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Abstract 
Context uncertainty and the incurred complexity of 
reasoning about context necessitate investigation of 
context awareness that would provide feasible solutions 
by means of models, architectures and algorithms. 
In this paper we discuss our approach for reasoning 
about context under uncertain conditions in pervasive 
environments and explore the theory, design and 
implementation of a reasoning engine, which makes use 
of a novel modeling approach for describing and 
reasoning about context. We discuss both a theory, which 
is the basis for the reasoning processes as well as analyze 
the functional activity of the reasoning engine during 
experimentation. 
 
1. Introduction 

The advent of the pervasive computing paradigm has 
created an emerging necessity for adaptability and 
automation of systems [12, 4]. Coupled with a desire to 
enrich user experiences, an investigation of the context in 
which systems operate and need to adapt to, and the 
awareness of such systems to changes in this context has 
emerged. 

The complexity associated with pervasive 
environments and the diversity of possible situations that 
may affect context-aware applications’ behavior and their 
incurred reasoning complexity, necessitate extensive 
investigation and research in the field of context-
awareness. Such research would need to provide feasible 
solutions by means of models, architectures and 
algorithms.  

Consequently, emerging research has begun to look at 
context-aware systems more generally, independently of 
specific applications, and in recent years, has focused on 
various aspects concerning context, including context 
middleware and toolkits [2, 5, 1] that abstract concepts 
and assist in gathering information for reasoning about 
context, and ontologies that provide vocabularies to 
describe context [2, 3]. While middleware and toolkits 
assist in the acquisition of contextual data (e.g. [14]) and 
its dissemination across the context-aware platform, they 
do not handle the complexities associated with the 
inconsistent and uncertain nature of context. By obtaining 
and possibly fusing together data, either physical or 
virtual, systems are mostly capable of dealing with 

unambiguous and well known situations but face 
difficulties to adapt to or resolve more intricate or 
uncertain situations. 

Software engineering of this breed of systems is 
needed in order to facilitate design and development of 
more adaptable, reasoning-capable and powerful context-
aware systems. Engineering such systems is not only a 
question of toolkits and ontologies but also of approach 
and methodology, as well as abstractions and concepts [7, 
6, 13]. In this paper we discuss our approach for 
reasoning about context under uncertain conditions in 
pervasive environments and explore the theory, design 
and implementation of a reasoning engine, which makes 
use of a novel modeling approach for describing and 
reasoning about context. In Section 2 we start by 
providing a general overview of the functional stages 
used during the reasoning process. We follow in Section 
3 with a discussion of the theory behind the general 
functional stages, and provide selected parts of our 
context modeling approach, concerning fundamental 
modeling concepts and algebraic operations. We refer to 
this model as the Context Spaces model. The concepts of 
our modeling approach provide the foundations of the 
engine’s reasoning processes and are used in Section 4 to 
explain actual functional activities taking place during the 
experimentation phase. In this section we discuss 
implementation details and provide results and analysis of 
selected experimental runs that exhibit the uncertain 
nature of reasoning about context. We conclude in 
Section 5.        
 
2. General Overview of the Reasoning Engine 

We explore a single component within an overall 
architecture for context-aware computing system, namely, 
a reasoning engine, termed ReaGine, its design principles 
and theoretical foundations, which are based on a novel 
context modeling approach. We start by providing a 
general overview of the functional stages that are used 
during the engine’s reasoning processes.  

Figure 1 illustrates five basic functional steps taken by 
ReaGine during the reasoning process. Reasoning starts 
when information arrives to the reasoning engine either as 
raw data or as basic reasoned context, often as a result of 
data fusion, preformed elsewhere. It is then checked for 
low-level discrepancies (e.g. contradicting evidence 



between sensors). During this stage more elaborate 
verification techniques are also employed, resulting in 
recommended alternate values for suspicious sensor 
readings. At the next stage, the data is synthesized 
according to concepts drawn from the Context Spaces 
model and inferred as a collection of what we call basic 
situations. These inferred situations are uncertain, 
however, as we deal with only a partial view of the model 
due to the degree of uncertainty associated with context. 
The functional stage of merging contextual information 
does not consider the uncertain nature of context, 
manifested through context inconsistencies between 
seemingly parallel situations. The reasoning process 
considers factors related to context uncertainty, such as 
(1) insufficient data to infer context, which may be the 
result of cost efficiency considerations, (2) inherent 
inaccuracy of sensors, (3) the use of not up-to-date 
information (also affected by the system design and push-
pull sensor technology),  (4) context ambiguity, which is 
often the result of limitations in the deployment and types 
of sensors, (5) unknown contextual situations, which are 
true situations (possibly relevant to the system) that the 
system is unable to infer, and (6) conflicting or 
contradicting low-level data information.  

The engine then attempts to discover conflicts (e.g. 
ambiguous situations or situations that cannot co-exist) at 
the conceptual level, between these basic situations by 
performing analytical procedures, using operations that 
are defined in Context Spaces algebra, and implemented 
as a set of operations in a separate library. Conflicting 
situations are dealt with in an additional verification 
phase, which attempts to resolve or verify the true 
situation’s nature. Finally, situations that were not 
disqualified during the previous stages are composed into 
more complex situations and compared with policies 
predefined by the system designers. These final complex 
situations need not be predefined but are the result of the 
five reasoning stages discussed above.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Reasoning engine functional stages 

3. A Model of Context Spaces  
Having broadly discussed the functional stages of the 

reasoning processes taken by ReaGine, we now explore 
the theoretical foundation for our reasoning approach. We 
will examine selected parts of the entire model, 
containing a sample of basic concepts and sub-concepts, 
which we will use in a later stage when we discuss 
implementation and analysis of the reasoning 
performance in experimental runs. 

There are many dimensions of context. Context can be 
hierarchically structured [13] and/or categorized into 
different domains (e.g. social, location based, 
physiological, historical etc. [8, 12]) and can denote 
different levels of abstraction, depending on the desired 
situation to be modeled and the types of available 
information. Models that attempt to capture and express 
context details often investigate concepts and abstractions 
that are closely related to the application level. An 
example of common abstractions of this sort for entities 
in a pervasive system is those of persons, places and 
things [9]. These kinds of modeling are important in 
identifying key abstractions that are central in many 
applications but which are nevertheless still application-
oriented. It has been suggested in [13] that many other 
information sources other than location and places (and in 
this manner other key abstractions) often play important 
roles in context-aware applications.  

Our approach uses a more fundamental perspective 
over context than the above mentioned models, by 
characterizing context and its behavior from the context 
attributes level and proposing concepts to model and 
examine basic elements that make up context. This results 
in the ability to develop generic reasoning capabilities 
about context. We then examine concepts and practices 
that map these ideas into the real-world of application 
domains. Finally, we use a set of software engineering 
abstractions similar to other conceptual models, which we 
make use of according to specific application needs. We 
defer a short discussion on the latter to the 
implementation section. 

3.1 Basic Terminology and concepts 
A fundamental aspect in our modeling approach is the 
treatment of context as a system, where we distinguish 
between the current application state in regard to some 
context and the broader definition of that context and to 
which the current state belongs. We use the following 
definitions for the basic concepts in the model: 
  
Context state   
We term the application current state in relation to chosen 
context as context state and model it with a vector Si as a 
collection of context attributes’ values that are used to 
represent a specific state of the system at time t.  
We assume a deliberate choice of context attributes by the 
context-aware system that enables the mapping of their 
values to a context state and therefore presuppose the 
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ability to infer the current situation for any set of attribute 
values. 
Let ),...,,( 21

t
N

ttt
i aaaS =  

Where t
iS  denotes a vector defined over a collection of N 

attribute-values, where each value t
ia corresponds to an 

attribute ia  value at time t, representing the true context 
state i at time t. 
 
A context attribute is defined as any data that is used to 
describe element/s that can be used in the process of 
inferring situations. A context attribute is often associated 
with sensors, either virtual or physical, having the value 
of the sensor readings denote the context attribute value.  
Let t

ia  denote an attribute i’s value at time t. 

ia is a specific attribute, which often denotes a specific 
sensor. When adding time subscript tagging we denote 
the value of the attribute at specific times. 
 
Situation subspace 
We conceive of a vector space ),...,,( 21

R
N

RR
i aaaR =  as 

a situation subspace i, consisting of N acceptable regions 
for these attributes. A situation subspace represents a 
static definition for regions of attribute values 
corresponding to some predefined situation.  
An accepted region R

ia  is defined as a set of elements V 

that satisfies a predicate P, i.e. R
ia = {V |P(V)}. For 

example, in numerical form the accepted region would 
often describe a domain of permitted real values for an 
attribute ia .  

While iR defines permissible values for attributes, it does 
not automatically associates a context state with a specific 
situation subspace. Rather, it negates the possibility of 
being in other subspaces that do not contain the state. The 
reason for this is the possibility of having subspaces 
intersect, having the possibility of the state corresponding 
to more than one situation. We therefore say that a 
context state belongs to some situation iff some function 
associates the state to some situation defined by iR . An 
example of such function would be a verification process, 
after which a context state is resolved to belong to a 
particular situation, or a conflict discovery process that 
approves the consistency of that situation subspace.   

We can represent the relationships between context 
states and situation subspaces graphically, where specific 
context states (either historical or current) can be 
visualized within (corresponding to the context 
description) or outside (contradicting the context 
description) the situation subspaces. A system’s context 
state would most often be visualized as a 
multidimensional single point in space, contained within 
the tolerable region of acceptable values of some situation 

subspace. The notion of a context state being outside or 
within a situation subspace is illustrated in figure2. 

 
 
Fig. 2 - Visualization of situation subspace and context 
state 
 

Situation types  

We categorize situations into three types: (1) basic 
situation, which is the result of a simple reasoning 
process, by which a context state is proved to be 
contained in some situation subspace, (2) refined 
situation, which is the result of consistency checks and 
verification processes, after which a context state is 
associated with specific non-conflicting situations, and 
(3) complex situation, which is the result of merging 
together or intersecting existing (basic or refined) 
situation subspaces.     
 
3.2 Algebraic Operations 

Having defined basic concepts that capture 
multidimensional aspects of the contextual situations in 
terms of state and space, we now specify a set of 
operations that examine relationships between these 
concepts and can be used in the process of modeling and 
reasoning about context. In the context of this work we 
will only discuss two operations; for more detailed 
discussions on the algebra and Context Spaces model, the 
reader is referred to [10, 11].  

Space Intersection   

The intersection operator results in a new situation 
subspace that contains shared regions of values of the 
same attributes between two comparable situation 
subspaces. 
In order to define the intersection of two situation 
subspaces, we first define the intersection of two accepted 
regions as follows.  
Given accepted regions A = {V |P(V)} T⊆ and B = {W 
|Q(W)} T⊆ , where T is some universal set of values 
(i.e., A and B are subsets of the same set, effectively of 
the same type), then the intersection of A and B, denoted  
by is defined as follows:  
A B∩ )( BAe ∩∈ iff )()( eQeP ∧ .  

Cj  

Ri Ci          

Ri – situation subspace 
Ci - context state, inside subspace 
Cj - context state, outside subspace 

Cj  



Basically, the intersection of two accepted regions is the 
set of elements that satisfies predicates P and Q. 
The intersection of two context spaces 

1 2( , ,..., )R R R
NR a a a= and 1 2( , ,..., )R R R

MS b b b=  is 

denoted by R S∩ (where we rely on context to 
distinguish from intersection of accepted regions) and is 
defined as follows: 
R S∩ 1 2 1 1( , ,..., , ,..., , ,..., )R R R R R R R

K K N K Mc c c a a b b+ +=  
where we assume that the first K (<= min (N,M)) 
attributes are the same (without loss of generality) though 
their accepted regions might not be, i.e. 

1 1 1,..., K K Kc a b c a b= = = = ,  

and 1 1 1 ,...,R R R R R R
K K Kc a b c a b= ∩ = ∩  (the accepted 

regions for the common attributes are formed by 
intersecting the accepted regions of the respective 
attributes from the two context spaces). 

We can use the intersection operator to produce new 
situations that are the product of two or more situations. 
The contribution of intersecting situations is the 
introduction of new situations that are unfamiliar to the 
context-aware system (e.g. complex situations), which we 
regard as an initial step towards intelligent adaptability 
and discovery of unfamiliar, not pre-defined situations, by 
the system. 

As an example, we can model situation subspaces for 
‘subject is running’ and ‘subject is walking’ situations 
with the following attributes: Heart Rate, Respiratory 
Rate and Body Temperature. The accepted region of 
values of these attributes for the two situations and their 
visualization are given in figure 3. A new situation 
subspace, which is the result of the intersection of the 
basic situations, can be visualized as the shared area 
between the two spaces.  
The intersection operator is useful for identifying 
ambiguous or conflicting situations, in which a system 
needs to determine the correct situation or situations, 
when some of these situations cannot co-exist. In the 
example above when a context state is situated within the 
intersection space of ‘running’ and ‘walking’ and 
assuming a subject cannot be both running and walking at 
the same time, a system needs to decide whether the 
subject is a very fit runner or actually not very fit (and is 
actually walking).  
 
State-Space Difference  

One of the operators that examine the degree of 
similarity between context state and situation subspace is 
the State-Space Difference operator, with which we 
measure similarities between situation subspaces and 
context states.  
The following operator holds only for quantifiable 
attributes where such values exist. We make use of other 
operators, which are described in [11], which account for 
non-numerical attribute values.  

 

Fig. 3 - definition and visualization of ‘Walking’ and 
‘Running’ situation subspaces 
 
Let s

ia and r
ia denote values of corresponding attributes 

of the same type for the context state and situation 
subspace, respectively. 
Let r

iâ r
ia∈ define an attribute value that is contained in 

the set r
ia , which has the most similar value to s

ia , 
where similarity between two identical attribute values is 
defined by the application designers and reflected with 
positive numerical values, such that the smaller the value 
the more similar are the two attribute values.     
Let R

iâ reflect a numerical value, denoting the acceptable 

region’s absolute size, such that ||ˆ
maxmin

R
i

R
i

R
i aaa −= , 

where 
min

R
ia and 

max

R
ia denote minimum and maximum 

values of the accepted region R
ia , and where for 

simplicity, we assume a continuous region of acceptable 
values 
We then define the State-Space Difference operator as:     

State-Space Difference =∑
=

−N

i
R
i

r
i

s
i

a
aa

1 ˆ
|ˆ|
 

This operator is useful for assisting in the adaptation 
process for unknown situations, where the application can 
reveal the similarity of a current context state to 
predefined situation subspaces. The definition also 
accounts for normalization needs when comparing 
different types of attributes with inherently different sizes 
of regions.  

As an example, consider the scenario of ‘running’ and 
‘walking’ situations in the earlier subsection. Suppose the 

Situation 
subspace 
 

Heart rate 
(BpM) 

Respiratory 
Rate 
(BrpM) 

Body Temp. 
(Deg.Celsius) 

1R  Walking 100 - 160 20 - 28 36.60–36.62 

2R  Running 150 - 200 26 - 40 36.61–36.63 

21 RR ∩  150 - 160 26 - 28 36.61 – 36.62 

        



system encounters sensor readings corresponding to the 
following state: iS = (210BpM, 30BrpM, 36.62dc). As 
this state does not belong to any of the known situation 
subspaces, the system tries to adapt and treat the 
unknown state by finding the most similar context space. 
The calculation yields a much lesser difference to the 
‘running’ situation subspace (0.2) than to the ‘walking’ 
situation subspace (1.083). The system adapts by 
inferring the ‘running’ situation and performs appropriate 
actions, accordingly. The decision to perform this 
calculation, the allowed difference from which adaptation 
to a specific situation is performed and whether at all 
adaptation is sensible, is application specific. 
 

3.3 The Semantic Layer – bridging the 
application domain gap 

We have so far discussed basic concepts in the model 
and have illustrated the use of operations over these 
concepts. A problem that needs to be addressed though, is 
the applicability of the general model to different 
application oriented scenarios and environments. In other 
words, ideas, operations and techniques derived from the 
model are applicable as long as they make sense to the 
application at hand.  
The result of a Space Intersection operation for example, 
may have different meanings and consequences for 
different applications that operate in different domains. It 
is therefore important to model the nature of possible 
interactions and applicability of various elements in the 
model so that we can translate the general theory into 
practical uses.  

We conceive of a second, higher level of semantic 
concepts on top of the general model (as described up to 
this point), which we make use of to map the model into 
specific application domains. Within this layer we 
provide information regarding the nature of semantic 
entities in the model (e.g. situations), such as their 
compatibility (e.g. can they co-exist?) or provide 
information regarding mapping of attributes semantic 
values into numerical ones. While some attributes types 
can be expressed more naturally semantically, it is 
possible to represent them numerically as well. We have 
addressed this issue in [11] where we discussed a 
technique that enables us to quantitatively specify values 
and domain of values that correspond to a variety of 
attributes, including semantic ones. The ability to model 
context numerically enables us to apply useful techniques 
over context that require values quantification.  

As an example, we will now describe a representation 
technique that can be used for reasoning and conflict 
discovery. 
  
Situation Natural Flow 

An important aspect we model in the semantic layer of 
the model is characteristics of situation subspaces. An 
example of such characteristic is situation natural flows. - 
by this, we refer to possible logical evolution of 

situations, their direction and reasonable time limits of 
transition between these situations. 
The use of this semantic description is illustrated in figure 
4a and 4b, where we describe possible situations inferred 
by the system according to two physiological context 
attributes. In this example, the current context state is 
situated in the intersection of the ‘Running’ and ‘Sick’ 
situation subspaces. We assume that a subject can be both 
sick and running, since these two situations are defined as 
compatible elsewhere. The reasoning problem that arises 
here is whether the subject is only running ( ∈t

iS  

‘Running’)? Or only being sick ( ∈t
iS ’Sick’)? Or is 

actually both running and being sick at the same time 
( ∈t

iS ‘Running’ ∩  ‘Sick’)?  
Figure 4b provides an illustration of possible conceptual 
natural flows between defined situations. We also assume 
that reasonable transition periods between these situations 
are defined. We can use such knowledge to assist in 
inferring the correct situation, as follows. A verification 
procedure searches the knowledge-base for previous 
inferred situations and discovers that at time λ−t (say 
10 seconds ago) the subject was in the ‘Walking’ 
situation ( ∈−λt

iS ’Walking’). It then reveals that at time 

λ−t the subject was not in the ‘Sick’ situation 
( ∉−λt

iS ’Sick’). It then infers that it is more probable for 
the subject to be currently running (e.g. If 

∈−λt
iS ‘Walking’ AND ∉−λt

iS ’Sick’ then infer the 
‘Running’ situation). 

 

 

 

 

 

 

 

Fig. 4a – situation co-existence problem 

 

 

 

 

 

 

Fig. 4b – situations natural flow 

4. Implementation and Experimental Evaluation 
The reasoning engine implementation follows the 

steps illustrated in the functional analysis diagram at 
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section 2, and was developed to provide reasoning 
capabilities that partly overcome uncertainty problems 
associated with context, by leveraging on general 
techniques based on the Context-Spaces model. A 
separation of the application semantics from the 
reasoning procedures and techniques that are built on a 
generic model that represent context enables easy 
deployment and use of the engine in a variety of different 
scenarios.   
To illustrate feasibility and advantages of our approach 
we demonstrate the engine’s reasoning for a simulation of 
an office environment use case, and provide walk-through 
and analysis of its behavior.  

In this set of experiments we deployed several 
Monitor services, physically distributed over the network. 
Each such Monitor service communicated with processes, 
simulating independent sensors, during which it either 
actively acquires raw data or passively waits for data to 
be push by the sensors, according to the sensor type. Each 
sensor is individually configured to follow specified 
pattern of behavior that is characterized by value and type 
of data it produces, how often new data is produced, 
inherent inaccuracy associated with the sensor (reflected 
by random errors values added to the basic value with 
specified variation over time) and type of access available 
by the sensor (push or pull). 

Raw data collected by a Monitor service is pushed via 
distributed communication (and message queuing 
technology for scaling purposes) to a centralized 
knowledge-base, which is the source of information for 
the reasoning engine in this experiment. The reasoning 
engine itself can both be triggered by events originating 
from remote Monitor services as well as periodically 
performing reasoning actions. Figure 5 provides the 
deployment architecture used during the experimentation. 

 

 

 

 

 

 

 
 

 
 
 
 
Fig. 5 – The general architecture in which ReaGine 
operates  

In this set of experiments we were interested not only in 
performing basic reasoning but also in reasoning about 
situations that were not obvious to the system, either by 
not fully corresponding to existing definitions, exhibiting 
conflicting information or displaying ambiguities between 

possible contradicting situations. Consequently, we 
expected the system to adapt or verify the true nature of 
the situation through the use of the reasoning capabilities. 
 
4.1 Sensor inaccuracies  

In the first example, situation subspaces and semantic 
configurations were defined to capture context details 
corresponding to three types of situation abstractions, 
namely, (1) User related situations, which are situations 
specifically associated with a user and inferred for a user. 
(2) Location related situations, which denote situations 
associated with specific locations. And (3) General 
situations, which are situation that can take place in 
several places involving different users at the same time.  
We configured the system to denote typical office 
situations such as meetings, presentations, users of the 
system and meaningful locations in the networked 
environment. We will examine simulated sensor readings, 
corresponding to the general situation of a meeting (that 
can take place in any employee’s office as well as in the 
meeting room and presentation theatre) and a user ‘John’ 
who participates in this meeting at his office.  
In this initial stage of the experimental run the reasoning 
engine successfully inferred the general meeting situation 
and associated the user with the meeting and with a 
meaningful location. Figure 6 presents the reasoning 
engine’s results for this run. 
 

 Fig. 6 – Basic experimental run 
 
The form in figure 6 is designed to denote three levels of 
reasoning: (1) inferred Basic Situations that are the result 
of the knowledge synthesis phase. (2) Reasoned 
Situations, which are situations that were produced after 
more elaborate reasoning and/or verification processes 
(initiated when discrepancies or conflicts are revealed). 
(3) Complex Situations, which are the result of 
composing together compatible Reasoned Situations. 
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We then altered the experiment settings and changed 
some of the sensors typical behavior, such that while still 
having a meeting situation, sensors values are distorted to 
emulate high inherent inaccuracies and sporadically 
reflect data that does not correspond either to any known 
situation or the meeting situation. Examples of this are 
changes to the sensed noise level and light intensity in the 
meeting area. Figure 7 presents the reasoning engine’s 
results for such experimental run.  

Note that, with the emulated errors in sensor values, 
the system now fails to infer the meeting as a basic 
situation. However, the reasoning process identifies the 
meeting in its next functional stage when it performs 
adaptation to possible situations for the context-state, 
assuming possible inaccuracies in sensor readings. 
Finally, it composes together all reasoned situations, 
resulting in inference identical to that in the initial 
scenario. The system has therefore succeeded in handling 
inaccurate sensor readings and correctly inferring the 
associated situations (as though there were no errors in 
sensor readings).    

 
Fig. 7 – Uncertain information run 
 

The actual adaptation-oriented reasoning process is the 
following. After basic synthesis, the engine splits the 
current context-state into sub-states that match situation 
subspaces definitions. 

It then computes the state-space difference between the 
context sub-state and a selected situation subspace, using 
the algebra operations library as described in section 3.2. If 
the revealed difference between the context state and 
situation subspace is below a certain threshold specific for 
that situation subspace definition (configurable by the 
application designers) it deduces the existence of such a 
situation.  

Figure 8a and 8b visually demonstrates the state-
space difference operator activity illustrating the 

relationship between the context state and situation 
subspaces. In this example a ‘meeting’ situation subspace 
and ‘user working in office’ situation subspace are 
defined and inferred by three sensor types: 

(1) Light intensity in location, (2) number of people in 
location and (3) noise level in location. We use the axes 
in the diagram to denote the dimensions (i.e. the context 
attributes) of the subspace, and fill the subspace’s region 
of values area in blue. A separate red triangle connecting 
a specific single value from each context attribute denotes 
the context state. The identical context state does not fully 
match any of the situations but exhibits much greater 
similarity with the ‘meeting’ subspace, in which the light 
intensity readings only slightly deviate from the subspace 
definition. The state-space difference operation results in 
a very low difference between the state and the ‘meeting’ 
subspace, thereby inferring its existence.  

 

 

 

 

 

 

Fig. 8a – A meeting.        Fig. 8b – User in office. 

Figure 9 provides the process’s functional flow 
description. 

                                                                                         

 

 

 

 

 

 

 

 

 

 
 
Fig.9 – Functional flow of adapting inaccurate readings 
 
5. Conclusion 

We have provided a partial view of the Context 
Spaces model and illustrated how various aspects of the 
model can be used for reasoning about context in 
different levels of uncertainty. An important feature of the 
model, but which is not the main focus of this work, is the 
dynamic aspects of context, which are naturally captured 
in the state-space representation approach on which the 
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model is based. Once we have treated context in terms of 
state and space, other concepts concerning context, such 
as historical context trajectory, and system stability with 
regard to specific context as well as various techniques 
for context prediction and reasoning have been developed 
and included in the Context Spaces model. For detailed 
discussions on these features, the reader is referred to [10, 
11].     

The different features of the models are presented in the 
reasoning engine, which is built on a modular approach 
and which makes use of separate libraries that provide 
operations based on the Context Spaces algebra (as well 
as algorithms for context reasoning and prediction). The 
functional stages discussed in section 2 offer useful 
modularity and efficiency in the reasoning process, by 
which only uncertain or inconsistent situations are dealt 
with in advanced stages.  

A fundamental design principle, which we apply to 
the various reasoning mechanisms and the overall system, 
is the decoupling of the application semantics from the 
implementation. We store the semantic part of the model, 
which in part is defined by the application designers, 
separately. By following this rule our goal is to achieve a 
model which is reusable and exportable through the 
semantics. The semantic repository describes elements of 
the system, policies based on context, elements and 
operations of the Context Spaces model, and a set of 
concepts that describe various behaviors and 
characteristics of situation subspaces (e.g. possible 
natural flows between situations, situation compatibility, 
etc.). The use of the Context Spaces model, which is a 
general model for capturing and reasoning about context, 
as the underlying model of the algorithms and the 
separation of the application semantics from the 
functional components, enables the development of 
reasoning techniques that are generic and can be used in a 
variety of settings and application types. Algorithms that 
make use of the context spaces model treat any kind of 
context uniformly and acquire the semantic information, 
specific to the application at hand, from a higher level, 
external to the algorithms. By following this approach we 
seek to create an infrastructure for context-aware 
computing at the reasoning level that is able to perform 
complex reasoning for different applications once 
specialized with application semantics.   

In future work we intend to combine the centralized 
reasoning engine with distributed and mobile software 
components, creating hybrid architecture that work 
together in sensing the environment and reasoning about 
relevant context.  
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