
Towards	Industrial	Internet	of	Things:	

An	Efficient	and	Interoperable		

Communication	Framework	

Jens Eliasson, Jerker Delsing, Hasan Derhamy

Dept. of Computer Science, Space and Electrical
Engineering

Luleå University of Technology
Luleå, Sweden

jens.eliasson@ltu.se

Zoran Salcic, Kevin Wang

Dept. of Electrical and Computer Engineering
The University of Auckland

Auckland New Zealand
z.salcic@auckland.ac.nz

Abstract— Interoperability between shop floor devices and

upper layer systems is a key challenge for enabling Internet of

Things in industrial applications. Standardized protocols such as

IPv6, CoAP, and XML can be used to address this issue. Widely

used XML-based technologies such as SenML, EEML, OPC-UA

as well as others rely on XML to be able to support a wide range

of sensor and actuator applications. However, this approach

results in high communication overhead due to the verbose nature

of plain text messages encoded in XML. When devices are

communicating using 6LoWPAN over IEEE 802.15.4, it is

important to keep the messages small enough to fit into one MAC-

layer frame to avoid fragmentation and hence conserving

bandwidth and transmission energy. One possible solution is to

integrate differential binary delta-encoding with a service-based

framework based on CoAP, SenML and EXI. The proposed

efficient communication approach for service-based architecture

can compress a series of events up to 90-95%. The proposed

framework is a holistic approach for enabling distributed

monitoring and control applications and a move towards realizing

the vision of Services of Things.

Keywords—Data compression; Internet of Things, Cyber-

physical systems; SOA; Smart Objects

I. INTRODUCTION

Small embedded systems equipped with a combination of
sensors and/or actuators, as well as with networking capabilities,
are the core building blocks of an Internet of Things (IoT) [12].
These nodes typically create IP-based low-power wireless
networks as presented by Dunkels et al. [13], which, combined
with gateways, middleware and cloud computing, perform
distributed data acquisition, aggregation and analysis. Individual
nodes gather data, perform local processing, and transmit their
results to other nodes in the network using IPv6 on top of
wireless technologies such as Bluetooth, 6LoWPAN or Wi-Fi or
wired solutions such as Ethernet and Power-Line
Communication (PLC). The nodes collaborate in a distributed
fashion to implement various kinds of monitoring and control
tasks. Since a network may consist of a large number of nodes,
individual node breakdown does not cause total network failure.
Gateways are used to enable low-power nodes to communicate
with external networks, such as cellular networks and the
Internet.

Organizations such as IEEE, IETF, IPSO, ZigBee Alliance,
etc. are currently developing standards for communication in the
field of Internet of Things. Many protocols, for example
6LoWPAN over IEEE 802.15.4, Bluetooth Low Energy, PLC,
and RPL are starting to become de-facto standards for low-
power and low-cost devices [5]. The use of SOA (Service-
Oriented Architecture)-enabled protocols like CoAP [2], MQTT
[21] and OPC-UA [9] enables machine-to-machine (M2M)
communication as well as interactions between end-users and
sensor and actuator platforms. Even though CoAP addresses
issues such as low-power access to resource-constrained
devices, and powerful scripting frameworks for service
composition targeted CoAP (see for example Kovatsch et al. in
[1]).

The use of common and standardized data models and
semantics, e.g. XML-based technologies such as SenML,
EEML, SensorML, OPC-UA, DPWS and others, results in a
very high overhead in terms of communication and processing.
The expressiveness of XML enables meaningful data exchange
in M2M communications. Many existing systems for data
collection, storage and visualization, such as Xively [19], rely
on either XML or JSON for data exchange. However, on
constrained networks meaningful information must be efficient
and simple. Data compression for SOA-enabled systems, which
is one enabling technology for addressing this issue, has also
been investigated by other researchers, e.g. Kyusakov et al. [4],
Caputo et al. [18], and others.

This paper presents another approach, using an efficient
communication method designed specifically for event-based
communication and SOA over the CoAP protocol. The long-
term aim of the method is to enable efficient distributed service
composition and orchestration [14] on resource-constrained
embedded systems such as wireless sensor and actuator
platforms.

II. Related WORK

There are many frameworks attempting to enable IoT
applications and realize the business potential of connected
devices and applications. Frameworks such as Xively,
Cumulocity and ThingWorx offer data centric or application

978-1-4799-7800-7/15/$31.00 ©2015 IEEE 2198

centric platforms ideal for aggregating data and integrating
applications. AllJoyn, the software framework from AllSeen
Alliance is a distributed software bus which provides device and
service discovery, security and ad-hoc networking [31]. It is
device centric which enables machine to machine
communication, required for industrial monitoring and control
systems. However it has yet to be proven on constrained
networks and devices while providing adequate Quality of
Service (QoS). An eXtendable Component-based Interoperable
Open Model-driven Architecture (AXCIOMA) uses Object
Management Group based standards to create an architecture
which allows for complete system modeling and automated
deployment through Interface Definition Language (IDL) and
standardized language mappings. A shared dependency of these
frameworks and platforms is the usage of XML and/or JSON for
communication.

Below are also two state of the art approaches for the design
of distributed monitoring and control systems that are applicable
to the targets of this paper. They are (1) multi-agent systems [20,
21, 22] and (2) approach using a formal language, SystemJ, for
distributed systems [23]. Both approaches require skilled system
designers, where SystemJ excels due to outstanding
expressiveness of constructs available for designing and
programming concurrent software behaviors.

The concepts of agents and multi-agent systems (MAS)
gained popularity over the last decades in implementing
distributed control systems. Each agent is a uniquely identifiable
software entity that can perform certain services and multiple
agents collectively achieve the overall system operations.
Agents are loosely coupled to each other and thus failure of an
individual agent has limited effects on the overall system
functionality. The similarity between MAS and SOA makes
MAS a popular way in implementing customized SOA systems,
in addition to the common web service based SOA systems.
MAS have been deployed in many distributed applications such
as intelligent environment [24], remote monitoring and control
applications [25] and collaborative robotics [26]. Despite the
support of dynamic instantiation/removal of agents, mobility,
and resilience to faults, there are a number of challenges in
design distributed control systems using MAS. First, MAS
typically requires heavy runtime support for proper agent life
cycle and execution. Therefore, MAS may not always be
applicable with resource constrained devices. Second, majority
of the existing MAS do not follow any formal models of
computation and hence the overall system behavior and the
individual service behavior cannot be verified and guaranteed.
Tremendous efforts are spent to examine the system
functionality and reliability when interactions among distributed
components are involved.

III. THE SYSTEMJ APPROACH

Alternatively, a formal language (i.e. SystemJ) based
approach follows the formal Globally Asynchronous Locally
Synchronous (GALS) Model of Computation (MoC) is
proposed [23]. This approach targets a network of nodes that are
Java-enabled. It is based on the use of SystemJ programming
language that enables designing complex distributed systems
with many concurrent software behaviors that, when composed
into the SystemJ program, create a GALS system. A system is

composed of multiple asynchronous behaviors called clock
domains which are fixed during system runtime and hence such
system is considered to be a static system. Clock domains are
interconnecting and interacting with each other through a
powerful abstract object called channel and collectively define
the system topology and overall behavior. Clock domains
communicate with physical environment through another
abstract object called signals. Channels and signals can be any
Java primitive type or Java object. Furthermore, clock domain
behavior can be further divided into synchronous behaviors
called reactions which execute in locked step to guarantee
deterministic execution. They fully comply with the formal
synchronous/reactive model of computation and even allow
formal verification. Clock domains and reactions are inspired
with hardware processes in sequential digital circuits. An
example of graphical representation of a SystemJ program is
given in Figure 1. This example illustrates a model of a small
sensing and control system. Two clock-domains, Sensor and
Controller, are executed asynchronously to each other. Sensor
clock-domain gathers information from the external
environment, processes the information, and transfers results to
the Controller clock-domain. The Controller clock-domain then
generates appropriate control signals, which are emitted back to
the external environment. The synchronous parallel operator (||)
is used to build clock-domains from multiple synchronous
reactions. Reactions can be composed hierarchically, by forking
child reactions from the parent reactions, effectively
implementing behavioral hierarchy.

This example demonstrates the possibility of considering
clock domains as components that communicate with other
clock domains using channels and with their external
environment through signals with corresponding input and
output ports. In terms of implementations on wireless networks,
SystemJ programs can execute on commercial grade nodes that
have either 6LoWPAN and/or IEEE 802.15.4 compliant
protocol stack. Clock domains can be considered as service
entities with clear role of input ports for requesting services and
output ports to services provision according to their
functionalities.

Figure 1: Graphical illustration of a SystemJ program

Both approaches rely on XML and/or JSON based message
format which introduce overheads in communication, especially
with low bandwidth and low rate wireless sensor networks. By
enabling resource-constrained sensor and actuator platforms to
communicate using standardized protocols and technologies

2199

such as XML and the Java-based CoAP Californium toolkit by
Kovatsch et al. [10], seamless integration with collaborative
systems such as SystemJ is made feasible. The technique
proposed in this paper can support existing tools to achieve
efficient communication with analyzable system
implementation.

IV. EFFICIENT STANDARDS-BASED COMMUNICATION

When using verbose message formats such as JSON and XML
it is important to support data compression in order to be
efficient. When using a standard IEEE 802.15.4 compliant radio
transceiver, the maximum payload is 127 bytes, including
6LoWPAN, IPv6 and UDP headers. When using compressed
IPv6 over 6LoWPAN, the effective payload can be as little as
70-100 bytes depending on compression, security and address
options. Transmitting a message of almost 400 bytes would
require four to five frames. This would of course increase the
power consumption, latency and put more load on the network
thereby limiting scalability.

 Therefore, a vital property for maximizing performance is
that each application layer message can be sent over the network
in one MAC layer frame. The use of XML-based message
format enables existing tools to be used and provides a future-
proof way of exchanging information that is web-compliant.

A. Differential Text-XML compression mode

One feature of the proposed framework is the use of
differential XML. Differential XML is a compression method
where only the fields that have changed are transmitted, thus
mitigating the need to send the full XML+SenML header with
each subsequent data packet. When a client enables the
differential XML mode, it will receive a complete SenML
packet in the first GET request, and following packets are sent
as plain text differential packets. An example of a differential
message exchange (218 bytes) is shown below (non-constant
fields marked in bold for clarity).

<?xml version="1.0" encoding="UTF-8"?>

<senml xmlns="urn:ietf:params:xml:ns:senml"

 bn="urn:dev:mac:0024befffe804ff1/"

 bt="$ts" ver="1" bu="A">

 <e n="temp" u="Cel" v="$t" />

 <e n="humidity" t="%rh" v="$h" />

 </senml>

Here it is obvious that the timestamp, temperature and

humidity values can change between messages. In all events
coming after the first subscription response, all variables will
be sent as plain text, consuming only 23 bytes, in the
compressed form:

$ts=1276020076

$rh=22.5

$h=55

The client must when receiving a differential response re-

create the XML description, and run the output through an
XML schema validator in order to validate the output. This
approach results in a compression ratio of approx. 90%

compared to the original uncompressed plain-text SenML
message which is 229 bytes. However, the use of differential
plain-text messages only offers limited functionality, especially
when more complex and structured messages must be used.

<?xml version="1.0" encoding="UTF-8"?>

<senml xmlns="urn:ietf:params:xml:ns:senml"

 bn="urn:dev:mac:0024befffe804ff1/"

 bt="1276020076" ver="1" bu="A">

 <e n="temp" u="Cel" v="22.5" />

 <e n="humidity" t="%RH" v="55" />

 </senml>

B. Differential binary-XML compression mode

Since XML is very verbose it is not suitable for use in
wireless Internet of Things networks over low-bandwidth links.
One technology that can be used to mitigate the performance
impact of plain-text messages while retaining the benefits of
using XML is Efficient XML Interchange (EXI) as shown by
Kyusakov et al. [6]. EXI is a pure binary technology that
enables both compaction and compression of plain text XML
messages into a binary form. The use of EXI can compress a
plain text XML message between 30-90% in most cases. The
use of differential operation is actually mentioned in the SenML
specification but only for local usage. A very resource–
constrained device can use a pre-compiled EXI message and
only change certain byte with the EXI byte stream thereby
eliminating the need of running a full-fledged XML to EXI
processor. However, this approach assumes that the EXI
message cannot change size or even the position of the bytes to
update. This of course limits the usability. In the example
above, the timestamp field which is 10 bytes long must always
be sent in whole even if only 1 bit has changed. This issue can
be eliminated by using a differential binary approach. When
representing the value 1276020076 in binary representation
only four bytes are required. If for example only the fourth byte
would change (in the case of a new time stamp of value
1276020077) it would be beneficial to only transmit the one
byte that is actually changed.

In the proposed framework, this is achieved by first
compressing the plain text XML file into its binary EXI
representation, and then calculating the difference compared to
the previous EXI message. The binary delta is then transmitted
to the receiver which takes the previous EXI message and re-
computes the new message using the delta information. By
using this approach, an event can have its size reduced from
potentially hundreds of bytes to tens of bytes. There are of
course cases when the differential information is actually larger
than the EXI message itself, in that case the pure EXI message
is transmitted. This guarantees that the delta compression never
causes larger messages than the original EXI version.

C. Lightweight Interoperable Message Exchange

With the use of CoAP, it would be very beneficial to merge
binary delta encoding, differential transmission and event-
based communication. When a client requests to Observe [16]
a CoAP resource, it can treat that initial response as the base

2200

and all following messages as differential data. This is how the
proposed message exchange framework operates. The client
uses a CoAP query option with an Observe request to indicate
to the remote CoAP resource that it would like to communicate
using differential binary delta encoding. The server responds
with an EXI-compressed SenML message to the GET request
with the Observe option. All following events are first
compressed to an EXI stream which is passed through a
differential binary encoder. The encoder returns a very small
data set of bytes which represents the delta between the initial
message and the current. The delta information is sent to the
client with an Option set to indicate that the payload is
differential. When the client receives the message, it updates
the base EXI stream's bytes according to the new information,
and then decodes the updated EXI stream into an XML message
and passes that to the application layer. Figure 2 shows the
currently supported network stack.

The proposed framework supports these two proposed
compaction methods by extending CoAP-based services with
URI-query options that a client use to inform the remote service
which output semantics (XML or JSON), and which
compaction method (none, EXI, differential text, or binary delta
encoding).

Figure 2: Network stack

One interesting approach to extend the applicability of the
proposed features would be to add support for these compaction
schemas directly in the CoAP protocol. This is however
considered as future work. Note that differential mode can only
be used in event-based communication and cannot be used
when using ordinary GET requests.

V. TEST APPLICATION - WHEEL LOADER MONITORING

In order to test the proposed method in a real world
monitoring application, subtask 1.8 in the Arrowhead project
was chosen. Arrowhead is a European R&D project with the aim
to develop SOA-based interoperable systems [7]. Arrowhead’s
Task 1.8 is a research and development activity aimed at
delivering hardware and software for ball-bearing monitoring of
a wheel loader. Task 1.8 is a joint collaborative effort conducted
by Luleå University of Technology, SKF and Eistec AB [11].
The aim of Task 1.8 in Arrowhead is to be able to monitor each
wheel of a wheel loader (or other vehicles as well), and to
transmit an alarm if for example a ball bearing has been
damaged. See Figure 3 for a layout of the network architecture
of Arrowhead Task 1.8.

Figure 3: Wheel loader monitoring architecture

In this task, Eistec's wireless sensor and actuator platform
Mulle mk4 is used. The Mulle features a low-power Freescale
ARM Cortex-M4 microcontroller, wireless communication
using IEEE 802.15.4 and several sensors. In the current setup,
the Mulle runs the Contiki operating system and communicates
using CoAP over 6LoWPAN. To support hierarchical messages
as well as structured data, the SenML message format was
selected.

<?xml version="1.0"?>

<senml xmlns="urn:ietf:params:xml:ns:senml"

 bn="urn:dev:mac:0024befffe804ff1"

 bt="1414860576" ver="1">

 <e n="pktid" u="count" v="36350"/>

 <e n="rpm" u="r/m" v="353"/>

 <e n="rpm_av" u="r/m" v="353"/>

 <e n="totrounds" u="count" v="375230"/>

 <e n="totrounds_r" u="count" v="0"/>

 <e n="bearingtemp" u="Cel" v="45.4"/>

 <e n="rssi" u="%" v="90"/>

</senml>

The example shown above has a size of 384 bytes. In EXI
format, the converted message is 184 bytes when the EXI
compressor (OpenEXI is this case) is used in strict Schema mode
with the Byte-aligned EXI option enabled. As shown earlier in
this section, a message larger than the maximum effective
payload of an IEEE 802.15.4 frame will need several frames to
be transmitted. A message size of 184 bytes will require two
frames, thereby doubling the required power consumption and
latency.

A. Differential message exchange

By investigating the information that is actually transmitted,
it is easy to see that there is a lot of redundant information that
is transmitted in each packet, for example the SenML header,
MAC-address, name of all tags, etc. A much more efficient way
of transmitting the information would be to only transmit the
changes from a previous message. Many video encoders, such
as MPEG, operate in this way, using a base frame and then only
encoding the difference between following frames and the base
frame. In RFC 3229 [20], a method for utilizing a similar
approach for differential HTTP is proposed. However, since

2201

HTTP does not support event-based communication, no widely
used webserver is currently supporting this RFC.

The SenML specification also mentions that resource-
constrained nodes do not require a full-fledged EXI compressor
in order to generate an EXI stream. Instead, a base version can
be generated at compile time, and the node can update
individual bytes within the stream at run time, thereby
eliminating the need to compress an entire XML message. Even
though this is a very efficient method for generating EXI
streams, it will still require the entire EXI message to be
transmitted over a wireless medium. A much more efficient
method would be to combine the mentioned methods by only
transmitting the difference between a base message and
following messages and the use of pre-compiled EXI messages
and only updating certain bytes within the EXI stream.

VI. RESULTS

In order to validate the proposed method of differential
binary compression several test cases were implemented and
tested. In the following subsection, the characteristics of each
implementation are presented, together with implementation
details, status of the implementation and test results.

A. Test A

This test uses the example SenML message found in [15],
section-7. EXI was used in strict schema mode with Byte-
aligned compaction. Four tests were compared: standard
human-readable XML (including indention and white spaces),
M2M-XML (with all whitespaces removed), JSON-encoded,
and binary-delta encoded.

B. Test B

This test also uses the example SenML message found in
[15], section-7 but also adds a timestamp field and a
temperature reading as integers. EXI was used in strict schema
mode with Byte-aligned compaction. Four tests were
compared: standard human-readable XML (including indention
and white spaces), M2M-XML (with all whitespaces removed),
JSON-encoded, and binary-delta encoded.

C. Test C

This test is also on an example SenML message from [15],
section-7, with six current readings and one voltage reading.
EXI was used in strict schema mode with Byte-aligned
compaction. Four tests were compared: standard human-
readable XML (including indention and white spaces), M2M-
XML (with all whitespaces removed), JSON-encoded, and
binary-delta encoded.

D. Test D

This test is based on the minimal EEML example found at
http://www.eeml.org/xml/0.5.1/minimal.xml. EXI was used in
standard schema mode with Byte-aligned compaction. Three
tests were compared: standard human-readable XML
(including indention and white spaces), M2M-XML (with all
whitespaces removed), and binary-delta encoded. All tests were
performed using EXI files generated by the OpenEXI EXI
processor. All binary files were manually verified using the

Bless hex editor on Linux Mint 17 (64-bit). The binary delta
compression were tested using two original documents with a
number of readings and timestamps slightly modified in order
to reflect a change of sensor reading(s) which would cause an
event to be transmitted to any CoAP client Observing a
resource. Figure 4 shows the results when using different
semantic models and compression techniques. It is easily seen
that the proposed approach of using a delta-encoded EXI
message exchange outperforms the standard XML, EXI-
encoded XML and JSON models.

This proposed method has shown to be able to compress a
series of messages from the same resource to up to 90-95%, as
shown in Figure 4. The differential binary delta encoding shown
here is the key component in the proposed lightweight message
exchange protocol. This protocol is targeting resource-
constrained networked embedded systems communicating using
CoAP, SenML and EXI. However, any XML-based format can
be compressed using this approach. In order to verify that no
error has occurred during compression, delta compression or
merge, a 32-bit checksum (Adler32) is currently used to verify
the integrity of the messages. The option to use Adler32 adds an
additional four bytes to each differential message.

Figure 4: Message compaction results

VII. FUTURE WORK

This paper has presented advancements on efficient service-
based communication for low-power Internet of Things devices
and networks. However, more work is needed in the following
areas:
� Integration with the CoAP Message Queue [30], to enable

sleepy nodes to use the proposed delta compression and
having the Message broker convert into the standard
EXI/text XML representation. This would make the use of
delta encoding transparent for end clients.

� Improved integration with existing monitoring and control
tools and languages such as SystemJ.

� Investigate power consumption reductions for each
communication method.

� Real-time/low-latency CoAP operation, see for example
the proposed solution by Ludovici et al. [17].

2202

� Support for high data rate sensors such as microphones
and accelerometers and variable-sized differential
messages.

� Perform extensive test with SenML, CBOR [29], EEML,
and OPC-UA industrial real-world messages.

VIII. CONCLUSIONS

This paper has presented a framework for highly efficient
event-based communication suitable for use when integrating
resource-constrained devices with standards-based frameworks
such as SystemJ, IPSO Smart Objects, Xively and the
Arrowhead framework. The message exchange method
presented in this paper is designed specifically for resource-
constrained embedded systems using low-bandwidth wireless
links.

In order to achieve a very high level of efficiency and thereby
enable low latency communication, a binary delta compression
technique has been integrated into the method. The binary delta
compression operates on EXI-compressed XML documents and
can compact XML-based documents in for example SenML
from several hundred bytes down to tens of bytes when using
event-based communication in CoAP (Observe). Currently,
there are two reference implementations available: one based on
the Contiki operating system on the Mulle sensor and actuator
platform, and one based on the Californium CoAP library on
Linux.

The implemented data compaction functionality shows that
a data reduction of up to 90-95% is possible when streaming EXI
data. The proposed method is well suited for use with SystemJ,
the Arrowhead Framework and the IPSO Smart Objects model
and thus the OMA LWM2M standard.

ACKNOWLEDGMENT

The authors would like to thank Michael Koster and Jamie
Jimenez for interesting discussions regarding CoAP and OMA
LWM2M. The authors would also like to express their gratitude
towards the European Commission, Artemis and the I2Mine and
Arrowhead projects for funding.

REFERENCES

[1] Kovatsch, M.; Lanter, M.; Duquennoy, S., "Actinium: A RESTful runtime
container for scriptable Internet of Things applications," Internet of
Things (IOT), 2012 3rd International Conference on the , vol., no.,
pp.135,142, 24-26 Oct. 2012. doi: 10.1109/IOT.2012.6402315

[2] Bormann, C.; Castellani, A.P.; Shelby, Z., "CoAP: An Application
Protocol for Billions of Tiny Internet Nodes," Internet Computing, IEEE,
vol.16, no.2, pp.62,67, March-April 2012. doi: 10.1109/MIC.2012.29

[3] Gruian, F.; Roop, P.; Salcic, Z.; Radojevic, I., "The SystemJ approach to
system-level design," Formal Methods and Models for Co-Design, 2006.
MEMOCODE '06. Proceedings. Fourth ACM and IEEE International
Conference on , vol., no., pp.149,158, 27-30 July 2006. doi:
10.1109/MEMCOD.2006.1695918

[4] Kyusakov, R.; Makitaavola, H.; Delsing, J.; Eliasson, J., "Efficient XML
Interchange in factory automation systems," IECON 2011 - 37th Annual
Conference on IEEE Industrial Electronics Society , vol., no.,
pp.4478,4483, 7-10 Nov. 2011. doi: 10.1109/IECON.2011.6120046

[5] Moritz, G.; Golatowski, F.; Lerche, C.; Timmermann, D., "Beyond
6LoWPAN: Web Services in Wireless Sensor Networks," Industrial
Informatics, IEEE Transactions on , vol.9, no.4, pp.1795,1805, Nov.
2013. doi: 10.1109/TII.2012.2198660

[6] Kyusakov, R.; Eliasson, J.; Delsing, J., "Efficient structured data
processing for web service enabled shop floor devices," Industrial
Electronics (ISIE), 2011 IEEE International Symposium on , vol., no.,
pp.1716,1721, 27-30 June 2011. doi: 10.1109/ISIE.2011.5984320

[7] Blomstedt, F, Lino Ferreira, L, Klisics, M & Eliasson, J 2014, 'The
Arrowhead Approach for SOA Application Development and
Documentation', IECON 2014, Dallas, USA.

[8] Chatzigiannakis, I.; Hasemann, H.; Karnstedt, M.; Kleine, O.; Kroller, A.;
Leggieri, M.; Pfisterer, D.; Romer, K.; Truong, C., "True self-
configuration for the IoT," Internet of Things (IOT), 2012 3rd
International Conference on the , vol., no., pp.9,15, 24-26 Oct. 2012. doi:
10.1109/IOT.2012.6402298

[9] Candido, G.; Jammes, F.; de Oliveira, J.B.; Colombo, A.W., "SOA at
device level in the industrial domain: Assessment of OPC UA and DPWS
specifications," Industrial Informatics (INDIN), 2010 8th IEEE
International Conference on , vol., no., pp.598,603, 13-16 July 2010. doi:
10.1109/INDIN.2010.5549676

[10] Kovatsch, M.; Mayer, S.; Ostermaier, B., "Moving Application Logic
from the Firmware to the Cloud: Towards the Thin Server Architecture
for the Internet of Things," Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2012 Sixth International Conference on ,
vol., no., pp.751,756, 4-6 July 2012. doi: 10.1109/IMIS.2012.104

[11] Eistec AB, http://www.eistec.se (accessed 21 November 2014).

[12] Castellani, A.P.; Bui, N.; Casari, P.; Rossi, M.; Shelby, Z.; Zorzi, M.,
"Architecture and protocols for the Internet of Things: A case study,"
Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE International Conference on , vol., no.,
pp.678,683, March 29 2010-April 2 2010. doi:
10.1109/PERCOMW.2010.5470520

[13] Dunkels, A.; Eriksson, J.; Finne, N.; Osterlind, F.; Tsiftes, N.; Abeille, J.;
Durvy, M., "Low-power IPv6 for the Internet of Things," Networked
Sensing Systems (INSS), 2012 Ninth International Conference on , vol.,
no., pp.1,6, 11-14 June 2012. doi: 10.1109/INSS.2012.6240537

[14] Erl, T.; “SOA Principles of Service Design”, Prentice Hall/PearsonPTR.
ISBN: 0132344823

[15] SenML specification, http://tools.ietf.org/html/draft-jennings-senml-10
(accessed 19 November 2014).

[16] Ketema, G.; Hoebeke, J.; Moerman, I.; Demeester, P.; Li Shi Tao; Jara,
A.J., "Efficiently Observing Internet of Things Resources," Green
Computing and Communications (GreenCom), 2012 IEEE International
Conference on , vol., no., pp.446,449, 20-23 Nov. 2012. doi:
10.1109/GreenCom.2012.70

[17] Ludovici, A.; Garcia, E.; Gimeno, X.; Calveras Auge, A., "Adding QoS
support for timeliness to the observe extension of CoAP," Wireless and
Mobile Computing, Networking and Communications (WiMob), 2012
IEEE 8th International Conference on , vol., no., pp.195,202, 8-10 Oct.
2012. doi: 10.1109/WiMOB.2012.6379074

[18] Caputo, D.; Mainetti, L.; Patrono, L.; Vilei, A., "Implementation of the
EXI Schema on Wireless Sensor Nodes Using Contiki," Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012
Sixth International Conference on , vol., no., pp.770,774, 4-6 July 2012.
doi: 10.1109/IMIS.2012.79

[19] Xively (2914), Framework Description. Available at
https://xively.com/whats_xively/ (accessed 21 November 2014).

[20] Mogul, J.; Krishnamurthy, B,; Douglis, F.; “RFC3229: Delta encoding in
HTTP”, http://www.ietf.org/rfc/rfc3229.txt (accessed 21 November
2014).

[21] Collina, M.; Corazza, G.E.; Vanelli-Coralli, A., "Introducing the QEST
broker: Scaling the IoT by bridging MQTT and REST," Personal Indoor
and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd
International Symposium on , vol., no., pp.36,41, 9-12 Sept. 2012. doi:
10.1109/PIMRC.2012.63628

[22] Bellifemine, F., Bergenti, F., Caire, G., and Poggi, A., "JADE—a java
agent development framework," Multi-Agent Programming, pp. 125-147,
2005.

[23] O'Hare, G. M. P., Collier, R., Dragone, M., O'Grady, M. J., Muldoon, C.,
and Montoya, D. J., "Embedding Agents within Ambient Intelligent
Applications," Bosse, T.(ed.). Agents and Ambient Intelligence:

2203

Achievements and Challenges in the Intersection of Agent Technology
and Ambient Intelligence, 2012.

[24] Bordini, R. H., Braubach, L., Dastani, M., El FSeghrouchni, A., Gomez-
Sanz, J. J., Leite, J., O Hare, G., Pokahr, A., and Ricci, A., "A survey of
programming languages and platforms for multi-agent systems,"
INFORMATICA-LJUBLJANA-, vol. 30, p. 33, 2006.

[25] Malik, A., Salcic, Z., Roop, P. S., and Girault, A., "SystemJ: A GALS
language for system level design," Computer Languages, Systems, &
Structures, vol. 36, pp. 317-344, 2010.

[26] Wang, K. I. K., Abdulla, W. H., and Salcic, Z., "Ambient intelligence
platform using multi-agent system and mobile ubiquitous hardware,"
Pervasive and Mobile Computing, vol. 5, pp. 558-573, 2009.

[27] Atmojo U. D., Salcic Z., and Wang K. I.-K., “System-Level Approach to
the Design of Ambient Intelligence Systems based on Wireless Sensor
and Actuator Networks,” Journal of Ambient Intelligence and Humanized
Computing (AIHC), in press, doi: 10.1007/s12652-014-0221-3

[28] Nourbakhsh, I., Sycara, K., Koes, M., Yong, M., Lewis, M., & Burion, S,
“Human-robot teaming for search and rescue,” Pervasive Computing,
IEEE, vol. 4, no. 1, pp. 72-79, 2005

[29] Bormann, C.; Hoffman, P.; “Concise Binary Object Representation
(CBOR)”, https://tools.ietf.org/html/rfc7049 (accessed 20 November
2014).

[30] Koster, M.; Keranen, A.; Jimenez, J.; “Message Queueing in the
Constrained Application Protocol (CoAP)W,
https://tools.ietf.org/html/draft-koster-core-coapmq-00 (accessed 21
November 2014).

[31] AllJoyn, AllSeenAlliance (2014), Developers overview. Available at
https://allseenalliance.org/developers/learn (accessed 21 November
2014).

2204

Powered by TCPDF (www.tcpdf.org)

