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Abstract— Interoperability between shop floor devices and 

upper layer systems is a key challenge for enabling Internet of 

Things in industrial applications. Standardized protocols such as 

IPv6, CoAP, and XML can be used to address this issue.  Widely 

used XML-based technologies such as SenML, EEML, OPC-UA 

as well as others rely on XML to be able to support a wide range 

of sensor and actuator applications. However, this approach 

results in high communication overhead due to the verbose nature 

of plain text messages encoded in XML. When devices are 

communicating using 6LoWPAN over IEEE 802.15.4, it is 

important to keep the messages small enough to fit into one MAC-

layer frame to avoid fragmentation and hence conserving 

bandwidth and transmission energy. One possible solution is to 

integrate differential binary delta-encoding with a service-based 

framework based on CoAP, SenML and EXI. The proposed 

efficient communication approach for service-based architecture 

can compress a series of events up to 90-95%. The proposed 

framework is a holistic approach for enabling distributed 

monitoring and control applications and a move towards realizing 

the vision of Services of Things.  

Keywords—Data compression; Internet of Things, Cyber-

physical systems; SOA; Smart Objects 

I.  INTRODUCTION 

Small embedded systems equipped with a combination of 
sensors and/or actuators, as well as with networking capabilities, 
are the core building blocks of an Internet of Things (IoT) [12]. 
These nodes typically create IP-based low-power wireless 
networks as presented by Dunkels et al. [13], which, combined 
with gateways, middleware and cloud computing, perform 
distributed data acquisition, aggregation and analysis. Individual 
nodes gather data, perform local processing, and transmit their 
results to other nodes in the network using IPv6 on top of 
wireless technologies such as Bluetooth, 6LoWPAN or Wi-Fi or 
wired solutions such as Ethernet and Power-Line 
Communication (PLC). The nodes collaborate in a distributed 
fashion to implement various kinds of monitoring and control 
tasks. Since a network may consist of a large number of nodes, 
individual node breakdown does not cause total network failure. 
Gateways are used to enable low-power nodes to communicate 
with external networks, such as cellular networks and the 
Internet.  

Organizations such as IEEE, IETF, IPSO, ZigBee Alliance, 
etc. are currently developing standards for communication in the 
field of Internet of Things. Many protocols, for example 
6LoWPAN over IEEE 802.15.4, Bluetooth Low Energy, PLC, 
and RPL are starting to become de-facto standards for low-
power and low-cost devices [5]. The use of SOA (Service-
Oriented Architecture)-enabled protocols like CoAP [2], MQTT 
[21] and OPC-UA [9] enables machine-to-machine (M2M) 
communication as well as interactions between end-users and 
sensor and actuator platforms. Even though CoAP addresses 
issues such as low-power access to resource-constrained 
devices, and powerful scripting frameworks for service 
composition targeted CoAP (see for example Kovatsch et al. in 
[1]).  

The use of common and standardized data models and 
semantics, e.g. XML-based technologies such as SenML, 
EEML, SensorML, OPC-UA, DPWS and others, results in a 
very high overhead in terms of communication and processing. 
The expressiveness of XML enables meaningful data exchange 
in M2M communications. Many existing systems for data 
collection, storage and visualization, such as Xively [19], rely 
on either XML or JSON for data exchange. However, on 
constrained networks meaningful information must be efficient 
and simple. Data compression for SOA-enabled systems, which 
is one enabling technology for addressing this issue, has also 
been investigated by other researchers, e.g. Kyusakov et al. [4], 
Caputo et al. [18], and others. 

This paper presents another approach, using an efficient 
communication method designed specifically for event-based 
communication and SOA over the CoAP protocol. The long-
term aim of the method is to enable efficient distributed service 
composition and orchestration [14] on resource-constrained 
embedded systems such as wireless sensor and actuator 
platforms.  

II. Related WORK 

There are many frameworks attempting to enable IoT 
applications and realize the business potential of connected 
devices and applications. Frameworks such as Xively, 
Cumulocity and ThingWorx offer data centric or application 
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centric platforms ideal for aggregating data and integrating 
applications.  AllJoyn, the software framework from AllSeen 
Alliance is a distributed software bus which provides device and 
service discovery, security and ad-hoc networking [31]. It is 
device centric which enables machine to machine 
communication, required for industrial monitoring and control 
systems. However it has yet to be proven on constrained 
networks and devices while providing adequate Quality of 
Service (QoS). An eXtendable Component-based Interoperable 
Open Model-driven Architecture (AXCIOMA) uses Object 
Management Group based standards to create an architecture 
which allows for complete system modeling and automated 
deployment through Interface Definition Language (IDL) and 
standardized language mappings. A shared dependency of these 
frameworks and platforms is the usage of XML and/or JSON for 
communication. 

Below are also two state of the art approaches for the design 
of distributed monitoring and control systems that are applicable 
to the targets of this paper. They are (1) multi-agent systems [20, 
21, 22] and (2) approach using a formal language, SystemJ, for 
distributed systems [23]. Both approaches require skilled system 
designers, where SystemJ excels due to outstanding 
expressiveness of constructs available for designing and 
programming concurrent software behaviors.  

The concepts of agents and multi-agent systems (MAS) 
gained popularity over the last decades in implementing 
distributed control systems. Each agent is a uniquely identifiable 
software entity that can perform certain services and multiple 
agents collectively achieve the overall system operations. 
Agents are loosely coupled to each other and thus failure of an 
individual agent has limited effects on the overall system 
functionality. The similarity between MAS and SOA makes 
MAS a popular way in implementing customized SOA systems, 
in addition to the common web service based SOA systems. 
MAS have been deployed in many distributed applications such 
as intelligent environment [24], remote monitoring and control 
applications [25] and collaborative robotics [26]. Despite the 
support of dynamic instantiation/removal of agents, mobility, 
and resilience to faults, there are a number of challenges in 
design distributed control systems using MAS. First, MAS 
typically requires heavy runtime support for proper agent life 
cycle and execution. Therefore, MAS may not always be 
applicable with resource constrained devices. Second, majority 
of the existing MAS do not follow any formal models of 
computation and hence the overall system behavior and the 
individual service behavior cannot be verified and guaranteed. 
Tremendous efforts are spent to examine the system 
functionality and reliability when interactions among distributed 
components are involved. 

III. THE SYSTEMJ APPROACH 

Alternatively, a formal language (i.e. SystemJ) based 
approach follows the formal Globally Asynchronous Locally 
Synchronous (GALS) Model of Computation (MoC) is 
proposed [23]. This approach targets a network of nodes that are 
Java-enabled. It is based on the use of SystemJ programming 
language that enables designing complex distributed systems 
with many concurrent software behaviors that, when composed 
into the SystemJ program, create a GALS system. A system is 

composed of multiple asynchronous behaviors called clock 
domains which are fixed during system runtime and hence such 
system is considered to be a static system. Clock domains are 
interconnecting and interacting with each other through a 
powerful abstract object called channel and collectively define 
the system topology and overall behavior. Clock domains 
communicate with physical environment through another 
abstract object called signals. Channels and signals can be any 
Java primitive type or Java object. Furthermore, clock domain 
behavior can be further divided into synchronous behaviors 
called reactions which execute in locked step to guarantee 
deterministic execution. They fully comply with the formal 
synchronous/reactive model of computation and even allow 
formal verification. Clock domains and reactions are inspired 
with hardware processes in sequential digital circuits. An 
example of graphical representation of a SystemJ program is 
given in Figure 1. This example illustrates a model of a small 
sensing and control system. Two clock-domains, Sensor and 
Controller, are executed asynchronously to each other. Sensor 
clock-domain gathers information from the external 
environment, processes the information, and transfers results to 
the Controller clock-domain. The Controller clock-domain then 
generates appropriate control signals, which are emitted back to 
the external environment. The synchronous parallel operator (||) 
is used to build clock-domains from multiple synchronous 
reactions. Reactions can be composed hierarchically, by forking 
child reactions from the parent reactions, effectively 
implementing behavioral hierarchy. 

This example demonstrates the possibility of considering 
clock domains as components that communicate with other 
clock domains using channels and with their external 
environment through signals with corresponding input and 
output ports. In terms of implementations on wireless networks, 
SystemJ programs can execute on commercial grade nodes that 
have either 6LoWPAN and/or IEEE 802.15.4 compliant 
protocol stack. Clock domains can be considered as service 
entities with clear role of input ports for requesting services and 
output ports to services provision according to their 
functionalities.  

 

Figure 1: Graphical illustration of a SystemJ program 

Both approaches rely on XML and/or JSON based message 
format which introduce overheads in communication, especially 
with low bandwidth and low rate wireless sensor networks. By 
enabling resource-constrained sensor and actuator platforms to 
communicate using standardized protocols and technologies 
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such as XML and the Java-based CoAP Californium toolkit by 
Kovatsch et al. [10], seamless integration with collaborative 
systems such as SystemJ is made feasible. The technique 
proposed in this paper can support existing tools to achieve 
efficient communication with analyzable system 
implementation. 

IV. EFFICIENT STANDARDS-BASED COMMUNICATION 

When using verbose message formats such as JSON and XML 
it is important to support data compression in order to be 
efficient. When using a standard IEEE 802.15.4 compliant radio 
transceiver, the maximum payload is 127 bytes, including 
6LoWPAN, IPv6 and UDP headers. When using compressed 
IPv6 over 6LoWPAN, the effective payload can be as little as 
70-100 bytes depending on compression, security and address 
options. Transmitting a message of almost 400 bytes would 
require four to five frames. This would of course increase the 
power consumption, latency and put more load on the network 
thereby limiting scalability.   

 Therefore, a vital property for maximizing performance is 
that each application layer message can be sent over the network 
in one MAC layer frame. The use of XML-based message 
format enables existing tools to be used and provides a future-
proof way of exchanging information that is web-compliant. 

A. Differential Text-XML compression mode 

One feature of the proposed framework is the use of 
differential XML. Differential XML is a compression method 
where only the fields that have changed are transmitted, thus 
mitigating the need to send the full XML+SenML header with 
each subsequent data packet. When a client enables the 
differential XML mode, it will receive a complete SenML 
packet in the first GET request, and following packets are sent 
as plain text differential packets. An example of a differential 
message exchange (218 bytes) is shown below (non-constant 
fields marked in bold for clarity). 
 
<?xml version="1.0" encoding="UTF-8"?> 

<senml xmlns="urn:ietf:params:xml:ns:senml" 

   bn="urn:dev:mac:0024befffe804ff1/" 

   bt="$ts" ver="1" bu="A"> 

  <e n="temp" u="Cel" v="$t" /> 

  <e n="humidity" t="%rh" v="$h" /> 

 </senml> 

 
Here it is obvious that the timestamp, temperature and 

humidity values can change between messages. In all events 
coming after the first subscription response, all variables will 
be sent as plain text, consuming only 23 bytes, in the 
compressed form: 

 
$ts=1276020076 

$rh=22.5 

$h=55 

 
The client must when receiving a differential response re-

create the XML description, and run the output through an 
XML schema validator in order to validate the output. This 
approach results in a compression ratio of approx. 90% 

compared to the original uncompressed plain-text SenML 
message which is 229 bytes. However, the use of differential 
plain-text messages only offers limited functionality, especially 
when more complex and structured messages must be used.  
 
<?xml version="1.0" encoding="UTF-8"?> 

<senml xmlns="urn:ietf:params:xml:ns:senml" 

   bn="urn:dev:mac:0024befffe804ff1/" 

   bt="1276020076" ver="1" bu="A"> 

  <e n="temp" u="Cel" v="22.5" /> 

  <e n="humidity" t="%RH" v="55" /> 

 </senml> 

 

B. Differential binary-XML compression mode  

Since XML is very verbose it is not suitable for use in 
wireless Internet of Things networks over low-bandwidth links. 
One technology that can be used to mitigate the performance 
impact of plain-text messages while retaining the benefits of 
using XML is Efficient XML Interchange (EXI) as shown by 
Kyusakov et al. [6]. EXI is a pure binary technology that 
enables both compaction and compression of plain text XML 
messages into a binary form. The use of EXI can compress a 
plain text XML message between 30-90% in most cases. The 
use of differential operation is actually mentioned in the SenML 
specification but only for local usage. A very resource–
constrained device can use a pre-compiled EXI message and 
only change certain byte with the EXI byte stream thereby 
eliminating the need of running a full-fledged XML to EXI 
processor. However, this approach assumes that the EXI 
message cannot change size or even the position of the bytes to 
update. This of course limits the usability. In the example 
above, the timestamp field which is 10 bytes long must always 
be sent in whole even if only 1 bit has changed. This issue can 
be eliminated by using a differential binary approach. When 
representing the value 1276020076 in binary representation 
only four bytes are required. If for example only the fourth byte 
would change (in the case of a new time stamp of value 
1276020077) it would be beneficial to only transmit the one 
byte that is actually changed. 

In the proposed framework, this is achieved by first 
compressing the plain text XML file into its binary EXI 
representation, and then calculating the difference compared to 
the previous EXI message. The binary delta is then transmitted 
to the receiver which takes the previous EXI message and re-
computes the new message using the delta information. By 
using this approach, an event can have its size reduced from 
potentially hundreds of bytes to tens of bytes. There are of 
course cases when the differential information is actually larger 
than the EXI message itself, in that case the pure EXI message 
is transmitted. This guarantees that the delta compression never 
causes larger messages than the original EXI version. 

C. Lightweight Interoperable Message Exchange 

With the use of CoAP, it would be very beneficial to merge 
binary delta encoding, differential transmission and event-
based communication. When a client requests to Observe [16] 
a CoAP resource, it can treat that initial response as the base 
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and all following messages as differential data. This is how the 
proposed message exchange framework operates. The client 
uses a CoAP query option with an Observe request to indicate 
to the remote CoAP resource that it would like to communicate 
using differential binary delta encoding. The server responds 
with an EXI-compressed SenML message to the GET request 
with the Observe option. All following events are first 
compressed to an EXI stream which is passed through a 
differential binary encoder. The encoder returns a very small 
data set of bytes which represents the delta between the initial 
message and the current. The delta information is sent to the 
client with an Option set to indicate that the payload is 
differential. When the client receives the message, it updates 
the base EXI stream's bytes according to the new information, 
and then decodes the updated EXI stream into an XML message 
and passes that to the application layer. Figure 2 shows the 
currently supported network stack. 

The proposed framework supports these two proposed 
compaction methods by extending CoAP-based services with 
URI-query options that a client use to inform the remote service 
which output semantics (XML or JSON), and which 
compaction method (none, EXI, differential text, or binary delta 
encoding). 

 
Figure 2: Network stack 

One interesting approach to extend the applicability of the 
proposed features would be to add support for these compaction 
schemas directly in the CoAP protocol. This is however 
considered as future work. Note that differential mode can only 
be used in event-based communication and cannot be used 
when using ordinary GET requests. 

V. TEST APPLICATION - WHEEL LOADER MONITORING 

In order to test the proposed method in a real world 
monitoring application, subtask 1.8 in the Arrowhead project 
was chosen. Arrowhead is a European R&D project with the aim 
to develop SOA-based interoperable systems [7]. Arrowhead’s 
Task 1.8 is a research and development activity aimed at 
delivering hardware and software for ball-bearing monitoring of 
a wheel loader. Task 1.8 is a joint collaborative effort conducted 
by Luleå University of Technology, SKF and Eistec AB [11]. 
The aim of Task 1.8 in Arrowhead is to be able to monitor each 
wheel of a wheel loader (or other vehicles as well), and to 
transmit an alarm if for example a ball bearing has been 
damaged. See Figure 3 for a layout of the network architecture 
of Arrowhead Task 1.8.  

 

Figure 3: Wheel loader monitoring architecture 

In this task, Eistec's wireless sensor and actuator platform 
Mulle mk4 is used. The Mulle features a low-power Freescale 
ARM Cortex-M4 microcontroller, wireless communication 
using IEEE 802.15.4 and several sensors. In the current setup, 
the Mulle runs the Contiki operating system and communicates 
using CoAP over 6LoWPAN. To support hierarchical messages 
as well as structured data, the SenML message format was 
selected.  

<?xml version="1.0"?> 

<senml xmlns="urn:ietf:params:xml:ns:senml" 

     bn="urn:dev:mac:0024befffe804ff1" 

     bt="1414860576"  ver="1"> 

   <e n="pktid" u="count" v="36350"/> 

   <e n="rpm" u="r/m" v="353"/> 

   <e n="rpm_av" u="r/m" v="353"/> 

   <e n="totrounds" u="count" v="375230"/> 

   <e n="totrounds_r" u="count" v="0"/> 

   <e n="bearingtemp" u="Cel" v="45.4"/> 

   <e n="rssi" u="%" v="90"/> 

</senml> 

The example shown above has a size of 384 bytes. In EXI 
format, the converted message is 184 bytes when the EXI 
compressor (OpenEXI is this case) is used in strict Schema mode 
with the Byte-aligned EXI option enabled. As shown earlier in 
this section, a message larger than the maximum effective 
payload of an IEEE 802.15.4 frame will need several frames to 
be transmitted. A message size of 184 bytes will require two 
frames, thereby doubling the required power consumption and 
latency. 

A. Differential message exchange 

By investigating the information that is actually transmitted, 
it is easy to see that there is a lot of redundant information that 
is transmitted in each packet, for example the SenML header, 
MAC-address, name of all tags, etc. A much more efficient way 
of transmitting the information would be to only transmit the 
changes from a previous message. Many video encoders, such 
as MPEG, operate in this way, using a base frame and then only 
encoding the difference between following frames and the base 
frame. In RFC 3229 [20], a method for utilizing a similar 
approach for differential HTTP is proposed. However, since 

2201



HTTP does not support event-based communication, no widely 
used webserver is currently supporting this RFC. 

The SenML specification also mentions that resource-
constrained nodes do not require a full-fledged EXI compressor 
in order to generate an EXI stream. Instead, a base version can 
be generated at compile time, and the node can update 
individual bytes within the stream at run time, thereby 
eliminating the need to compress an entire XML message. Even 
though this is a very efficient method for generating EXI 
streams, it will still require the entire EXI message to be 
transmitted over a wireless medium. A much more efficient 
method would be to combine the mentioned methods by only 
transmitting the difference between a base message and 
following messages and the use of pre-compiled EXI messages 
and only updating certain bytes within the EXI stream. 

VI. RESULTS 

In order to validate the proposed method of differential 
binary compression several test cases were implemented and 
tested. In the following subsection, the characteristics of each 
implementation are presented, together with implementation 
details, status of the implementation and test results. 

A. Test A 

This test uses the example SenML message found in [15], 
section-7. EXI was used in strict schema mode with Byte-
aligned compaction. Four tests were compared: standard 
human-readable XML (including indention and white spaces), 
M2M-XML (with all whitespaces removed), JSON-encoded, 
and binary-delta encoded. 

B. Test B 

This test also uses the example SenML message found in 
[15], section-7 but also adds a timestamp field and a 
temperature reading as integers. EXI was used in strict schema 
mode with Byte-aligned compaction. Four tests were 
compared: standard human-readable XML (including indention 
and white spaces), M2M-XML (with all whitespaces removed), 
JSON-encoded, and binary-delta encoded. 

C. Test C 

This test is also on an example SenML message from [15], 
section-7, with six current readings and one voltage reading. 
EXI was used in strict schema mode with Byte-aligned 
compaction. Four tests were compared: standard human-
readable XML (including indention and white spaces), M2M-
XML (with all whitespaces removed), JSON-encoded, and 
binary-delta encoded. 

D. Test D 

This test is based on the minimal EEML example found at 
http://www.eeml.org/xml/0.5.1/minimal.xml. EXI was used in 
standard schema mode with Byte-aligned compaction. Three 
tests were compared: standard human-readable XML 
(including indention and white spaces), M2M-XML (with all 
whitespaces removed), and binary-delta encoded. All tests were 
performed using EXI files generated by the OpenEXI EXI 
processor. All binary files were manually verified using the 

Bless hex editor on Linux Mint 17 (64-bit). The binary delta 
compression were tested using two original documents with a 
number of readings and timestamps slightly modified in order 
to reflect a change of sensor reading(s) which would cause an 
event to be transmitted to any CoAP client Observing a 
resource. Figure 4 shows the results when using different 
semantic models and compression techniques. It is easily seen 
that the proposed approach of using a delta-encoded EXI 
message exchange outperforms the standard XML, EXI-
encoded XML and JSON models. 

This proposed method has shown to be able to compress a 
series of messages from the same resource to up to 90-95%, as 
shown in Figure 4. The differential binary delta encoding shown 
here is the key component in the proposed lightweight message 
exchange protocol. This protocol is targeting resource-
constrained networked embedded systems communicating using 
CoAP, SenML and EXI. However, any XML-based format can 
be compressed using this approach. In order to verify that no 
error has occurred during compression, delta compression or 
merge, a 32-bit checksum (Adler32) is currently used to verify 
the integrity of the messages. The option to use Adler32 adds an 
additional four bytes to each differential message. 

 
Figure 4: Message compaction results 

VII. FUTURE WORK 

This paper has presented advancements on efficient service-
based communication for low-power Internet of Things devices 
and networks. However, more work is needed in the following 
areas: 
� Integration with the CoAP Message Queue [30], to enable 

sleepy nodes to use the proposed delta compression and 
having the Message broker convert into the standard 
EXI/text XML representation. This would make the use of 
delta encoding transparent for end clients.  

� Improved integration with existing monitoring and control 
tools and languages such as SystemJ. 

� Investigate power consumption reductions for each 
communication method. 

� Real-time/low-latency CoAP operation, see for example 
the proposed solution by Ludovici et al. [17]. 
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� Support for high data rate sensors such as microphones 
and accelerometers and variable-sized differential 
messages. 

� Perform extensive test with SenML, CBOR [29], EEML, 
and OPC-UA industrial real-world messages. 

VIII. CONCLUSIONS 

This paper has presented a framework for highly efficient 
event-based communication suitable for use when integrating 
resource-constrained devices with standards-based frameworks 
such as SystemJ, IPSO Smart Objects, Xively and the 
Arrowhead framework. The message exchange method 
presented in this paper is designed specifically for resource-
constrained embedded systems using low-bandwidth wireless 
links.  

In order to achieve a very high level of efficiency and thereby 
enable low latency communication, a binary delta compression 
technique has been integrated into the method. The binary delta 
compression operates on EXI-compressed XML documents and 
can compact XML-based documents in for example SenML 
from several hundred bytes down to tens of bytes when using 
event-based communication in CoAP (Observe). Currently, 
there are two reference implementations available: one based on 
the Contiki operating system on the Mulle sensor and actuator 
platform, and one based on the Californium CoAP library on 
Linux. 

The implemented data compaction functionality shows that 
a data reduction of up to 90-95% is possible when streaming EXI 
data. The proposed method is well suited for use with SystemJ, 
the Arrowhead Framework and the IPSO Smart Objects model 
and thus the OMA LWM2M standard. 

ACKNOWLEDGMENT 

The authors would like to thank Michael Koster and Jamie 
Jimenez for interesting discussions regarding CoAP and OMA 
LWM2M. The authors would also like to express their gratitude 
towards the European Commission, Artemis and the I2Mine and 
Arrowhead projects for funding.  

REFERENCES 

[1] Kovatsch, M.; Lanter, M.; Duquennoy, S., "Actinium: A RESTful runtime 
container for scriptable Internet of Things applications," Internet of 
Things (IOT), 2012 3rd International Conference on the , vol., no., 
pp.135,142, 24-26 Oct. 2012. doi: 10.1109/IOT.2012.6402315 

[2] Bormann, C.; Castellani, A.P.; Shelby, Z., "CoAP: An Application 
Protocol for Billions of Tiny Internet Nodes," Internet Computing, IEEE, 
vol.16, no.2, pp.62,67, March-April 2012. doi: 10.1109/MIC.2012.29 

[3] Gruian, F.; Roop, P.; Salcic, Z.; Radojevic, I., "The SystemJ approach to 
system-level design," Formal Methods and Models for Co-Design, 2006. 
MEMOCODE '06. Proceedings. Fourth ACM and IEEE International 
Conference on , vol., no., pp.149,158, 27-30 July 2006. doi: 
10.1109/MEMCOD.2006.1695918 

[4] Kyusakov, R.; Makitaavola, H.; Delsing, J.; Eliasson, J., "Efficient XML 
Interchange in factory automation systems," IECON 2011 - 37th Annual 
Conference on IEEE Industrial Electronics Society , vol., no., 
pp.4478,4483, 7-10 Nov. 2011. doi: 10.1109/IECON.2011.6120046 

[5] Moritz, G.; Golatowski, F.; Lerche, C.; Timmermann, D., "Beyond 
6LoWPAN: Web Services in Wireless Sensor Networks," Industrial 
Informatics, IEEE Transactions on , vol.9, no.4, pp.1795,1805, Nov. 
2013. doi: 10.1109/TII.2012.2198660 

[6] Kyusakov, R.; Eliasson, J.; Delsing, J., "Efficient structured data 
processing for web service enabled shop floor devices," Industrial 
Electronics (ISIE), 2011 IEEE International Symposium on , vol., no., 
pp.1716,1721, 27-30 June 2011. doi: 10.1109/ISIE.2011.5984320 

[7] Blomstedt, F, Lino Ferreira, L, Klisics, M & Eliasson, J 2014, 'The 
Arrowhead Approach for SOA Application Development and 
Documentation', IECON 2014, Dallas, USA. 

[8] Chatzigiannakis, I.; Hasemann, H.; Karnstedt, M.; Kleine, O.; Kroller, A.; 
Leggieri, M.; Pfisterer, D.; Romer, K.; Truong, C., "True self-
configuration for the IoT," Internet of Things (IOT), 2012 3rd 
International Conference on the , vol., no., pp.9,15, 24-26 Oct. 2012. doi: 
10.1109/IOT.2012.6402298 

[9] Candido, G.; Jammes, F.; de Oliveira, J.B.; Colombo, A.W., "SOA at 
device level in the industrial domain: Assessment of OPC UA and DPWS 
specifications," Industrial Informatics (INDIN), 2010 8th IEEE 
International Conference on , vol., no., pp.598,603, 13-16 July 2010. doi: 
10.1109/INDIN.2010.5549676 

[10] Kovatsch, M.; Mayer, S.; Ostermaier, B., "Moving Application Logic 
from the Firmware to the Cloud: Towards the Thin Server Architecture 
for the Internet of Things," Innovative Mobile and Internet Services in 
Ubiquitous Computing (IMIS), 2012 Sixth International Conference on , 
vol., no., pp.751,756, 4-6 July 2012. doi: 10.1109/IMIS.2012.104  

[11] Eistec AB, http://www.eistec.se (accessed 21 November 2014). 

[12] Castellani, A.P.; Bui, N.; Casari, P.; Rossi, M.; Shelby, Z.; Zorzi, M., 
"Architecture and protocols for the Internet of Things: A case study," 
Pervasive Computing and Communications Workshops (PERCOM 
Workshops), 2010 8th IEEE International Conference on , vol., no., 
pp.678,683, March 29 2010-April 2 2010. doi: 
10.1109/PERCOMW.2010.5470520 

[13] Dunkels, A.; Eriksson, J.; Finne, N.; Osterlind, F.; Tsiftes, N.; Abeille, J.; 
Durvy, M., "Low-power IPv6 for the Internet of Things," Networked 
Sensing Systems (INSS), 2012 Ninth International Conference on , vol., 
no., pp.1,6, 11-14 June 2012. doi: 10.1109/INSS.2012.6240537 

[14] Erl, T.; “SOA Principles of Service Design”, Prentice Hall/PearsonPTR. 
ISBN: 0132344823 

[15] SenML specification, http://tools.ietf.org/html/draft-jennings-senml-10 
(accessed 19 November 2014). 

[16] Ketema, G.; Hoebeke, J.; Moerman, I.; Demeester, P.; Li Shi Tao; Jara, 
A.J., "Efficiently Observing Internet of Things Resources," Green 
Computing and Communications (GreenCom), 2012 IEEE International 
Conference on , vol., no., pp.446,449, 20-23 Nov. 2012. doi: 
10.1109/GreenCom.2012.70 

[17] Ludovici, A.; Garcia, E.; Gimeno, X.; Calveras Auge, A., "Adding QoS 
support for timeliness to the observe extension of CoAP," Wireless and 
Mobile Computing, Networking and Communications (WiMob), 2012 
IEEE 8th International Conference on , vol., no., pp.195,202, 8-10 Oct. 
2012. doi: 10.1109/WiMOB.2012.6379074 

[18] Caputo, D.; Mainetti, L.; Patrono, L.; Vilei, A., "Implementation of the 
EXI Schema on Wireless Sensor Nodes Using Contiki," Innovative 
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 
Sixth International Conference on , vol., no., pp.770,774, 4-6 July 2012. 
doi: 10.1109/IMIS.2012.79 

[19] Xively (2914), Framework Description. Available at 
https://xively.com/whats_xively/ (accessed 21 November 2014). 

[20] Mogul, J.; Krishnamurthy, B,; Douglis, F.; “RFC3229: Delta encoding in 
HTTP”, http://www.ietf.org/rfc/rfc3229.txt (accessed 21 November 
2014). 

[21] Collina, M.; Corazza, G.E.; Vanelli-Coralli, A., "Introducing the QEST 
broker: Scaling the IoT by bridging MQTT and REST," Personal Indoor 
and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd 
International Symposium on , vol., no., pp.36,41, 9-12 Sept. 2012. doi: 
10.1109/PIMRC.2012.63628 

[22] Bellifemine, F., Bergenti, F., Caire, G., and Poggi, A., "JADE—a java 
agent development framework," Multi-Agent Programming, pp. 125-147, 
2005. 

[23] O'Hare, G. M. P., Collier, R., Dragone, M., O'Grady, M. J., Muldoon, C., 
and Montoya, D. J., "Embedding Agents within Ambient Intelligent 
Applications," Bosse, T.(ed.). Agents and Ambient Intelligence: 

2203



Achievements and Challenges in the Intersection of Agent Technology 
and Ambient Intelligence, 2012. 

[24] Bordini, R. H., Braubach, L., Dastani, M., El FSeghrouchni, A., Gomez-
Sanz, J. J., Leite, J., O Hare, G., Pokahr, A., and Ricci, A., "A survey of 
programming languages and platforms for multi-agent systems," 
INFORMATICA-LJUBLJANA-, vol. 30, p. 33, 2006. 

[25] Malik, A., Salcic, Z., Roop, P. S., and Girault, A., "SystemJ: A GALS 
language for system level design," Computer Languages, Systems, & 
Structures, vol. 36, pp. 317-344, 2010. 

[26] Wang, K. I. K., Abdulla, W. H., and Salcic, Z., "Ambient intelligence 
platform using multi-agent system and mobile ubiquitous hardware," 
Pervasive and Mobile Computing, vol. 5, pp. 558-573, 2009. 

[27] Atmojo U. D., Salcic Z., and Wang K. I.-K., “System-Level Approach to 
the Design of Ambient Intelligence Systems based on Wireless Sensor 
and Actuator Networks,” Journal of Ambient Intelligence and Humanized 
Computing (AIHC), in press, doi: 10.1007/s12652-014-0221-3 

[28] Nourbakhsh, I., Sycara, K., Koes, M., Yong, M., Lewis, M., & Burion, S, 
“Human-robot teaming for search and rescue,” Pervasive Computing, 
IEEE, vol. 4, no. 1, pp. 72-79, 2005 

[29] Bormann, C.; Hoffman, P.; “Concise Binary Object Representation 
(CBOR)”, https://tools.ietf.org/html/rfc7049 (accessed 20 November 
2014). 

[30] Koster, M.; Keranen, A.; Jimenez, J.; “Message Queueing in the 
Constrained Application Protocol (CoAP)W, 
https://tools.ietf.org/html/draft-koster-core-coapmq-00 (accessed 21 
November 2014). 

[31] AllJoyn, AllSeenAlliance (2014), Developers overview. Available at 
https://allseenalliance.org/developers/learn (accessed 21 November 
2014). 

 

2204

Powered by TCPDF (www.tcpdf.org)


