstract compilation of rules. In the abstractly compiled version of a pro-
gram we keep the original variable names, possibly with scripts or overlines, and
use boldface to denote their sizes, with respect to a given cost model X . For ex-
ample, x denotes size of x. We shall extend the notation to expressions, writing
e for a size of an expression e in which every variable x has been replaced by
x. A size of an integer number is its value [11]. Size of a compound structure
c {...} is a sum of sizes of its elements, plus a size kXc of a single node, suitable
for a cost model X . Abstract compilation proceeds over rules in the program as
depicted in Fig. 6.

AbsP [[R1, . . . , Rn]] = AbsR[[R1]], . . . , AbsR[[Rn]]
AbsR[[p(x, y)←g, b1, . . . , bn]] = p(x,y)←x ≥ 0,y ≥ 0, Absg [[g]], Absb[[b1]], . . . , Absb[[bn]]

Absg[[true]] = true
Absg[[e1 op e2]] = if e1 and e2 are linear then e1 op e2 else true

Absg[[type(x, c)]] = true

Absb[[x := e]] = if e is linear then x = e else true

Absb[[x := new c {fi := ei}]] = x ≤ kX

c +
P

i norm(c, fi, ei)
Absb[[x := y.f]] = x < y

Absb[[q(x, y)]] = q(x,y)

norm(c, f, e) = if the type of field f of a c is integer then 0 else e

Fig. 6. Abstract compilation to CLP

Note that for compiling an object creation instruction (x := new c {...}) does
not result in an equality, but rather in an inequality. This is the effect of possible
sharing between fields of c {...} which we do not try to detect.

Given a rule-based program P , its compiled version AbsP [[P]] is a CLP pro-
gram over real numbers (CLP(R)). We refer, for instance, to [13] for further
reading on CLP. Let us assume the model-theoretic (or algebraic) semantics2

of CLP(R), where semantics of programs is given by means of models over R

2 This is an arbitrary choice made for an illustrative purpose only. All kinds of se-
mantics of CLP coincide is some well-defined sense, so choosing any other semantics
would be equally valid.

(R-models), and standard interpretation of arithmetic functions (see e.g. [12] for
details). The following lemma shows the soundness of the abstract compilation.
It is shown that relation between sizes of input and output parameters of a given
procedure is correctly captured by the resulting CLP program.

Lemma 1. Given a program P and procedure p, assume the trace
〈q, (p(x, y), bs), ρ〉 : h

∗
; 〈q, bs, ρ′〉 : h′. The atomic formula p(k, l) where

k = sizeX (h(ρ(x))) and l = sizeX (h(ρ′(y))) belongs to the least R- model of
AbsP [[P]].

PROOF: By induction over depth of recursion in P .

Assume that kMcons = 3 and kMnull = 0. The abstractly compiled worked ex-
ample is shown in Fig. 7

init(〈x1, x2〉) ← x1 ≥ 0, x2 ≥ 0,x1 ≤ 0,x2 ≤ 0
a(〈x1,x2〉, 〈x

′

1, x
′

2〉) ← x1 ≥ 0, x2 ≥ 0,x′

1 ≥ 0,x′

2 ≥ 0, x′

1 ≤ x1 + 3, x′

2 = x2

b(〈x1,x2〉, 〈x
′

1, x
′

2〉) ← x1 ≥ 0, x2 ≥ 0,x′

1 ≥ 0,x′

2 ≥ 0, x′

2 = x1, x
′

1 ≤ 0

Fig. 7. The worked example after abstract compilation

In general, right hand sides of abstractly compiled rules might contain re-
cursive calls. In this case a bottom-up fixpoint algorithm is applied to infer, for
each procedure p, a set linear constraints φp (or φp[x,y] if we want to make
the involved variables explicit). See [8] for the details of the fixpoint iteration
algorithm. Theorem 1 states soundness of size relation inference.

Theorem 1. Given a trace 〈⊥, ti(σ, σ), ρ〉 : h
∗
; 〈⊥, ǫ, ρ′〉 : h′, the vec-

tor pair sizeX (h(ρ(σ))), sizeX (h′(ρ′(σ))) satisfies φti ; that is, the formula
φti [sizeX (h(ρ(σ))), sizeX (h′(ρ′(σ)))] is true.

PROOF: By Lemma 1 and the soundness of size relation analysis of [8].

Example. Let us illustrate the behaviour of the size relation analyzer by means
of the following list concatenation procedure:

app(〈x, y〉, 〈z〉) ← x = null(), z := y
app(〈x, y〉, 〈z〉) ← x 6= null(), x′ := x.tail, app(〈x′, y〉, z′),

z := new cons(x.head, z′)

Abstract compilation of the above two rules, with respect to the cost model O,
results in

app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0,y = z

app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0,x′ ≥ 0, z′ ≥ 0, x′ ≤ x− 1,
app(〈x′,y〉, z′), z ≤ z′ + 1

Observe that z := new cons(x.head, z′) has been compiled to z ≤ z′ + 1 rather
than z = z′ + 1, due to possible sharing. Computing bottom-up fixpoint over
convex polyhedra domain, as described in [8], gives the final size relations:

app(〈x,y〉, 〈z〉) ← x ≥ 0,y ≥ 0, z ≥ 0, z ≤ x + y

6 Upper bounds

The crucial observation is that the value we are looking for is the upper bound
of live memory size occupied by state variables after any possible completion
of any task executed in the concurrent environment, that is in every possible
schedule. The size value is not accumulated over recursive calls that might take
place while executing the tasks. Therefore, for our purpose we do not need cost
relations in the form of [1, 2], but rather than that we work directly with the size
relations introduced in the previous section. Based on the FSM representation
of task execution orders and size relations for each task, we set up a system
of linear constraints which is essentially an ILP (integer linear programming)
problem that can be solved by any standard solver. The ILP problem, whose
construction is shown below, captures the upper bounds of live memory usage.

Assume there are n state (shared) variables s1, . . . , sn. In previous steps, for
every task m(x, y) we infer size relations φm which in the matrix form can be
written as

Y ≤ AmX + Cm, X ≥ 0 (6)

where X = [x1, . . . ,xn], Y = [y1, . . . ,yn], n is a number of states variables. For
an initialization method init (which has no input parameters) the constraints
take form:

X0 ≤ Cinit, X0 ≥ 0 (7)

Thus the vector Cinit describes sizes of initial values of the state variables. The
size relation matrices with respect to cost modelM for the worked example look
like the following:

Aa =

»

1 0
0 1

–

Ca =

»

3
0

–

Ab =

»

0 0
1 0

–

Cb =

»

0
0

–

In order to find an upper bound of X’s, for every state i in the FSM we
assign a vector of sizes of the state variables, written X̂i. For a transition i

m
→ j

we set up a set of constraints

X̂j ≥ Am X̂i + Cm (8)

and for the initialization
X̂0 ≥ Cinit (9)

For the ε-transitions we have Aε = In (the n× n unit matrix) and Cε = 0.
We require the size relation matrices (A’s) to only contain non-negative co-

efficients. If, for some task, a size relation matrix with negative coefficients is
inferred (this might occur if, for instance, the task definition is incomplete), we

simply replace those coefficients by 0’s. For our purpose, which is finding upper
bounds, increasing coefficients in A is a relaxation and always a safe step to
do. The reason for this requirement is that X̂i and X̂j represent upper bounds,

which means that the inferred constraints for X̂j must be safe for any sizes

between 0 and X̂i.
Let i0

m0→ i1
m1→ i2

m2→ · · · be a run of the state machine. With every step k

we assign variables Xk denoting sizes of state variables in k, in according to (6)
and (7).

Lemma 2. Consider a run of the state machine and its k-th step. Let ik de-
note the state in step k. For any solution of (8) + (9), any k we have X̂ik ≥ Xk.

PROOF: Inductive over k.

Base case: Trivially holds by combining (7) and (9).
Inductive step: By inductive assumption we know that X̂ik−1

≥ Xk−1, and
by the fact that Amk−1

contains only non-negative values we conclude that

Amk−1
X̂ik−1

+Cmk−1
≥ Amk−1

Xk−1 +Cmk−1
By combining the above with

(6) and (8) we can observe that X̂ik ≥ Xk, which concludes the proof.

Lemma 2 suggests the way to compute upper bounds of state variable sizes.
In addition to (9) and (8) we add X̂ ≥ H · X̂l for every state l; where H =
[h1, . . . ,hn] and hi = 1 if si is heap allocated, hi = 0 otherwise. Let the cost
function c = X̂ and c∗ denote its minimum value. The following theorem states
soundness of the analysis.

Theorem 2. Let T be a set of all complete traces, over all feasible (possibly
infinite) schedules. The following holds:

max{
∑

sizeX (h′(ρ′(y))) | 〈⊥, p(x, y), ρ〉 : h
∗
; 〈⊥, ǫ, ρ′〉 : h′ ∈ T } ≤ c∗

PROOF: Follows directly from Theorem 1 and construction of (8) and (9), and
Lemma 2.

The constraints (wrt cost model M) for our worked example are shown below.
The minimum solution to its corresponding cost function is c∗ = 30.

x11 ≥ x10 + 3 x21 ≥ x20 x22 ≥ x10 x13 ≥ x11 + 3
x23 ≥ x21 x24 ≥ x11 x14 ≥ x12 + 3 x24 ≥ x22

x22 ≥ x12 x15 ≥ x13 + 3 x25 ≥ x23 x20 ≥ x13

x10 ≥ x14 + 3 x20 ≥ x24 x22 ≥ x14 x21 ≥ x15

x10 ≥ 0 x11 ≥ 0 x12 ≥ 0 x13 ≥ 0
x14 ≥ 0 x15 ≥ 0 x20 ≥ 0 x21 ≥ 0
x22 ≥ 0 x23 ≥ 0 x24 ≥ 0 x25 ≥ 0

X̂ ≥ x10 + x20 X̂ ≥ x11 + x21 X̂ ≥ x12 + x22

X̂ ≥ x13 + x23 X̂ ≥ x14 + x24 X̂ ≥ x15 + x25

7 Examples

Our analysis relies on constructing an integer linear programming problem,
whose solution includes a provably safe upper-bound on the live heap size ob-
servable between all possible task executions. Solving such problems can be done
by standard solvers. However, the complexity of solving such problems depends
on both the number of unknowns and the number of constraints. In our case,
the number of unknowns is determined by the number of states in the FSM.
Similarly, the number of constraints is dependent on the number of transitions
in the FSM. Both these multiplied by the number of shared state variables.

#states #states
Task set Pmin Pmax D zone graph FSM

τ1 {17,19,23} {∞,∞,∞} {17,19,23} 1255 1
τ2 {10,300} {20,350} {10,300} 200 699
τ3 {10,20,30,40,50} {10,20,30,40,50} {10,20,30,40,50} 10368 3393
τ4 {17,23,29} {17,23,29} {17,23,29} 12968 6343

Fig. 8. Zone graph and minimal FSM sizes of four different example task sets.

It is well-known that the number of zones is exponential to the number of
clocks present in the timed automaton [10]. I.e., in our case, we have an expo-
nential growth of zones w.r.t. number of tasks. In Figure 8, the zone graph and
minimal FSM sizes for four different example task sets are shown. Observe that,
for τ2, the number of states is less in the zone graph than in the determinized and
minimized FSM. However, as τ1 shows, the minimized FSM can be as small as
1 state (the order between fully sporadic tasks is in fact completely arbitrary),
even though the original zone graph contains many more states. Appendix A
contains an extended example of our analysis. The required times by our proto-
type implementation for constructing the zone graphs of the task sets in Figure 8
and Appendix A are neglectable (< 1 s). Solving the ILP problem of the example
in Appendix A took about 25 seconds, using lp_solve version 5.5.2.0.3

8 Related work

To the best of our knowledge, there is no existing work on predicting global
live heap space for real-time systems similar to those we describe in Section 2.
Nonetheless, a substantial body of work has been presented for analyzing live
heap space bounds for standard sequential programs. In this section we briefly
describe some of the more recent contributions in this line of research.

As already mentioned, for each task we borrow from [2, 3], the rule-based rep-
resentation of programs along with semantics, which we could however simplify
due to special treatment of state variables and lack of mutation. We also adopt
from their work the step of inferring size relations. Jost et al. [14] presents a

3 Platform: 3.06GHz Intel Core 2 Duo, 4 GB RAM, Mac OS X 10.6.4

generic type-based resource analysis for inferring linear bounds on resource con-
sumption for higher-order polymorphic programs. The corresponding type infer-
ence is based on a standard linear programming solver. Chin et al. [9] presents a
memory resource analysis for low-level assembly programs. They infer both net
usage and a high watermark bound for each computation unit based on explicit
allocation and deallocation of heap space. Unnikrishnan et al. [18] presents a live
heap space analysis based on program transformation and symbolic evaluation.
The transformed program mimics the memory behavior and essentially keeps
the same computational complexity as of the original program.

9 Conclusion and further work

We have proposed a technique for computing upper bounds on live heap mem-
ory of real-time systems, that is safe even in the presence of state- and order-
dependent tasks driven by external sporadic events.

Our key contribution is based on the derivation of an accurate prediction
of task execution orders according to timing assumptions of each task (inter-
arrival times and deadlines). This is done by representing the task set as a
timed automaton and apply standard techniques used in reachability analysis
to construct an FSM representation of task execution orders. We infer linear
input/output size relations for each task on the persistent state of the system,
which is then combined with the execution order FSM to obtain an integer linear
programming problem, whose solution includes a provably safe upper bound on
the total live heap size observable between all possible task executions.

Heap space usage and schedulability. In real-time systems where tasks share
heap data (as we describe in Section 2) it is in general impossible to manage heap
memory manually. If such systems are to be memory managed by a concurrent
garbage collector, the key question is how it affects schedulability. In fact, the
problem is twofold; (1) will all tasks meet their deadlines, and (2) how much
heap memory will be needed? These two interests are obviously in conflict since
running the garbage collector will reduce the memory needs while it may cause
tasks to miss their deadlines. On the other hand, avoiding to run the collector
might keep tasks meeting deadlines but at the same time cause the system to
exhaust memory resources.

A tracing garbage collector recycles the dead (non-reachable) part of the heap
and the running time of such collectors is directly dependent on the amount of
live (reachable) memory. Thus, finding bounds on the global live heap space of
such systems are crucial for both determining schedulability of the task set as
well as predicting the total heap space usage.

In [15], Kero and Aittamaa presents a schedulability analysis, called garbage
collection demand analysis, for a concurrent copying garbage collector in a re-
active real-time system. Their garbage collector is restricted to run only during
idle time, which enables them to rely on regular schedulability analysis of the
task set to ensure (1). The analysis determines an upper bound on the start to

finish time of the garbage collector as well as the amount of memory consumed
during that time.

Further work. One key observation is that the execution order FSM accepts
traces of task executions that are legal according to the timing assumptions of
each task. In our case, we have left those timing assumptions as open as possible,
containing only inter-arrival times and deadlines. Generally, the schedulability
requirement leaves the choice of order in which released tasks are executed open
as long as all individual deadlines are met. In reality, schedulability is typically
reached by a myopic scheduling policy (e.g., EDF, RM, etc.), which has a fully
deterministic outcome. Thus, from any zone in the zone graph, if assuming a
particular scheduling policy, one can reduce the number of labelled transitions
to a maximum of one. Apart from tighter bounds, preliminary experimental re-
sults show significant improvements in FSM sizes (down to 25 % of the original
size). Along the same line, the zone graph accepts traces where the release of a
task and its execution point occurs at the very same instant. Adding a safe lower
bound on execution time for each task will reduce the time windows in which
task execution points may occur, ultimately reducing the number of possible
execution orders. Although standard solvers of ILP problems are quite efficient
nowadays, the complexity of finding the optimal solution is still exponential.
However, suboptimal solutions to our ILP problems are still safe bounds (al-
though less precise), which opens up the possibility to use heuristics to reduce
complexity.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost Analysis of
Java Bytecode. In 16th European Symposium on Programming, 2007.

2. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Live heap space analysis for
languages with garbage collection. In ISMM, 2009.

3. E. Albert, S. Genaim, and M. Gómez-Zamalloa. Parametric inference of memory
requirements for garbage collected languages. In ISMM, 2010.

4. R. Alur. Timed automata. Computer Aided Verification, LNCS 1633, 1999.

5. R. Alur and D. Dill. A theory of timed automata. Journal of Theoretical Computer

Science, 126(2), 1994.

6. T. P. Baker. Stack-based scheduling for realtime processes. Real-Time Syst.,
3(1):67–99, 1991.

7. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
Lectures on Concurrency and Petri Nets, 2003.

8. F. Benoy and A. King. Inferring argument size relationships with CLP(R). In
Workshop on Logic-based Program Synthesis and Transformation, 1997.

9. W. N. Chin, H. H. Nguyen, C. Popeea, and S. Qin. Analysing memory resource
bounds for low-level programs. In ISMM, 2008.

10. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Formal Methods in System Design, 1(4), 1992.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, 1978.

12. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programs. Journal of Logic Programming, (37)1–3, 1998.

13. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of

Logic Programming, 19 & 20, 1994.
14. S. Jost, H. W. Loid, K. Hammond, and M. Hofmann. Static determination of

quantitative resource usage for higher-order programs. In POPL, 2010.
15. M. Kero and S. Aittamaa. Scheduling garbage collection in real-time systems. In

CODES, 2010.
16. C. M. Krishna and K. G. Shin. Real-Time Systems. McGraw-Hill, 1997.
17. J. Nordlander, M. Carlsson, A. Gill, P. Lindgren, and B. von Sydow. The Timber

home page. http://timber-lang.org, 2008.
18. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized live heap bound analysis.

In VMCAI, 2003.

Appendix A – Extended example

task Pmin Pmax D

sample1 10 15 5
sample2 20 20 5
lphigh 100 100 10
acquire 1000 1000 1000

#states #arcs

zone graph: 6100 14072
minimal FSM: 3510 8428

sample1(〈gval , gbuf , buf
1
, buf

2
〉, 〈gval ′, gbuf ′, buf ′

1
, buf ′

2
〉) ←

gval ′ := gval , gbuf ′ := gbuf , buf ′

2
:= buf

2
, val1 := buf

1
.head,

buf ′

1
:= new cons {head := (sensor1 + 99 ∗ val1)/100, tail := buf

1
}.

sample2(〈gval , gbuf , buf
1
, buf

2
〉, 〈gval ′, gbuf ′, buf ′

1
, buf ′

2
〉) ←

gval ′ := gval , gbuf ′ := gbuf , buf ′

1
:= buf

1
, val2 := buf

2
.head,

buf ′

2
:= new cons {head := (sensor2 + 99 ∗ val2)/100, tail := buf

2
}.

lphigh(〈gval , gbuf , buf
1
, buf

2
〉, 〈gval ′, gbuf ′, buf ′

1
, buf ′

2
〉) ←

gval ′ := gval , mean(〈buf
1
〉, 〈m1〉), mean(〈buf

2
〉, 〈m2〉), buf ′

1
:= new nil {},

buf ′

2
:= new nil {}, gbuf ′ := new cons {head := (m1 + m2)/2, tail := gbuf }.

acquire(〈gval , gbuf , buf
1
, buf

2
〉, 〈gval ′, gbuf ′, buf ′

1
, buf ′

2
〉) ←

mean(〈gbuf 〉, 〈gval ′′〉), gval ′ := (gval + gval ′′)/2, gbuf ′ := new nil {},
buf ′

1
:= buf

1
, buf ′

2
:= buf

2
.

init(〈gval , gbuf , buf
1
, buf

2
〉) ←

gval := 0, gbuf := new nil {}, buf
1

:= new nil {}, buf
2

:= new nil {}.

For cost model M (kMcons = 3 and kMnull = 0) we get the following matrices:

Asample1
Asample2

Alphigh Aacquire Csample1
Csample2

Clphigh Cacquire

2

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7

7

5

2

6

6

4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

7

7

5

2

6

6

4

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

3

7

7

5

2

6

6

4

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

3

7

7

5

2

6

6

4

0
0
3
0

3

7

7

5

2

6

6

4

0
0
0
3

3

7

7

5

2

6

6

4

0
3
0
0

3

7

7

5

2

6

6

4

0
0
0
0

3

7

7

5

The minimum solution to c is c∗ = 111.

