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Abstract 
Development of network applications for commercial purposes often requires 
extensive verification and validation in large networks. Real networks are however 
commonly limited in size, number of network devices, and in topology configurations 
supported. Such limitations make large-scale verification and validation tests hard to 
accomplish. 
 
By emulating a network, the size, router specifications, and topology can be 
controlled. This allows for more flexible and larger scale testing than in a real network. 
Also, costs are reduced since no expensive network devices are needed. All in all, 
there are many advantages with using emulated networks in the development of new 
network applications. 
 
This master's thesis has designed and implemented an MPLS network emulator. The 
emulator has been used to verify requirements of a network application that captures 
the topology of an MPLS network. 
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1 Abbreviations 
Here follows brief explanations of the abbreviation used in this report 
 
ATM Asynchronous Transfer Mode, a network technology. Packets are 

called cells and have a fixed size 
CMIP/CMIS Common Management Information Protocol/Services, a complex and 

powerful management protocol  
FEC Forwarding Equivalence Class, classes for MPLS packets in order to 

separate traffic flows 
IAB Internet Architecture Board, advisory group of the Internet Society 
IETF Internet Engineering Task Force, standardization organization with the 

purpose of developing the Internet 
IP Internet Protocol, addressing scheme used in the Internet 
IQ-Man™ IP QoS Manager™, a system for providing QoS in an IP network 
LDP Label Distribution Protocol, protocol used by MPLS routers to distribute 

labels 
LER Label Edge Router, ingress router on an MPLS network 
LFIB Label Forwarding Information Base, MPLS LSP table. Used for 

forwarding MPLS packets 
LSP Label Switched Path, a path which MPLS packets are forwarded on 
LSR Label Switching Router, core router of an MPLS network 
MIB Management Information Base, information database for network 

management purposes 
MPLS Multiprotocol Label Switching, a packet forwarding technology using 

labels 
OSPF Open Shortest Path First, interior routing protocol developed for IP 

networks based on shortest path first algorithm 
RFC Request For Comments, document produced in one of the IETF groups 
SNMP Simple Network Management Protocol, protocol for managing network 

devices 
SGMP Simple Gateway Management Protocol, protocol for managing network 

gateway devices 
TCP Transmission Control Protocol, protocol for transmitting data with 

guaranteed delivery 
VPN Virtual Private Network, a network that appear private to the user but is 

constructed from public networks 
QoS Quality of Service, networking term describing some form of 

guaranteed parameter (for example throughput or delay) 
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2 Introduction 

2.1 Background 
The software systems built by Operax perform admission control for quality of service 
(QoS) services in IP networks. The IQ-Man™ product has topology awareness 
features which are used to make path sensitive admission control decisions. 
 
The research background for the current Operax product portfolio was all focused on 
IP networks and the topology awareness features currently supported are based on IP 
routing. Recent development and market trends indicate that the Operax IQ-Man™ 
product would benefit from having broader support for topology awareness. One area 
of special interest is topology awareness for multiprotocol label switching (MPLS) 
networks, where label switched paths (LSPs) connect to form the topology. 
 
MPLS is a powerful toolkit for network operators, which among other things, allow 
operators to run multiple logical IP networks on top of the same network infrastructure. 
Virtual private network (VPN) services implemented with MPLS are a common MPLS 
application used by operators. In short, many operators would like to see MPLS 
support in the Operax IQ-Man™ products and this thesis is an important step in that 
direction for Operax. 
 
Operax IQ-Man™ operates with the use of a topology map of the network. Therefore 
IQ-Man™ is in need of gathering this information from MPLS networks. An MPLS 
network emulator would be an excellent tool during the test phase of such a topology 
gathering tool. The emulator needs not emulate all the functions of an MPLS network 
but only supply the information regarding the network topology and especially label 
switching paths. 

2.1.1 Operax IQ-Man™ 
The Operax IQ-Man™ system is a program suite that provides control over network 
resources and enables dynamic and accountable services in the network. By using 
QoS mechanisms, IQ-Man™ enables admission control for multiple services and 
allows high utilization of network resources. 
 
Figure 2.1 depicts an overview of the Operax IQ-Man™ system. Its main components 
are a core system and probes. The core contains the database used to store resource 
reservations and topology map and is responsible for handling resource reservations. 
The Operax IQ-Man™ probe implements topology monitoring. The application 
interface to Operax IQ-Man™ handles resource reservation requests and replies. 

 
Figure 2.1 System overview of Operax IQ-Man™ 
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Figure 2.2 shows how IQ-Man™ works. Operax IQ-Man™ connects to the network (1) 
and builds an up-to-date resource map (2) including routing topology and link 
resources in a database. This information is used for admission control purposes. As 
admission requests (3) arrive to the system, the resource map and the allocations (4) 
are reviewed in order to perform path sensitive evaluation when replying to the 
requesting application. 

 
Figure 2.2 Description of how IQ-Man™ works 
 
In Operax IQ-Man™, topology awareness is crucial for the path sensitive admission 
control provided. Topology maps are essential in the process of resource reservation 
that IQ-Man™ performs. 

2.2 Network Simulation and Emulation 
Motivation 
Network simulators and emulators allow researchers to create arbitrary network 
topologies and conditions in a reproducible manner that might not be easy to find in 
real networks [Al97]. 
 
When network and protocol interactions are investigated or when new networking 
tools are verified, network simulators and emulators can be of much help. They allow 
tests to be carried out in a contained and controlled environment. Thereby, errors are 
easy to detect and to trace. 
 
Investigations and tests of networking tools often require large networks. Limiting 
factors for conducting tests in real networks are: 

• Cost 
o Large networks require a lot of expensive hardware. The cost may not 

be justifiable. 
• Space 

o Much hardware requires much physical space. It might not be 
possible to fit in all hardware in a test lab. 

• Complex setup and configuration 
o Managing network devices often require much knowledge from 

administrators. Much time is often needed to reconfigure the devices 
when changing network topology or router functionality between 
different tests. 

 
All of the above limitations can be reduced by using simulators and emulators. Cost 
and space limitations can be completely removed as entire networks can be modeled 
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in a single computer program. Setup and configuration can be made with scripts that 
are a part of the network topology definition. 
 
There are of course, disadvantages with simulated and emulated networks. The 
differences between the simulated/emulated networks can cause the results to differ 
compared to tests performed in a real network. This must always be kept in mind 
when presenting results from simulations/emulations. 
 
Network Simulators 
Network simulators do not carry traffic from one node to another; instead they model 
traffic and network components internally. The strength of simulation is that it allows 
researchers to study complex network topologies that might be difficult to create with 
real networks [Al97]. 
 
Network simulators are commonly driven by event queues which create an easy-to-
follow line of execution in changes of states and behavior of the network. 
 
An important advantage of simulation is that a simulator is not limited by the speed of 
real network components, the speed needed can simply be modeled. However, the 
downside of simulators is coupled to this advantage; they do not interact with real 
network components or applications. Instead the simulation is isolated from external 
interference. 
 
Network Emulators 
Emulation is a wide concept with a lot of various definitions. In some, network 
emulators alter real network traffic between physical network nodes in order to model 
different network configurations [Al97]. Code written for real networks can be used in 
an emulator and vice versa. This allows testing of code that can be used in real 
networks and not just testing of concepts as in simulators. 
 
The downside of these types of emulators is that the speed of the emulated network 
can never be faster than the speed of the physical network components. Another 
downside – and important difference from simulators – is that complex topologies are 
difficult to create since they must be created with physical network components.  
 
Other definitions describe emulation as a hybrid approach of simulators, emulators as 
above and live networks [Wh02]. 
 
Emulator Definition 
The definition of a network emulator used in this thesis is as follows:  
 
The emulated network is an environment with a well defined interface which is used 
for interaction with the emulated network. The emulator allows applications, protocols 
or operating systems to interact with it as if it was a network of arbitrary type and size. 
The interaction can be made quite transparent to the networking tool thus making the 
tool act is if the interactions are made with a real network. 
 
The emulator may have the whole network topology in a contained space thus it can 
be run on a single computer. This enables to run the emulation with a greater control 
than in a real network. 
 
Emulators are not necessarily limited by the speed of physical network components. 
The speed of network components (e.g. interfaces) or the proceedings of routing 
protocols can be modeled to any arbitrary value.  
 
The states and behavior are controlled by an event queue. This has many advantages 
and the foremost is the ability to keep it simple. 
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2.3 MPLS 
MPLS has spawned from early tag switching and label swapping protocols. Ipsilon’s IP 
Switching, IBM’s Aggregate Route-based IP Switching and last but not least Cisco’s 
Tag Switching were some of the approaches to provide data forwarding with the use 
of labels [Ri01]. 
 
These protocols had two general purposes; to resolve challenges presented with 
overlay models like ATM and IP. Secondly, software routers were believed to have 
great potentials for the future but they needed to be faster as networks grew larger 
and this could be accomplished by using protocols with faster decision making – i.e. 
the protocols above. 
 
However, the arrival of hardware routers meant that there was no longer any need for 
extending the life of software routers since they could not compete with hardware 
routers in terms of speed. Fortunately, the concept of label switching got new 
purposes as the demands for traffic engineering and quality of service grew larger. 
The rapid growth of Internet and thereby the number of routes through it is another 
reason why there is a demand for the fast tag switching concept. 
 
In 1997 the Internet Engineering Task Force (IETF) formed the MPLS Working Group. 
In 2001 the first MPLS RFCs were released [Bl02]. MPLS is an approach to forward 
packets at a high rate of speed. It aims to combine the speed and performance of 
layer 2 with the scalability and IP-like intelligence of layer 3. 
 
MPLS includes among others the following important features: 

• VPNs 
• Traffic Engineering, enabling QoS 

 
In traditional IP routing, a packet is forwarded on a hop-by-hop basis in every router it 
traverses. In the forwarding process, the layer 3 destination address is compared 
against a routing table in order to find the next hop router. The layer 3 addresses are 
left untouched by the router in order for the next hop router to be able to perform the 
same process. This is done independently in every router along the packet’s path thus 
making the forwarding process through the network to a repetition of time consuming 
route lookups. 
 
As packets reach the ingress router of an MPLS network, the label edge router (LER), 
each packet is classified and assigned to a forwarding equivalence class (FEC). This 
could be compared with the destination address lookup in IP forwarding. However, in 
MPLS the assignment of a packet to a FEC is done only once – when the packet 
enters the network. 
 
Different kinds of packets which still are mapped to the same FEC are 
indistinguishable in the MPLS network. All packets which belong to a particular FEC 
and which travel from the same node will follow the same path. A route in an MPLS 
network is called a label switched path (LSP).  
 
FECs provide MPLS with the power of traffic engineering as they can be based on 
simple matters such as destination prefix of packets or they can be based on more 
complex factors. Port numbers, source and destination host address or combinations 
of these are examples of variables that can be taken into consideration for deciding 
what routes packets are to be forwarded in.  
 
FECs and LSPs are tightly coupled as all packets in a certain FEC will be forwarded 
along the same LSP. In every forwarding router, called label switching router (LSR), 
LSPs are identified with labels. An MPLS label has a fixed length of 32 bits and is 
locally allocated in each LSR.  
 
After the packet has been assigned a label that shows which FEC it belongs to, the 
packet is forwarded through the MPLS network and no further investigation of the 
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packet is needed. Each subsequent router uses the label as an index into a table, the 
label forwarding information base (LFIB), which specifies the next hop along with a 
new label for the packet. The old label is replaced with the new label and the packet is 
forwarded to the next hop.  
 
MPLS has sometimes been described as a protocol between layer 2 and layer 3 
because the label is inserted into the packet between the layer 2 and layer 3 headers.  
 
Figure 2.3 shows an MPLS network of three routers. Ethernet links are used as layer 2 
and IP as layer 3. The tables next to each router contain a subset of the forwarding 
tables (LFIBs). As packets enter LER A, the destination IP is used to map it to a FEC. 
The label for the FEC is inserted between the Ethernet header and the IP header. The 
packet is then forwarded out on interface b. In LSR B, the packet’s MPLS label is 
inspected, swapped with the local out label for the LSP in question and forwarded out 
on its b interface. When the packet reaches the egress router, LER C, the label is 
popped and the IP packet is forwarded on. 

 
Fig 2.3 Example of how a packet is classified at the LER A and then forwarded through the MPLS network. 
 
The forwarding process through the MPLS network is a simple matter for the LSRs. 
They only look at the labels and interfaces in order to decide where to forward the 
packet. 
 
Tunnelling in MPLS networks can be created with label stacking. Label stacking 
means that a packet carries more than one label. Figure 2.4 shows an example of 
label stacking in MPLS. A tunnel exists between LSR A and LSR C. When a packet 
with label 12 arrives at LSR A, it does not swap it with 35 instead it pushes it on top of 
the label stack. The packet is then forwarded through the network until it reaches LSR 
C where the label stack is popped and forwarded on. At this point the packet looks 
exactly as it did when it arrived at LSR A – it has been tunnelled. 
LER D inspects the packet and pops the label stack once more thus making the 
packet into an IP packet. This means that LER B’s interface b is an egress interface 
and is connected to an IP network. 
 

Eth   34    IP   Data 

LSR B

a b

LER C

a b

  Dest IP      Out 
192.168.10.4      b.push 34 
 
192.168.10.8      b.push 52 
… 

 In      Out
  a.12       b.pop
… 

Eth    IP   Data 

LER A 

b a 

Eth   12    IP   Data Eth    IP   Data 

  In      Out
  a.34       b.12 
… 
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Figure 2.4 Example of tunnelling between LSR A and LSR C with label stacking. 
 
Label Distribution 
A fundamental concept in MPLS is that two connected LSRs are agreed on the 
meaning of the labels used to forward packets between them. The MPLS specification 
does not specify how the labels are distributed [Ro01].  
 
A couple of different approaches has been made to solve this; existing routing 
protocols, such as the Border Gateway Protocol (BGP) have been extended to 
piggyback the label information in the routing protocol [Re01].  
 
The IETF has defined a label distribution protocol called the Label Distribution 
Protocol (LDP) [An01]. In LDP, the LSRs negotiate the labels to be mapped to certain 
destinations. Simplified, it can be said that LDP maps unicast IP destinations into 
labels. As in almost all protocols, there are some minor delays in the distribution of the 
labels. 
 
One of the most important services of MPLS and LDP in particular is the support for 
constraint based routing (CR). Constraint based routing offers the ability to extend the 
information used to setup paths beyond what is available for the routing protocol. 
Constraint based routing supports traffic engineering and can be used to set up LSPs 
based on explicit route constraints or QoS requirements. 
 
Label distribution protocols that support constraint based routing have been created. 
The Constraint based Routing Label Distribution Protocol (CR-LDP) specifies an end-
to-end setup mechanism of a constraint based routing label switched path (CR-LSP) 
initiated by the ingress LER [Ja02]. It also specifies mechanisms to support 
reservation of resources using LDP. 
 
RSVP has also been extended to support piggybacked exchange of labels and is 
called RSVP-TE [Aw01]. This specification enables the establishing of explicitly routed 
LSPs using RSVP as the signalling protocol. The major benefit of the protocol is the 
creation of LSP-tunnels which can be automatically routed away from bottlenecks, 
congestion and network failures. 

LSR A 

a b 

  In        Out 
a.12       b.push 35 
… 

Eth   12    IP   Data 

LSR B

a b

 In        Out
a.35       b.85 
… 

LSR C 

a b 

  In        Out 
a.85       b.pop 
… 

Eth   12    35  IP   Data

LER D

a b

 In        Out
a.12       b.pop 
… 

Eth   12    85  IP   Data

Eth   12    IP   Data Eth    IP   Data 
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2.4 SNMP 
In the middle of the 1980s, internets grew rapidly larger. There was no TCP/IP 
network management standard and when the number of network elements such as 
bridges and routers grew the administration of them became a task that required a lot 
of resources. 
 
In the IAB conference in March 1988, the IAB expressed its gratitude to the different 
working groups of the IETF that currently worked on TCP/IP network management 
protocols [Ce88]. The IAB described an immediate need for more functionality in those 
network management protocols. 
 
In order to get a working protocol in short time, two protocols were to be developed in 
parallel, one very simple that could be defined in short time and another more complex 
that probably would take longer to define. The idea was that SNMP would serve as the 
simple short term protocol and a further development of CMIP/CMIS [Wa90] would be 
the more complex solution. A transition from the simple protocol to the complex one 
was supposed to occur sometime in the future. 
 
The Simple Network Management Protocol (SNMP) group was formed and was 
responsible for developing a simple short-term network management standard based 
on the Simple Gateway Management Protocol (SGMP) [Da87]. In [Ca88], SNMP is 
defined for the first time. In 1990, the final publication of SNMP version 1 was 
published [Ca90]. Since then, version 2 [Ca93] and version 3 [Ca02] has been 
developed. 
 
SNMP is designed to reduce the complexity of network management and minimize the 
amount of resources required to support it [Se00]. SNMP provides for centralized 
network management with the flexibility to allow for the management of vendor-
specific information. 
 
Management Information Base (MIB) 
A MIB is a tree structured database that contains information necessary to the network 
element [Ro90]. The addressing of nodes is done with assigning every object with an 
Object ID (OID). Every node in the tree has a node number, value type and the value 
itself. The number of a node together with the numbers of the nodes leading up to the 
root of the tree creates the nodes OID. 
 
Figure 2.5 shows a fictitious MIB tree. The figure reveals the content of two of the 
nodes; 3.3 and 3.3.9. Node 3.3 contains a value of String type with the value of “ABC” 
while node 3.3.9 is an Integer with the value 1453. 

 
Figure 2.5 An example of a MIB tree. 
 
There are today many different MIBs, some are IETF standards, such as the MIB-II 
that contains TCP/IP related data and some MIBs are totally vendor specific [Mc91]. 
What MIBs a device is using is totally up to the vendor and the administrator of the 
device. 
 
Operation Overview 

3

1 3 7

4 9 9

OID: 3.3.9 
Type: Integer
Value: 1453

3 levels 

OID: 3.3 
Type: String 
Value: “ABC” 
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Network devices (routers etc.) that are SNMP enabled run a SNMP management 
agent. These agents can communicate with SNMP management applications and 
allowing them to fetch or alter information in the network device. The SNMP agent 
operates on MIBs. SNMP messages are sent asynchronously over the layer 4 protocol 
UDP. 
 
The SNMP operations are 

• GET_REQUEST 
o The management application requests an object from an agent 

• GET_NEXT_REQUEST 
o The management application requests the next object from an agent 

• SET_REQUEST 
o The management application sets the value of an object within an agent 

• GET_RESPONSE 
o The returned answer from one of the above requests 

• TRAP 
o Agents can send a trap when a condition has occurred, such as a change 

in state of a device or a device failure 

2.5 TELNET 
TELNET is a TCP based two-way communication protocol designed in 1980 [Po80]. In 
1983 a new version came with some improvements [Po83]. The primary goal was to 
create a standard for interfacing terminal devices and terminal-oriented processes to 
each other. 
 
The TELNET protocol is built upon three ideas; the network virtual terminal, the 
concept of negotiated options and third, a symmetric view of terminals and processes. 
Together they produce a flexible way of communicating with the possibility of letting 
the two nodes negotiate how the communication is to be done and what options to 
use. 
 
There are a number of different options defined in different RFCs. [Re03] always 
contain an updated list of all RFCs, including all TELNET options. 
 
A TELNET session is created by opening a TCP connection between the two hosts. 
TELNET communication is simply a way to negotiate options and sending text 
messages between the hosts. The messages are 8-bit encoded ASCII chars. 
  
The TELNET protocol has no built in encryption of the data sent between the 
participants of the TELNET session. To avoid malicious users to intercept passwords 
or other sensitive information, an encryption option for the TELNET protocol has been 
proposed [Ts00]. TELNET authentication options are also proposed [Ts00-2].  
 
The power of TELNET lies in its simplicity. TELNET applications can exchange 
information, alter information at each other and also execute programs at the each 
other. TELNET applications can be designed to let the user get large volumes of 
information in nicely formatted outputs with just a single command. This is something 
that many router vendors have utilized. For example it is possible to fetch entire LSP 
tables with a single command. 

3 Goals and Requirements 
Although the concept of label switching has been around for many years, MPLS has 
not been developed for more than a few years. Many MPLS network devices as well 
as MPLS applications are continuously arising in the market. In addition, many 
extensions to the MPLS concept are continuously being developed and integrated. 
Verification and validation of these new devices and applications may have a lot to 
gain if performed in a contained, controlled environment – i.e. in an emulator. 
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3.1 Goals 
The main goal of this thesis is to design and implement an MPLS emulator that is to 
provide an MPLS network topology to a network topology gathering tool developed in 
a separate master’s thesis [Ni03]. The main goal is also to test and verify this tool, 
called the probe, with the MPLS network emulator. 
 
The secondary goal of this thesis is to design and implement a network topology 
generator. This is important because the probe must be tested with a large number of 
different network topologies in order to verify its correctness. 

3.2 Emulator Requirements 
The requirements of the emulator are: 

• Transparency 
o Communication between the probe and the emulator should be made 

transparent via a well defined interface 
• Diversity 

o Routers must be configurable to behave in the same way as different 
real router types 

• Correctness 
o The topology data fetched from the emulator must at all times exactly 

match the internal topology in the emulator 
• Scalability 

o The emulator should scale linearly with respect to memory usage and 
time for data retrieval from all emulated routers as the number of 
routers increase 

• Stability 
o Long term testing of the probe requires that the emulator is able to run 

continuously for a long period of time  
• Alteration 

o The emulator must be able to alter the topology during a running 
emulation. Alterations shall be able to be predefined or be randomly 
created during the running emulation 

• Code standard 
o Design and implementation shall follow the guidelines presented at 

Operax 
 
Below follows more details on some of the requirements: 
 
 
Transparency 
Communication between the MPLS emulator and the probe must not be on a level too 
low because of the increasing complexity that brings. Nor should it be too abstract 
which would result in non-reliable tests of the probe. For example, simply 
implementing a function in the emulator that returns the entire network topology via an 
arbitrary struct would not be very realistic. That would not verify the probe in any way 
except for the probe interface towards IQ-Man™. 
 
Complete transparency to the probe will not be possible in this thesis. The complexity 
of the emulator would be too high and there will not be enough time to implement it. 
Thus, the transparency requirement does not require complete transparency. 
However, data processing in the probe must be performed the same way regardless 
whether a real or emulated network is used. 
 
Correctness 
An emulator with the foremost purpose of delivering a network topology to an 
application implicitly has the requirement of sending the correct data to the application. 
Measurements of correctness of the application are likely to be very important. For 
instance if the user expects to see a predefined alteration pattern in the emulator this 
must be ensured and therefore the correctness demands of the emulator are of great 
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importance. Thus the correctness requirement means that the emulator must work as 
intended – no inconsistencies, no matter how small, are allowed. The emulator shall 
test and verify the functionality of the network topology awareness tool developed in 
the master thesis [Ni03]. 
 
Scalability 
Scalability requirements of the probe have been set to preferably scale linearly with 
respect to time cost [Ni03]. In order to perform benchmarking of the probe, the 
emulator should in the worst case scenario have a total data-retrieval time that scales 
linearly (i.e. O (n)). If the scalability of the emulator is worse than 0 (n), the 
benchmarking tests of the probe, when used with the emulator, will not prove anything 
as the tests would only show how the emulator scales. 
 
Stability 
Long term stability must be ensured in order to verify the probes functionality and 
stability. Possible reason for crashing such as memory leaks must be eliminated. 

3.3 Topology Generator Requirements 
The requirements of the topology generator are: 

• Configuration 
o The topology generator must be configurable to create network 

topologies of varying sizes 
• Random behaviour 

o It must be able to create the networks in a random manner, but also 
be able to reproduce networks for future re-tests 

• Compatibility 
o It must create network topologies that can be used in the MPLS 

emulator 
 

3.4 Delimitations 
An emulator that emulates an MPLS network in full detail of every aspect is a goal that 
could never be fulfilled. Delimitations must be made to be able to produce a result in 
feasible time. 
 
Multiple domain networks are not to be modelled. The probe is only intended to be 
used on a per domain basis and thus the emulator needs only describe one domain. 
 
The emulated routers will not perform all the tasks of a real MPLS router (label 
distribution or forward any traffic). The goal to provide the probe with the requested 
data (the label switched paths in the network) does not imply how the LSPs are set up, 
just that they exist. 

4 Related Work 
A Linux™ based MPLS Emulator (LiME) is an MPLS emulator that can be used as a 
test environment for testing control protocol implementations [Ab02]. LiME supports 
LDP and is also able to forward traffic between its emulated nodes using a kernel 
space MPLS stack. It is capable of running code developed for real network devices 
and may also communicate via a network interface with real MPLS devices. 
 
LiME is useful when studying deployment effects of different traffic engineering 
algorithms within MPLS networks. However, it does not cope with large topologies. 
The design of LiME does not allow large topologies without redesigning it to a 
distributed system. 
 
Another MPLS emulator is the commercial NetTest MPLS InterEMULATOR™ [In01]. 
InterEMULATOR is intended for testing of new protocols, network devices and to 
study algorithm behavior. It also allows active insertion of errors in packets in order to 
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study error detection and correction. The emulator is, according to the developers, 
highly developed and allows validation of performance, functionality and 
interoperability of network devices and algorithms.  
 
Like LiME, it is intended to be connected with real MPLS hardware. One big difference 
from LiME is that InterEMULATOR supports emulation of up to 300 LSRs on a single 
workstation. It supports LDP, CR-LDP and RSVP-TE as label distribution protocols 
and BGP-4, OSPF(TE) and IS-IS(TE) as routing protocols. 
 
The emulators above aims to validate MPLS related algorithms or real MPLS network 
devices. The emulator in this thesis is in a way much smaller as it does not implement 
any label distribution protocol, run code intended for real devices or communicate with 
such. The emulator in this thesis aims at containing an MPLS network topology, being 
able to dynamically alter the topology during run-time and to provide a well defined 
data information retrieval interface in the emulated routers. Through the interface, 
topology information is to be fetched. 
 
Some of the design and development of the MPLS emulator in this thesis has also 
been influenced by how the Operax IQ-Man™ MPLS Probe is designed. 

5 Design 

5.1 MPLS Emulator 

5.1.1 Overview  
The MPLS Emulator is designed to run together with the Operax IQ-Man™ MPLS 
Probe implemented by Per Runemo and Martin Nilsson [Ni03]. The probe provides the 
Operax IQ-Man™ Core system with MPLS network topology information. 
 
The main components of the emulator are a set of router objects, a scheduler object 
and a communication interface. These objects are explained more in detail below. 
 
Features 
The emulator is capable of modelling an arbitrary number of router types with different 
configurations. This is solved with the use of plug-ins. Every router type with a specific 
configuration can be imitated by implementing a plug-in for that router. This way, new 
router types can easily be added to the emulator. 
 
Network fluctuations frequently occur in real networks and are important to model. 
Therefore, the emulator has a scheduler object. It schedules events such as dropping 
routers and LSPs. An event handler makes sure that the modelled network is altered 
according to the events. 
 
Communication with the routers can be done in two ways; SNMP and TELNET. 
(Actually pseudo SNMP and pseudo TELNET implemented with library function calls; 
see section 5.1.3 for more details). The communication is done via a common 
interface in the emulator from where SNMP and TELNET sessions can be opened. 
 
Initialization 
Figure 5.1 shows how the emulator is loaded with a number of different settings at 
start-up. 
 
At initialization, the emulator’s configuration file is read. The network topology contains 
information about the routers, their interfaces and how they are connected. The LSPs 
defines all label switched paths through the network. The randomization variables 
define the optional random generation of events (see section 5.1.5). The behaviour 
pattern defines prescheduled events that are to occur in the emulator.  
 
The router type plug-ins needed for the emulation is also loaded at start-up. 
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Fig 5.1 The emulator is loaded with network topology, initialization variables, behaviour pattern, and  
            the different router type plug-ins needed. 
 
When the configuration file is read, the topology objects, prescheduled events and the 
scheduler are created. The scheduler creates the event handler and is thereafter 
started. 
 
After initialization, two things can occur; communication with the emulator can be 
requested by the probe or an event may be processed.  
 
Course of actions 
Figure 5.2 shows how a SNMP or TELNET request is handled in the emulator. The 
probe initiates communication by requesting some data from router A via the emulator 
interface (1). The interface receives the request from the probe and maps it to a router 
object. The router object gets a request from the interface regarding the requested 
data (2). The data might depend of the router type and if so, the router engine uses 
the router type plug-in to get the right data formatted in the correct way (3). The LFIB 
table in the router contains information about the LSPs in this router. If the request is 
regarding LSPs, that table will be used by the plug-in to get the data. The router 
engine returns the data to the interface (4). The interface replies to the probe with the 
requested data (5). 
 
The third step applies for TELNET requests. In the case of SNMP requests, router 
specific information has in advance been added to the router’s MIB tree (see section 
5.1.4 for more details). 
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Figure 5.2 Overview of how the emulator is designed. 

5.1.2 Emulator Library 
The emulator is designed as a library and is executed together with the probe. This 
way the probe and emulator communicates via library functions. The library functions 
constitute an application programming interface (API). 
 
The advantage with this solution is that the communication is kept on a level not too 
low as required in section 3.2. 
 
Another advantage with this solution is that it is very time efficient. The time needed to 
send data via library functions compared to retrieving it via a network link is almost 
zero. 
 
Another solution is discussed in section 10. It involves communication via a real 
network interface. That solution would be to prefer but the implementation of it would 
not be feasible in this thesis due to the complexity it brings and the limited time for this 
thesis.  
 
The MPLS emulator is compiled as a shared, dynamically linked library. The 
emulator’s API consists of an initialization function, pseudo SNMP and TELNET 
functions (see section 5.1.3), and a function to halt the emulator when ending the 
emulation. 

5.1.3 Emulator Interface 
The library API allows the probe to perform synchronous SNMP and asynchronous 
TELNET queries. Sessions are set up in a similar way to how sessions are set up with 
real routers. 
 
The reason for why the emulator supports those two methods is because the probe 
does not use any other method to fetch the required information. 
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The probe could have used other methods such as snooping on the routing or label 
distribution protocol to retrieve the necessary information. In such a case, the emulator 
could have modelled this by implementing the required routing protocol. The scheduler 
and event mechanism would serve as the coordinator in the distribution of routing 
messages and the router engines would be responsible for receiving, processing and 
creating these messages. 
 
SNMP 
UCD-SNMP is the one the most widely used packages for SNMP communication 
[US03]. It is also what the probe uses for SNMP communication with real routers. 
Therefore, the emulator provides functions in its API that imitate the library functions of 
UCD-SNMP and the probe is instructed to use those SNMP functions instead of the 
UCD-SNMP functions when it is run against an emulated network. 
 
By providing functions in the API that to the probe look and behave the same as the 
functions in UCD-SNMP, the probe is made to believe that it interacts with a real 
network. This assures that transparency will be high between the probe and the 
emulator but not unnecessary complicated. 
 
The imitated functions correspond to opening an SNMP session, making synchronous 
queries and closing an SNMP session.  
 
TELNET 
The TELNET approach is similar. The probe uses its own small TELNET API when 
run against a real network. The emulator provides functions that imitate those 
functions. The probe is instructed to use the emulator’s TELNET API instead of its 
own when run against an emulated network. 
 
The TELNET API consists of four library functions. They allow opening a telnet 
session, sending queries to the emulator, receiving replies from the emulator and 
closing the session. Compared with how a real TELNET session is used [Po83], this 
creates a high level of transparency to the probe. 
 
The use of library functions has one downside; all communication between the probe 
and the routers are serial. When the probe interacts with routers in a real network 
some of the communication can be done in parallel. 
 
However, there are two reasons why this is not a problem; first, the probe is only 
parallel to a certain extent i.e. it cannot be truly parallel if the number of routers are too 
high. Instead several routers will be polled in a serial manner. Secondly, tests (see 
section 7.1.3) of the emulator shows that topologies with a large number of routers 
does not slow down the communication process to much for the emulation to finish in 
acceptable time. 

5.1.4 Router Engine 
The emulator contains a set of router objects. The purpose of these objects is not to 
forward packets or to create and manage LSPs with some protocol such as LDP. 
Instead the purpose of the router objects is to contain information important to the 
probe. 
 
The information needed by the probe is information about the routers (e.g. type of 
routers), about the interfaces (how many they are, their type and speed, if they are 
MPLS interfaces etc.) and last but definitely not least information about LSPs through 
the emulated network. 
 
Router types 
A network emulator would not be very useful if it was only able to emulate one type of 
router. One solution to this would be to hard code support for a number of router types 
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into the emulator directly. This would result in a very large amount of code and it 
would require recompilation of the emulator every time a new router type is needed. 
 
The emulator is instead designed to dynamically load the characteristics of the 
modelled router. Along with the topology definition in the configuration file, each router 
is assigned a router type. The type is associated to a shared library that is loaded 
dynamically at initialization. This is called the plug-in model. 
 
For the router to be able to cope with SNMP requests it has a MIB tree. The tree 
always contains a subset of the standard MIB MIB-II. This MIB does not contain any 
MPLS specific information. 
 
The plug-ins are responsible for two things. One, they provide functions that add 
router type specific MIB objects to the router’s MIB tree. For example, if a specific 
router type delivers certain MPLS information via SNMP, the plug-in for that router 
type adds the information to router’s MIB tree. 
 
Second, they provide functions that are responsible for receiving and processing 
TELNET requests. TELNET requests from the probe are directed to the router’s plug-
in. There, the plug-in does all the processing of the request. The reason for this 
approach is quite simple; virtually all router vendors implement their own TELNET 
interface and they can differ a lot from each other. It is therefore not possible to 
implement some sort of standard TELNET processing in the router objects. 
 
Every plug-in is implemented according to a template. The template defines the 
methods for creating router specific MIB trees. It also defines methods for the TELNET 
queries. Methods that perform unspecified actions, such as important initializations, 
are also defined. 

5.1.5 Scheduler and Event Handler 
The emulator uses a scheduler and an event handler that can alter the characteristics 
of the network. It runs in a separate thread in order not to interrupt the emulator from 
doing what it currently does. To assure that the scheduler does not alter the topology 
at critical moments (e.g. when a router is being polled), a mutex lock is used. 
 
The scheduler queues events sorted after their time stamp, putting the next event to 
occur in the head of the queue. It then checks the head of the queue to see when the 
event is to occur and waits for that amount of time. When an event is to be processed, 
the scheduler passes the event on to the event handler which processes the event 
and possibly adds new events to the scheduler as a result of the processed event. 
The scheduler then waits until the next event is to occur. 

5.1.6 Events 
There are three types of events; events that make a LSP go down or up, events that 
make a router go up or down and third, events that generate random instances of the 
previous events. Fluctuations are common in real networks and the meaning of these 
events is to make the network fluctuate in order to emulate that behaviour.  
 
When a router that is a node in an LSP goes down, the event handling mechanism 
also makes sure that the LSP is removed from the network. The effect is almost 
instant; the delay in the down tearing process of the LSP is only a matter of 
milliseconds. The process is similar (but backwards) when that router goes up again.  
 
In a real network where LDP may be used, the LSP would be broken for a longer 
period of time. The probe would detect a larger number of topology alterations due to 
the delays until the network reaches a stable state. This difference reduces the level of 
reality in the emulator and could be improved in future development. However, the 
higher stress to the probe that many alterations bring can be modelled by generating 
more fluctuation events. 
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Randomization 
A feature in the scheduling and event handling mechanism is that it can create 
random events. Random events are created every X time interval and cause some 
routers to go down for a period of time. 
 
The randomization process is configurable and gives the user the ability to control the 
time interval and an instability factor for all routers or set it individually for certain 
routers. There are also other configurable randomization options, see section 6.2. 
 
The feature of random events has two advantages: the network becomes more real in 
the sense that there is no regular pattern in the disabling of routers as there would be 
when humans disable routers manually in testing purposes. Secondly, a long term test 
of the probe would reveal any faults arising from the inability to cope with unstable 
networks. 

5.1.7 SNMP Engine 
The SNMP engine handles the GET_REQUESTs and the more complex 
GET_NEXT_REQUESTs to a router. It also produces the GET_RESPONSEs to send 
back to the probe. It does not handle SET_REQUESTs or create TRAPs as there is 
no need for that in the emulator. 
 
SNMP operations are closely related to a router’s MIB tree. The structure of the MIB 
trees must always follow a certain set of rules to qualify as a MIB tree. The SNMP 
engine has functions to ensure that all insertions and removal of objects in the MIB are 
done a correct way. 
 
The SNMP engine is used by all routers when building, rebuilding and destroying their 
MIB trees (caused by topology changes made by the scheduler). Since all router 
objects use it, it has been designed to be static. 

5.2 Topology Generator, Topgen 

5.2.1 Overview 
Large networks are often needed when testing network tools. A program named 
Topgen has therefore been implemented in this thesis.  Topgen generates random 
network topologies and calculates and creates shortest path LSPs between all edge 
routers. 
 
Figure 5.4 shows how Topgen is used; a configuration file that defines how many 
LERs and LSRs, maximum and minimum number of interfaces allowed and what type 
of routers that are to be generated is read by Topgen. Topgen does the necessary 
calculations and randomizations to create a complete network topology and all LSPs 
through it. The topology is then written to a file.  
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Figure 5.4 Topgen creates a complete network topology and LSPs from a predefined set of demands. 

5.2.2 Creation model 
Figure 5.5 describes the course of events when Topgen creates a network. 
 
Step 1 
The first step is the simple matter of reading the configuration file. This file contains 
the following information (and a bit more): 

• Topology output file name  
• Number of LERs wanted 
• Number of LSRs wanted 
• Number of shared segments wanted and maximum number of routers in a 

shared segment 
• A minimum and maximum number of interfaces on the routers 
• Router types to be created (specified by strings such as “Cisco_2651”) 
• A ratio of how many routers of each type that are to be created 
• A random seed 

 
The router type ratio means that the user can decide how many routers of each type 
the network should contain. For instance the user may want a network with 20% of the 
routers to be of type A, 40% of type B and 40% to be of type C. 
 
Step 2 
The information from the configuration file is used to create the LERs, LSRs and their 
interfaces. The number of LERs and LSRs are fixed but the number of interfaces for 
each router is randomly selected. The number of interfaces for a router is selected by 
generating a random number in the interval of maximum and minimum allowed 
routers. 
 
Every router gets a router type assigned to it. If a ratio has been specified for each 
router type then this ratio is used when assigning the routers their types. If not, a 
rectangular distribution is used when assigning router types meaning there statistically 
will be equally many of all types. 
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Fig 5.5 Overview of the steps performed in creating a network topology with Topgen. 
 
Step 3 
The third step is the largest one. In this step, all routers are connected to each other 
and assigned IP addresses. All router and interface selections are done at random. 
 
First it creates all the shared segments by selecting those routers that are to be in the 
shared segments and connects them. All of the LERs’ interfaces, except for one on 
each LER, are then connected to some of the LSRs. The unconnected LER interfaces 
will be used as the ingress/egress interfaces. 
 
The LSRs are then connected to each other on all their unconnected interfaces. This 
may create several connections between the same two pair of LSRs which is very 
likely to occur in real networks. 
 
Finally, every subnet that has been created by connecting interfaces to each other is 
given a subnet IP prefix. From this prefix the interfaces are then given their IP 
addresses. 
 
Step 4 
The topology is now finished and the LSPs are to be created. Dijkstra’s shortest path 
(SP) algorithm [Co90] is used to determine the shortest paths between all LERs. 
 
Step 5 
The information from step 4 is used to create LSPs from every LER to every other 
LER. More precisely, it creates LSPs from the subnet of a LER’s ingress interface to 
the egress interface of every other LER. 
 
Step 6 
The last step writes all the generated information to a file with the requested file name. 
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6 Implementation 
This section explains how the work has been performed and also some detail 
decisions made in the implementation. 
 
The implementation is written in C. The code follows the ANSI C standard and the 
Operax AB coding standards. The emulator implementation has been written on Red 
Hat Linux 7.3 operating system using the Gnu Compiler Collection (gcc) version 2.96. 
 
Thread Support 
The emulator is fully thread safe meaning that the probe may query the emulated 
network in parallel threads. 
 
Topology Freeze 
In the implementation of the emulator, support has been added to freeze the state of 
the network topology for a period of time. This feature has been added in order to 
verify the correctness of the probe. The freezing is done with custom made events that 
occur every X seconds. The freezing of the topology lasts for Y seconds and just 
before it is unfrozen it is compared with the topology fetched by the probe. 
 
All configuration of the freezing (freeze interval, freeze length etc.) is done via the 
configuration file. 
 
MIBs supported 
The MIBs supported in the implementation are subsets of the MIB-II [Mc91] and the 
MPLS LSR MIB [Sr03]. The MIB-II support is built in to the router object while the 
MPLS LSR MIB is built in to the implemented router type plug-in (see below). 
 
Plug-ins 
The creation of plug-ins is designed to be an easy task. To help the implementation of 
new plug-ins, a template is supplied. The template is a C h-file that describes the 
functions that need to be implemented and what they must do. 
 
In the implementation done in this thesis, one router type plug-in was created. It 
imitates the behaviour of the Cisco models 2651 and 3620. The MPLS LSR MIB 
support is only a subset of the defined content of that MIB. The parts not needed for 
network topology extraction has not been implemented. 

6.1 Dependency Graph 
Figure 6.1 shows the modules and objects and their dependencies. 

 
Fig 6.1 The objects and modules. The arrows indicate how objects and modules are used. 
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The figure does not show how many objects instances that are owned by any object, 
just how they are owned. 
 
The figure shows that the emulator object contains router objects, a scheduler and an 
Interface.  
 
A router object owns interfaces, LFIBs, an Info-Plug-in, and a MIB Node. The MIB 
Node is the root of the router’s MIB tree which contains subsequent MIB Nodes. The 
Info-Plug-in contains the router type plug-in. Both the router object and its plug-in uses 
the functions in the SNMP Engine. 
 
The Scheduler object contains a list of events that are dispatched to be processed at 
the Event Handler. The Scheduler and Event Handler runs in a separate thread. 

6.2 Configuration 
Configuration of the emulator can be divided into two parts; setting up the network 
topology and setting up the emulator’s internal functionality.  

6.2.1 Network Topology Configuration 
The network topology used for the emulation is read from a file. The file contains a set 
of routers including their interfaces. Each router may also have a set of neighbour 
routers. This information creates the network topology.  
 
The file is built with hierarchical clauses; the router clause is the topmost clause and 
contains the config, iface and the neighbour clause.  
 
The config clause holds information such as the router’s IP-address, a textual 
description of the router and TELNET and SNMP passwords for the router. It also 
contains what type of router it shall imitate and whether or not SNMP and TELNET 
access is allowed during emulation. 
 
The iface clause holds information about an interface on the router. It contains the 
interface’s IP-address, type, speed and textual name. It also describes whether or not 
the interface is an MPLS interface. 
 
The neighbour clause contains a local interface name and the IP-address of the 
neighbouring router. It also contains a cost for the link. 
 
The information above creates the network topology but not any LSPs. The lsp clause 
describes a label switched path and contains a destination prefix and several router 
clauses (not the same clause as described above regarding the network topology). 
The router clause contains the IP-address of a router that is a node in the LSP. It also 
describes what interfaces and labels that the router shall use for this LSP as well as 
the IP-address of the next hop interface (the interface on the next hop router in the 
LSP). 

6.2.2 Emulator Configuration 
There are a number of internal settings in the emulator as well. 
 
The clause emu_log_level sets the level of logging. There are five levels and each 
level adds additional information; level 0 means that no logging is done at all, level 1 
means that only errors are reported, level 2 adds warnings in addition to errors, level 5 
adds informational reports and level 6 adds debugging information. 
 
The emu_log_file clause specifies where logging is to be written. If this clause is 
missing from the configuration file, logging will be done to screen. 
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The fluct clause defines either a router or LSP along with a list of events. The events 
are either ups or downs on a time offset from the starting time of the emulator. If a fluct 
clause contains the field lsp_id then the purpose of the clause is to make an LSP go 
up or down. lsp_id refers to the value in the id field of the lsp clause. If the fluct clause 
instead of lsp_id contains router_addr then the clause is intended to make a router go 
up and down. 
 
The random_settings clause holds the necessary fields for generating random events. 
It contains the following fields; use_random which defines whether or not to use 
random events, a random seed named rndm_seed and rndm_calc_interval which is a 
timer that describes how often random events are to be generated. 
 
The net_settings clause under random_settings defines how unstable all routers are. 
The net_risc field specifies how many percent, on the average, of the routers that 
goes down (and eventually up) every rndm_calc_interval. 
 
The id clause under the random_settings clause defines similar variables as 
net_settings but for specific routers. 
 
The freeze_top under the random_settings clause is only used when the topology 
needs to be frozen. It specifies the freeze_interval, freeze_length. It also specifies log-
on variables to be used when comparing the topology with the topology in the 
IQ-Man™ database. 

7 Testing 

7.1 Test Cases 

7.1.1  Correctness of the Emulator without Fluctuations 

Description 
The test case is created to verify that the emulator provides the probe with the correct 
image of the emulated network topology. The information gathered during these tests 
is if the emulator provides the correct and requested information. 

Environment and start conditions 
The emulator is executed with the settings listed in appendix A.1. The probe is 
executed with the settings in appendix A.3. The test will be run on the host in appendix 
A.6 and the number of routers in the topology will be varied to verify that the size or 
configuration of the topology has no impact on the correctness. 

Actions and expected results 
The network topologies to test with are generated with Topgen. Several networks are 
generated and inserted into the emulator. The topology that the probe retrieves is 
compared with the topology given to the emulator. The result should be that there are 
no differences in the two topologies. 

Observations 
Networks generated by Topgen were inserted into the emulator. The numbers of 
routers in the different networks were 20, 30, 40, 50, 60, 70, 80, 100, 150 and 200. 
Two fifths of the routers were LERs. This was to ensure that the number of LSPs 
through the network was significantly high. For instance, the network of 200 routers 
had 6320 LSPs in total. 
 
A program developed for testing purposes verified that there were no inconsistencies 
between the network topologies in the emulator and the network topologies retrieved 
by the probe. The correctness of the emulator when no fluctuations occurred was 
thereby verified. 
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7.1.2 Correctness of the Emulator with Fluctuations 

Description 
The test is designed to verify that alterations of the network topology are reflected 
correctly in the data provided to the probe. The information gathered in these tests is if 
the emulator provides the correct and up-to-date topology information. 

Environment and start conditions 
The emulator is executed with the settings listed in appendix A.2. The probe is 
executed with the settings in appendix A.4. The test will be run on the host in appendix 
A.6 and the number of routers in the topology will be varied to verify that the size or 
configuration of the topology has no impact on the correctness. 

Actions and expected results 
The networks of 20-100 routers used for testing the correctness without fluctuations 
are extended with fluctuation settings. 
 
Every X seconds, the topology in the emulator is frozen meaning that no changes are 
allowed. The frozen state is maintained for a time period long enough to assure that 
the probe has fetched the entire topology and sent it to IQ-Man™ Core. Just before 
the emulator goes out of the frozen state, it retrieves the topology from the IQ-Man™ 
database and compares it with the emulator’s internal topology. The result should be 
that there are no differences in any pair of topologies. 
 
Every Y seconds, new network fluctuations are calculated. All tests are performed with 
a network fluctuation of 50%, which means that every time network fluctuations are 
generated 50% of all routers goes down. 
 
The topology freeze intervals were varied slightly as the networks grew larger. This 
was made to ensure that IQ-Man™ Core had performed all of its calculations before 
the topology was retrieved for comparison. It also meant that the interval for 
generating network fluctuations was altered to ensure a high variation in the network 
topology between any two comparisons. 

Observations 
In each test, the emulator’s internal topology was frozen 20 times. After each freeze a 
comparison of the internal topology was made with the topology in the IQ-Man™ 
database. Every comparison made showed that the topologies were identical. It can 
therefore be concluded that the emulator provides the correct data of the network 
topology when fluctuations occur. 

7.1.3 Scalability of the Emulator 

Description 
The test case is designed to show how the emulator scales as the number of routers 
increase. The information gathered here is the average time needed for the probe to 
perform one fetch iteration and the amount of memory used by the probe and 
emulator. The fetch iteration collects all data needed by the probe. 

Environment and start conditions 
The emulator is executed with the settings listed in appendix A.1. The probe is 
executed with the settings in appendix A.3 and A.5 to illustrate differences in 
performance between multithreaded and unthreaded execution. The emulator will be 
run on the host in appendix A.6. 

Actions and expected results 
The number of routers in each network varied from 20 to 100. 
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The time to perform fetch iterations is very much dependant of the amount of data to 
retrieve.  As the number of routers increase, the number of LSPs through the network 
grows faster. By increasing the number of edge routers by a factor 2, the number of 
routes does not double. Instead, the increase in the number of LSPs is almost square. 
The Topgen program creates two LSPs between all edge routers. The following 
example illustrates why this grows almost by square: Suppose that the number of 
edge routers is 5. The number of LSPs is then 5 x 4 = 20. If the number of edge 
routers instead is 10 then number of LSPs will be 10 x 9 = 90. 20 edge routers will 
give 20 x 19 = 380 LSPs. The growth is clearly not linear, instead it is O (N x (N-1)) = 
O (N2 – N) = O (N2). 
 
Therefore, if only the edge routers were to be polled then the scaling is expected to be 
O (N2). However the scaling should be better since not all new core routers (3/4 of the 
routers are core routers) are a part of the new LSPs and therefore does not increase 
their amounts of data as the edge routers do. There is no way to mathematically prove 
what the scaling should be in general since that depends on the topology and how 
LSPs are set up through the network. 

Observations 
30 poll iterations in every network were made and the average time needed by the 
probe to poll every router is shown in table 7.1 (multithreaded execution) and 7.2 
(unthreaded execution). 
 
In multithreaded mode the execution time is higher due to the overhead caused by the 
large amount of context switching. The standard deviation is also higher in 
multithreaded mode because of the way the thread scheduling is performed. In some 
executions, the scheduling is “smooth” in the sense that few threads that are locked by 
mutex locks are given the opportunity to run while in other executions many locked 
threads are set in run mode with the result that all they do is to wait for the lock to be 
released. 
 
 
Number of  
threads 0 20 30 40 50 60 70 80 90 100 
Number of  
routers 0 20 30 40 50 60 70 80 90 100 
Average [s] 0,000 0,087 0,231 0,300 0,546 1,093 1,634 2,183 3,132 3,750 
Std. 
Deviation 0,000 0,062 0,185 0,221 0,338 0,534 0,735 0,814 1,146 1,213 

Table 7.1 Total poll times on the average and the standard deviation when the probe is executed in 
multithreaded mode. 
 
 
 
Number of  
routers 0 20 30 40 50 60 70 80 90 100 
Average [s] 0,000 0,045 0,140 0,168 0,321 0,464 0,697 0,863 1,192 1,759 
Std. 
Deviation 0,000 0,000 0,000 0,001 0,002 0,003 0,006 0,005 0,005 0,010 

Table 7.2 Total poll times on the average and the standard deviation when the probe is executed in 
unthreaded mode. 
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Figure 7.1 shows the values from table 7.1 in a graph. Figure 7.2 shows the memory 
usage for the same executions. Figure 7.3 shows the values from table 7.2 in a graph. 
The scaling in both time and memory seems to be slightly better than expected for 
both multithreaded and unthreaded. 
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Fig 7.1 The time needed to poll all routers in multithreaded mode. 
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Fig 7.2 The memory usage needed for both probe and emulator together. 
 



 

34 Section 8 Results 

MPLS Emulation for Topology Awareness Testing 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 10 20 30 40 50 60 70 80 90 100

Number of routers

To
ta

l p
ol

l t
im

e 
[s

]

 
Fig 7.3 The time needed to poll all routers in unthreaded mode. 

7.1.4 Stability of the Emulator 

Description 
This test is designed to verify that the emulator does not crash or leak memory that 
can lead to a crash. 

Environment and start conditions 
The emulator is executed with the settings listed in appendix A.1. The probe is 
executed with the settings in appendix A.3. The test will be run on the host in appendix 
A.6. 

Actions and expected results 
The same networks with 20, 50 and 80 routers as above are used for this test. 
 
Each test is run for approximately 24 hours. Memory usage is recorded when the 
program has reached a stable state. After 24 hours the program is checked to still be 
running and checked for memory usage. The memory usage should be the same. 

Observations 
No memory leaks in the emulator were detected during the long term tests. The 
emulator never crashed during the tests. The stability requirement is thereby 
considered to be fulfilled. 

8 Results 
In this section, the results are discussed and compared with the requirements from 
section 3. 

8.1 Requirements 
This section shows that all requirements are fulfilled. 

8.1.1 Emulator 
 Transparency 
The requirement stated that the interface must not be on a level too low or too high. 
Therefore transparency for the probe is provided on an API level. 
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The probe uses the SNMP functions in the emulator’s API in the same way as it uses 
the API in UCD-SNMP. The probe does not process the topology data in any way 
different regardless of whether it received it from a real network or from the emulator. 
Therefore it can be said that the transparency requirement is fulfilled for SNMP 
communication. 
 
The probe uses the emulator TELNET API calls instead of its own TELNET functions 
to retrieve the topology data from the emulator. Since no processing of data occurs in 
the probe TELNET functions, the data gets processed exactly the same way with the 
emulator as with a real network. Therefore, the transparency requirement is fulfilled on 
an API level for TELNET too. 
 
Diversity 
With the plug-in model, virtually any type of router can be used in the emulator. When 
the need for a new type of router to be emulated arises, a corresponding plug-in need 
only be implemented. With this flexibility in creating new router types, the diversity 
requirement is fulfilled. 
 
Correctness 
Topologies with up to 200 routers have been verified together with the probe. All 
correctness tests (see section 7.1.1 and 7.1.2) have verified that the emulator 
provides a correct and up-to-date image of the internal topology. It can therefore be 
concluded that the correctness requirement is fulfilled. 
 
Scalability 
Figure 7.1 and 7.2 clearly shows that emulator scales linearly with respect to both total 
data retrieval time and to memory usage. The emulator fulfils the scalability 
requirement. 
 
Stability 
During long term testing (section 7.1.4) no crashes occurred at any time. No memory 
leaked from the emulator that could have caused a crash. The stability of the emulator 
is thereby proved and the stability requirement is fulfilled. 
 
Alteration 
The emulator is capable of dropping routers, dropping LSPs, restoring routers and 
restoring LSPs. The changes in the network topology can be human defined or 
created by a random function. The alteration requirement is fulfilled. 
 
Code standard 
All code has been written according to the Operax AB guidelines regarding coding 
style. This fulfils the code standard requirement. 

8.1.2 Topology Generator 
Configuration 
Topgen is configurable in many ways (see section 5.2.1). The number of LERs, LSRs 
and shared segments can be set to an exact value. The number of interfaces on each 
router is randomly selected from a defined interval. A maximum number of routers in 
each shared segment can be set. 
 
The topology generator is therefore much configurable. The configuration requirement 
is therefore fulfilled. 
 
Random behaviour 
A random behaviour can be found in: 

• How connections between routers are created 
• How many interfaces each router is assigned 
• How many routers each shared segment contains 
• How every router gets a router type assigned 
• Which routers that allows SNMP and TELNET connections 
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The list above concludes that networks are created in a random manner. 
 
Topgen uses a random function that is initialized with a random seed. This provides 
for reproducible generated networks since any network can be generated over and 
over again as long as the configurations including the random seed are the same. 
 
These statements conclude that the configuration requirement is fulfilled. 
 
Compatibility 
Network topologies generated with Topgen are compatible with the network topology 
needed by the emulator. The structure of the files written by Topgen matches exactly 
the needed structure of the input files to the emulator. The compatibility requirement is 
thereby fulfilled. 

8.2 Goals 
The main goal of this thesis was to design and implement an MPLS emulator that was 
to provide an MPLS topology to a network topology tool. Sections 5.1 and 6 verify that 
the goal has been fulfilled. 
 
The main goal was also to test and verify the network topology tool, the probe. Section 
7.2 in [Ni03] concludes that the verification of the probe with the use of the emulator 
was successful. 
 
The secondary goal was to design and implement a network topology generator. 
Sections 5.2 and 6 verify that the secondary goal has been fulfilled. 

9 Discussion and Conclusions 
The MPLS emulator designed and implemented in this master’s thesis has been 
successful in many aspects. The requirements of it have been fulfilled and it has 
successfully debugged and then verified the MPLS Probe.  
 
Interesting ideas of how to carry out these kinds of projects has been discovered by 
the author. Much insight in emulation topics, MPLS, SNMP, MIBs and TELNET has 
been gained and that must be considered a great success. 
 
The solution of designing an API for the communication between the emulator and 
applications works very well. The probe needed only be slightly modified to use the 
emulator and the level of transparency was kept high. 
 
To use plug-ins to support emulation of many different router types seems to be a 
good idea. New types emerging in the market that applications may need to be tested 
towards can easily be added without any alteration of emulator design or 
implementation. 
 
The emulated networks do not carry any traffic between the internal nodes. To 
implement that would not have any meaning at all to the probe. However, it is possible 
that other applications could gain from that. How it would be done remains to be 
investigated. 
 
Emulation of network topologies has proven to be very useful for finding errors in 
network applications. Some errors in the probe were not discovered with the relatively 
small real MPLS network at the Operax AB test lab. However, the large network 
topologies generated by Topgen made it possible to detect those errors. 
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10 Future work 
Implementing routing and label distribution 
One way to bring more realism to the emulator would be to implement routing and 
label distribution. 
 
In order to do this one could use the scheduler to sort of pass messages between the 
routers. Events that symbolise routing protocol messages could be used and routers 
would pass these messages to each other via the scheduler. This way, routing 
information can be spread throughout the network allowing routing tables to be built. 
  
In a similar way can any arbitrary label distribution protocol be implemented. 
 
Communication via Network Interface 
The emulator is designed to communicate via an API. To further extend the realism of 
the emulator, communication via a real network interface can be designed. The 
reason this has not been done is the high amount of complexity. 
 
The communication could be done by setting a network interface on the emulator 
computer in promiscuous mode, i.e. letting it process all received packets and not just 
those that are destined for the host. 
 
When packets are received at the emulator host, they are directed as input to the 
emulator. An interface module checks the incoming packets to see if they are destined 
to any router in the emulator’s topology. If so, the information in the packet is extracted 
and sent to the right router. When a router needs to send information, the router’s data 
is inserted into a packet by the emulator’s network interface module and sent out on 
the network interface. 
 
An interface on the host running the probe software is connected to the promiscuous 
interface on the emulator host. The probe would then communicate with the emulator 
exactly as is if the probe host was connected to a large network. This would set the 
level of realism very high. 
 
Of course, some other details of the emulator would need to be redesigned. The 
SNMP Engine for example would need some minor changes. 
 
SNMP and MIB Details 
There are two supported MIBs; MIB-II [Mc91] and MPLS LSR MIB [Sr03]. Only 
subsets of the objects in those MIBs are supported. The design is well suited for the 
requirements of the emulator. However, to enable support of larger subsets in the 
future, the design should probably be changed. 
 
The design today is basically that the nodes in the MIB tree point to variable instances 
in the router struct. A small but abstraction effective change would be to let the router 
struct contain MIB structs. Instead of having all variables directly in the router struct, 
variables belonging to a specific MIB would be placed in the MIB struct it belonged to. 
This would not make any changes to how the emulator works and behaves; it would 
only clarify the design and make it easier to extend the supported MIBs. 
 
Since the router type plug-in builds the type specific objects in the MIB tree and 
thereby decides what special MIBs that are to be supported, it would be appropriate to 
extend the idea above even further. The plug-in could define the MIBs structs it wishes 
to support and then allocate and hook them to the router in some way. Hooking could 
for instance be made by adding a pointer to the MIB in a dynamic list in the router 
struct. With the ideas above, the MIB support would be unlimited. 
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12 Appendices 

Appendix A – Test Configurations 

A.1 Emulator Settings without Fluctuations 
######################### 
## Topology definition ## 
######################### 
 
# Varied between different networks 
 
####################### 
## Emulator settings ## 
####################### 
 
#   Log level: 
#       0   No logging 
#       1   Errors 
#       2   Warnings 
#       5   Information 
#       6   Debug 
# Level 5 is default 
emu_log_level   5;       
 
#   Log file: 
#       Specifies the file to where logging is written. 
#       Screen will is used by default 
emu_log_file    emu_log.txt; 
 
#    Random_settings: 
#       This clause specifies variables needed for random  
#       functions. If no random settings is wanted, skip the  
#       clause or set the use_random to 0. 
# 
#       Parameters: 
#           use_random          Specifies whether or not random 
#                                 generated events is used. 
#                                 1 == use, 0 == do not use. 
#                                 Format: int  
#           rndm_seed:          The seed used for the 
#                                 generation of random-numbers. 
#                                 Format: int 
#           rndm_calc_interval: Specifies how often a 
#                                 calculation of dropping  
#                                 routers is to be performed. 
#                                 Format: int 
random_settings { 
    use_random             0; 
    rndm_seed          12345; 
    rndm_calc_interval     5;  # Every five seconds rtrs are  
                               # randomly scheduled for going  
                               # down (using either 
                               # net_instability value or the 
                               # value given to a specific  
                               # router.) 
 
#    The net_settings clause (under random_settings clause): 
#        Specifies how unstable every router is. These values



#        can be overidden for a specific router with an 
#        instance of the next clause. 
    net_settings {   # Generic random settings for all rtrs 
        net_risc                50; # 50% risc that any rtr  
                                    # goes down... 
        net_time_to_down        3;  # ...and goes down 3 sec. 
                                    # from down-calc. 
        net_down_time_average   10; # Stays down about 10 
                                    # secs... 
        net_down_time_deviation  5; # ...but can diff within +5  
                                    # secs. 
    }; 
#    The router-specific random_settings clause: 
#        Specifies the same as clause net_settings but  
#        for a specific router 
    id 10.10.0.1 { 
        risc                50; # 50% risc that this rtr 
                                # goes down... 
        time_to_down         3; # ...and goes down 3 sec.  
                                # from down-calc. 
        down_time_average   10; # Stays down about 10 secs... 
        down_time_deviation  5; # ...but can diff within +5 
                                # secs. 
    }; 
#    The freeze topology clause: 
#        Allows that the topology freezes for a period of time. 
#        Before the topology unfreezes, the topology in the 
#        emulator is compared with the topology in the 
#        IQ-Man(tm) database. 
    freeze_top { 
        use_freeze        0;        # Default false 
                                    #(==0, true==1) 
        freeze_interval  30;        # Time between two  
                                    # freezings 
        freeze_length    20;        # Time to be frozen 
        DB_host          db1;       # IQ-Man(tm) database host 
        DB               db2_matte; # IQ-Man(tm) database 
        DB_user          operax;    # IQ-Man(tm) database user 
        DB_pass          secret;    # IQ-Man(tm) database 
password 
    }; 
 
}; 



A.2 Emulator Settings with Fluctuations 
######################### 
## Topology definition ## 
######################### 
 
# Varied between different networks 
 
####################### 
## Emulator settings ## 
####################### 
emu_log_level   5;       
emu_log_file    emu_log.txt; 
 
random_settings { 
    use_random                  1; 
    rndm_seed                   12345; 
    rndm_calc_interval          # Varied from 5 – 200 depending  
                                # on network size 
 
    net_settings { 
        net_risc                50; 
        net_time_to_down         0; 
        net_down_time_average   # varied from 10 – 150 
                                # depending on network size 
        net_down_time_deviation  5; 
    }; 
    freeze_top { 
        use_freeze        1; 
        freeze_interval  # Varied from 25 – 150 depending 
                         # on network size 
        freeze_length    # Varied from 40 – 250 depending on  
                         # network size 
        DB_host          db1; 
        DB               db2_matte; 
        DB_user          operax; 
        DB_pass          secret; 
    }; 
 
}; 



A.3 Probe Settings for Emulation without Fluctuations 
################## 
# Probe settings # 
################## 
 
probe_loglevel 2; 
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins"; 
probe_interval 5; 
probe_wait_acks true; 
probe_iterations 0; 
thread_max      #As many as there are routers 
thread_burst_delay 0; 
thread_max_runtime 100; 
 
############################# 
# Probe - Emulator settings # 
############################# 
 
emu_cfg_file # Varied between different networks 
 
emu_so_file "/home/matte/source/mpls_prototype/mpls- 
             thesis/emulator/source/libemu.so"; 
 
################################## 
# IQ-Man(tm) connection settings # 
################################## 
 
iqman_enabled true; 
iqman_addr mpls3; 
iqman_port 7015; 
iqman_retries 5; 
iqman_pause 1; 
iqman_login "mpls"; 
iqman_passwd "mpls"; 
iqman_compression 0; 
 
########### 
# Routers # 
########### 
 
# Definition of routers to be contacted by the probe 
####################################### 
## Varies between different networks ## 
####################################### 
 



A.4 Probe Settings for Emulation with Fluctuations 
################## 
# Probe settings # 
################## 
 
probe_loglevel 5; 
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins"; 
probe_interval # Varied from 10 – 120 depending on size of 
               # network 
probe_wait_acks true; 
probe_iterations 40; 
thread_max  # As many as there were routers in the topology 
thread_burst_delay 0; 
thread_max_runtime 100; 
 
############################# 
# Probe - Emulator settings # 
############################# 
 
emu_cfg_file # Varied between different networks 
 
emu_so_file "/home/matte/source/mpls_prototype/mpls- 
             thesis/emulator/source/libemu.so"; 
 
################################## 
# IQ-Man(tm) connection settings # 
################################## 
 
iqman_enabled true; 
iqman_addr mpls3; 
iqman_port 7015; 
iqman_retries 5; 
iqman_pause 1; 
iqman_login "mpls"; 
iqman_passwd "mpls"; 
iqman_compression 0; 
 
########### 
# Routers # 
########### 
 
# Definition of routers to be contacted by the probe 
####################################### 
## Varies between different networks ## 
####################################### 



A.5 Probe Settings for Emulation without Fluctuations in Unthreaded Mode 
################## 
# Probe settings # 
################## 
 
probe_loglevel 5; 
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins"; 
probe_interval # Varied from 10 – 120 depending on size of 
               # network 
probe_wait_acks true; 
probe_iterations 40; 
thread_max 0; 
thread_burst_delay 0; 
thread_max_runtime 100; 
 
############################# 
# Probe - Emulator settings # 
############################# 
 
emu_cfg_file # Varied between different networks 
 
emu_so_file "/home/matte/source/mpls_prototype/mpls- 
             thesis/emulator/source/libemu.so"; 
 
################################## 
# IQ-Man(tm) connection settings # 
################################## 
 
iqman_enabled false; 
iqman_addr mpls3; 
iqman_port 7015; 
iqman_retries 5; 
iqman_pause 1; 
iqman_login "mpls"; 
iqman_passwd "mpls"; 
iqman_compression 0; 
 
########### 
# Routers # 
########### 
 
# Definition of routers to be contacted by the probe 
####################################### 
## Varies between different networks ## 
####################################### 

A.6 Test Host 
The table below specifies the host that the tests were performed at. 
 

OS / Kernel Red Hat Linux™ 7.3 / 2.4.18-3 
CPU Intel Celeron™ 1 GHz 
Memory 384 MB SDRAM  
Compiler Gnu Compiler Collection (gcc) v2.96 
Misc. X-server 11.0, KDE 3.0.0-10 

 
 


