
Towards A General Approach for Reasoning about Context, Situations and
Uncertainty in Ubiquitous Sensing: Putting Geometrical Intuitions to Work 1

Amir Padovitz², Seng Wai Loke², Arkady Zaslavsky² and Bernard Burg³

²School of Computer Science and Software Engineering, Monash University, Australia
{amirp,swloke,arkady.zaslavsky@csse.monash.edu.au},

³HP Labs, Palo-Alto, bernard.burg@hp.com

1 We thank HP Labs for collaboration and financial sponsorship of this work

Abstract
Context uncertainty and the incurred complexity of
reasoning about context necessitate investigation of
context awareness that would provide feasible solutions
by means of models, architectures and algorithms.
In this paper we discuss our approach for reasoning
about context under uncertain conditions in pervasive
environments and explore the theory, design and
implementation of a reasoning engine, which makes use
of a novel modeling approach for describing and
reasoning about context. We discuss both a theory, which
is the basis for the reasoning processes as well as analyze
the functional activity of the reasoning engine during
experimentation.

1. Introduction

The advent of the pervasive computing paradigm has
created an emerging necessity for adaptability and
automation of systems [12, 4]. Coupled with a desire to
enrich user experiences, an investigation of the context in
which systems operate and need to adapt to, and the
awareness of such systems to changes in this context has
emerged.

The complexity associated with pervasive
environments and the diversity of possible situations that
may affect context-aware applications’ behavior and their
incurred reasoning complexity, necessitate extensive
investigation and research in the field of context-
awareness. Such research would need to provide feasible
solutions by means of models, architectures and
algorithms.

Consequently, emerging research has begun to look at
context-aware systems more generally, independently of
specific applications, and in recent years, has focused on
various aspects concerning context, including context
middleware and toolkits [2, 5, 1] that abstract concepts
and assist in gathering information for reasoning about
context, and ontologies that provide vocabularies to
describe context [2, 3]. While middleware and toolkits
assist in the acquisition of contextual data (e.g. [14]) and
its dissemination across the context-aware platform, they
do not handle the complexities associated with the
inconsistent and uncertain nature of context. By obtaining
and possibly fusing together data, either physical or
virtual, systems are mostly capable of dealing with

unambiguous and well known situations but face
difficulties to adapt to or resolve more intricate or
uncertain situations.

Software engineering of this breed of systems is
needed in order to facilitate design and development of
more adaptable, reasoning-capable and powerful context-
aware systems. Engineering such systems is not only a
question of toolkits and ontologies but also of approach
and methodology, as well as abstractions and concepts [7,
6, 13]. In this paper we discuss our approach for
reasoning about context under uncertain conditions in
pervasive environments and explore the theory, design
and implementation of a reasoning engine, which makes
use of a novel modeling approach for describing and
reasoning about context. In Section 2 we start by
providing a general overview of the functional stages
used during the reasoning process. We follow in Section
3 with a discussion of the theory behind the general
functional stages, and provide selected parts of our
context modeling approach, concerning fundamental
modeling concepts and algebraic operations. We refer to
this model as the Context Spaces model. The concepts of
our modeling approach provide the foundations of the
engine’s reasoning processes and are used in Section 4 to
explain actual functional activities taking place during the
experimentation phase. In this section we discuss
implementation details and provide results and analysis of
selected experimental runs that exhibit the uncertain
nature of reasoning about context. We conclude in
Section 5.

2. General Overview of the Reasoning Engine

We explore a single component within an overall
architecture for context-aware computing system, namely,
a reasoning engine, termed ReaGine, its design principles
and theoretical foundations, which are based on a novel
context modeling approach. We start by providing a
general overview of the functional stages that are used
during the engine’s reasoning processes.

Figure 1 illustrates five basic functional steps taken by
ReaGine during the reasoning process. Reasoning starts
when information arrives to the reasoning engine either as
raw data or as basic reasoned context, often as a result of
data fusion, preformed elsewhere. It is then checked for
low-level discrepancies (e.g. contradicting evidence

between sensors). During this stage more elaborate
verification techniques are also employed, resulting in
recommended alternate values for suspicious sensor
readings. At the next stage, the data is synthesized
according to concepts drawn from the Context Spaces
model and inferred as a collection of what we call basic
situations. These inferred situations are uncertain,
however, as we deal with only a partial view of the model
due to the degree of uncertainty associated with context.
The functional stage of merging contextual information
does not consider the uncertain nature of context,
manifested through context inconsistencies between
seemingly parallel situations. The reasoning process
considers factors related to context uncertainty, such as
(1) insufficient data to infer context, which may be the
result of cost efficiency considerations, (2) inherent
inaccuracy of sensors, (3) the use of not up-to-date
information (also affected by the system design and push-
pull sensor technology), (4) context ambiguity, which is
often the result of limitations in the deployment and types
of sensors, (5) unknown contextual situations, which are
true situations (possibly relevant to the system) that the
system is unable to infer, and (6) conflicting or
contradicting low-level data information.

The engine then attempts to discover conflicts (e.g.
ambiguous situations or situations that cannot co-exist) at
the conceptual level, between these basic situations by
performing analytical procedures, using operations that
are defined in Context Spaces algebra, and implemented
as a set of operations in a separate library. Conflicting
situations are dealt with in an additional verification
phase, which attempts to resolve or verify the true
situation’s nature. Finally, situations that were not
disqualified during the previous stages are composed into
more complex situations and compared with policies
predefined by the system designers. These final complex
situations need not be predefined but are the result of the
five reasoning stages discussed above.

Fig. 1 – Reasoning engine functional stages

3. A Model of Context Spaces
Having broadly discussed the functional stages of the

reasoning processes taken by ReaGine, we now explore
the theoretical foundation for our reasoning approach. We
will examine selected parts of the entire model,
containing a sample of basic concepts and sub-concepts,
which we will use in a later stage when we discuss
implementation and analysis of the reasoning
performance in experimental runs.

There are many dimensions of context. Context can be
hierarchically structured [13] and/or categorized into
different domains (e.g. social, location based,
physiological, historical etc. [8, 12]) and can denote
different levels of abstraction, depending on the desired
situation to be modeled and the types of available
information. Models that attempt to capture and express
context details often investigate concepts and abstractions
that are closely related to the application level. An
example of common abstractions of this sort for entities
in a pervasive system is those of persons, places and
things [9]. These kinds of modeling are important in
identifying key abstractions that are central in many
applications but which are nevertheless still application-
oriented. It has been suggested in [13] that many other
information sources other than location and places (and in
this manner other key abstractions) often play important
roles in context-aware applications.

Our approach uses a more fundamental perspective
over context than the above mentioned models, by
characterizing context and its behavior from the context
attributes level and proposing concepts to model and
examine basic elements that make up context. This results
in the ability to develop generic reasoning capabilities
about context. We then examine concepts and practices
that map these ideas into the real-world of application
domains. Finally, we use a set of software engineering
abstractions similar to other conceptual models, which we
make use of according to specific application needs. We
defer a short discussion on the latter to the
implementation section.

3.1 Basic Terminology and concepts
A fundamental aspect in our modeling approach is the
treatment of context as a system, where we distinguish
between the current application state in regard to some
context and the broader definition of that context and to
which the current state belongs. We use the following
definitions for the basic concepts in the model:

Context state
We term the application current state in relation to chosen
context as context state and model it with a vector Si as a
collection of context attributes’ values that are used to
represent a specific state of the system at time t.
We assume a deliberate choice of context attributes by the
context-aware system that enables the mapping of their
values to a context state and therefore presuppose the

Knowledge Synthesis

Conflict Analysis

Verification

Situation Composition

Low-Level Discrepancies Discovery

Raw Data

Data Fusion

ability to infer the current situation for any set of attribute
values.
Let),...,,(21

t
N

ttt
i aaaS =

Where t
iS denotes a vector defined over a collection of N

attribute-values, where each value t
ia corresponds to an

attribute ia value at time t, representing the true context
state i at time t.

A context attribute is defined as any data that is used to
describe element/s that can be used in the process of
inferring situations. A context attribute is often associated
with sensors, either virtual or physical, having the value
of the sensor readings denote the context attribute value.
Let t

ia denote an attribute i’s value at time t.

ia is a specific attribute, which often denotes a specific
sensor. When adding time subscript tagging we denote
the value of the attribute at specific times.

Situation subspace
We conceive of a vector space),...,,(21

R
N

RR
i aaaR = as

a situation subspace i, consisting of N acceptable regions
for these attributes. A situation subspace represents a
static definition for regions of attribute values
corresponding to some predefined situation.
An accepted region R

ia is defined as a set of elements V

that satisfies a predicate P, i.e. R
ia = {V |P(V)}. For

example, in numerical form the accepted region would
often describe a domain of permitted real values for an
attribute ia .

While iR defines permissible values for attributes, it does
not automatically associates a context state with a specific
situation subspace. Rather, it negates the possibility of
being in other subspaces that do not contain the state. The
reason for this is the possibility of having subspaces
intersect, having the possibility of the state corresponding
to more than one situation. We therefore say that a
context state belongs to some situation iff some function
associates the state to some situation defined by iR . An
example of such function would be a verification process,
after which a context state is resolved to belong to a
particular situation, or a conflict discovery process that
approves the consistency of that situation subspace.

We can represent the relationships between context
states and situation subspaces graphically, where specific
context states (either historical or current) can be
visualized within (corresponding to the context
description) or outside (contradicting the context
description) the situation subspaces. A system’s context
state would most often be visualized as a
multidimensional single point in space, contained within
the tolerable region of acceptable values of some situation

subspace. The notion of a context state being outside or
within a situation subspace is illustrated in figure2.

Fig. 2 - Visualization of situation subspace and context
state

Situation types

We categorize situations into three types: (1) basic
situation, which is the result of a simple reasoning
process, by which a context state is proved to be
contained in some situation subspace, (2) refined
situation, which is the result of consistency checks and
verification processes, after which a context state is
associated with specific non-conflicting situations, and
(3) complex situation, which is the result of merging
together or intersecting existing (basic or refined)
situation subspaces.

3.2 Algebraic Operations

Having defined basic concepts that capture
multidimensional aspects of the contextual situations in
terms of state and space, we now specify a set of
operations that examine relationships between these
concepts and can be used in the process of modeling and
reasoning about context. In the context of this work we
will only discuss two operations; for more detailed
discussions on the algebra and Context Spaces model, the
reader is referred to [10, 11].

Space Intersection

The intersection operator results in a new situation
subspace that contains shared regions of values of the
same attributes between two comparable situation
subspaces.
In order to define the intersection of two situation
subspaces, we first define the intersection of two accepted
regions as follows.
Given accepted regions A = {V |P(V)} T⊆ and B = {W
|Q(W)} T⊆ , where T is some universal set of values
(i.e., A and B are subsets of the same set, effectively of
the same type), then the intersection of A and B, denoted
by is defined as follows:
A B∩)(BAe ∩∈ iff)()(eQeP ∧ .

Cj

Ri Ci

Ri – situation subspace
Ci - context state, inside subspace
Cj - context state, outside subspace

Cj

Basically, the intersection of two accepted regions is the
set of elements that satisfies predicates P and Q.
The intersection of two context spaces

1 2(, ,...,)R R R
NR a a a= and 1 2(, ,...,)R R R

MS b b b= is

denoted by R S∩ (where we rely on context to
distinguish from intersection of accepted regions) and is
defined as follows:
R S∩ 1 2 1 1(, ,..., , ,..., , ,...,)R R R R R R R

K K N K Mc c c a a b b+ +=
where we assume that the first K (<= min (N,M))
attributes are the same (without loss of generality) though
their accepted regions might not be, i.e.

1 1 1,..., K K Kc a b c a b= = = = ,

and 1 1 1 ,...,R R R R R R
K K Kc a b c a b= ∩ = ∩ (the accepted

regions for the common attributes are formed by
intersecting the accepted regions of the respective
attributes from the two context spaces).

We can use the intersection operator to produce new
situations that are the product of two or more situations.
The contribution of intersecting situations is the
introduction of new situations that are unfamiliar to the
context-aware system (e.g. complex situations), which we
regard as an initial step towards intelligent adaptability
and discovery of unfamiliar, not pre-defined situations, by
the system.

As an example, we can model situation subspaces for
‘subject is running’ and ‘subject is walking’ situations
with the following attributes: Heart Rate, Respiratory
Rate and Body Temperature. The accepted region of
values of these attributes for the two situations and their
visualization are given in figure 3. A new situation
subspace, which is the result of the intersection of the
basic situations, can be visualized as the shared area
between the two spaces.
The intersection operator is useful for identifying
ambiguous or conflicting situations, in which a system
needs to determine the correct situation or situations,
when some of these situations cannot co-exist. In the
example above when a context state is situated within the
intersection space of ‘running’ and ‘walking’ and
assuming a subject cannot be both running and walking at
the same time, a system needs to decide whether the
subject is a very fit runner or actually not very fit (and is
actually walking).

State-Space Difference

One of the operators that examine the degree of
similarity between context state and situation subspace is
the State-Space Difference operator, with which we
measure similarities between situation subspaces and
context states.
The following operator holds only for quantifiable
attributes where such values exist. We make use of other
operators, which are described in [11], which account for
non-numerical attribute values.

Fig. 3 - definition and visualization of ‘Walking’ and
‘Running’ situation subspaces

Let s

ia and r
ia denote values of corresponding attributes

of the same type for the context state and situation
subspace, respectively.
Let r

iâ r
ia∈ define an attribute value that is contained in

the set r
ia , which has the most similar value to s

ia ,
where similarity between two identical attribute values is
defined by the application designers and reflected with
positive numerical values, such that the smaller the value
the more similar are the two attribute values.
Let R

iâ reflect a numerical value, denoting the acceptable

region’s absolute size, such that ||ˆ
maxmin

R
i

R
i

R
i aaa −= ,

where
min

R
ia and

max

R
ia denote minimum and maximum

values of the accepted region R
ia , and where for

simplicity, we assume a continuous region of acceptable
values
We then define the State-Space Difference operator as:

State-Space Difference =∑
=

−N

i
R
i

r
i

s
i

a
aa

1 ˆ
|ˆ|

This operator is useful for assisting in the adaptation
process for unknown situations, where the application can
reveal the similarity of a current context state to
predefined situation subspaces. The definition also
accounts for normalization needs when comparing
different types of attributes with inherently different sizes
of regions.

As an example, consider the scenario of ‘running’ and
‘walking’ situations in the earlier subsection. Suppose the

Situation
subspace

Heart rate
(BpM)

Respiratory
Rate
(BrpM)

Body Temp.
(Deg.Celsius)

1R Walking 100 - 160 20 - 28 36.60–36.62

2R Running 150 - 200 26 - 40 36.61–36.63

21 RR ∩ 150 - 160 26 - 28 36.61 – 36.62

system encounters sensor readings corresponding to the
following state: iS = (210BpM, 30BrpM, 36.62dc). As
this state does not belong to any of the known situation
subspaces, the system tries to adapt and treat the
unknown state by finding the most similar context space.
The calculation yields a much lesser difference to the
‘running’ situation subspace (0.2) than to the ‘walking’
situation subspace (1.083). The system adapts by
inferring the ‘running’ situation and performs appropriate
actions, accordingly. The decision to perform this
calculation, the allowed difference from which adaptation
to a specific situation is performed and whether at all
adaptation is sensible, is application specific.

3.3 The Semantic Layer – bridging the
application domain gap

We have so far discussed basic concepts in the model
and have illustrated the use of operations over these
concepts. A problem that needs to be addressed though, is
the applicability of the general model to different
application oriented scenarios and environments. In other
words, ideas, operations and techniques derived from the
model are applicable as long as they make sense to the
application at hand.
The result of a Space Intersection operation for example,
may have different meanings and consequences for
different applications that operate in different domains. It
is therefore important to model the nature of possible
interactions and applicability of various elements in the
model so that we can translate the general theory into
practical uses.

We conceive of a second, higher level of semantic
concepts on top of the general model (as described up to
this point), which we make use of to map the model into
specific application domains. Within this layer we
provide information regarding the nature of semantic
entities in the model (e.g. situations), such as their
compatibility (e.g. can they co-exist?) or provide
information regarding mapping of attributes semantic
values into numerical ones. While some attributes types
can be expressed more naturally semantically, it is
possible to represent them numerically as well. We have
addressed this issue in [11] where we discussed a
technique that enables us to quantitatively specify values
and domain of values that correspond to a variety of
attributes, including semantic ones. The ability to model
context numerically enables us to apply useful techniques
over context that require values quantification.

As an example, we will now describe a representation
technique that can be used for reasoning and conflict
discovery.

Situation Natural Flow

An important aspect we model in the semantic layer of
the model is characteristics of situation subspaces. An
example of such characteristic is situation natural flows. -
by this, we refer to possible logical evolution of

situations, their direction and reasonable time limits of
transition between these situations.
The use of this semantic description is illustrated in figure
4a and 4b, where we describe possible situations inferred
by the system according to two physiological context
attributes. In this example, the current context state is
situated in the intersection of the ‘Running’ and ‘Sick’
situation subspaces. We assume that a subject can be both
sick and running, since these two situations are defined as
compatible elsewhere. The reasoning problem that arises
here is whether the subject is only running (∈t

iS

‘Running’)? Or only being sick (∈t
iS ’Sick’)? Or is

actually both running and being sick at the same time
(∈t

iS ‘Running’ ∩ ‘Sick’)?
Figure 4b provides an illustration of possible conceptual
natural flows between defined situations. We also assume
that reasonable transition periods between these situations
are defined. We can use such knowledge to assist in
inferring the correct situation, as follows. A verification
procedure searches the knowledge-base for previous
inferred situations and discovers that at time λ−t (say
10 seconds ago) the subject was in the ‘Walking’
situation (∈−λt

iS ’Walking’). It then reveals that at time

λ−t the subject was not in the ‘Sick’ situation
(∉−λt

iS ’Sick’). It then infers that it is more probable for
the subject to be currently running (e.g. If

∈−λt
iS ‘Walking’ AND ∉−λt

iS ’Sick’ then infer the
‘Running’ situation).

Fig. 4a – situation co-existence problem

Fig. 4b – situations natural flow

4. Implementation and Experimental Evaluation
The reasoning engine implementation follows the

steps illustrated in the functional analysis diagram at

Heart
Rate

Running

 Sick

Standing

Respiratory Rate

t
iS

Healthy

Walking Standing Running

Sick

section 2, and was developed to provide reasoning
capabilities that partly overcome uncertainty problems
associated with context, by leveraging on general
techniques based on the Context-Spaces model. A
separation of the application semantics from the
reasoning procedures and techniques that are built on a
generic model that represent context enables easy
deployment and use of the engine in a variety of different
scenarios.
To illustrate feasibility and advantages of our approach
we demonstrate the engine’s reasoning for a simulation of
an office environment use case, and provide walk-through
and analysis of its behavior.

In this set of experiments we deployed several
Monitor services, physically distributed over the network.
Each such Monitor service communicated with processes,
simulating independent sensors, during which it either
actively acquires raw data or passively waits for data to
be push by the sensors, according to the sensor type. Each
sensor is individually configured to follow specified
pattern of behavior that is characterized by value and type
of data it produces, how often new data is produced,
inherent inaccuracy associated with the sensor (reflected
by random errors values added to the basic value with
specified variation over time) and type of access available
by the sensor (push or pull).

Raw data collected by a Monitor service is pushed via
distributed communication (and message queuing
technology for scaling purposes) to a centralized
knowledge-base, which is the source of information for
the reasoning engine in this experiment. The reasoning
engine itself can both be triggered by events originating
from remote Monitor services as well as periodically
performing reasoning actions. Figure 5 provides the
deployment architecture used during the experimentation.

Fig. 5 – The general architecture in which ReaGine
operates

In this set of experiments we were interested not only in
performing basic reasoning but also in reasoning about
situations that were not obvious to the system, either by
not fully corresponding to existing definitions, exhibiting
conflicting information or displaying ambiguities between

possible contradicting situations. Consequently, we
expected the system to adapt or verify the true nature of
the situation through the use of the reasoning capabilities.

4.1 Sensor inaccuracies

In the first example, situation subspaces and semantic
configurations were defined to capture context details
corresponding to three types of situation abstractions,
namely, (1) User related situations, which are situations
specifically associated with a user and inferred for a user.
(2) Location related situations, which denote situations
associated with specific locations. And (3) General
situations, which are situation that can take place in
several places involving different users at the same time.
We configured the system to denote typical office
situations such as meetings, presentations, users of the
system and meaningful locations in the networked
environment. We will examine simulated sensor readings,
corresponding to the general situation of a meeting (that
can take place in any employee’s office as well as in the
meeting room and presentation theatre) and a user ‘John’
who participates in this meeting at his office.
In this initial stage of the experimental run the reasoning
engine successfully inferred the general meeting situation
and associated the user with the meeting and with a
meaningful location. Figure 6 presents the reasoning
engine’s results for this run.

 Fig. 6 – Basic experimental run

The form in figure 6 is designed to denote three levels of
reasoning: (1) inferred Basic Situations that are the result
of the knowledge synthesis phase. (2) Reasoned
Situations, which are situations that were produced after
more elaborate reasoning and/or verification processes
(initiated when discrepancies or conflicts are revealed).
(3) Complex Situations, which are the result of
composing together compatible Reasoned Situations.

Load Monitor

Reasoning Engine

Cleaner

KB

Data Assimilator
Data AssimilatorData Assimilator

Data InserterData InserterData Inserter

<raise process>

<raise process>

Monito

Stability Analyzer

M
Q

M
Q

SensSensor

Event
Router

Algorithms Library

MonitoMonitor

We then altered the experiment settings and changed
some of the sensors typical behavior, such that while still
having a meeting situation, sensors values are distorted to
emulate high inherent inaccuracies and sporadically
reflect data that does not correspond either to any known
situation or the meeting situation. Examples of this are
changes to the sensed noise level and light intensity in the
meeting area. Figure 7 presents the reasoning engine’s
results for such experimental run.

Note that, with the emulated errors in sensor values,
the system now fails to infer the meeting as a basic
situation. However, the reasoning process identifies the
meeting in its next functional stage when it performs
adaptation to possible situations for the context-state,
assuming possible inaccuracies in sensor readings.
Finally, it composes together all reasoned situations,
resulting in inference identical to that in the initial
scenario. The system has therefore succeeded in handling
inaccurate sensor readings and correctly inferring the
associated situations (as though there were no errors in
sensor readings).

Fig. 7 – Uncertain information run

The actual adaptation-oriented reasoning process is the
following. After basic synthesis, the engine splits the
current context-state into sub-states that match situation
subspaces definitions.

It then computes the state-space difference between the
context sub-state and a selected situation subspace, using
the algebra operations library as described in section 3.2. If
the revealed difference between the context state and
situation subspace is below a certain threshold specific for
that situation subspace definition (configurable by the
application designers) it deduces the existence of such a
situation.

Figure 8a and 8b visually demonstrates the state-
space difference operator activity illustrating the

relationship between the context state and situation
subspaces. In this example a ‘meeting’ situation subspace
and ‘user working in office’ situation subspace are
defined and inferred by three sensor types:

(1) Light intensity in location, (2) number of people in
location and (3) noise level in location. We use the axes
in the diagram to denote the dimensions (i.e. the context
attributes) of the subspace, and fill the subspace’s region
of values area in blue. A separate red triangle connecting
a specific single value from each context attribute denotes
the context state. The identical context state does not fully
match any of the situations but exhibits much greater
similarity with the ‘meeting’ subspace, in which the light
intensity readings only slightly deviate from the subspace
definition. The state-space difference operation results in
a very low difference between the state and the ‘meeting’
subspace, thereby inferring its existence.

Fig. 8a – A meeting. Fig. 8b – User in office.

Figure 9 provides the process’s functional flow
description.

Fig.9 – Functional flow of adapting inaccurate readings

5. Conclusion

We have provided a partial view of the Context
Spaces model and illustrated how various aspects of the
model can be used for reasoning about context in
different levels of uncertainty. An important feature of the
model, but which is not the main focus of this work, is the
dynamic aspects of context, which are naturally captured
in the state-space representation approach on which the

For each
Subspace
do:

{
Split context-state into
matching sub-state

XS operations Compositor

Compute state-space
difference

Check if match
predefined threshold

Synchronize results
with Compositor

}
Add new situations
with attached

Compose
complex
situations with
new situations

Compute sub-state and
subspace difference

Context Adapter

model is based. Once we have treated context in terms of
state and space, other concepts concerning context, such
as historical context trajectory, and system stability with
regard to specific context as well as various techniques
for context prediction and reasoning have been developed
and included in the Context Spaces model. For detailed
discussions on these features, the reader is referred to [10,
11].

The different features of the models are presented in the
reasoning engine, which is built on a modular approach
and which makes use of separate libraries that provide
operations based on the Context Spaces algebra (as well
as algorithms for context reasoning and prediction). The
functional stages discussed in section 2 offer useful
modularity and efficiency in the reasoning process, by
which only uncertain or inconsistent situations are dealt
with in advanced stages.

A fundamental design principle, which we apply to
the various reasoning mechanisms and the overall system,
is the decoupling of the application semantics from the
implementation. We store the semantic part of the model,
which in part is defined by the application designers,
separately. By following this rule our goal is to achieve a
model which is reusable and exportable through the
semantics. The semantic repository describes elements of
the system, policies based on context, elements and
operations of the Context Spaces model, and a set of
concepts that describe various behaviors and
characteristics of situation subspaces (e.g. possible
natural flows between situations, situation compatibility,
etc.). The use of the Context Spaces model, which is a
general model for capturing and reasoning about context,
as the underlying model of the algorithms and the
separation of the application semantics from the
functional components, enables the development of
reasoning techniques that are generic and can be used in a
variety of settings and application types. Algorithms that
make use of the context spaces model treat any kind of
context uniformly and acquire the semantic information,
specific to the application at hand, from a higher level,
external to the algorithms. By following this approach we
seek to create an infrastructure for context-aware
computing at the reasoning level that is able to perform
complex reasoning for different applications once
specialized with application semantics.

In future work we intend to combine the centralized
reasoning engine with distributed and mobile software
components, creating hybrid architecture that work
together in sensing the environment and reasoning about
relevant context.

References
[1] Campbell R. H., Ranganathan A., A middleware for
Context-Aware Agents in Ubiquitous Computing Environments,
ACM/IFIP/USENIX International Middleware Conference, Rio
de Janeiro, Brazil, June 2003.
[2] Chen H., Finin T., Anupam J., An Intelligent Broker for
Context-Aware Systems, Ubicomp 2003, October 2003.

[3] Chen H., Finin T., Anupam J. An Ontology for Context-
Aware Pervasive Computing Environments, Workshop on
Ontologies and Distributed Systems, IJCAI-2003, Acapulco,
Mexico, August 2003.
[4] Cheng S. W., Garlan D., Schmerl B., Sousa J. P., Spitznagel
B., Steenkiste P., and Hu N., Software Architecture-based
Adaptation for Pervasive Systems, , Conference on Architecture
of Computing Systems (ARCS'02): Trends in Network and
Pervasive Computing, April 8-11, 2002.
[5] Dey A. K., Salber D., Abowd G. D., A conceptual
framework and a toolkit for supporting the rapid prototyping of
context-aware applications, Human Computer Interaction, 16(2-
4):97-166, 2001.
[6] Dey A. K., Abowd G. D., Towards a Better Understanding
of Context and Context-Awareness, GVU Technical Report
GIT-GVU-99-22, June 1999,
ftp://ftp.cc.gatech.edu/pub/gvu/tr/1999/99-22.pdf
[7] Huadong W., Mel S., Sevim A. Sensor Fusion for Context
Understanding, IEEE Instrumentation and Measurement,
Technology Conference, Anchorage USA, May 2002.
[8] Huadong W., Mel S., Sevim A. Sensor Fusion for Context
Understanding, IEEE Instrumentation and Measurement,
Technology Conference, Anchorage USA, May 2002.
[9] Kindberg, T., et al.: People, places, things: Web presence for
the real world. Technical Report HPL-2000-16, Hewlett-
Packard Labs (2000).
[10] Padovitz A., Zaslavsky A., Loke S. W., Burg B., Stability
in Context-Aware Pervasive Systems: A State-Space Modelling
Approach, Workshop on Ubiquitous Computing (IWUC'04), at
ICEIS 2004, Porto, Portugal.
[11] Padovitz A., Loke S. W., Zaslavsky A., Towards a Theory
of Context Spaces, Workshop on Context Modeling and
Reasoning (CoMoRea), at PerCom 2004, Orlando, Florida,
March 2004.
[12] Satyanarayanan M., Pervasive Computing: Vision and
Challenges, IEEE PCM August 2001, pp. 10-17.
[13] Schmidt A., Beigl M., Gellersen H. W., There is More to
Context than Location, Proceeding of the International
Workshop on Interactive Applications of Mobile Computing,
Rostock, Germany, November 1998.
[14] Schmidt A., Strohbach M., van Laerhoven K., Friday A.,
Gellersen H. W., Context Acquisition Based on Load Sensing,
UbiComp 2002: Ubiquitous Computing, Gteborg, Sweden.

	Text3: Padovitz, A., Loke, S.W., Zaslavsky, A., Burg, B. "Towards a General Approach for Reasoning about Context, Situations and Uncertainty in Ubiquitous Sensing: Putting Geometrical Intuitions to Work", 2nd International Symposium on Ubiquitous Computing Systems (UCS'04), Tokyo , Japan , November, 2004.

