Sammanfattning

Målet med rapporten var att beskriva metodiken för skredriskkartering via det pågående projektet vid Norsälven. Målet var att redogöra för vilka geotekniska fältundersökningar som har utförts och redogöra för hur släntstabiliteten ser ut för en sektion vid Norsälven.

Metodiken vid examensarbetet har varit kunskapsinsamling via en litteraturstudie och beräkningar har utförts för att bestämma säkerheten mot stabilitetsbrott/skred för en tvärsektion i Norsälvens norra del.

En skredriskkartering ska innehålla beskrivning av utredningsområdets klimat, geologi, geotekniska förhållanden, yt- och grundvattenförhållanden, analys av erosion, konsekvenser vid skred och slutligen stabilitets- och sannolikhetsberäkningar. Både gällande dagens klimat och klimatet om ca 100 år.

Typsektionen som har beräknats visade en ok säkerhet mot att ett skred skulle inträffa. För att få en komplett bild på Norsälvens skredrisk måste fler sektioner analyseras.

Abstract

The goal of the report was to describe the methodology for landslide mapping and evaluation of the risk of land slide occurrence at Norsälven. The goal was to outline the geotechnical field surveys carried out and explain how the slope stability looks for a specific section at Norsälven.

The methodology in this thesis has been gathering information through a literature review and calculations have been made to determine the factor of safety for a landslide occurs for one part of Norsälven.

An evaluation of risk for landslide mapping shall describe the investigation area's climate, geology, geotechnical conditions, surface and groundwater conditions, analysis of erosion, the consequences of landslides and finally the stability and probability calculations.

The section that has been calculated showed a relatively ok factor of safety for the landslide occurrence. To get a complete picture of the risks at Norsälven, more sections needs to be analyzed.

Nyckelord

Geoteknik, Konsekvenser, Norsälven, Sannolikhet, Skredriskkartering, Stabilitetsberäkning, Stabilitetsutredning
Förord
Detta examensarbete utgör det avslutande momentet i min teknikerutbildning i berg- och anläggningsindustri vid Bergsskolan i Filipstad. Arbetet motsvarar 7,5 högskolepoäng och har utförts under vårterminen 2014.

Arbetet har omfattat att studera metodiken vid skredriskkartering utifrån ett pågående projekt med hjälp av Sverige Geotekniska Institut (SGI).

Jag vill tacka alla som varit inblandade och hjälpt till med examensarbetet. Ett speciellt tack vill jag rikta till SGI:s avdelning i Göteborg, Karin Odén (handledare, SGI) och Hossein Hakami (handledare, Bergsskolan).

Filipstad, juni 2014

Annelie Westling
Innehållsförteckning

1. Inledning ... 6
 1.1 Bakgrund .. 6
 1.2 Syfte och mål ... 6

2. Metod ... 6

3. Arbetsgång vid stabilitetsutredningar .. 7

4. Skredriskkartering ... 8
 4.1 Val av Norsälven ... 8

5. Metodik skredriskkartering vid Norsälven ... 9
 5.1 Klimat .. 9
 5.2 Geologi .. 9
 5.3 Geoteknik .. 9
 5.3.1 Val av sektion .. 10
 5.4 Yt- och grundvattenförhållanden ... 10
 5.5 Erosion ... 10
 5.6 Stabilitetsberäkningar ... 10
 5.7 Sannolikhet .. 11
 5.8 Konsekvenser ... 13
 5.9 Riskvärdering, redovisning och åtgärdsbehov ... 13

6. Fältundersökningar ... 14
 6.1 Avvägning ... 14
 6.2 Sondering .. 14
 6.3 Ostörd och störd provtagning .. 14
 6.4 Vingförsök ... 15
 6.5 Portrycksmätning och grundvattenmätning .. 15

7. Resultat Norsälven .. 16
 7.1 Norsälvens geologi ... 16
 7.2 Sektion 27 .. 16
 7.2.1 Geologi ... 16
 7.2.2 Redovisning av fältundersökningar ... 17
 7.2.3 Beräkning av glidytor .. 19

8. Diskussion ... 20

9. Slutsats .. 20

10. Referenser ... 21
Bilagor

Bilaga 1. Prioriterade vattendrag för skredriskkartering

Bilaga 2. Konsekvensklasser

Bilaga 3. Utredningsområde för Norsälven

Bilaga 4. Tvärsnittsprofil för sektion 27

Bilaga 5. Laboratorieresultat för borrhål 13NO271
1. Inledning

1.1 Bakgrund
Framtiden är osäker på många plan, men Sverige och världen vet att klimatförändringarna ger högre medeltemperatur på jorden och mer smältvatten från glaciärerna. Det ger uppenbart konsekvenser för samhällen nära vattendrag, älvar och sjöar. SMHI har med beräkningar gjort modelleringar för hur klimatet kommer se ut om 100 år. I Sverige kommer detta att innebära ökande vattenflöden, vattennivåer, temperatur och nederbörd. Med detta i åtanke har Sveriges Geotekniska Institut (SGI) fått i uppdrag att identifiera vattendrag att kartera ur en skredrisksynpunkt.

1.2 Syfte och mål

2. Metod
Metodiken vid skredriskkartering har studerats med hjälp av ett pågående projekt vid Norsälven. Tidigare utredningar inom skredriskkartering har använts som bakgrundsinformation för examensarbete. En stor del av detta examensarbete består av en litteraturstudie där SGI föreslagit mycket av litteraturen. Efter utförd litteraturstudie har fördjupning gjorts avseende valet av geotekniska undersökningsmetoder i fält och i laboratorium. En sektion från Norsälven har beskrivits detaljerat och en egen beräkning har gjorts för att översiktligt beräkna säkerheten för att ett skred ska inträffa.
3. Arbetsgång vid stabilitetsutredningar

I en detaljerad utredning ingår det fält- och laboratorieundersökningar som kan ge underlag för tolkning av jordlagerföljder, vilka egenskaper jorden har och vidare en mer tillförlitlig bedömning av stabiliteten.

I en fördjupad utredning ingår det bestämning av jordens egenskaper i detalj, beräkningar utförs på glidytor och förstärkningsåtgärder ska värderas.

I en kompletterande utredning utökas utredningen med hur jordens hållfasthet påverkas i olika riktningar. Utredningen ger underlag för hur förstärkningsåtgärder skall utföras, och vad det kostar. Konsekvenserna vid skred för omgivande mark ska kartläggas.

Sista steget beskriver förslag på förstärkningsåtgärder och kostnadsberäkningar för dessa. Förstärkningsåtgärder väljs utifrån geometrin i området och ska motverka den otillfredsställande stabiliteten i slänten.

Figur 3:1: Arbetsgång vid stabilitetsutredningar (Skredkommissionen, 1995).
4. Skredriskkartering

4.1 Val av Norsälven

Norsälven hamnade först som nummer åtta på listan, men har därefter valts ut som ett pilotområde för kartering av skredrisken. Norsälven ska bland annat användas för att förenkla metodiken från Göta älvutredningen. Se bilaga 1 för karta och prioriteringsslista över vattendragen, röd färg berättar att vattendragen är prioriteterade för utredning av skredrisk.
5. Metodik skredriskkartering vid Norsälven
Vid skredriskkartering vid Norsälven har arbetet planerats utifrån en teknisk lathund som har tagits fram med Göta Älvutredningen som utgångspunkt (Löfroth et al, 2014). Metodiken kommer beskrivas i kommande stycken.

Metoden inför en skredriskkartering är att ta reda på vilken information som finns tillgänglig för utredningsområdet och strukturerar upp detta underlag. Utifrån redan framtaget material planeras kompletterande undersökningar för att få en helhetsbild av områdets olika egenskaper. En skredriskkartering kräver underlag avseende områdets rådande klimat och framtida klimat, geologi, geotekniska egenskaper, yt- och grundvattenförhållanden och erosionsförhållanden. Vidare sker stabilitets- och sannolikhetsberäkningar, summering av konsekvenser och därefter kan en värdering av skredrisken göras.

5.1 Klimat

5.2 Geologi

5.3 Geoteknik
5.3.1 Val av sektion

5.4 Yt- och grundvattenförhållanden

5.5 Erosion

Inför stabilitetsberäkningarna tas storleken på erosionen fram genom att ta med faktorer som nutida och framtida klimat, med hjälp av bland annat den kritiska bottenskjuvssänningen. Kritisk bottenskjuvssänning har bedömts utifrån de tagna sedimentproverna.

5.6 Stabilitetsberäkningar
Utiifrån fältundersökningarna och labanalys av provtagningarna kan nu en stabilitetsberäkning göras före varje sektion. Parametrar som är med i beräkningen är densitet, vattenkvot, flytgäng, droäraderad skjuvhållfasthet på land och under älvbotten, dränerad skjuvhållfasthet i lera och i friktionsjord och vilken portrycksprofil som gäller för varje sektion. Stabilitetsberäkningar sker på tre sätt, odränerad, dränerad och kombinerad analys. I kohesions- och mellanjord används odränerad analys och kombinerad analys. I en
kombinerad analys räknas det värsta fallet ut av odränerat och dränerat brott. I friktionsjord används dränerad analys.

5.7 Sannolikhet

\[p_d = \frac{\gamma H + q - \gamma_w H_w}{\mu_q + \mu_w} \]

\(\gamma = \) Jordens tunghet (kN/m³)
\(H = \) Släntens höjd (m)
\(q = \) Utbredd last på släntkrön (kN/m²)
\(\gamma_w = \) Vattnets tunghet (kN/m³)
\(H_w = \) Vattendjup vid släntfot (m)
\(\mu_q = \) Korrektionsfaktor för yttre last
\(\mu_w = \) Korrektionsfaktor för yttre vattenstånd
\(\mu_t = \) Korrektionsfaktor för vattenfylld spricka genom torrskorpan

Se figur 5:1 för teckenförklaring. Korrektionsfaktorerna hämtas från hjälpdiagram och denna rapport tar bara hänsyn till korrektionsfaktor för yttre vattenstånd, se figur 5:2, dvs \(\mu_q \) och \(\mu_t \) har satts till 1.

Figur 5:1: Beteckningar för en slänt i genomskärning (Skredkommissionen, 1995).

Figur 5:2: Korrektionsfaktor för yttre vattenstånd (Skredkommissionen, 1995).
Säkerhetsfaktorn för den farligaste glidytan beräknas som:

$$F_c = N_0 \frac{\tau_{fu}}{P_d}$$

t_{fu} är skjuvhållfastheten som är konstant med djupet vid odränerad analys. N_0 är stabilitetsfaktorn och den hämtas ur figur 5:3.

Slänten är instabil och riskerar skred om säkerhetsfaktorn F är mindre än 1 (Skredkommissionen, 1995).

Figur 5:3: Stabilitetsfaktorns (N_0) variation med slänthöjd, släntlutning och djup till fast botten (Skredkommissionen, 1995).
5.8 Konsekvenser

I kategorin liv fastställs hur många människor som kan befinna sig på platsen och vid vilka tidpunkter de fortlöper störst risk för skada, exempelvis under skoltid om en skola skulle ligga på platsen.

I kategorin bebyggelse sammanställs underlag på vilka fastigheter som finns och vilket taxeringsvärde dessa har.

I kategorin transport ingår underlag för väg, järnväg och sjöfart. Underlag tar fram hur hårt trafikerad vägen är, hur många som drabbas om ett skred skulle ske och att det då skulle ske en avstängningstid, en vägomläggning och reparationskostnader.

När konsekvenserna är bedömda används de till kostnadsberäkningar och konsekvensanalys. En värdering av respektive objekt görs och summering av konsekvenserna görs i varje utredningsområde. Utredningsområdena delas in i olika värde- och konsekvensklasser, se figur 5:4 vilka ekonomiska intervall klasserna är indelade i (SGI, 2012). Konsekvensklass 1 (K1) berättar att milda konsekvenser väntas vid skred och vid K5 följer det katastrofala konsekvenser. Se bilaga 2 för en detaljerad beskrivning av vilka skador som kan uppstå och vilka kostnader det medför för de olika konsekvensklasserna.

<table>
<thead>
<tr>
<th>Värdeklasse och konsekvensklasse</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekonomiska intervall (MSEK)</td>
<td><8</td>
<td>6-35</td>
<td>35-150</td>
<td>150-550</td>
<td>>550</td>
</tr>
</tbody>
</table>

5.9 Riskvärdering, redovisning och åtgärdsbehov
6. Fältundersökningar

Det är viktigt att undersökningarna går tillräckligt djupt i jorden och i vissa fall ned till berg. Lösa lager som uppträder under fasta skikt måste hittas. De har stor betydelse för stabiliteten i marken.

6.1 Avvägning

Med hjälp av avvägning och inmätning kan karterade landformer, markyta och vattendragets bottennivå passas in i ett referenssystem och få en lägesbestämning på markytan (SGF, 2013).

6.2 Sondering

Sondering av typen CPT (Cone Penetration Test) har utförts i Norsälven. Det är en spetstrycks-sondering, där det är spetsmotståndet i neddrivningen, friktionen genom jorden som mäts. Vid neddrivningen mäts även portryck, en ökning av portrycket i jorden genereras vid täta jordlager som lera (SGF, 2013).

Sonderingen ger information om jordlagerföljd och djupet till fast botten eller berg. CPT-sondering ger en inledande jordartsklassificering, uppskattning av densitet och av jordens odränerade skjuvhållfasthet. Friktionsjordens hållfasthet kan bestämmas. CPT används även för att få underlag till kartering av kvicklerans utbredning. CPT med portrycksmätning visar även utbredningen av hög- och lågpermeabla skikt (Skredkommissionen, 1995). Sondering har utförts på 2-3 punkter per sektion i närheten av släntens fot och dess krön.

6.3 Ostörd och störd provtagning

På upptagna ostörda prover har rutinförsök utförts för att ta reda på jordlagrens innehåll, vattenkvot, hållfasthet och känslighet för "störning". Känslighet för störning bedöms genom att ta fram ett värde för lerans sensitivitet, dvs ostörd hållfasthet i förhållande till omrörd hållfasthet. Sensitiviteten och den omröda odränerade skjuvhållfastheten berättar om lerans betor sig som kvicklera. Då krävs en sensitivitet på >50 och omrörd odränerad skjuvhållfasthet på <0,4 kPa (Rankka, 2003).

För utvalda prover har även CRS-försök utförts för att ta reda på provets tidigare belastnings historia. CRS (Constant rate of strain) är ett ödometerförsök som används sig av konstant deformationshastighet och deformationen mäts i förhållande till kraften som läggs på samt

6.4 Vingförsök

6.5 Portrycksmätning och grundvattenmätning
7. Resultat Norsälven
Se Bilaga 3 för karta över Norsälven. Norsälven är beläget väster om Karlstad, utanför Kil och är 29 km lång.

7.1 Norsälvens geologi

7.2 Sektion 27
Typsektioner har valts ut baserat på deras miljö. Sektion 27 ligger i närheten av utloppet från Nedre Fryken (norra Norsälven), norr om Gunnita och har valts ut att redovisas i denna rapport. Sektionen är representativ för områden med liknande sediment och jordlagerföljd.

7.2.1 Geologi
Vid sektion 27 består yttjordarterna av glaciallara. Se kartan (figur 7:1) för identifierade jordarter, gult är glaciallara och de röda fläckarna är urberg.

![Figur 7:1: Jordartskarta utmed Norsälven där sektion 27 är markerad med en svart linje. (SGU:s karttjänst).](image)
7.2.2 Redovisning av fältundersökningar

I sektion 27 har odränerad analys använts. Närmast älven ca 75 meter från väglinjen har tre portrycksspetsar installerats på olika djup och portrycksmätningar har utförts. Spetsarna benäms som NO270P1, NO270P2 och NO270P3. I samma punkt som portrycksmätarna installerats har fler undersökningar utförts. Väglinje är den utgångspunkt där ”0” sätts i sektionen och utmed Norsälven har sektionernas ”nollpunkter” sammanbundits till en linje. Vid provpunkt 13NO270 har en CPT-sondering utförts och som resultat visas ett diagram för hur spetstrycket (kPa) förändras med djupet. Ytterligare två diagram följer och de visar hur skjuvhållfastheten varierar med djupet och hur vattenkvoten varierar i översta skiktet.

Vid 13NO272 (178 meter från väglinjen) har en CPT-sondering och jordbergsrounding utförts liksom skruvprovtagning. Jordbergsrounding utförs med bergborrkrona och borras minst tre meter ner i berg. För jordbergsrounding redovisas matningskraften i kN och vattenkvoten redovisas för skruvprovet. Ett grundvattenrör och en portrycksmätare har installerats och benäms 13NO272G och NO272P. Skjuvhållfastheten från CPT-sonderingarna sammantäcks för alla borrhål i ett diagram, se exempel i figur 7:2. Den svarta linjen är den ”valda” skjuvhållfastheten i marken med utvärdering av provresultat från 13NO270 (orange), 13NO271 (grön) och 13NO272 (rosa). Den svarta linjen är vald som representativ hållfasthet vid beräkning av stabilitets-förhållanden.

Jordprover har skickats till geotekniskt laboratorium och analysresultaten redovisas exempelvis som en tabell, se bilaga 5. Tabellen visar analysresultat för borrhål 13NO271 och jordartsklassificering har gjorts utifrån jordens densitet, vattenkvot, konflytgräns, sensitivitet och skjuvhållfasthet. Jordarten har klassificerats till en grå siltig lera. I figur 7:3 är jordens tunghet redovisad i förhållande till djupet. Jordarten har en tunghet på cirka 18 kN/m³.
Sensitiviteten i jorden visar ett resultat på >50 och den omrörda odränerade skjuvhållfastheten är bestämd till <0,6 kPa.

Figur 7:2: Skjuvhållfasthet med djupet, CPT-sondering för sektion 27.

Figur 7:3: Tunghet med djupet för 13NO271.
7.2.3 Beräkning av glidytor

Via diagrammet i bilaga 4 kan säkerheten mot skred för olika glidytor beräknas. Beräkning sker med direktmetoden som är beskriver i kapitel 5. Parametrarnas värden fås från diagrammet. Jordens tunghet har bedömts till 18 kN/m³, släntens höjd är mätt till 5 m, vattnets tunghet är 10 kN/m³, vattendjup vid släntfot har mätts till 4 m och korrektionsfaktor för yttre vattenstånd blir 0,96 (genom att mäta släntvinkeln (β) till 30°). Övriga korrektionsfaktorer har inte tagits med. Den utbredda lasten tas inte med eftersom vägen och järnvägen inte påverkar lokala glidytor vid älven. Beräkningen blir:

\[p_d = \frac{18 \times 5 + 0 - 10 \times 4}{0,96} = 52,08 \text{ kPa} \]

Figur 7:4 visar var glidyta 1 och 2 befinner sig i förhållande till älven. Glidyta 1 går ner till lera 3 och glidyta 2 går ner till mitten av lera 2. Beräkning av medelskjuvhållfastheten för glidyta 1 ger 14,21 kPa. Stabilitetsfaktorn fås från figur 5:3, när d räknats ut till 8, då D är 40 m. Stabilitetsfaktorn blir 5,5. Beräkningen blir:

\[F_c = 5,5 \times \frac{14,21}{52,08} = 1,50 \]

Säkerhetsfaktorn för glidytan beräknas till 1,50.

Beräkning av medelskjuvhållfastheten för glidyta 2 ger 12,52 kPa. D är 40 m, d blir 8 och stabilitetsfaktorn blir 5,5. Beräkningen blir:

\[F_c = 5,5 \times \frac{12,52}{52,08} = 1,32 \]

Säkerhetsfaktorn för glidytan beräknas till 1,32. Detta innebär att glidyta 2 har en lägre säkerhet mot stabilitetsbrott. Enligt Skredkommissionen (1995) ska \(F_c \geq 1,5 \) - 1,7 för att en detaljerad utredning ska klassa slänten som tillfredsställande stabil.
8. Diskussion
Stabilitetsutredningen vid Norsälven är på en detaljerad nivå i sektionerna men översiktlig om man tar med hela området, och det beror på att en stor mängd olika fältundersökningar har utförts och hållfastheten har bestämts noggrant.

Tvärnittsprofilen visar att slänten är ganska flack, men resultatet från stabilitetsberäkningen vid sektion 27 visar en säkerhetsfaktor på 1,32 för den farligaste glidytan. Det betyder att ett skred skulle kunna ske och att lämpliga åtgärder bör arbetas fram.

9. Slutsats
Bedömning har gjorts att säkerheten mot skred är ok vid sektion 27. Skred kan ske vid sektion 27, men risken hade varit betydligt större om säkerhetsfaktorn varit närmre 1.

Stabilitetsberäkningen för sektion 27 är bara representativ för den typen av slänt i samma geologiska formation. Övriga sektioner för Norsälven måste studeras för att få en helhetsbild av skredrisken vid Norsälven.

Genom att ha studerat metodiken för skredriskkartering är min slutsats att det fungerar bra att använda sig av vid stabilitetsutredningar och det ger användbara resultat för bedömning av områdens skredrisk.

Det är viktigt med skredriskanalyser och utredningar för att identifiera riskområden med till exempel kvicklera och för att utreda vilka konsekvenserna blir vid ett eventuellt skred. En skredriskanalys ger kommunerna underlag till var förebyggande åtgärder behövs. Konsekvenserna kan till exempel minskas via att flytta på bebyggelse och vägar eller om man istället utför förstärkningsåtgärder i slänterna.
10. Referenser

Bilaga 1

Vattendragsområden prioriterade för skredriskkartering - klimatanpassning

- Ångermanälven
- Säveån
- Norrström utlopp
- Norsälven
- Umeälven
- Dalälven A
- Luleälven
- Klarälven A
- Klarälven B
- Viskan
- Arbogaån
- Kolbäcksån
- Eskilstunaån
- Anräsälven
- Dalälven B
- Anräse å
- Örekilsälven_Munkedalsälven

Aug 2013

© SGI, Lantmäteriet, SMHI, Geodatasamverkan
<table>
<thead>
<tr>
<th>Konsekvensklass</th>
<th>Beskrivning efter Åkén et al., 2000 (modifierad)</th>
<th>Exempel på moneförvädering (MSEK/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1 Lindriga konsekvenser</td>
<td>Exempel på skador:
- Obebyggd område: 100 m från strandlinjen, mark föröverat (ej föröverat).
- Mindre lokalvägar. Avbrott i trafiken på lokalväg en kortare tid till provisoriska förbindelser ordnats.
Jämförbart exempel: Skredet i Agnesberg (1993) och i Ballabo (1996).</td>
<td>Återsättning av lokalvägar: 1 MSEK per 100 m väg
Muddring samt deponiering av skredade ej föröverade massor utan bascostnader: 5 MSEK

Sammanlagt ekonomiskt värde för konsekvenser: < 6 MSEK</td>
</tr>
<tr>
<td>K2 Stora konsekvenser</td>
<td>Exempel på skador:
- Mark föröverat, delvis föröverat.
- Kraftproduktionen får minnecas tillfälligt i avvaktan på möjligheter att leda om vattnet för att undvika övervåtning.
- Obebyggd område: 100-250 m från strandlinjen, mark föröverat (måligt föröverat jord).
- Bostadshus: 1-2 st. Raserad bebyggelse. Elt per område och några skadade personer.
- Industrier: 1-2 st, raserad bebyggelse. Elt per område och några skadade personer.
- Betydande lokalbefolkning efter E45. Avbrott i vägtrafiken under ett par månader, tills provisoriska förbindelser ordnats.
Jämförbart exempel: Jämförbara exempel saknas.</td>
<td>Återsättning av lokala system: 0,53, mindre VA-verk, muddring, deponiering samt mer kostnader för skredet i måligt föröverat område: 18 MSEK
Muddring, deponiering av icke föröverade massor utan bascostnader, återsättande lokal väg, två bostadshus: 25 MSEK

Sammanlagt ekonomiskt värde för konsekvenser: 6 - 35 MSEK</td>
</tr>
<tr>
<td>K3 Mycket stora konsekvenser</td>
<td>Exempel på skador:
- Allvarliga störningar i den kommunala vattenföringens och föröverat mark har ansatt utför avläven.
- Kraftproduktion måste begränsas för att undvika övervåtning till ny åtvätta 50procent.
- 3-10 bostadshus, med raserad bebyggelse. Flera områden och skadade personer.
- Raserad industribyggnad och mindre än 5 bostadshus. Flera områden och skadade personer.
- Raserad industribyggnad och E45. Flera områden och skadade personer.
- E45 dras med i skredet och förbindelserna byts under flera månader i avvaktan på provisoriska passager genom skredområdet.
- Större upplaga, föröverat jord.
Jämförbart exempel: Liknar skredet i Östra med avseende på person- och byggnadskador, men inte när det gäller volymen utgående massor. Jämförbart också med skredet i Vagnhärads, Trosa kommun, både avseende byggnadskador och volym av massor.</td>
<td>Avkopplningsverk och vattenverk 1000-2000 (Ett medeltärt VA-verk samt ta 1 M3SEC för VA-ledningar, muddring, deponi och mer kostnader för föröverat mark och 10 hus: 89 MSEK
2 mindre industrier eller medeltärt företag drabbas (420 anställda), muddring, deponiering, lokala vägar och 5 områden inom området: 133 MSEK

Sammanlagt ekonomiskt värde för konsekvenser: 35 - 150 MSEK</td>
</tr>
<tr>
<td>K5 Katasstrofala konsekvenser</td>
<td>Exempel på skador:
- Svea-anläggningar av högre kravnivå, vattenkraftverk, många områden och svårt skadade.</td>
<td>Sammanlagt ekonomiskt värde för konsekvenser: > 650 MSEK</td>
</tr>
</tbody>
</table>
SAMMANSTÄLLNING AV LABORATORIEUNDERSÖKNINGAR

Beställare: Karin Odén, Statens geotekniska institut

Bilaga 5

<table>
<thead>
<tr>
<th>Sektion/Bordhåll/ Djup (m)</th>
<th>Beskrivning enligt SS-EN ISO 14688-1, -2</th>
<th>1) Denst.</th>
<th>2) Vatten-</th>
<th>3) Konst.</th>
<th>4) Skjut-</th>
<th>5) Jordavvikelse (Amming)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ρ (t/m³)</td>
<td>W (%)</td>
<td>γ (kPa)</td>
<td>γ ′ (kPa)</td>
<td>Qi (mm)</td>
</tr>
<tr>
<td>13NO272</td>
<td>GRÅ, SILTIG LERA MED TUNNA SILTSKIKT</td>
<td>1,89</td>
<td>47</td>
<td>38</td>
<td>230</td>
<td>17 0,08 (\text{si Cl})</td>
</tr>
<tr>
<td>2,0</td>
<td>GRÅ, LERA MED TÅTA, TUNNA SILTSKIKT</td>
<td>1,72</td>
<td>64</td>
<td>43</td>
<td>182</td>
<td>11 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>3,0</td>
<td>GRÅ, LERA MED TÅTA, TUNNA SILTSKIKT</td>
<td>1,72</td>
<td>57</td>
<td>39</td>
<td>167</td>
<td>10 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>4,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,78</td>
<td>49</td>
<td>40</td>
<td>185</td>
<td>11 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>5,0</td>
<td>GRÅ, SILTIG LERA MED TUNNA SILTSKIKT</td>
<td>1,89</td>
<td>48</td>
<td>37</td>
<td>141</td>
<td>8,7 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>6,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,79</td>
<td>46</td>
<td>39</td>
<td>181</td>
<td>11 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>7,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,85</td>
<td>41</td>
<td>38</td>
<td>223</td>
<td>13 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>8,0</td>
<td>GRÅ, SILTIG LERA MED SILTIG SKIKT</td>
<td>1,82</td>
<td>42</td>
<td>30</td>
<td>269</td>
<td>16 0,06 (\text{Cl})</td>
</tr>
<tr>
<td>9,0</td>
<td>GRÅ, SILTIG LERA MED TUNNA SILTSKIKT</td>
<td>1,83</td>
<td>41</td>
<td>36</td>
<td>118</td>
<td>20 0,17 (\text{Cl})</td>
</tr>
<tr>
<td>10,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,85</td>
<td>42</td>
<td>38</td>
<td>43</td>
<td>30 0,70 (\text{Cl})</td>
</tr>
<tr>
<td>13NO289</td>
<td>GRÅ LERA MED VÄXTIDELAR, ROSSLACKIG</td>
<td>1,70</td>
<td>55</td>
<td>57</td>
<td>6,7</td>
<td>11 1,80 (\text{Cl}_p)</td>
</tr>
<tr>
<td>2,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,73</td>
<td>47</td>
<td>37</td>
<td>20</td>
<td>11 0,60 (\text{Cl})</td>
</tr>
<tr>
<td>3,0</td>
<td>GRÅ, SILTIG LERA</td>
<td>1,95</td>
<td>31</td>
<td>28</td>
<td>20</td>
<td>13 0,65 (\text{Cl})</td>
</tr>
</tbody>
</table>

2) Skymningsmetod – Tidigare pålagd standard SS 027114, Upplev 2

3) Vattenhalten – ISO/TS 17892-1

4) Konstytuation – Tidigare pålagd standard SS 027120, Upplev 2

Avvikelse från SS027123. Enligt rekommendationer från SGI’s laboreordning används 400 g krogen då kommuniket med 100 g krogen är mindre än 7 mm.

Måttokmöte och matematiska för vissa metod för vissa metod i www.swedgeo.se

Akkrediterad laboratorium utses av Styrelsen för akkreditering och teknisk kontroll (SWEADAC) enligt lag. Denna rapport får endast återges i sin helhet, om inte utgivande laboratorium i förväg skriftlig godkänt annat. Resultaten gäller endast för de provade materialen.

Statsens geotekniska institut

Postadress, H: 581 93 LINKÖPING

Tel: 013-20 18 00

Fax: 013-20 18 14

E-post: sgi@swedgeo.se

Bank: SGI 2011-0053

Org nr.: 2011 00-0712

26