
MASTER’S THESIS

2003:148 CIV

MATTIAS PERSSON

MPLS Emulation for
Topology Awareness Testing

MASTER OF SCIENCE PROGRAMME

Department of Computer Science and Electrical Engineering
Division of Computer Science and Networking

2003:148 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/148 - - SE

MPLS Emulation for
Topology Awareness Testing

Master’s Thesis in Computer Science and Networking

at Luleå University of Technology

Mattias Persson

April 2003

Examiner Supervisor

Ulf Bodin Fredrik Petterson

Division of Computer Science and Networking Operax AB
Department of Computer Science and Luleå
Electrical Engineering
Luleå University of Technology

Abstract 3

MPLS Emulation for Topology Awareness Testing

Abstract
Development of network applications for commercial purposes often requires
extensive verification and validation in large networks. Real networks are however
commonly limited in size, number of network devices, and in topology configurations
supported. Such limitations make large-scale verification and validation tests hard to
accomplish.

By emulating a network, the size, router specifications, and topology can be
controlled. This allows for more flexible and larger scale testing than in a real network.
Also, costs are reduced since no expensive network devices are needed. All in all,
there are many advantages with using emulated networks in the development of new
network applications.

This master's thesis has designed and implemented an MPLS network emulator. The
emulator has been used to verify requirements of a network application that captures
the topology of an MPLS network.

Preface 5

MPLS Emulation for Topology Awareness Testing

Preface
This master’s thesis has been made as the final part of my Master of Science degree
in Computer Science and Engineering at Luleå University of Technology (LTU). The
work has been carried out at Operax AB in Luleå from September 2002 to February
2003.

I would like to thank the staff at Operax AB for their efforts to help and assist at all
times. Many thanks goes to my supervisor Fredrik Petterson at Operax AB and my
examiner Ulf Bodin for their support, valuable knowledge and help on writing this
thesis. I would also like to thank my girlfriend Marie Jonsson who has put up with me
working many late hours and weekends.

Table of Contents 7

MPLS Emulation for Topology Awareness Testing

Table of Contents
1 Abbreviations .. 9
2 Introduction ... 10

2.1 Background ... 10
2.1.1 Operax IQ-Man™ .. 10

2.2 Network Simulation and Emulation ... 11
2.3 MPLS... 13
2.4 SNMP .. 16
2.5 TELNET... 17

3 Goals and Requirements ... 17
3.1 Goals ... 18
3.2 Emulator Requirements... 18
3.3 Topology Generator Requirements... 19
3.4 Delimitations.. 19

4 Related Work ... 19
5 Design .. 20

5.1 MPLS Emulator ... 20
5.1.1 Overview.. 20
5.1.2 Emulator Library .. 22
5.1.3 Emulator Interface ... 22
5.1.4 Router Engine.. 23
5.1.5 Scheduler and Event Handler.. 24
5.1.6 Events .. 24
5.1.7 SNMP Engine .. 25

5.2 Topology Generator, Topgen .. 25
5.2.1 Overview.. 25
5.2.2 Creation model .. 26

6 Implementation ... 28
6.1 Dependency Graph ... 28
6.2 Configuration ... 29

6.2.1 Network Topology Configuration ... 29
6.2.2 Emulator Configuration .. 29

7 Testing ... 30
7.1 Test Cases .. 30

7.1.1 Correctness of the Emulator without Fluctuations........................... 30
7.1.2 Correctness of the Emulator with Fluctuations................................ 31
7.1.3 Scalability of the Emulator ... 31
7.1.4 Stability of the Emulator... 34

8 Results ... 34
8.1 Requirements .. 34

8.1.1 Emulator... 34
8.1.2 Topology Generator... 35

8.2 Goals ... 36
9 Discussion and Conclusions... 36
10 Future work ... 37
11 References... 38
12 Appendices.. 40

Section 1 Abbreviations 9

MPLS Emulation for Topology Awareness Testing

1 Abbreviations
Here follows brief explanations of the abbreviation used in this report

ATM Asynchronous Transfer Mode, a network technology. Packets are

called cells and have a fixed size
CMIP/CMIS Common Management Information Protocol/Services, a complex and

powerful management protocol
FEC Forwarding Equivalence Class, classes for MPLS packets in order to

separate traffic flows
IAB Internet Architecture Board, advisory group of the Internet Society
IETF Internet Engineering Task Force, standardization organization with the

purpose of developing the Internet
IP Internet Protocol, addressing scheme used in the Internet
IQ-Man™ IP QoS Manager™, a system for providing QoS in an IP network
LDP Label Distribution Protocol, protocol used by MPLS routers to distribute

labels
LER Label Edge Router, ingress router on an MPLS network
LFIB Label Forwarding Information Base, MPLS LSP table. Used for

forwarding MPLS packets
LSP Label Switched Path, a path which MPLS packets are forwarded on
LSR Label Switching Router, core router of an MPLS network
MIB Management Information Base, information database for network

management purposes
MPLS Multiprotocol Label Switching, a packet forwarding technology using

labels
OSPF Open Shortest Path First, interior routing protocol developed for IP

networks based on shortest path first algorithm
RFC Request For Comments, document produced in one of the IETF groups
SNMP Simple Network Management Protocol, protocol for managing network

devices
SGMP Simple Gateway Management Protocol, protocol for managing network

gateway devices
TCP Transmission Control Protocol, protocol for transmitting data with

guaranteed delivery
VPN Virtual Private Network, a network that appear private to the user but is

constructed from public networks
QoS Quality of Service, networking term describing some form of

guaranteed parameter (for example throughput or delay)

10 Section 2 Introduction

MPLS Emulation for Topology Awareness Testing

2 Introduction

2.1 Background
The software systems built by Operax perform admission control for quality of service
(QoS) services in IP networks. The IQ-Man™ product has topology awareness
features which are used to make path sensitive admission control decisions.

The research background for the current Operax product portfolio was all focused on
IP networks and the topology awareness features currently supported are based on IP
routing. Recent development and market trends indicate that the Operax IQ-Man™
product would benefit from having broader support for topology awareness. One area
of special interest is topology awareness for multiprotocol label switching (MPLS)
networks, where label switched paths (LSPs) connect to form the topology.

MPLS is a powerful toolkit for network operators, which among other things, allow
operators to run multiple logical IP networks on top of the same network infrastructure.
Virtual private network (VPN) services implemented with MPLS are a common MPLS
application used by operators. In short, many operators would like to see MPLS
support in the Operax IQ-Man™ products and this thesis is an important step in that
direction for Operax.

Operax IQ-Man™ operates with the use of a topology map of the network. Therefore
IQ-Man™ is in need of gathering this information from MPLS networks. An MPLS
network emulator would be an excellent tool during the test phase of such a topology
gathering tool. The emulator needs not emulate all the functions of an MPLS network
but only supply the information regarding the network topology and especially label
switching paths.

2.1.1 Operax IQ-Man™
The Operax IQ-Man™ system is a program suite that provides control over network
resources and enables dynamic and accountable services in the network. By using
QoS mechanisms, IQ-Man™ enables admission control for multiple services and
allows high utilization of network resources.

Figure 2.1 depicts an overview of the Operax IQ-Man™ system. Its main components
are a core system and probes. The core contains the database used to store resource
reservations and topology map and is responsible for handling resource reservations.
The Operax IQ-Man™ probe implements topology monitoring. The application
interface to Operax IQ-Man™ handles resource reservation requests and replies.

Figure 2.1 System overview of Operax IQ-Man™

Section 2 Introduction 11

MPLS Emulation for Topology Awareness Testing

Figure 2.2 shows how IQ-Man™ works. Operax IQ-Man™ connects to the network (1)
and builds an up-to-date resource map (2) including routing topology and link
resources in a database. This information is used for admission control purposes. As
admission requests (3) arrive to the system, the resource map and the allocations (4)
are reviewed in order to perform path sensitive evaluation when replying to the
requesting application.

Figure 2.2 Description of how IQ-Man™ works

In Operax IQ-Man™, topology awareness is crucial for the path sensitive admission
control provided. Topology maps are essential in the process of resource reservation
that IQ-Man™ performs.

2.2 Network Simulation and Emulation
Motivation
Network simulators and emulators allow researchers to create arbitrary network
topologies and conditions in a reproducible manner that might not be easy to find in
real networks [Al97].

When network and protocol interactions are investigated or when new networking
tools are verified, network simulators and emulators can be of much help. They allow
tests to be carried out in a contained and controlled environment. Thereby, errors are
easy to detect and to trace.

Investigations and tests of networking tools often require large networks. Limiting
factors for conducting tests in real networks are:

• Cost
o Large networks require a lot of expensive hardware. The cost may not

be justifiable.
• Space

o Much hardware requires much physical space. It might not be
possible to fit in all hardware in a test lab.

• Complex setup and configuration
o Managing network devices often require much knowledge from

administrators. Much time is often needed to reconfigure the devices
when changing network topology or router functionality between
different tests.

All of the above limitations can be reduced by using simulators and emulators. Cost
and space limitations can be completely removed as entire networks can be modeled

12 Section 2 Introduction

MPLS Emulation for Topology Awareness Testing

in a single computer program. Setup and configuration can be made with scripts that
are a part of the network topology definition.

There are of course, disadvantages with simulated and emulated networks. The
differences between the simulated/emulated networks can cause the results to differ
compared to tests performed in a real network. This must always be kept in mind
when presenting results from simulations/emulations.

Network Simulators
Network simulators do not carry traffic from one node to another; instead they model
traffic and network components internally. The strength of simulation is that it allows
researchers to study complex network topologies that might be difficult to create with
real networks [Al97].

Network simulators are commonly driven by event queues which create an easy-to-
follow line of execution in changes of states and behavior of the network.

An important advantage of simulation is that a simulator is not limited by the speed of
real network components, the speed needed can simply be modeled. However, the
downside of simulators is coupled to this advantage; they do not interact with real
network components or applications. Instead the simulation is isolated from external
interference.

Network Emulators
Emulation is a wide concept with a lot of various definitions. In some, network
emulators alter real network traffic between physical network nodes in order to model
different network configurations [Al97]. Code written for real networks can be used in
an emulator and vice versa. This allows testing of code that can be used in real
networks and not just testing of concepts as in simulators.

The downside of these types of emulators is that the speed of the emulated network
can never be faster than the speed of the physical network components. Another
downside – and important difference from simulators – is that complex topologies are
difficult to create since they must be created with physical network components.

Other definitions describe emulation as a hybrid approach of simulators, emulators as
above and live networks [Wh02].

Emulator Definition
The definition of a network emulator used in this thesis is as follows:

The emulated network is an environment with a well defined interface which is used
for interaction with the emulated network. The emulator allows applications, protocols
or operating systems to interact with it as if it was a network of arbitrary type and size.
The interaction can be made quite transparent to the networking tool thus making the
tool act is if the interactions are made with a real network.

The emulator may have the whole network topology in a contained space thus it can
be run on a single computer. This enables to run the emulation with a greater control
than in a real network.

Emulators are not necessarily limited by the speed of physical network components.
The speed of network components (e.g. interfaces) or the proceedings of routing
protocols can be modeled to any arbitrary value.

The states and behavior are controlled by an event queue. This has many advantages
and the foremost is the ability to keep it simple.

Section 2 Introduction 13

MPLS Emulation for Topology Awareness Testing

2.3 MPLS
MPLS has spawned from early tag switching and label swapping protocols. Ipsilon’s IP
Switching, IBM’s Aggregate Route-based IP Switching and last but not least Cisco’s
Tag Switching were some of the approaches to provide data forwarding with the use
of labels [Ri01].

These protocols had two general purposes; to resolve challenges presented with
overlay models like ATM and IP. Secondly, software routers were believed to have
great potentials for the future but they needed to be faster as networks grew larger
and this could be accomplished by using protocols with faster decision making – i.e.
the protocols above.

However, the arrival of hardware routers meant that there was no longer any need for
extending the life of software routers since they could not compete with hardware
routers in terms of speed. Fortunately, the concept of label switching got new
purposes as the demands for traffic engineering and quality of service grew larger.
The rapid growth of Internet and thereby the number of routes through it is another
reason why there is a demand for the fast tag switching concept.

In 1997 the Internet Engineering Task Force (IETF) formed the MPLS Working Group.
In 2001 the first MPLS RFCs were released [Bl02]. MPLS is an approach to forward
packets at a high rate of speed. It aims to combine the speed and performance of
layer 2 with the scalability and IP-like intelligence of layer 3.

MPLS includes among others the following important features:

• VPNs
• Traffic Engineering, enabling QoS

In traditional IP routing, a packet is forwarded on a hop-by-hop basis in every router it
traverses. In the forwarding process, the layer 3 destination address is compared
against a routing table in order to find the next hop router. The layer 3 addresses are
left untouched by the router in order for the next hop router to be able to perform the
same process. This is done independently in every router along the packet’s path thus
making the forwarding process through the network to a repetition of time consuming
route lookups.

As packets reach the ingress router of an MPLS network, the label edge router (LER),
each packet is classified and assigned to a forwarding equivalence class (FEC). This
could be compared with the destination address lookup in IP forwarding. However, in
MPLS the assignment of a packet to a FEC is done only once – when the packet
enters the network.

Different kinds of packets which still are mapped to the same FEC are
indistinguishable in the MPLS network. All packets which belong to a particular FEC
and which travel from the same node will follow the same path. A route in an MPLS
network is called a label switched path (LSP).

FECs provide MPLS with the power of traffic engineering as they can be based on
simple matters such as destination prefix of packets or they can be based on more
complex factors. Port numbers, source and destination host address or combinations
of these are examples of variables that can be taken into consideration for deciding
what routes packets are to be forwarded in.

FECs and LSPs are tightly coupled as all packets in a certain FEC will be forwarded
along the same LSP. In every forwarding router, called label switching router (LSR),
LSPs are identified with labels. An MPLS label has a fixed length of 32 bits and is
locally allocated in each LSR.

After the packet has been assigned a label that shows which FEC it belongs to, the
packet is forwarded through the MPLS network and no further investigation of the

14 Section 2 Introduction

MPLS Emulation for Topology Awareness Testing

packet is needed. Each subsequent router uses the label as an index into a table, the
label forwarding information base (LFIB), which specifies the next hop along with a
new label for the packet. The old label is replaced with the new label and the packet is
forwarded to the next hop.

MPLS has sometimes been described as a protocol between layer 2 and layer 3
because the label is inserted into the packet between the layer 2 and layer 3 headers.

Figure 2.3 shows an MPLS network of three routers. Ethernet links are used as layer 2
and IP as layer 3. The tables next to each router contain a subset of the forwarding
tables (LFIBs). As packets enter LER A, the destination IP is used to map it to a FEC.
The label for the FEC is inserted between the Ethernet header and the IP header. The
packet is then forwarded out on interface b. In LSR B, the packet’s MPLS label is
inspected, swapped with the local out label for the LSP in question and forwarded out
on its b interface. When the packet reaches the egress router, LER C, the label is
popped and the IP packet is forwarded on.

Fig 2.3 Example of how a packet is classified at the LER A and then forwarded through the MPLS network.

The forwarding process through the MPLS network is a simple matter for the LSRs.
They only look at the labels and interfaces in order to decide where to forward the
packet.

Tunnelling in MPLS networks can be created with label stacking. Label stacking
means that a packet carries more than one label. Figure 2.4 shows an example of
label stacking in MPLS. A tunnel exists between LSR A and LSR C. When a packet
with label 12 arrives at LSR A, it does not swap it with 35 instead it pushes it on top of
the label stack. The packet is then forwarded through the network until it reaches LSR
C where the label stack is popped and forwarded on. At this point the packet looks
exactly as it did when it arrived at LSR A – it has been tunnelled.
LER D inspects the packet and pops the label stack once more thus making the
packet into an IP packet. This means that LER B’s interface b is an egress interface
and is connected to an IP network.

Eth 34 IP Data

LSR B

a b

LER C

a b

 Dest IP Out
192.168.10.4 b.push 34

192.168.10.8 b.push 52
…

 In Out
 a.12 b.pop
…

Eth IP Data

LER A

b a

Eth 12 IP Data Eth IP Data

 In Out
 a.34 b.12
…

Section 2 Introduction 15

MPLS Emulation for Topology Awareness Testing

Figure 2.4 Example of tunnelling between LSR A and LSR C with label stacking.

Label Distribution
A fundamental concept in MPLS is that two connected LSRs are agreed on the
meaning of the labels used to forward packets between them. The MPLS specification
does not specify how the labels are distributed [Ro01].

A couple of different approaches has been made to solve this; existing routing
protocols, such as the Border Gateway Protocol (BGP) have been extended to
piggyback the label information in the routing protocol [Re01].

The IETF has defined a label distribution protocol called the Label Distribution
Protocol (LDP) [An01]. In LDP, the LSRs negotiate the labels to be mapped to certain
destinations. Simplified, it can be said that LDP maps unicast IP destinations into
labels. As in almost all protocols, there are some minor delays in the distribution of the
labels.

One of the most important services of MPLS and LDP in particular is the support for
constraint based routing (CR). Constraint based routing offers the ability to extend the
information used to setup paths beyond what is available for the routing protocol.
Constraint based routing supports traffic engineering and can be used to set up LSPs
based on explicit route constraints or QoS requirements.

Label distribution protocols that support constraint based routing have been created.
The Constraint based Routing Label Distribution Protocol (CR-LDP) specifies an end-
to-end setup mechanism of a constraint based routing label switched path (CR-LSP)
initiated by the ingress LER [Ja02]. It also specifies mechanisms to support
reservation of resources using LDP.

RSVP has also been extended to support piggybacked exchange of labels and is
called RSVP-TE [Aw01]. This specification enables the establishing of explicitly routed
LSPs using RSVP as the signalling protocol. The major benefit of the protocol is the
creation of LSP-tunnels which can be automatically routed away from bottlenecks,
congestion and network failures.

LSR A

a b

 In Out
a.12 b.push 35
…

Eth 12 IP Data

LSR B

a b

 In Out
a.35 b.85
…

LSR C

a b

 In Out
a.85 b.pop
…

Eth 12 35 IP Data

LER D

a b

 In Out
a.12 b.pop
…

Eth 12 85 IP Data

Eth 12 IP Data Eth IP Data

16 Section 2 Introduction

MPLS Emulation for Topology Awareness Testing

2.4 SNMP
In the middle of the 1980s, internets grew rapidly larger. There was no TCP/IP
network management standard and when the number of network elements such as
bridges and routers grew the administration of them became a task that required a lot
of resources.

In the IAB conference in March 1988, the IAB expressed its gratitude to the different
working groups of the IETF that currently worked on TCP/IP network management
protocols [Ce88]. The IAB described an immediate need for more functionality in those
network management protocols.

In order to get a working protocol in short time, two protocols were to be developed in
parallel, one very simple that could be defined in short time and another more complex
that probably would take longer to define. The idea was that SNMP would serve as the
simple short term protocol and a further development of CMIP/CMIS [Wa90] would be
the more complex solution. A transition from the simple protocol to the complex one
was supposed to occur sometime in the future.

The Simple Network Management Protocol (SNMP) group was formed and was
responsible for developing a simple short-term network management standard based
on the Simple Gateway Management Protocol (SGMP) [Da87]. In [Ca88], SNMP is
defined for the first time. In 1990, the final publication of SNMP version 1 was
published [Ca90]. Since then, version 2 [Ca93] and version 3 [Ca02] has been
developed.

SNMP is designed to reduce the complexity of network management and minimize the
amount of resources required to support it [Se00]. SNMP provides for centralized
network management with the flexibility to allow for the management of vendor-
specific information.

Management Information Base (MIB)
A MIB is a tree structured database that contains information necessary to the network
element [Ro90]. The addressing of nodes is done with assigning every object with an
Object ID (OID). Every node in the tree has a node number, value type and the value
itself. The number of a node together with the numbers of the nodes leading up to the
root of the tree creates the nodes OID.

Figure 2.5 shows a fictitious MIB tree. The figure reveals the content of two of the
nodes; 3.3 and 3.3.9. Node 3.3 contains a value of String type with the value of “ABC”
while node 3.3.9 is an Integer with the value 1453.

Figure 2.5 An example of a MIB tree.

There are today many different MIBs, some are IETF standards, such as the MIB-II
that contains TCP/IP related data and some MIBs are totally vendor specific [Mc91].
What MIBs a device is using is totally up to the vendor and the administrator of the
device.

Operation Overview

3

1 3 7

4 9 9

OID: 3.3.9
Type: Integer
Value: 1453

3 levels

OID: 3.3
Type: String
Value: “ABC”

Section 3 Goals and Requirements 17

MPLS Emulation for Topology Awareness Testing

Network devices (routers etc.) that are SNMP enabled run a SNMP management
agent. These agents can communicate with SNMP management applications and
allowing them to fetch or alter information in the network device. The SNMP agent
operates on MIBs. SNMP messages are sent asynchronously over the layer 4 protocol
UDP.

The SNMP operations are

• GET_REQUEST
o The management application requests an object from an agent

• GET_NEXT_REQUEST
o The management application requests the next object from an agent

• SET_REQUEST
o The management application sets the value of an object within an agent

• GET_RESPONSE
o The returned answer from one of the above requests

• TRAP
o Agents can send a trap when a condition has occurred, such as a change

in state of a device or a device failure

2.5 TELNET
TELNET is a TCP based two-way communication protocol designed in 1980 [Po80]. In
1983 a new version came with some improvements [Po83]. The primary goal was to
create a standard for interfacing terminal devices and terminal-oriented processes to
each other.

The TELNET protocol is built upon three ideas; the network virtual terminal, the
concept of negotiated options and third, a symmetric view of terminals and processes.
Together they produce a flexible way of communicating with the possibility of letting
the two nodes negotiate how the communication is to be done and what options to
use.

There are a number of different options defined in different RFCs. [Re03] always
contain an updated list of all RFCs, including all TELNET options.

A TELNET session is created by opening a TCP connection between the two hosts.
TELNET communication is simply a way to negotiate options and sending text
messages between the hosts. The messages are 8-bit encoded ASCII chars.

The TELNET protocol has no built in encryption of the data sent between the
participants of the TELNET session. To avoid malicious users to intercept passwords
or other sensitive information, an encryption option for the TELNET protocol has been
proposed [Ts00]. TELNET authentication options are also proposed [Ts00-2].

The power of TELNET lies in its simplicity. TELNET applications can exchange
information, alter information at each other and also execute programs at the each
other. TELNET applications can be designed to let the user get large volumes of
information in nicely formatted outputs with just a single command. This is something
that many router vendors have utilized. For example it is possible to fetch entire LSP
tables with a single command.

3 Goals and Requirements
Although the concept of label switching has been around for many years, MPLS has
not been developed for more than a few years. Many MPLS network devices as well
as MPLS applications are continuously arising in the market. In addition, many
extensions to the MPLS concept are continuously being developed and integrated.
Verification and validation of these new devices and applications may have a lot to
gain if performed in a contained, controlled environment – i.e. in an emulator.

18 Section 3 Goals and Requirements

MPLS Emulation for Topology Awareness Testing

3.1 Goals
The main goal of this thesis is to design and implement an MPLS emulator that is to
provide an MPLS network topology to a network topology gathering tool developed in
a separate master’s thesis [Ni03]. The main goal is also to test and verify this tool,
called the probe, with the MPLS network emulator.

The secondary goal of this thesis is to design and implement a network topology
generator. This is important because the probe must be tested with a large number of
different network topologies in order to verify its correctness.

3.2 Emulator Requirements
The requirements of the emulator are:

• Transparency
o Communication between the probe and the emulator should be made

transparent via a well defined interface
• Diversity

o Routers must be configurable to behave in the same way as different
real router types

• Correctness
o The topology data fetched from the emulator must at all times exactly

match the internal topology in the emulator
• Scalability

o The emulator should scale linearly with respect to memory usage and
time for data retrieval from all emulated routers as the number of
routers increase

• Stability
o Long term testing of the probe requires that the emulator is able to run

continuously for a long period of time
• Alteration

o The emulator must be able to alter the topology during a running
emulation. Alterations shall be able to be predefined or be randomly
created during the running emulation

• Code standard
o Design and implementation shall follow the guidelines presented at

Operax

Below follows more details on some of the requirements:

Transparency
Communication between the MPLS emulator and the probe must not be on a level too
low because of the increasing complexity that brings. Nor should it be too abstract
which would result in non-reliable tests of the probe. For example, simply
implementing a function in the emulator that returns the entire network topology via an
arbitrary struct would not be very realistic. That would not verify the probe in any way
except for the probe interface towards IQ-Man™.

Complete transparency to the probe will not be possible in this thesis. The complexity
of the emulator would be too high and there will not be enough time to implement it.
Thus, the transparency requirement does not require complete transparency.
However, data processing in the probe must be performed the same way regardless
whether a real or emulated network is used.

Correctness
An emulator with the foremost purpose of delivering a network topology to an
application implicitly has the requirement of sending the correct data to the application.
Measurements of correctness of the application are likely to be very important. For
instance if the user expects to see a predefined alteration pattern in the emulator this
must be ensured and therefore the correctness demands of the emulator are of great

Section 4 Related Work 19

MPLS Emulation for Topology Awareness Testing

importance. Thus the correctness requirement means that the emulator must work as
intended – no inconsistencies, no matter how small, are allowed. The emulator shall
test and verify the functionality of the network topology awareness tool developed in
the master thesis [Ni03].

Scalability
Scalability requirements of the probe have been set to preferably scale linearly with
respect to time cost [Ni03]. In order to perform benchmarking of the probe, the
emulator should in the worst case scenario have a total data-retrieval time that scales
linearly (i.e. O (n)). If the scalability of the emulator is worse than 0 (n), the
benchmarking tests of the probe, when used with the emulator, will not prove anything
as the tests would only show how the emulator scales.

Stability
Long term stability must be ensured in order to verify the probes functionality and
stability. Possible reason for crashing such as memory leaks must be eliminated.

3.3 Topology Generator Requirements
The requirements of the topology generator are:

• Configuration
o The topology generator must be configurable to create network

topologies of varying sizes
• Random behaviour

o It must be able to create the networks in a random manner, but also
be able to reproduce networks for future re-tests

• Compatibility
o It must create network topologies that can be used in the MPLS

emulator

3.4 Delimitations
An emulator that emulates an MPLS network in full detail of every aspect is a goal that
could never be fulfilled. Delimitations must be made to be able to produce a result in
feasible time.

Multiple domain networks are not to be modelled. The probe is only intended to be
used on a per domain basis and thus the emulator needs only describe one domain.

The emulated routers will not perform all the tasks of a real MPLS router (label
distribution or forward any traffic). The goal to provide the probe with the requested
data (the label switched paths in the network) does not imply how the LSPs are set up,
just that they exist.

4 Related Work
A Linux™ based MPLS Emulator (LiME) is an MPLS emulator that can be used as a
test environment for testing control protocol implementations [Ab02]. LiME supports
LDP and is also able to forward traffic between its emulated nodes using a kernel
space MPLS stack. It is capable of running code developed for real network devices
and may also communicate via a network interface with real MPLS devices.

LiME is useful when studying deployment effects of different traffic engineering
algorithms within MPLS networks. However, it does not cope with large topologies.
The design of LiME does not allow large topologies without redesigning it to a
distributed system.

Another MPLS emulator is the commercial NetTest MPLS InterEMULATOR™ [In01].
InterEMULATOR is intended for testing of new protocols, network devices and to
study algorithm behavior. It also allows active insertion of errors in packets in order to

20 Section 5 Design

MPLS Emulation for Topology Awareness Testing

study error detection and correction. The emulator is, according to the developers,
highly developed and allows validation of performance, functionality and
interoperability of network devices and algorithms.

Like LiME, it is intended to be connected with real MPLS hardware. One big difference
from LiME is that InterEMULATOR supports emulation of up to 300 LSRs on a single
workstation. It supports LDP, CR-LDP and RSVP-TE as label distribution protocols
and BGP-4, OSPF(TE) and IS-IS(TE) as routing protocols.

The emulators above aims to validate MPLS related algorithms or real MPLS network
devices. The emulator in this thesis is in a way much smaller as it does not implement
any label distribution protocol, run code intended for real devices or communicate with
such. The emulator in this thesis aims at containing an MPLS network topology, being
able to dynamically alter the topology during run-time and to provide a well defined
data information retrieval interface in the emulated routers. Through the interface,
topology information is to be fetched.

Some of the design and development of the MPLS emulator in this thesis has also
been influenced by how the Operax IQ-Man™ MPLS Probe is designed.

5 Design

5.1 MPLS Emulator

5.1.1 Overview
The MPLS Emulator is designed to run together with the Operax IQ-Man™ MPLS
Probe implemented by Per Runemo and Martin Nilsson [Ni03]. The probe provides the
Operax IQ-Man™ Core system with MPLS network topology information.

The main components of the emulator are a set of router objects, a scheduler object
and a communication interface. These objects are explained more in detail below.

Features
The emulator is capable of modelling an arbitrary number of router types with different
configurations. This is solved with the use of plug-ins. Every router type with a specific
configuration can be imitated by implementing a plug-in for that router. This way, new
router types can easily be added to the emulator.

Network fluctuations frequently occur in real networks and are important to model.
Therefore, the emulator has a scheduler object. It schedules events such as dropping
routers and LSPs. An event handler makes sure that the modelled network is altered
according to the events.

Communication with the routers can be done in two ways; SNMP and TELNET.
(Actually pseudo SNMP and pseudo TELNET implemented with library function calls;
see section 5.1.3 for more details). The communication is done via a common
interface in the emulator from where SNMP and TELNET sessions can be opened.

Initialization
Figure 5.1 shows how the emulator is loaded with a number of different settings at
start-up.

At initialization, the emulator’s configuration file is read. The network topology contains
information about the routers, their interfaces and how they are connected. The LSPs
defines all label switched paths through the network. The randomization variables
define the optional random generation of events (see section 5.1.5). The behaviour
pattern defines prescheduled events that are to occur in the emulator.

The router type plug-ins needed for the emulation is also loaded at start-up.

Section 5 Design 21

MPLS Emulation for Topology Awareness Testing

Fig 5.1 The emulator is loaded with network topology, initialization variables, behaviour pattern, and
 the different router type plug-ins needed.

When the configuration file is read, the topology objects, prescheduled events and the
scheduler are created. The scheduler creates the event handler and is thereafter
started.

After initialization, two things can occur; communication with the emulator can be
requested by the probe or an event may be processed.

Course of actions
Figure 5.2 shows how a SNMP or TELNET request is handled in the emulator. The
probe initiates communication by requesting some data from router A via the emulator
interface (1). The interface receives the request from the probe and maps it to a router
object. The router object gets a request from the interface regarding the requested
data (2). The data might depend of the router type and if so, the router engine uses
the router type plug-in to get the right data formatted in the correct way (3). The LFIB
table in the router contains information about the LSPs in this router. If the request is
regarding LSPs, that table will be used by the plug-in to get the data. The router
engine returns the data to the interface (4). The interface replies to the probe with the
requested data (5).

The third step applies for TELNET requests. In the case of SNMP requests, router
specific information has in advance been added to the router’s MIB tree (see section
5.1.4 for more details).

Network Topology,
LSPs,
Randomization
variables
and
Behaviour pattern Loaded at start-up

MPLS Emulator

 MPLS
Network

Plug-in
type 1

22 Section 5 Design

MPLS Emulation for Topology Awareness Testing

Figure 5.2 Overview of how the emulator is designed.

5.1.2 Emulator Library
The emulator is designed as a library and is executed together with the probe. This
way the probe and emulator communicates via library functions. The library functions
constitute an application programming interface (API).

The advantage with this solution is that the communication is kept on a level not too
low as required in section 3.2.

Another advantage with this solution is that it is very time efficient. The time needed to
send data via library functions compared to retrieving it via a network link is almost
zero.

Another solution is discussed in section 10. It involves communication via a real
network interface. That solution would be to prefer but the implementation of it would
not be feasible in this thesis due to the complexity it brings and the limited time for this
thesis.

The MPLS emulator is compiled as a shared, dynamically linked library. The
emulator’s API consists of an initialization function, pseudo SNMP and TELNET
functions (see section 5.1.3), and a function to halt the emulator when ending the
emulation.

5.1.3 Emulator Interface
The library API allows the probe to perform synchronous SNMP and asynchronous
TELNET queries. Sessions are set up in a similar way to how sessions are set up with
real routers.

The reason for why the emulator supports those two methods is because the probe
does not use any other method to fetch the required information.

Emulator
replies with the
requested data

Locates
requested router
and requests the
data

Emulator
Interface MPLS Emulator

Instruction of how
the network, i.e.
routers, shall
behave

.

.

.

Router
Engine X

Plug-in
type n

LFIBs
…
…

Router
Engine A

Plug-in
type 1

LFIBs
…

Router list

MPLS Probe

Probe requests
data from router A

1

2

3

Consults plug-in to
find and format
data

3

Sends formatted
data to interface 4

5

Runs in a
separate
thread

Scheduler &
Event handler

Section 5 Design 23

MPLS Emulation for Topology Awareness Testing

The probe could have used other methods such as snooping on the routing or label
distribution protocol to retrieve the necessary information. In such a case, the emulator
could have modelled this by implementing the required routing protocol. The scheduler
and event mechanism would serve as the coordinator in the distribution of routing
messages and the router engines would be responsible for receiving, processing and
creating these messages.

SNMP
UCD-SNMP is the one the most widely used packages for SNMP communication
[US03]. It is also what the probe uses for SNMP communication with real routers.
Therefore, the emulator provides functions in its API that imitate the library functions of
UCD-SNMP and the probe is instructed to use those SNMP functions instead of the
UCD-SNMP functions when it is run against an emulated network.

By providing functions in the API that to the probe look and behave the same as the
functions in UCD-SNMP, the probe is made to believe that it interacts with a real
network. This assures that transparency will be high between the probe and the
emulator but not unnecessary complicated.

The imitated functions correspond to opening an SNMP session, making synchronous
queries and closing an SNMP session.

TELNET
The TELNET approach is similar. The probe uses its own small TELNET API when
run against a real network. The emulator provides functions that imitate those
functions. The probe is instructed to use the emulator’s TELNET API instead of its
own when run against an emulated network.

The TELNET API consists of four library functions. They allow opening a telnet
session, sending queries to the emulator, receiving replies from the emulator and
closing the session. Compared with how a real TELNET session is used [Po83], this
creates a high level of transparency to the probe.

The use of library functions has one downside; all communication between the probe
and the routers are serial. When the probe interacts with routers in a real network
some of the communication can be done in parallel.

However, there are two reasons why this is not a problem; first, the probe is only
parallel to a certain extent i.e. it cannot be truly parallel if the number of routers are too
high. Instead several routers will be polled in a serial manner. Secondly, tests (see
section 7.1.3) of the emulator shows that topologies with a large number of routers
does not slow down the communication process to much for the emulation to finish in
acceptable time.

5.1.4 Router Engine
The emulator contains a set of router objects. The purpose of these objects is not to
forward packets or to create and manage LSPs with some protocol such as LDP.
Instead the purpose of the router objects is to contain information important to the
probe.

The information needed by the probe is information about the routers (e.g. type of
routers), about the interfaces (how many they are, their type and speed, if they are
MPLS interfaces etc.) and last but definitely not least information about LSPs through
the emulated network.

Router types
A network emulator would not be very useful if it was only able to emulate one type of
router. One solution to this would be to hard code support for a number of router types

24 Section 5 Design

MPLS Emulation for Topology Awareness Testing

into the emulator directly. This would result in a very large amount of code and it
would require recompilation of the emulator every time a new router type is needed.

The emulator is instead designed to dynamically load the characteristics of the
modelled router. Along with the topology definition in the configuration file, each router
is assigned a router type. The type is associated to a shared library that is loaded
dynamically at initialization. This is called the plug-in model.

For the router to be able to cope with SNMP requests it has a MIB tree. The tree
always contains a subset of the standard MIB MIB-II. This MIB does not contain any
MPLS specific information.

The plug-ins are responsible for two things. One, they provide functions that add
router type specific MIB objects to the router’s MIB tree. For example, if a specific
router type delivers certain MPLS information via SNMP, the plug-in for that router
type adds the information to router’s MIB tree.

Second, they provide functions that are responsible for receiving and processing
TELNET requests. TELNET requests from the probe are directed to the router’s plug-
in. There, the plug-in does all the processing of the request. The reason for this
approach is quite simple; virtually all router vendors implement their own TELNET
interface and they can differ a lot from each other. It is therefore not possible to
implement some sort of standard TELNET processing in the router objects.

Every plug-in is implemented according to a template. The template defines the
methods for creating router specific MIB trees. It also defines methods for the TELNET
queries. Methods that perform unspecified actions, such as important initializations,
are also defined.

5.1.5 Scheduler and Event Handler
The emulator uses a scheduler and an event handler that can alter the characteristics
of the network. It runs in a separate thread in order not to interrupt the emulator from
doing what it currently does. To assure that the scheduler does not alter the topology
at critical moments (e.g. when a router is being polled), a mutex lock is used.

The scheduler queues events sorted after their time stamp, putting the next event to
occur in the head of the queue. It then checks the head of the queue to see when the
event is to occur and waits for that amount of time. When an event is to be processed,
the scheduler passes the event on to the event handler which processes the event
and possibly adds new events to the scheduler as a result of the processed event.
The scheduler then waits until the next event is to occur.

5.1.6 Events
There are three types of events; events that make a LSP go down or up, events that
make a router go up or down and third, events that generate random instances of the
previous events. Fluctuations are common in real networks and the meaning of these
events is to make the network fluctuate in order to emulate that behaviour.

When a router that is a node in an LSP goes down, the event handling mechanism
also makes sure that the LSP is removed from the network. The effect is almost
instant; the delay in the down tearing process of the LSP is only a matter of
milliseconds. The process is similar (but backwards) when that router goes up again.

In a real network where LDP may be used, the LSP would be broken for a longer
period of time. The probe would detect a larger number of topology alterations due to
the delays until the network reaches a stable state. This difference reduces the level of
reality in the emulator and could be improved in future development. However, the
higher stress to the probe that many alterations bring can be modelled by generating
more fluctuation events.

Section 5 Design 25

MPLS Emulation for Topology Awareness Testing

Randomization
A feature in the scheduling and event handling mechanism is that it can create
random events. Random events are created every X time interval and cause some
routers to go down for a period of time.

The randomization process is configurable and gives the user the ability to control the
time interval and an instability factor for all routers or set it individually for certain
routers. There are also other configurable randomization options, see section 6.2.

The feature of random events has two advantages: the network becomes more real in
the sense that there is no regular pattern in the disabling of routers as there would be
when humans disable routers manually in testing purposes. Secondly, a long term test
of the probe would reveal any faults arising from the inability to cope with unstable
networks.

5.1.7 SNMP Engine
The SNMP engine handles the GET_REQUESTs and the more complex
GET_NEXT_REQUESTs to a router. It also produces the GET_RESPONSEs to send
back to the probe. It does not handle SET_REQUESTs or create TRAPs as there is
no need for that in the emulator.

SNMP operations are closely related to a router’s MIB tree. The structure of the MIB
trees must always follow a certain set of rules to qualify as a MIB tree. The SNMP
engine has functions to ensure that all insertions and removal of objects in the MIB are
done a correct way.

The SNMP engine is used by all routers when building, rebuilding and destroying their
MIB trees (caused by topology changes made by the scheduler). Since all router
objects use it, it has been designed to be static.

5.2 Topology Generator, Topgen

5.2.1 Overview
Large networks are often needed when testing network tools. A program named
Topgen has therefore been implemented in this thesis. Topgen generates random
network topologies and calculates and creates shortest path LSPs between all edge
routers.

Figure 5.4 shows how Topgen is used; a configuration file that defines how many
LERs and LSRs, maximum and minimum number of interfaces allowed and what type
of routers that are to be generated is read by Topgen. Topgen does the necessary
calculations and randomizations to create a complete network topology and all LSPs
through it. The topology is then written to a file.

26 Section 5 Design

MPLS Emulation for Topology Awareness Testing

Figure 5.4 Topgen creates a complete network topology and LSPs from a predefined set of demands.

5.2.2 Creation model
Figure 5.5 describes the course of events when Topgen creates a network.

Step 1
The first step is the simple matter of reading the configuration file. This file contains
the following information (and a bit more):

• Topology output file name
• Number of LERs wanted
• Number of LSRs wanted
• Number of shared segments wanted and maximum number of routers in a

shared segment
• A minimum and maximum number of interfaces on the routers
• Router types to be created (specified by strings such as “Cisco_2651”)
• A ratio of how many routers of each type that are to be created
• A random seed

The router type ratio means that the user can decide how many routers of each type
the network should contain. For instance the user may want a network with 20% of the
routers to be of type A, 40% of type B and 40% to be of type C.

Step 2
The information from the configuration file is used to create the LERs, LSRs and their
interfaces. The number of LERs and LSRs are fixed but the number of interfaces for
each router is randomly selected. The number of interfaces for a router is selected by
generating a random number in the interval of maximum and minimum allowed
routers.

Every router gets a router type assigned to it. If a ratio has been specified for each
router type then this ratio is used when assigning the routers their types. If not, a
rectangular distribution is used when assigning router types meaning there statistically
will be equally many of all types.

Specification
file

Topgen

No of routers and interfaces
Type of routers
etc.

Network Topology
and
LSPs

Random creation of routers
and connections
Calculates LSPs

Writes to file

Section 5 Design 27

MPLS Emulation for Topology Awareness Testing

Fig 5.5 Overview of the steps performed in creating a network topology with Topgen.

Step 3
The third step is the largest one. In this step, all routers are connected to each other
and assigned IP addresses. All router and interface selections are done at random.

First it creates all the shared segments by selecting those routers that are to be in the
shared segments and connects them. All of the LERs’ interfaces, except for one on
each LER, are then connected to some of the LSRs. The unconnected LER interfaces
will be used as the ingress/egress interfaces.

The LSRs are then connected to each other on all their unconnected interfaces. This
may create several connections between the same two pair of LSRs which is very
likely to occur in real networks.

Finally, every subnet that has been created by connecting interfaces to each other is
given a subnet IP prefix. From this prefix the interfaces are then given their IP
addresses.

Step 4
The topology is now finished and the LSPs are to be created. Dijkstra’s shortest path
(SP) algorithm [Co90] is used to determine the shortest paths between all LERs.

Step 5
The information from step 4 is used to create LSPs from every LER to every other
LER. More precisely, it creates LSPs from the subnet of a LER’s ingress interface to
the egress interface of every other LER.

Step 6
The last step writes all the generated information to a file with the requested file name.

LERs: 10
LSRs: 50
…

Read configuration file

Create routers

Connect routers

Calculate SPs

Create LSPs

Write to file
Topology
…

1

2

3

4

5

6

28 Section 6 Implementation

MPLS Emulation for Topology Awareness Testing

6 Implementation
This section explains how the work has been performed and also some detail
decisions made in the implementation.

The implementation is written in C. The code follows the ANSI C standard and the
Operax AB coding standards. The emulator implementation has been written on Red
Hat Linux 7.3 operating system using the Gnu Compiler Collection (gcc) version 2.96.

Thread Support
The emulator is fully thread safe meaning that the probe may query the emulated
network in parallel threads.

Topology Freeze
In the implementation of the emulator, support has been added to freeze the state of
the network topology for a period of time. This feature has been added in order to
verify the correctness of the probe. The freezing is done with custom made events that
occur every X seconds. The freezing of the topology lasts for Y seconds and just
before it is unfrozen it is compared with the topology fetched by the probe.

All configuration of the freezing (freeze interval, freeze length etc.) is done via the
configuration file.

MIBs supported
The MIBs supported in the implementation are subsets of the MIB-II [Mc91] and the
MPLS LSR MIB [Sr03]. The MIB-II support is built in to the router object while the
MPLS LSR MIB is built in to the implemented router type plug-in (see below).

Plug-ins
The creation of plug-ins is designed to be an easy task. To help the implementation of
new plug-ins, a template is supplied. The template is a C h-file that describes the
functions that need to be implemented and what they must do.

In the implementation done in this thesis, one router type plug-in was created. It
imitates the behaviour of the Cisco models 2651 and 3620. The MPLS LSR MIB
support is only a subset of the defined content of that MIB. The parts not needed for
network topology extraction has not been implemented.

6.1 Dependency Graph
Figure 6.1 shows the modules and objects and their dependencies.

Fig 6.1 The objects and modules. The arrows indicate how objects and modules are used.

Event

Event Handler Interface

LFIB Entry

Plug-In

Router Scheduler

Emulator Interface (API)

SNMP Engine MIB Node

Info-Plug-in

Section 6 Implementation 29

MPLS Emulation for Topology Awareness Testing

The figure does not show how many objects instances that are owned by any object,
just how they are owned.

The figure shows that the emulator object contains router objects, a scheduler and an
Interface.

A router object owns interfaces, LFIBs, an Info-Plug-in, and a MIB Node. The MIB
Node is the root of the router’s MIB tree which contains subsequent MIB Nodes. The
Info-Plug-in contains the router type plug-in. Both the router object and its plug-in uses
the functions in the SNMP Engine.

The Scheduler object contains a list of events that are dispatched to be processed at
the Event Handler. The Scheduler and Event Handler runs in a separate thread.

6.2 Configuration
Configuration of the emulator can be divided into two parts; setting up the network
topology and setting up the emulator’s internal functionality.

6.2.1 Network Topology Configuration
The network topology used for the emulation is read from a file. The file contains a set
of routers including their interfaces. Each router may also have a set of neighbour
routers. This information creates the network topology.

The file is built with hierarchical clauses; the router clause is the topmost clause and
contains the config, iface and the neighbour clause.

The config clause holds information such as the router’s IP-address, a textual
description of the router and TELNET and SNMP passwords for the router. It also
contains what type of router it shall imitate and whether or not SNMP and TELNET
access is allowed during emulation.

The iface clause holds information about an interface on the router. It contains the
interface’s IP-address, type, speed and textual name. It also describes whether or not
the interface is an MPLS interface.

The neighbour clause contains a local interface name and the IP-address of the
neighbouring router. It also contains a cost for the link.

The information above creates the network topology but not any LSPs. The lsp clause
describes a label switched path and contains a destination prefix and several router
clauses (not the same clause as described above regarding the network topology).
The router clause contains the IP-address of a router that is a node in the LSP. It also
describes what interfaces and labels that the router shall use for this LSP as well as
the IP-address of the next hop interface (the interface on the next hop router in the
LSP).

6.2.2 Emulator Configuration
There are a number of internal settings in the emulator as well.

The clause emu_log_level sets the level of logging. There are five levels and each
level adds additional information; level 0 means that no logging is done at all, level 1
means that only errors are reported, level 2 adds warnings in addition to errors, level 5
adds informational reports and level 6 adds debugging information.

The emu_log_file clause specifies where logging is to be written. If this clause is
missing from the configuration file, logging will be done to screen.

30 Section 7 Testing

MPLS Emulation for Topology Awareness Testing

The fluct clause defines either a router or LSP along with a list of events. The events
are either ups or downs on a time offset from the starting time of the emulator. If a fluct
clause contains the field lsp_id then the purpose of the clause is to make an LSP go
up or down. lsp_id refers to the value in the id field of the lsp clause. If the fluct clause
instead of lsp_id contains router_addr then the clause is intended to make a router go
up and down.

The random_settings clause holds the necessary fields for generating random events.
It contains the following fields; use_random which defines whether or not to use
random events, a random seed named rndm_seed and rndm_calc_interval which is a
timer that describes how often random events are to be generated.

The net_settings clause under random_settings defines how unstable all routers are.
The net_risc field specifies how many percent, on the average, of the routers that
goes down (and eventually up) every rndm_calc_interval.

The id clause under the random_settings clause defines similar variables as
net_settings but for specific routers.

The freeze_top under the random_settings clause is only used when the topology
needs to be frozen. It specifies the freeze_interval, freeze_length. It also specifies log-
on variables to be used when comparing the topology with the topology in the
IQ-Man™ database.

7 Testing

7.1 Test Cases

7.1.1 Correctness of the Emulator without Fluctuations

Description
The test case is created to verify that the emulator provides the probe with the correct
image of the emulated network topology. The information gathered during these tests
is if the emulator provides the correct and requested information.

Environment and start conditions
The emulator is executed with the settings listed in appendix A.1. The probe is
executed with the settings in appendix A.3. The test will be run on the host in appendix
A.6 and the number of routers in the topology will be varied to verify that the size or
configuration of the topology has no impact on the correctness.

Actions and expected results
The network topologies to test with are generated with Topgen. Several networks are
generated and inserted into the emulator. The topology that the probe retrieves is
compared with the topology given to the emulator. The result should be that there are
no differences in the two topologies.

Observations
Networks generated by Topgen were inserted into the emulator. The numbers of
routers in the different networks were 20, 30, 40, 50, 60, 70, 80, 100, 150 and 200.
Two fifths of the routers were LERs. This was to ensure that the number of LSPs
through the network was significantly high. For instance, the network of 200 routers
had 6320 LSPs in total.

A program developed for testing purposes verified that there were no inconsistencies
between the network topologies in the emulator and the network topologies retrieved
by the probe. The correctness of the emulator when no fluctuations occurred was
thereby verified.

Section 7 Testing 31

MPLS Emulation for Topology Awareness Testing

7.1.2 Correctness of the Emulator with Fluctuations

Description
The test is designed to verify that alterations of the network topology are reflected
correctly in the data provided to the probe. The information gathered in these tests is if
the emulator provides the correct and up-to-date topology information.

Environment and start conditions
The emulator is executed with the settings listed in appendix A.2. The probe is
executed with the settings in appendix A.4. The test will be run on the host in appendix
A.6 and the number of routers in the topology will be varied to verify that the size or
configuration of the topology has no impact on the correctness.

Actions and expected results
The networks of 20-100 routers used for testing the correctness without fluctuations
are extended with fluctuation settings.

Every X seconds, the topology in the emulator is frozen meaning that no changes are
allowed. The frozen state is maintained for a time period long enough to assure that
the probe has fetched the entire topology and sent it to IQ-Man™ Core. Just before
the emulator goes out of the frozen state, it retrieves the topology from the IQ-Man™
database and compares it with the emulator’s internal topology. The result should be
that there are no differences in any pair of topologies.

Every Y seconds, new network fluctuations are calculated. All tests are performed with
a network fluctuation of 50%, which means that every time network fluctuations are
generated 50% of all routers goes down.

The topology freeze intervals were varied slightly as the networks grew larger. This
was made to ensure that IQ-Man™ Core had performed all of its calculations before
the topology was retrieved for comparison. It also meant that the interval for
generating network fluctuations was altered to ensure a high variation in the network
topology between any two comparisons.

Observations
In each test, the emulator’s internal topology was frozen 20 times. After each freeze a
comparison of the internal topology was made with the topology in the IQ-Man™
database. Every comparison made showed that the topologies were identical. It can
therefore be concluded that the emulator provides the correct data of the network
topology when fluctuations occur.

7.1.3 Scalability of the Emulator

Description
The test case is designed to show how the emulator scales as the number of routers
increase. The information gathered here is the average time needed for the probe to
perform one fetch iteration and the amount of memory used by the probe and
emulator. The fetch iteration collects all data needed by the probe.

Environment and start conditions
The emulator is executed with the settings listed in appendix A.1. The probe is
executed with the settings in appendix A.3 and A.5 to illustrate differences in
performance between multithreaded and unthreaded execution. The emulator will be
run on the host in appendix A.6.

Actions and expected results
The number of routers in each network varied from 20 to 100.

32 Section 7 Testing

MPLS Emulation for Topology Awareness Testing

The time to perform fetch iterations is very much dependant of the amount of data to
retrieve. As the number of routers increase, the number of LSPs through the network
grows faster. By increasing the number of edge routers by a factor 2, the number of
routes does not double. Instead, the increase in the number of LSPs is almost square.
The Topgen program creates two LSPs between all edge routers. The following
example illustrates why this grows almost by square: Suppose that the number of
edge routers is 5. The number of LSPs is then 5 x 4 = 20. If the number of edge
routers instead is 10 then number of LSPs will be 10 x 9 = 90. 20 edge routers will
give 20 x 19 = 380 LSPs. The growth is clearly not linear, instead it is O (N x (N-1)) =
O (N2 – N) = O (N2).

Therefore, if only the edge routers were to be polled then the scaling is expected to be
O (N2). However the scaling should be better since not all new core routers (3/4 of the
routers are core routers) are a part of the new LSPs and therefore does not increase
their amounts of data as the edge routers do. There is no way to mathematically prove
what the scaling should be in general since that depends on the topology and how
LSPs are set up through the network.

Observations
30 poll iterations in every network were made and the average time needed by the
probe to poll every router is shown in table 7.1 (multithreaded execution) and 7.2
(unthreaded execution).

In multithreaded mode the execution time is higher due to the overhead caused by the
large amount of context switching. The standard deviation is also higher in
multithreaded mode because of the way the thread scheduling is performed. In some
executions, the scheduling is “smooth” in the sense that few threads that are locked by
mutex locks are given the opportunity to run while in other executions many locked
threads are set in run mode with the result that all they do is to wait for the lock to be
released.

Number of
threads 0 20 30 40 50 60 70 80 90 100
Number of
routers 0 20 30 40 50 60 70 80 90 100
Average [s] 0,000 0,087 0,231 0,300 0,546 1,093 1,634 2,183 3,132 3,750
Std.
Deviation 0,000 0,062 0,185 0,221 0,338 0,534 0,735 0,814 1,146 1,213

Table 7.1 Total poll times on the average and the standard deviation when the probe is executed in
multithreaded mode.

Number of
routers 0 20 30 40 50 60 70 80 90 100
Average [s] 0,000 0,045 0,140 0,168 0,321 0,464 0,697 0,863 1,192 1,759
Std.
Deviation 0,000 0,000 0,000 0,001 0,002 0,003 0,006 0,005 0,005 0,010

Table 7.2 Total poll times on the average and the standard deviation when the probe is executed in
unthreaded mode.

Section 7 Testing 33

MPLS Emulation for Topology Awareness Testing

Figure 7.1 shows the values from table 7.1 in a graph. Figure 7.2 shows the memory
usage for the same executions. Figure 7.3 shows the values from table 7.2 in a graph.
The scaling in both time and memory seems to be slightly better than expected for
both multithreaded and unthreaded.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 10 20 30 40 50 60 70 80 90 100

Number of routers

To
ta

l p
ol

l t
im

e
[s

]

Fig 7.1 The time needed to poll all routers in multithreaded mode.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100

Number of routers

M
em

or
y

us
ag

e
[M

B
]

Fig 7.2 The memory usage needed for both probe and emulator together.

34 Section 8 Results

MPLS Emulation for Topology Awareness Testing

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 10 20 30 40 50 60 70 80 90 100

Number of routers

To
ta

l p
ol

l t
im

e
[s

]

Fig 7.3 The time needed to poll all routers in unthreaded mode.

7.1.4 Stability of the Emulator

Description
This test is designed to verify that the emulator does not crash or leak memory that
can lead to a crash.

Environment and start conditions
The emulator is executed with the settings listed in appendix A.1. The probe is
executed with the settings in appendix A.3. The test will be run on the host in appendix
A.6.

Actions and expected results
The same networks with 20, 50 and 80 routers as above are used for this test.

Each test is run for approximately 24 hours. Memory usage is recorded when the
program has reached a stable state. After 24 hours the program is checked to still be
running and checked for memory usage. The memory usage should be the same.

Observations
No memory leaks in the emulator were detected during the long term tests. The
emulator never crashed during the tests. The stability requirement is thereby
considered to be fulfilled.

8 Results
In this section, the results are discussed and compared with the requirements from
section 3.

8.1 Requirements
This section shows that all requirements are fulfilled.

8.1.1 Emulator
 Transparency
The requirement stated that the interface must not be on a level too low or too high.
Therefore transparency for the probe is provided on an API level.

Section 8 Results 35

MPLS Emulation for Topology Awareness Testing

The probe uses the SNMP functions in the emulator’s API in the same way as it uses
the API in UCD-SNMP. The probe does not process the topology data in any way
different regardless of whether it received it from a real network or from the emulator.
Therefore it can be said that the transparency requirement is fulfilled for SNMP
communication.

The probe uses the emulator TELNET API calls instead of its own TELNET functions
to retrieve the topology data from the emulator. Since no processing of data occurs in
the probe TELNET functions, the data gets processed exactly the same way with the
emulator as with a real network. Therefore, the transparency requirement is fulfilled on
an API level for TELNET too.

Diversity
With the plug-in model, virtually any type of router can be used in the emulator. When
the need for a new type of router to be emulated arises, a corresponding plug-in need
only be implemented. With this flexibility in creating new router types, the diversity
requirement is fulfilled.

Correctness
Topologies with up to 200 routers have been verified together with the probe. All
correctness tests (see section 7.1.1 and 7.1.2) have verified that the emulator
provides a correct and up-to-date image of the internal topology. It can therefore be
concluded that the correctness requirement is fulfilled.

Scalability
Figure 7.1 and 7.2 clearly shows that emulator scales linearly with respect to both total
data retrieval time and to memory usage. The emulator fulfils the scalability
requirement.

Stability
During long term testing (section 7.1.4) no crashes occurred at any time. No memory
leaked from the emulator that could have caused a crash. The stability of the emulator
is thereby proved and the stability requirement is fulfilled.

Alteration
The emulator is capable of dropping routers, dropping LSPs, restoring routers and
restoring LSPs. The changes in the network topology can be human defined or
created by a random function. The alteration requirement is fulfilled.

Code standard
All code has been written according to the Operax AB guidelines regarding coding
style. This fulfils the code standard requirement.

8.1.2 Topology Generator
Configuration
Topgen is configurable in many ways (see section 5.2.1). The number of LERs, LSRs
and shared segments can be set to an exact value. The number of interfaces on each
router is randomly selected from a defined interval. A maximum number of routers in
each shared segment can be set.

The topology generator is therefore much configurable. The configuration requirement
is therefore fulfilled.

Random behaviour
A random behaviour can be found in:

• How connections between routers are created
• How many interfaces each router is assigned
• How many routers each shared segment contains
• How every router gets a router type assigned
• Which routers that allows SNMP and TELNET connections

36 Section 9 Discussion and Conclusions

MPLS Emulation for Topology Awareness Testing

The list above concludes that networks are created in a random manner.

Topgen uses a random function that is initialized with a random seed. This provides
for reproducible generated networks since any network can be generated over and
over again as long as the configurations including the random seed are the same.

These statements conclude that the configuration requirement is fulfilled.

Compatibility
Network topologies generated with Topgen are compatible with the network topology
needed by the emulator. The structure of the files written by Topgen matches exactly
the needed structure of the input files to the emulator. The compatibility requirement is
thereby fulfilled.

8.2 Goals
The main goal of this thesis was to design and implement an MPLS emulator that was
to provide an MPLS topology to a network topology tool. Sections 5.1 and 6 verify that
the goal has been fulfilled.

The main goal was also to test and verify the network topology tool, the probe. Section
7.2 in [Ni03] concludes that the verification of the probe with the use of the emulator
was successful.

The secondary goal was to design and implement a network topology generator.
Sections 5.2 and 6 verify that the secondary goal has been fulfilled.

9 Discussion and Conclusions
The MPLS emulator designed and implemented in this master’s thesis has been
successful in many aspects. The requirements of it have been fulfilled and it has
successfully debugged and then verified the MPLS Probe.

Interesting ideas of how to carry out these kinds of projects has been discovered by
the author. Much insight in emulation topics, MPLS, SNMP, MIBs and TELNET has
been gained and that must be considered a great success.

The solution of designing an API for the communication between the emulator and
applications works very well. The probe needed only be slightly modified to use the
emulator and the level of transparency was kept high.

To use plug-ins to support emulation of many different router types seems to be a
good idea. New types emerging in the market that applications may need to be tested
towards can easily be added without any alteration of emulator design or
implementation.

The emulated networks do not carry any traffic between the internal nodes. To
implement that would not have any meaning at all to the probe. However, it is possible
that other applications could gain from that. How it would be done remains to be
investigated.

Emulation of network topologies has proven to be very useful for finding errors in
network applications. Some errors in the probe were not discovered with the relatively
small real MPLS network at the Operax AB test lab. However, the large network
topologies generated by Topgen made it possible to detect those errors.

Section 10 Future work 37

MPLS Emulation for Topology Awareness Testing

10 Future work
Implementing routing and label distribution
One way to bring more realism to the emulator would be to implement routing and
label distribution.

In order to do this one could use the scheduler to sort of pass messages between the
routers. Events that symbolise routing protocol messages could be used and routers
would pass these messages to each other via the scheduler. This way, routing
information can be spread throughout the network allowing routing tables to be built.

In a similar way can any arbitrary label distribution protocol be implemented.

Communication via Network Interface
The emulator is designed to communicate via an API. To further extend the realism of
the emulator, communication via a real network interface can be designed. The
reason this has not been done is the high amount of complexity.

The communication could be done by setting a network interface on the emulator
computer in promiscuous mode, i.e. letting it process all received packets and not just
those that are destined for the host.

When packets are received at the emulator host, they are directed as input to the
emulator. An interface module checks the incoming packets to see if they are destined
to any router in the emulator’s topology. If so, the information in the packet is extracted
and sent to the right router. When a router needs to send information, the router’s data
is inserted into a packet by the emulator’s network interface module and sent out on
the network interface.

An interface on the host running the probe software is connected to the promiscuous
interface on the emulator host. The probe would then communicate with the emulator
exactly as is if the probe host was connected to a large network. This would set the
level of realism very high.

Of course, some other details of the emulator would need to be redesigned. The
SNMP Engine for example would need some minor changes.

SNMP and MIB Details
There are two supported MIBs; MIB-II [Mc91] and MPLS LSR MIB [Sr03]. Only
subsets of the objects in those MIBs are supported. The design is well suited for the
requirements of the emulator. However, to enable support of larger subsets in the
future, the design should probably be changed.

The design today is basically that the nodes in the MIB tree point to variable instances
in the router struct. A small but abstraction effective change would be to let the router
struct contain MIB structs. Instead of having all variables directly in the router struct,
variables belonging to a specific MIB would be placed in the MIB struct it belonged to.
This would not make any changes to how the emulator works and behaves; it would
only clarify the design and make it easier to extend the supported MIBs.

Since the router type plug-in builds the type specific objects in the MIB tree and
thereby decides what special MIBs that are to be supported, it would be appropriate to
extend the idea above even further. The plug-in could define the MIBs structs it wishes
to support and then allocate and hook them to the router in some way. Hooking could
for instance be made by adding a pointer to the MIB in a dynamic list in the router
struct. With the ideas above, the MIB support would be unlimited.

38 Section 11 References

MPLS Emulation for Topology Awareness Testing

11 References
[Ab02] Gadgil A, Karandikar a, “LiME: A Linux based MPLS Emulator”,

Department of electrical Engineering, Indian Institute of Technology,
Bombay, January 2002

[Al97] Allman M, Caldwell A, Osterman S, “ONE: The Ohio Network

Emulator”, School of Electrical Engineering and Computer Science,
Ohio University, August 1997

[An01] Andersson L et al., “LDP Specification”, RFC 3036, January 2001

[Aw01] Awduche D et al., “RSVP-TE: Extensions to RSVP for LSP Tunnels”,

RFC 3209, December 2001

[Bl02] Black U, “MPLS and Label Switching Networks”, Prentice Hall 2002,

ISBN 0-13-035819-3

[Ca88] Case J et al., “A Simple Network Management Protocol”, RFC 1067,

August 1988

[Ca90] Case J et al., “A Simple Network Management Protocol”, RFC 1157,

May 1990

[Ca02] Case J et al., “Introduction and Applicability Statements for Internet

Standard Management Framework”, RFC 3410, December 02

[Ce88] Cerf, V “IAB Recommendations for the Development of Internet

Network Management Standards”, RFC 1052, April 1988

[Co90] Cormen T, Leiserson C E, Rivest R, “Introduction to algorithms”, The

MIT Press 1990, ISBN 0-262-53091-0

[Da87] Davin J et al., “A Simple Gateway Monitoring Protocol”, RFC 1028,

November 1987

[In01] NetTest MPLS InterEMULATOR,

http://www.nettest.com/products/mpls_interemulator, October 2001

[Ja02] Jamoussi B et al., “Constraint-Based LSP Setup using LDP”, RFC

3212, January 2002

[Mc91] McCloghrie K, Rose M, “Management Information Base for Network

Management of TCP/IP-based internets: MIB-II”, RFC 1213, March
1991

[Ni03] Nilsson M, Runemo P, “LSP Topology Awareness for MPLS Networks”,

Luleå University of Technology, March 2003

[Po80] Postel J, “TELNET PROTOCOL SPECIFICATION”, RFC 764, June

1980

[Po83] Postel J, Reynolds J, “TELNET PROTOCOL SPECIFICATION”, RFC

854, May 1983

[Re01] Rekhter Y, Rosen E, “Carrying Label Information in BGP-4”, RFC 3107,

May 2001

[Re03] RFC Editor, http://www.rfc-editor.org, March 2003

Section 11 References 39

MPLS Emulation for Topology Awareness Testing

[Ri01] “Introduction to Multiprotocol Label Switching (MPLS)“, Riverstone

Networks,
http://www.riverstonenet.com/support/mpls/intro_to_mpls.htm

[Ro90] Rose M, McCloghrie K, “Structure and Identification of Management

Information for TCP/IP-based Internets”, RFC 1155, May 1990

[Ro01] Rosen E et al., “Multiprotocol Label Switching Architecture”, RFC 3031,

January 2001

[Se00] “Simple Network Management Protocol”, Carnegie Mellon Software

Engineering Institute,
http://www.sei.cmu.edu/str/descriptions/snmp_body.html

[Sr03] Srinivasan C, Viswanathan A, Nadeau T D, ”Multiprotocol Label

Switching (MPLS) Label Switching Router (LSR) Management
Information Base”,
http://www.ietf.org/internet-drafts/draft-ietf-mpls-lsr-mib-09.txt

[Ts00] Ts’o T, “Telnet Data Encryption Option”, RFC 2946, September 2000

[Ts00-2] Ts’o T, “Telnet Authentication Option”, RFC 2941, September 2000

[US03] UCD-SNMP, http://www.net-snmp.org

[Wa90] Warrier U et al., “The Common Management Information Services and

Protocols for the Internet (CMOT and CMIP)”, RFC 1189, October 1990

[Wh02] White B et al., “An Integrated Experimental Environment for Distributed

Systems and Networks”, School of Computing, University of Utah,
December 2002

12 Appendices

Appendix A – Test Configurations

A.1 Emulator Settings without Fluctuations
#########################
Topology definition ##
#########################

Varied between different networks

#######################
Emulator settings ##
#######################

Log level:
0 No logging
1 Errors
2 Warnings
5 Information
6 Debug
Level 5 is default
emu_log_level 5;

Log file:
Specifies the file to where logging is written.
Screen will is used by default
emu_log_file emu_log.txt;

Random_settings:
This clause specifies variables needed for random
functions. If no random settings is wanted, skip the
clause or set the use_random to 0.

Parameters:
use_random Specifies whether or not random
generated events is used.
1 == use, 0 == do not use.
Format: int
rndm_seed: The seed used for the
generation of random-numbers.
Format: int
rndm_calc_interval: Specifies how often a
calculation of dropping
routers is to be performed.
Format: int
random_settings {
 use_random 0;
 rndm_seed 12345;
 rndm_calc_interval 5; # Every five seconds rtrs are
 # randomly scheduled for going
 # down (using either
 # net_instability value or the
 # value given to a specific
 # router.)

The net_settings clause (under random_settings clause):
Specifies how unstable every router is. These values

can be overidden for a specific router with an
instance of the next clause.
 net_settings { # Generic random settings for all rtrs
 net_risc 50; # 50% risc that any rtr
 # goes down...
 net_time_to_down 3; # ...and goes down 3 sec.
 # from down-calc.
 net_down_time_average 10; # Stays down about 10
 # secs...
 net_down_time_deviation 5; # ...but can diff within +5
 # secs.
 };
The router-specific random_settings clause:
Specifies the same as clause net_settings but
for a specific router
 id 10.10.0.1 {
 risc 50; # 50% risc that this rtr
 # goes down...
 time_to_down 3; # ...and goes down 3 sec.
 # from down-calc.
 down_time_average 10; # Stays down about 10 secs...
 down_time_deviation 5; # ...but can diff within +5
 # secs.
 };
The freeze topology clause:
Allows that the topology freezes for a period of time.
Before the topology unfreezes, the topology in the
emulator is compared with the topology in the
IQ-Man(tm) database.
 freeze_top {
 use_freeze 0; # Default false
 #(==0, true==1)
 freeze_interval 30; # Time between two
 # freezings
 freeze_length 20; # Time to be frozen
 DB_host db1; # IQ-Man(tm) database host
 DB db2_matte; # IQ-Man(tm) database
 DB_user operax; # IQ-Man(tm) database user
 DB_pass secret; # IQ-Man(tm) database
password
 };

};

A.2 Emulator Settings with Fluctuations
#########################
Topology definition ##
#########################

Varied between different networks

#######################
Emulator settings ##
#######################
emu_log_level 5;
emu_log_file emu_log.txt;

random_settings {
 use_random 1;
 rndm_seed 12345;
 rndm_calc_interval # Varied from 5 – 200 depending
 # on network size

 net_settings {
 net_risc 50;
 net_time_to_down 0;
 net_down_time_average # varied from 10 – 150
 # depending on network size
 net_down_time_deviation 5;
 };
 freeze_top {
 use_freeze 1;
 freeze_interval # Varied from 25 – 150 depending
 # on network size
 freeze_length # Varied from 40 – 250 depending on
 # network size
 DB_host db1;
 DB db2_matte;
 DB_user operax;
 DB_pass secret;
 };

};

A.3 Probe Settings for Emulation without Fluctuations
##################
Probe settings #
##################

probe_loglevel 2;
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins";
probe_interval 5;
probe_wait_acks true;
probe_iterations 0;
thread_max #As many as there are routers
thread_burst_delay 0;
thread_max_runtime 100;

#############################
Probe - Emulator settings #
#############################

emu_cfg_file # Varied between different networks

emu_so_file "/home/matte/source/mpls_prototype/mpls-
 thesis/emulator/source/libemu.so";

##################################
IQ-Man(tm) connection settings #
##################################

iqman_enabled true;
iqman_addr mpls3;
iqman_port 7015;
iqman_retries 5;
iqman_pause 1;
iqman_login "mpls";
iqman_passwd "mpls";
iqman_compression 0;

###########
Routers #
###########

Definition of routers to be contacted by the probe
#######################################
Varies between different networks ##
#######################################

A.4 Probe Settings for Emulation with Fluctuations
##################
Probe settings #
##################

probe_loglevel 5;
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins";
probe_interval # Varied from 10 – 120 depending on size of
 # network
probe_wait_acks true;
probe_iterations 40;
thread_max # As many as there were routers in the topology
thread_burst_delay 0;
thread_max_runtime 100;

#############################
Probe - Emulator settings #
#############################

emu_cfg_file # Varied between different networks

emu_so_file "/home/matte/source/mpls_prototype/mpls-
 thesis/emulator/source/libemu.so";

##################################
IQ-Man(tm) connection settings #
##################################

iqman_enabled true;
iqman_addr mpls3;
iqman_port 7015;
iqman_retries 5;
iqman_pause 1;
iqman_login "mpls";
iqman_passwd "mpls";
iqman_compression 0;

###########
Routers #
###########

Definition of routers to be contacted by the probe
#######################################
Varies between different networks ##
#######################################

A.5 Probe Settings for Emulation without Fluctuations in Unthreaded Mode
##################
Probe settings #
##################

probe_loglevel 5;
plugin_path "/home/matte/source/mpls_prototype/mpls-
thesis/probe/plugins";
probe_interval # Varied from 10 – 120 depending on size of
 # network
probe_wait_acks true;
probe_iterations 40;
thread_max 0;
thread_burst_delay 0;
thread_max_runtime 100;

#############################
Probe - Emulator settings #
#############################

emu_cfg_file # Varied between different networks

emu_so_file "/home/matte/source/mpls_prototype/mpls-
 thesis/emulator/source/libemu.so";

##################################
IQ-Man(tm) connection settings #
##################################

iqman_enabled false;
iqman_addr mpls3;
iqman_port 7015;
iqman_retries 5;
iqman_pause 1;
iqman_login "mpls";
iqman_passwd "mpls";
iqman_compression 0;

###########
Routers #
###########

Definition of routers to be contacted by the probe
#######################################
Varies between different networks ##
#######################################

A.6 Test Host
The table below specifies the host that the tests were performed at.

OS / Kernel Red Hat Linux™ 7.3 / 2.4.18-3
CPU Intel Celeron™ 1 GHz
Memory 384 MB SDRAM
Compiler Gnu Compiler Collection (gcc) v2.96
Misc. X-server 11.0, KDE 3.0.0-10

