Technologies for SOA-based Distributed Large Scale Process Monitoring and Control Systems

Francois Jammes†, Bernard Bony‡, Philippe Nappey‡, Armando W. Colombo†,*, Jerker Delsing‡, Jens Eliasson‡, Rumen Kyusakov‡, Stamatis Karnouskos§, Petr Stluka§, and Marcel Tilly¶

† Schneider Electric, France. Email: {francois2.jammes, bernard.bony, philippe.nappey}@schneider-electric.com,
‡ University of Applied Sciences Emden & Schneider Electric, Germany. Email: awcolombo@et-inf.fh-o-erden.de
§ Luleå University of Technology, Sweden. Email: {jerker.delsing, jens.eliasson}@ltu.se
¶ SAP Research, Germany. Email: stamatis.karnouskos@sap.com
† Honeywell, Czech Republic. Email: petr.stluka@honeywell.com
¶ Microsoft, Germany. Email: marcel.tilly@microsoft.com

Abstract—In a SOA-based system the applications are organized in a manner such that interoperable services can be used from different domains. In a process industry context, different domains can refer to, for example, process instrumentation and monitoring, execution of process control, data acquisition, etc. Large process industry systems are a complex and potentially very large sets of multi-disciplinary, heterogeneous, networked distributed systems. Current industrial process control systems are typically vendor specific; in addition the different domains are associated with different layers, different standards and different technologies. In the paper the authors report about the investigations and assessments performed to find answers for four major critical questions that arise as key when technologies have to be selected and used in a true Service Oriented Architecture (SOA) based distributed large scale Process Monitoring and Control system: (1) Real-time SOA (what are the limits of bringing SOA into high performance control loops?); (2) Management of large scale industrial distributed control systems (is it feasible to manage up to tens of thousands of service-oriented devices?); (3) Distributed event-based systems are asynchronous (what are the limits compared to traditional periodic scanning systems?) and (4) Service specification (which semantics are the most suitable for specifying process control and monitoring services?).

Keywords—Service-Oriented Architecture (SOA), Web Service (WS) Technologies, Large Scale Distributed Systems, Process Monitoring and Control.

I. INTRODUCTION

Current industrial process control and monitoring applications are facing many challenges as the complexity of the systems increases and the systems evolve from synchronous to asynchronous. When tens of thousands of devices and systems are Service-oriented, asynchronously interconnected and share and exchange data and information, i.e., services, for monitoring, controlling and managing the processes, key challenges such as interoperability, real-time performance constraints, among others, need to be achieved. The SOA-based approach proposed by the European R&D-Project IMC-AESOP (ArchitectuRE for Service-Oriented Process - Monitoring and Control, see http://www.imc-aesop.eu and [1]) is addressing some of those challenges. As depicted in Figure 1, the industrial process environment is mapped into a “Cloud of Services”, i.e. devices and applications distributed across the different layers of the enterprise are exposing their characteristics and functionalities as “Services”. On the other side, these devices and systems are able to access and use those “Services” located in the cloud [11].

Figure 1. IMC-AESOP Approach. A Distributed Dynamically Collaborative Service-oriented SCADA/DCS System

The outcomes of the first set of technological industry investigations and pilot application shows that the development and implementation of a Service-oriented SCADA/DCS Cloud present the following, four major challenges:

1. Real-time SOA: Determine the real-time limits of bringing SOA inside the high performance control loops of process monitoring and control (e.g. is it possible to provide service-oriented solutions targeting the one millisecond performance range)?

2. Large scale distributed process control and monitoring system: Is it feasible to dynamically design, deploy,
configure, manage and maintain an open plant/enterprise wide system, with thousands of devices and systems operating under process real-time constraints (See standards for Enterprise Architectures, e.g., in [2] and [3])?

3. Process Monitoring and Control Systems operating in an asynchronous mode, e.g., Distributed event based systems: Which are the technological consequences and limits of those asynchronous SCADA/DCS platforms when compared to traditional implemented periodic systems? Is it possible to integrate asynchronous and synchronous systems, e.g. for legacy system integration?

4. Service specification: Which methodology and tools are the most suitable to identify and specify the semantics for interoperable (standard / common / specific) web services based monitoring and control (from business process to devices)?

Along the paper the authors report about the investigations and assessments performed to find answers for those four major critical questions when technologies have to be selected and used in a true Service Oriented Architecture (SOA) based Distributed Large Scale Process Control and Monitoring System.

This paper is organized as follows: after the Introduction, Section II presents a description and assessment of the most suitable technologies, for addressing the 4 challenges described above. Section III presents the results of the assessment synthesizing the technologies that are being used to implement the IMC-AESOP approach. Finally, Section IV concludes the paper and highlights some outlooks.

II. TECHNOLOGY FOCUS AND ASSESSMENT

In regard of the four main challenges addressed in Section I, several technologies have been identified as the major candidates for being used to develop such a Cloud of SCADA-/DCS-Services.

Note: Establishing an exhaustive list was not looked for (it would probably be impossible to achieve), but the major intention of the authors is to offer a compilation/screening of suitable SOA-based technologies, selected following the following main criteria:

1. The technology trends reported in the most recent available publications in conferences and journals;
2. The technologies that are proposed as outcomes of ongoing standardization activities;
3. The potential industrial availability at short term either as open-source solutions and/or supplied by the IMC-AESOP technology-provider partners;
4. The originality and innovation associated to the technology;
5. The potential use of a technology by the end-user industry.

A. DPWS/EXI

DPWS [4] [15] [16] is recognized as a very good SOA device level protocol profile. Among all Web Services protocols, it selects the most appropriate ones, such as WS-Discovery and WS-Eventing above SOAP, for implementation in constrained embedded devices. It provides capabilities such as interoperability, plug and play, and integration capability (see http://www.socrates.eu and http://www.sirena-itea.org). However, it does not provide alone real time performance in the millisecond range, as shown in [13]. Associated with EXI [5], this performance target is achievable:

When looking at the real time challenge, the performance that is evaluated and measured is defined as the time to send an event from one device application to another remote device application on a local network. This is done taking into account the time periods required to go through emitter and receiver stacks and to go through the local network, in a one way asynchronous event transmission.

In the example shown in the Figure 2, two remote devices are connected by a physical network (e.g. Ethernet). The first device is detecting a data change on one of its physical inputs, and is sending this information through the network to the second device, which then generates a corresponding physical output. Both devices are using DPWS [4] in order to exchange the information, which provides all the customer values of DPWS (interoperability, plug and play, integration capability). They integrate inside the DPWS stack the EXI encoder or decoder capability in order to add real time performance to the standard DPWS values.

![Figure 2. DPWS / EXI Integration](image)

After this exchange, the first device, when receiving an input change, will translate this physical event into a DPWS / EXI network event, using the combined capabilities of the DPWS stack and of the EXI encoder, which was programmed or configured according to the information schema. The second device, when receiving the network event, will decode the frame and transform it into an output change.

The assessment of the combined DPWS / EXI solution shows impressive results, both in term of frame size compression (between 4 and 18 at run-time, depending on the content) and of performance improvement (between 2.5 and 4 at run-time).

Note: The achievement demonstrates that this SOA asynchronous solution can be at the same performance level.
as traditional periodic scan-based solutions used by field
buses.

B. EXIP – EXI Project

The implementation of XML/EXI technology (see [5])
provides a very generic framework for describing,
implementing, and maintaining complex systems and
interactions. However, the usage of XML, even when used
with a binary compressed representation, can result in a too
high overhead for deeply constrained devices. Furthermore,
the application of complex schemas and WSDL descriptions
can make versioning difficult since the XML/EXI parsers
might require updated grammars for optimal performance.

In some cases, the use of a more simple data representation
such as JSON and SenML might be sufficient, especially for
very low-cost sensors and actuators. However, the
implementation of different data representation techniques
between the resource constrained devices and more capable
systems requires service gateways that convert these data
formats. Using service gateways and mediators introduces
complexity in the provisioning and maintenance of the
systems. In such scenario it is beneficial to use EXI all the
way down to the sensor and actuator devices.

Although the EXI format is designed for high compression
and fast processing, its deployment on deeply constrained
devices such as wireless sensor nodes is challenging due to
RAM and programming memory requirements. In [6] the
authors presented the EXIP open source project that is
targeted at providing efficient EXI processing for such
embedded devices. The EXIP prototype implementation is
specially designed to handle typed data and small EXI
messages efficiently as this is often required in process
monitoring and control applications for sensor data
acquisition.

The EXIP project also includes a novel EXI grammar
generator that efficiently converts an EXI encoded XML
Schema document into EXI grammar definitions. These
grammars are then used for schema-enabled processing which
provides a better performance than schema-less mode. This
grammar generator enables the use of dynamic schema-
enabled processing in constrained environments as the EXI
encoded XML Schemes are much lighter to transmit and
process. The use of EXI representation of the schemes is
possible because the XML Schema documents are plain XML
documents and as such they have analogous EXI
representation. Working with the EXI representation of the
XML Schema definitions brings all the performance benefits
of the EXI itself - faster processing and more compact
representation.

The use of different XML schemes and even different
version of these schemes at run time is challenging. For that
reason, an important future work investigation is the support
for XML Schema evolutions in the SOA implementations.

Another important aspect is the definition of EXI profile
for implementation in industrial environment that will
guarantee interoperability and optimal performance of the
EXI processing. This profile must specify what options
should be used in the EXI headers and how the schema
information is communicated between the devices and
systems.

C. CoAP

In the era of lightweight integration especially of resource-
constraint devices with web technologies, a new application
protocol is proposed within the Internet Engineering Task
Force (IETF) i.e. the Constrained Application Protocol
(CoAP) (see [7] and [14]). CoAP provides a method/response
interaction model between application end-points, supports
built-in resource discovery, and includes key web concepts
such as URIs and content-types. CoAP easily translates to
HTTP for integration with the web, while meeting specialized
requirements such as multicast support, very low overhead
and simplicity for constrained environments.

As depicted in Figure 3, CoAP relies on UDP instead of
TCP that is used by default for HTTP integration. UDP
provides advantages for low overhead and multicast support.
CoAP is REST centric (supports GET, POST, PUT,
DELETE), and although it can be used to compress HTTP
interfaces it offers additional functionalities such as built-in
discovery, eventing, multicast support and asynchronous
message exchanges. From the security point of view several
approaches are supported ranging from no-security up to
certificate-based one. IANA has assigned the port number
5683 and the service name “coap”.

Within the IMC-AESOP project, CoAP is mainly
considered for being used to get access to extremely resource
constraint devices, e.g., a temperature sensor, a wireless
sensor node, etc. Moreover, the devices may also be mobile
and rely on a battery for their operation. These distributed
devices would probably be used mostly for monitoring and
management, while their integration may enhance the quality
of information reaching SCADA/DCS systems.

D. OPC-UA

One of the challenges in process industries is the
interoperaibility between the systems and devices coming
from numerous vendors. This has been addressed by using
open standards, enabling devices from different vendors to
understand each other. One of the widely accepted standards is OPC (OLE for process control). However, after the years of its use, some limitations of this standard have been evident. This was the reason why OPC Foundation started to work on the new standard – OPC Unified Architecture (OPC UA) [8].

OPC UA main improvements over the classic OPC include the following:

- Unified access to existing OPC data models (OPC DA, OPC HDA, OPC A/E, etc.)
- Multiplatform implementations
- Communication and security (OPC has been based on COM/DCOM)
- Data modelling

While the communication, security and interoperability features make OPC UA a great candidate to be used in SOA based applications, it is its data modelling capabilities that enable to build a service oriented process control systems.

OPC UA provides means to access not only the data from the process systems, but also semantic information that is related to the data, like models of the devices that are providing this data. Such models are built by defining Nodes (described by attributes) and Relations between the Nodes.

An information model contains definition of types, from simple to complex, and also instances of such types. The information models are organized and exposed by address spaces. In an existing implementation, multiple information models can be defined, for each level on the process there can be a different model of the process entities, however these models can share some information and usually are synchronized.

With growing penetration of OPC UA to the processes and its features that have been designed with service oriented architecture in mind, it is clear that OPC UA will become a solid part of service oriented distributed control systems.

E. Distributed Service Bus

Web Service based technologies investigated so far (DPWS, OPC UA, etc.) rely on point to point communication models, which do not favour the system scalability.

The “Service Bus” approach aims at decoupling service consumers from service producers in the industrial process control system.

Large scale distributed systems can benefit from a service bus architecture as the bus would act as a broker between the numerous service consumers/providers, avoiding a potentially huge number of point to point connections.

Legacy systems can also benefit from service bus architecture as the bus would act as a gateway between legacy systems and AESOP SOA systems.

This service bus would also be the natural place for adding a semantic layer on top of legacy services. Thus, the bus would provide an abstraction of technical devices and services into business oriented/domain specific services descriptions.

Figure 4 below gives a functional view of such a service bus and illustrates how it could host some of the services identified in the IMC-AESOP architecture study, for instance:

- Gateway functionality through a variety of connectors;
- Registry as a central repository for IMC-AESOP services;
- Code/configuration/model repository;
- Event broker for true loose-coupling between event producers and consumers;
- Security services;
- DNS service;
- Historian/logger;
- Time service for time synchronization between IMC-AESOP services;
- Native interface (Web Services) to higher level information systems (MES/ERP…).

![Distributed Service Bus Diagram](image-url)
F. CEP (Complex Event Processing)

Throughout the last years, Complex Event Processing (CEP) [9] has gained considerable importance as a means to extract information from distributed event-based (or message-based) systems. It became popular in the domain of business process management but is now being applied in the industrial monitoring and control domains. It is a technology to derive higher-level information out of low-level events.

Basically, it relies on a set of tools and techniques for analysing and handling events with very low latency. The feature set for CEP spans from event extraction, sampling, filtering, correlation and aggregation to event enrichment, content-based routing, event compositions (and not only limited to these).

Normally, complex events are created by abstracting from low-level events. The processing of events is expressed within a specific language in terms of rules. Unfortunately, the set of features and the way to express the rules differ from platform to platform. CEP engines are able to process events up to 100,000 [events/sec]. This clearly depends on the complexity of the rules. Normally the limitation is set by the connection to the external environment, such as extraction of events from input sources or the limitation by the bandwidth of the network.

So far, there is no unified way to express rules (or queries) over streams of events. Thus, it makes sense to wrap a CEP engine within a service with well-defined endpoints. The endpoints are technology agnostic and define the operations and data to be processed while the CEP service itself is responsible for transforming the data/messages to its internal event format. On the output side, consumers can subscribe via WS-Eventing so that notifications can be sent via SOAP messages as well (see Figure 5). This approach enables the integration with specifications like Device Profile for Web Services (DWPS) and OPC Unified Architecture (OPC-UA), which are the most suitable solutions for implementing a SoA since both specifications include eventing mechanisms.

Remark: By enabling event processing mechanisms IMC-AESOP is also considering the convergence of scan-based and event-based mechanisms. This is achieved by supporting either pull- or push-models [10]. The services can either send events (active) to the CEP service or there is a mediator which pulls data from services (passive) and sends this data. From the CEP service this looks like an active data service provider. On the output side, results are pushed to registered consumers.

![Figure 5. Complex Event processing mechanism in a SOA-Infrastructure](image-url)
III. TECHNOLOGY SELECTION AND SYNTHESIS

A synthesis of the most promising technologies, which are currently being used to implement the IMC-AESOP prototypes, is presented in Table I.

<table>
<thead>
<tr>
<th>Technologies</th>
<th>Challenges</th>
<th>Real-time</th>
<th>Management of large scale</th>
<th>Event driven</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPWS</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>OPC UA</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoAP</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXI</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Bus</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEP</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As described above, DPWS, coming from the IT world, is the most applicable set of web services protocols, to be used at the device level. Combined with EXI, it provides real capabilities in the range of the millisecond, following the technology assessment made by the project.

OPC-UA, coming from the industrial world, is also a set of web services protocols, compatible with DPWS, and providing a data model enlarging the semantic capabilities of the solution.

CoAP is the SOA protocol to be used for wireless sensor networks. It can also be combined with EXI.

The Service Bus and the CEP solution are technologies providing the large scale and migration capabilities, combining and processing information coming through DPWS, OPC-UA or legacy protocols, in order to manage large-scale event-based systems.

A suitable combination of the six technologies described above is then able to provide solutions meeting the four critical questions and challenges expressed in Section I.

IV. CONCLUSIONS AND FUTURE WORK

As presented and described along in this manuscript, there are four major critical questions that arise as key when technologies have to be selected and used to implement a Service Oriented Architecture (SOA) based distributed large scale process monitoring and control system: (1) Real-time SOA (what are the limits of bringing SOA into high performance control loops?); (2) Management of large scale industrial distributed control systems (is it feasible to manage up to tens of thousands of service-oriented devices?); (3) Distributed event-based systems are asynchronous (what are the limits compared to traditional periodic scanning systems?) and (4) Service specification (which semantics are the most suitable for specifying process control and monitoring services?).

After compiling and assessing a set of technologies, a subset of them has been selected and presented to the reader as the preferred technologies to be used by the IMC-AESOP consortium. It is important to call the attention to the fact that

The authors would like to thank the European Commission, and the partners of the EU FP7 project IMC-AESOP (www.imc-aesop.eu) for the fruitful discussions.

REFERENCES