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Abstract:
The problem of developing robust thresholds for fault detection is addressed. An inequality
for the solution of a linear system with uncertain parameters is provided and is shown to be a
valuable tool for developing dynamic threshold generators for fault detection. Such threshold
generators are desirable for achieving robustness against model uncertainty in combination
with sensitivity to small faults.
The usefulness of the inequality is illustrated by developing an algorithm for detection of
clogging in the valves of a flotation process. Simulations with measurement data show that
the algorithm detects faults without generating false alarms. Copyright c©2005 IFAC
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1. INTRODUCTION

Technical systems are inherently exposed to faults
such as leaking valves, broken bearings, faulty sen-
sors, etc. In most applications it is vital that these
faults are detected promptly and accommodated for.

When an analytical process model is available, fault
detection methods based on analytical redundancy
may be utilized. During the past three decades, ex-
tensive research has been carried out in this area and
many methods have been developed. All of these con-
sist essentially of two steps, residual generation and
residual evaluation. The purpose of the first step is
to generate a signal, the residual, which is supposed
to be nonzero in the presence of fault and zero other-
wise. This problem has been treated extensively in the
literature and solutions based on e.g. state observers,
parity equations, or on-line identification algorithms
have been suggested, see (Frank and Ding 1997).

However, the residual is almost always nonzero due
to disturbances and model uncertainty, even if there
is no fault. The purpose of the second step of the fault

detection algorithm is thus to evaluate the residual and
draw conclusions on the presence of a fault. This is
done by comparing some function of the residual, the
evaluation signal, to a threshold and then to declare
the presence of a fault if the former exceeds the latter.

Detection thresholds that are robust against frequency
domain uncertainty are developed in e.g. (Emami-
Naeini et al. 1988) and (Frank and Ding 1994). How-
ever, the thresholds that result from this kind of un-
certainty description are generally functions only of
some signal norm of the known inputs and are thus
essentially constant. In contrast, experience shows that
the residual in a real fault detection application is often
correlated with the inputs, as a result of model uncer-
tainty. This fact, in combination with the difficulties
of extending frequency-domain methods to nonlinear
systems, motivates the search for methods to be able
to utilize uncertainty descriptions in the time-domain.

In e.g. (Zhang et al. 2003), unstructured uncertainty in
a class of nonlinear state-space systems is treated. An-
other way of representing the model uncertainty is to
assume uncertain parameters. This kind of uncertainty



description has been considered in e.g. (Johansson and
Medvedev 2000) and (Ding et al. 2003).

An uncertain parameter in a general, nonlinear sys-
tem, can clearly affect the system response in many
different ways. However, considering a Taylor approx-
imation of a state-space representation of the system
motivates distinguishing between additive and multi-
plicative parameters. In this context, it is clear that
parameters entering mutiplicatively with the state con-
stitutes the main difficulty. Therefore, we will here
consider systems of the type

ẋ=Ax+N(π ⊗ x) + g (1a)

y=Cx (1b)

where x ∈ R
n is a state vector and π(t) ∈ R

m are the
parameter uncertainties while g(t) ∈ R

n is some input
that may also depend on the uncertain parameters.

Applying a Luenberger observer to a linear system
with uncertain parameters of the form (1) yields an
error system which is also described by (1). As the
output of this error system is a residual, it is motivated
to search for an upper bound for y in (1). In this paper,
an upper bound for the modulus of x in (1) is provided
as a dynamic system with g as input. If C has full
rank, it may be assumed that C = [I 0], since this is
possible to achieve with a linear transformation. Thus,
the obtained inequality immediately provides an upper
bound for the residual.

Application to a flotation process demonstrates that
the inequality is a powerful tool in determining fault
detection algorithms that are robust against model
uncertainty and yet sensitive to faults.

2. PRELIMINARIES

All signals are assumed causal, i.e. are defined for
t ≥ 0. The truncation operator Pτ is defined as

(Pτx)(t) =
{
x(t) t ≤ τ
0 otherwise

and ‖ · ‖p denotes the usual p-norm or ∞-norm. The
space L

n×m
p , 1 ≤ p ≤ ∞ is the set of functions

from R+ to R
n×m such that ‖x‖p < ∞ while L

n×m
pe ,

1 ≤ p ≤ ∞ denotes the set of function from R+ to
R

n×m such that ‖Pτx‖p < ∞ for all τ ≥ 0.

A star between two functions F ∈ L
n×m
pe and G ∈

L
m×k
qe denotes convolution, i.e.

(F ∗G)(t)
�
=

∫ t

0

F (t− τ)G(τ)dτ

The condition 1/p + 1/q = 1 ensures that the result
is finite for all t ≥ 0 which follows from the Hölder
inequality. A linear operator defined by convolution
by a weighting function is denoted by the symbol of
the weighting function written in bold-face font, thus

e.g. FG
�
= F ∗G. The identity operator is denoted I ,

i.e. IG
�
= G. An induced operator norm is denoted by

the same symbol as the signal norm from which it is

induced, i.e. ‖F‖p
�
= sup‖G‖p=1 ‖FG‖p.

Short-hand notations for differentiation of a matrix
with respect to one or two row vectors xT ∈ R

n and

yT ∈ R
m are F ′

x
�
= ∂F/∂xT and F ′′

xy
�
= ∂F ′

x/∂y
T .

The n × m-matrix with each element equal to zero
is denoted 0n×m while the identity matrix of order
n is denoted In. A column vector with dimension n
where each element is equal to 1 is denoted 1n. If the
dimension is clear from context, the index is omitted.

Let | · | denote the matrix modulus function, i.e.
element-wise absolute value. Inequalities between
matrices is also to be interpreted element-wise. The
following inequalities for matrix operations are trivial
but included in order to increase readability of the
proofs in the sequel.

Property 1. Let A, B, and C be matrices of compati-
ble dimension.

(a) If A ≥ 0 and B ≥ C, then AB ≥ AC and
BA ≥ CA.

(b) |A+B| ≤ |A| + |B|
(c) |AC| ≤ |A||C|

The Kronecker product ⊗ is used in the sequel to
achieve compact notations. Some basic properties of
the Kronecker product are the following

Property 2. Let A ∈ R
n×m, B,C ∈ R

p×q, D ∈
R

m×r, E ∈ R
q×s, x ∈ R

n, and y ∈ R
m for arbitrary

natural numbers m,n, p, q, r, s. Then

(a) If A ≥ 0 and B ≥ C, then A⊗B ≥ A⊗ C and
B ⊗A ≥ C ⊗A.

(b) |A⊗B| = |A| ⊗ |B|
(c) (A⊗B)(D ⊗ E) = (AD) ⊗ (BE)
(d) x⊗ y = (x⊗ Im)y = (In ⊗ y)x

Of the above, (b) and (c) can be found in (Lütkepohl
1996) while (a) is trivial and (d) follows from (c).

For functions, | · | is to be interpreted pointwise, so that

|F |(t) �
= |F (t)|. Inequalities between functions is also

intended pointwise, i.e. F ≤ G means F (t) ≤ G(t)
for all t ≥ 0.

3. MAIN RESULT

Before stating the main result, two lemmas to facilitate
its proof are given. The first lemma provides some
useful inequalities involving the convolution operator.

Lemma 1. Let F ∈ L
n×m
pe and G,H ∈ L

m×r
qe , 1 ≤

p ≤ ∞ and 1/p+ 1/q = 1. Then



(a) If F (t) ≥ 0 for all t and H ≥ G then F ∗
H ≥ F ∗G

(b) |F ∗G| ≤ |F | ∗ |G|
and all the convolutions above are finite for all t ≥ 0.

Proof. The proof of (a) is straightforward using the
definition of convolution in combination with Prop-
erty 1 (a). The details are therefore omitted in order
to save space. Part (b) is also simple to show using
Property 1 (b) and Property 1 (c). ✷

The second lemma concerns the complementary sen-
sitivity function T = (I − G)−1 − I of a system
G with positive unity feedback. In short, it says that
if the impulse response of G is nonnegative, then the
impulse response of T is also nonnegative.

Lemma 2. Let G ∈ L
n×n
p , 1 ≤ p ≤ ∞ and define the

linear operator G by GF
�
= G ∗ F . Let T

�
= (I −

G)−1 − I and define T as the function such that

TF
�
= T ∗ F . If ‖G‖p < 1 and G(t) ≥ 0 for all

t ≥ 0 then ‖T‖p <∞ and T (t) ≥ 0 for all t ≥ 0.

Proof. It is well known (see e.g. Theorem 7.3-1 in
(Kreyszig 1978)) that if ‖G‖p < 1 then (I − G)−1

exists and is bounded and thus also T is a bounded
operator. Define the operator C by CF �

= G +G ∗ F .
Clearly, C is a contraction, since

‖CA− CB‖p = ‖G+G ∗A−G−G ∗B‖p

= ‖G(A−B)‖p ≤ ‖G‖p‖A−B‖p

and ‖G‖p < 1 by assumption. Furthermore, T is a
fixed point of C since, for an arbitrary F ,

(T − CT ) ∗ F = (T −G−G ∗ T ) ∗ F =

= ((I − G)(T + I) − I)F

= ((I − G)(I − G)−1 − I)F = 0

which shows that T − CT is zero and thus T = CT .
Since C is a contraction with T as fixed point and
the space L

n×n
p is complete, it is concluded from

the Banach fixed point theorem that the sequence of
functions defined by T0 = G, Ti+1 = CTi converges
to T . Furthermore, if Ti(t) ≥ 0 for all t ≥ 0 then it
follows from Lemma 1 (a) that also Ti+1(t) ≥ 0 for
all t ≥ 0. Since T0(t) ≥ 0 for all t ≥ 0, it follows by
induction that T (t) ≥ 0 for all t ≥ 0. ✷

The following theorem is the main result of this study.
It provides an upper bound for the modulus of the state
vector of a linear system with parametric uncertainty
acting multiplicatively on the state vector. The upper
bound is time-varying and depends on both the input
g and the initial condition x0 of the system.

Theorem 1. Consider the bilinear differential equation

ẋ=Ax+N(π ⊗ x) + g (2a)

x(0) = x0 (2b)

where A ∈ R
n×n is Hurwitz, N ∈ R

n×nm, π ∈ L
m
∞

and g ∈ L
n
pe, 1 ≤ p ≤ ∞. Assume that |π(t)| ≤ Π ∈

R
m for all t ≥ 0 and let G(t)

�
= eAt. Let H ∈ L

n×n
p

be a function that satisfies H ≥ |GN |(Π ⊗ In). If
‖H‖p < 1 then ‖(I − H)−1‖p < ∞ and

|x| ≤ (I − H)−1|Gg +Gx0| (3)

Proof. The nominal system, i.e. with π(t) ≡ 0, is
ξ̇ = Aξ + g with ξ(0) = x0, and has the solution

ξ(t) = eAtx0 +
∫ t

0

eA(t−τ)g(τ)dτ = (Gg +Gx0)(t)

Similarly, the solution to (2) can be expressed implic-
itly by

x(t) = eAtx0 +
∫ t

0

eA(t−τ)(N(π(τ)⊗x(τ))+g(τ))dτ

or, by utilizing the convolution operator,

x=Gx0 +G ∗ (N(π ⊗ x) + g)

= ξ + (GN) ∗ ((π ⊗ In)x) (4)

where Property 2 (d) was utilized. An upper bound for
the absolute value of the state x can thus be derived as

|x|= |ξ + (GN) ∗ ((π ⊗ In)x)|
≤ |ξ| + |(GN) ∗ ((π ⊗ In)x)|
≤ |ξ| + |GN | ∗ |(π ⊗ In)x|
≤ |ξ| + |GN | ∗ (|π ⊗ In||x|)
= |ξ| + |GN | ∗ (|π| ⊗ |In||x|)
≤ |ξ| + |GN | ∗ ((Π ⊗ In)|x|)
= |ξ| + (|GN |(Π ⊗ In)) ∗ |x|
≤ |ξ| + H|x|

where the first inequality follows from Property 1 (b),
the second inequality from Lemma 1 (b), the third
inequality from Lemma 1 (a) and Property 1 (c), while
the second equality is from Property 2 (b). The fourth
inequality follows from Property 1 (a), Property 2 (a),
and Lemma 1 (a), while the last inequality is a conse-
quence of the definition of H.

Obviously, the above implies that (I − H)|x| �
= ζ ≤

|ξ|. Furthermore, the definition T
�
= (I − H)−1 − I

yields |x| = (I − H)−1ζ = Tζ + ζ. By Lemma 2,
it is clear that T is bounded and that T (t) ≥ 0 for
all t ≥ 0. Finally, from Lemma 1 (a) it follows that
|x| = T ∗ ζ + ζ ≤ T ∗ |ξ| + |ξ| = ((I − H)−1 −
I)|ξ| + |ξ| = (I − H)−1|ξ|. ✷

Remark 1. An interesting question is when the in-
equality (3) in Theorem 1 is tight, i.e. under what
circumstances there exists a π(t) satisfying |π(t)| ≤ Π



such that (3) is an equality. A simple result in this
matter is that if GN and the nominal solution Gg +
Gx0 are both nonnegative for all t ≥ 0 then H may be
chosen so that the inequality (3) is tight. This can be
seen by choosing H = |GN |(Π ⊗ In) and assuming
that π(t) ≡ Π. Then (4) is equivalent to x = ξ+H ∗x
and therefore x = (I −H)−1ξ and the result follows.

Theorem 1 will be instrumental in developing the
fault detection algorithm in the sequel. A major issue
that remains to be solved is, however, how to find a
system H with impulse responseH ≥ |GN |(Π⊗ In),
i.e. finding a realizable upper bound for an impulse
response. An exact solution, i.e. H = |GN |(Π ⊗ In)
requires, in general, a system of infinite order and thus
approximate solutions are of interest. The following
lemma gives a solution for a special case of A.

Lemma 3. Let T (t) = CeAtB where A has only real
eigenvalues and is diagonalizable i.e. A = SDS−1

where D is a diagonal matrix with the eigenvalues of
A on the diagonal. Then

|T (t)| ≤ U(t) = |CS|eDt|S−1B|

Proof. The modulus of the impulse response ma-
trix is |T (t)| = |CeAtB| = |CSeDtS−1B| ≤
|CS||eDt||S−1B| = |CS|eDt|S−1B| where the in-
equality follows from Property 1 (c). ✷

Typically, the matrix A in the lemma above comes
from the error system of a state observer and therefore
the conditions on A can always be satisfied in the
design of this observer. The problem of finding a
realizable upper bound of a general impulse response,
e.g. when A has multiple or complex eigenvalues, is
nonetheless a topic of future research.

4. APPLICATION TO CLOGGING DETECTION
IN A FLOTATION PROCESS

Froth flotation is an important and versatile mineral-
processing technique in which valuable minerals are
separated from the rocky material. It is important
that the flotation tank levels are controlled, which is
performed with valves on the outflow of each tank. To
ensure the controller is able to fulfill its requirements,
a fault detection algorithm is needed to detect clogging
of the valves at an early stage.

4.1 Flotation process model

The flotation process at Boliden Area Concentrator,
Sweden, consists of four cascade coupled tanks with
control valves after each tank for the purpose of con-
trolling the levels in the tanks. The input signals to the
process are the valve control signals v(t) ∈ R

4 and
the external inflow to the tanks is denoted q(t). The

level in the tanks are denoted h(t) ∈ R
4. All four tank

levels are measured but in this example only the level
in Tank 4 is utilized.

The continuous time model of the tank levels h(t)
can be described as a system of first order differential
equations.

ḣ(t) = F (h(t), v(t), φ(t)) +Dq(t) (5)

where φ(t) ∈ R
4 is the fault signal, i.e. the clogging

of each control valve, see (Bask and Johansson 2003)
for more details on the model. The time argument
t is dropped in the sequel to enhance readability. A
Taylor expansion of the right hand side of equation
(5) with respect to h, v, φ, q around a working point
h0, v0, 0, q0 gives the linearized model

ẋ=Ax +Dw +Bu+ Eφ+Q (6a)

y=Cx + πn (6b)

where πn is additive measurement noise and x, u, and

w are defined by x
�
= h−h0, u

�
= v−v0, andw

�
= q−

q0 while A = F
′
h(h0, v0, 0), B = F

′
v(h0, v0, 0),

E = F
′
φ(h0, v0, 0), and Q = F (h0, v0, 0) + Dq0.

The matrix Q will be equal to zero if neglecting
uncertainties but nonzero otherwise and thus affect the
process and is therefore retained.

4.2 Sensitivity analysis

In the function F , there are two parameter vectors
K, c ∈ R

4. These parameters are uncertain which
causes uncertainty in the working point h0, q0 and
v0. The measurement w and the control signal u are
also assumed to be uncertain. Uncertainties in the
measurement, y can be described as an uncertainty in
C. In summary

q0=q̂0(1 + πq0 ) h0=ĥ0 ◦ (14 + πh0)
v0=v̂0 ◦ (14 + πv0) C=Ĉ(1 + πy)
K=K̂ ◦ (14 + πK) u=û ◦ (14 + πu)
c=ĉ ◦ (14 + πc) w=ŵ(1 + πw)

(7)

where hat signifies nominal value and ◦ denotes the
Hadamard product, i.e. element-wise product between
two matrices of equal dimension.

The matrices A, B, and Q in equation (6) depend
nonlinearly on the uncertainties in (7),

π =
[
πT

h0
πq0 π

T
v0
πw πT

u πT
K πT

c πy πn

]T ∈ R
24

and can be approximated by first order Taylor expan-
sions as

A(π)≈A(0) +A′
π(0)(π ⊗ I4)

�
=Â+ Ã(π ⊗ I4)

B(π)≈B(0) +B′
π(0)(π ⊗ I4)

�
=B̂ + B̃(π ⊗ I4)

Q(π)≈Q(0) +Q′
π(0)π

�
=Q̂+ Q̃π

(8)

Explicit expressions for these dependencies are, how-
ever, left out in order to save space. The uncertainties
are assumed to be bounded by |π| < Π ∈ R

24.



4.3 Residual generation

To generate a residual, a linear observer extended with
an integrator, ı(t), is employed. The feedback will be
the difference between the measured level in Tank 4,
y and the estimated level ŷ and therefore,

˙̂x=Âx̂+Dŵ + B̂û+ Q̂+ Eıı+ Lh(y − ŷ)
ı̇=Lı(y − ŷ)
ŷ=Cx̂

(9)

whereLh ∈ R
4,Lı ∈ R are the feedback matrices and

Eı determines how the integral action is connected to
the observer.

The dynamics of the estimation error, x̃ = x − x̂
can be calculated by combining the observer (9) with
the process model (6) and the uncertainty description
(7) and (8). Neglecting products between uncertainties
yields, after some rearrangement,

˙̃x= (Â− LhĈ)x̃+ Ã(π ⊗ I4)x− LhĈπyx

+B̃(π ⊗ I4)û+ Q̃π +Dŵπw

+B̂(û ◦ πu) − Lhπn + Eφ− Eıı

In the above, x represents the true state vector of the
process and is thus not known but it can be expressed
as x = x̃+ x̂ and thus

˙̃x= (Â− LhĈ)x̃+ Ã(π ⊗ I4)x̃− LhĈπyx̃

+Ã(π ⊗ I4)x̂+ B̃(π ⊗ I4)û+ Q̃π − LhĈx̂πy

+Dŵπw + B̂diag(û)πu − Lhπn + Eφ− Eıı

where it was also utilized that x ◦ y = diag(x)y for
two vectors x and y of the same dimension. From
Property 2 (c) it follows that πyx̃ = ([01×22 1 0]π) ⊗
(I4x̃) = [04×88 I4 04×4](π⊗x̃) which, in combination

with the definitionHh
�
= [04×9 Dŵ B̂diag(û) 04×8 −

LhĈx̂ −Lh] yields

˙̃x= (Â− LhĈ)x̃+ Ã(π ⊗ x̃)

−LhĈ[04×88 I4 04×4](π ⊗ x̃) + Ã(π ⊗ I4)x̂

+B̃(π ⊗ I4)û+ Q̃π +Hhπ + Eφ− Eıı

= (Â−LhĈ)x̃ + (Ã−LhĈ[04×88 I4 04×4])(π ⊗ x̃)

+Ã(I24 ⊗ x̂)π + B̃(I24 ⊗ û)π + Q̃π

+Hhπ + Eφ− Eıı

where Property 2 (d) was used. Similarly,

ı̇=Lı(y − ŷ) = Lı(Ĉx̃+ Ĉπyx+ πn)

=Lı(Ĉx̃+ Ĉπy x̃+ Ĉπyx̂+ πn)

=LıĈx̃+ LıĈ[04×88 I4 04×4](π ⊗ x̃) +Hıπ

where Hı
�
= [04×22 LıĈx̂ Lı]. Defining the new state

vector z
�
= [x̃T ı]T and noting that x̃ = [I4 04×1]z

yields, using Property 2 (c), π ⊗ x̃ = (I24π) ⊗

([I4 04×1]z) = (I24 ⊗ [I4 04×1])(π⊗ z). In summary,
choosing the integrator ı as residual, the dynamics of
the error system can be written as

ż =Azz +N(π ⊗ z) + Eππ + Eφφ

r=Czz

where

Az =
[
Â− LhĈ −Eı

LıĈ 0

]

N =
[
Ã− LhĈ[04×88 I4 04×4]
LıĈ[04×88 I4 04×4]

]
(I24 ⊗ [I4 04×1])

Eπ =
[
Ã(I24 ⊗ x̂) + B̃(I24 ⊗ û) + Q̃+Hh

Hı

]

Eφ =
[

E
01×4

]

Cz = [01×41]

Note that the matrix Eπ is a function of time but
depends only on measured signals and known param-
eters.

4.4 Dynamic threshold generator

The evaluation signal is chosen as the absolute value

of the residual, i.e. s(t)
�
= |ı(t)| = Cz |z(t)|. The

threshold function σ(t) should thus satisfy

σ(t) ≥ sup
|π|<Π,φ≡0

|ı|(t)

An upper bound of |z|, by using Theorem 1, is

|z| ≤ (I − H)−1|G(Eππ) +Gz(0)|
≤ (I − H)−1|G ∗ (Eππ)| + (I − H)−1|Gz(0)|
≤ (I − H)−1|G| ∗ |Eππ| + (I − H)−1|Gz(0)|
≤ (I − H)−1(|G| ∗ |Eπ|)Π + (I − H)−1|Gz(0)|

where the second inequality follows from Property 1 (b),
the third inequality from Lemma 1 (b) while the last
inequality is from Property 1 (c) and Property 1 (a).
Lemma 1 (a) was also utilized in all inequalities. It is
assumed that the observer has converged before the
fault detection algorithm is employed and therefore
z(0) = 0. An upper bound of the evaluation signal
s = |ı| is thus obtained as

s ≤ Cz(I − H)−1Γ|Eπ|Π �
= σ

In the above threshold generator, upper boundsH(t) ≥
|G(t)N |(Π ⊗ I4) and Γ(t) ≥ |G(t)| may be deter-
mined using Lemma 3.

4.5 Experimental results

Experiments have been carried out on data from Boli-
den’s flotation series at the Boliden Area Concentra-
tor, Sweden. The bounds Π of the uncertainties have



been tuned manually so that the threshold should be
as close as possible to the residual but still larger at
all times. Since Π has 24 elements, an automatic way
to determine these bounds should be developed in the
future, which is likely to improve the thresholds in
Fig. 1 even further.

Fig. 1 (b) shows the evaluation signal and the corre-
sponding threshold for a data set without clogging.
Note that the residual is smaller than the threshold
and no alarm is raised. Also, the threshold imitates the
bumps in the evaluation signal caused by oscillations
in the control signal to Valve 4 (Fig. 1 (a), solid line).

The results of an experiment with a simulated clog-
ging is shown in Fig. 1 (c). A clogging means that
the actual valve opening is less than expected and
can thus be simulated by adding a positive quantity
to the logged control signal which gives total control
of the fault. In this example, a ramp signal starting at
t = 2000 and ending at t = 3000 with final value 0.05
is added to the measured control signal of Valve 4 to
simulate clogging (Fig. 1 (a), dashed line). Note that
the clogging is detected at t = 2881 as the evaluation
signal rises above the threshold.

0 10000
0

0.2

0.4
a

0 10000
0

0.015

0.03
b

0 10000
0

0.02

0.04
c

Fig. 1. (a) Control signal, Valve 4. Without clogging
(solid line), with simulated clogging (dashed
line). The evaluation signal s(t) (solid line) and
detection threshold σ(t) (dashed line) is shown in
(b) (No clogging) and (c) (Simulated clogging).

5. CONCLUSIONS

An inequality for the solution of a linear system with
uncertain parameters was developed. This inequality
is expected to be a valuable tool for providing the

time-varying fault detection thresholds that are desired
to achieve robustness against parametric uncertainty in
combination with sensitivity to small faults.

The usefulness of the inequality was illustrated by
developing an algorithm for detecting clogging in the
valves of a flotation process. The proposed method
consists of a Luenberger observer with integral action.
A robust detection threshold was calculated under the
assumption of parametric uncertainty in the process
model. Successful simulations with measurement data
show that the obtained detection thresholds exhibit
the desired behaviour, i.e. imitate the behavior of the
evaluation signal when no fault is present.
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