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ABSTRACT 

 

The main purpose of geometallurgy is to develop a model to predict the variability in the mineral 

processing performance within the ore body. Geometallurgical tests used for developing such a model need 

to be fast, practical and inexpensive and include as an input data relevant and measureable geological 

parameters like elemental grades, mineral grades and grain size. Important in each geometallurgical 

program is to define the number of samples needed to be sent for geometallurgical testing to enable reliable 

metallurgical forecast. This is, however, a complicated question that does not have a generic answer.  

 

To study the question on sampling a simulation environment was built including a synthetic ore 

body and sampling & assaying module. A synthetic Kiruna type iron oxide - apatite deposit was 

established based on case studies of Malmberget ore. The synthetic ore body includes alike variability in 

rock types, modal mineralogy, chemical composition, density and mineral textures as its real life 

counterpart. The synthetic ore body was virtually sampled with different sampling densities for a Davis 

tube testing, a geometallurgical test characterising response in magnetic separation. Based on the test 

results a forecast for the processing of the whole ore body was created. The forecasted parameters included 

concentrate tonnages, iron recovery and concentrate quality in terms of iron, phosphorous and silica 

contents.  

 

The study shows that the number of samples required for forecasting different geometallurgical 

parameters varies. Reliable estimates on iron recovery and concentrate mass pull can be made with about 

5-10 representative samples by geometallurgical ore type. However, when the concentrate quality in terms 

of impurities needs to be forecasted, the sample number is more than 20 times higher. This is due to 

variation in mineral liberation and shows the importance of developing techniques to collect qualitative 

information on mineral and ore textures in geometallurgy. 
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INTRODUCTION 

 

In developing the mineral resource estimates the information on the processability and its 

variability is collected quite late. Scoping studies deals almost only with geological data and the processing 

and mining information is considered only in pre-feasibility and feasibility study stages (The Australasian 

Institute of Mining and Metallurgy, 2012). Introduction of geometallurgy at early stages of the project can 

decrease level of uncertainty in the future project stages and consequently in production (Dominy, 2013). 

 

Geometallurgy aims to develop a predictive model which combines geological and mineral 

processing information. This model is used in production planning, designing and management. It is 

expected to give benefits especially in low grade ores showing high variability in their processing 

properties. Such ores have high production risks which can manifest as low or negative profit margins if 

the operation is managed in a traditional way.  

 

Development of a geometallurgical model requires access to a large number of samples that 

specify the processing properties. The basic knowledge and sample material collected by drilling, drill core 

logging and chemical assays is not sufficient. Additional characterisation techniques are needed. 

Geometallurgical tests, i.e. small tests which characterize the metallurgical properties and thus give 

quantitative information on the variability are commonly used. They need to be fast and inexpensive, they 

should use only small amount of sample but still they should reliably characterise processability. A number 

of geometallurgical tests are available for different areas of beneficiation. For comminution they include 

tests characterising crushability, grindability and forecasting throughput. Examples of such are 

geometallurgical comminution test (GCT) developed by Mwanga et al., (2015) and GeM Comminution 

index (GeMCi) described by Kojovic et al. (2010). For magnetic separation Davis tube test is frequently 

used (Murariu and Svoboda, 2003); for leaching different alternatives of leach performance test are 

available (e.g. Kuhar et al., 2011).  For gravity separation the sample size is a problem, e.g. in the GRG test   

(Dominy, 2013;  Zhou and Cabri, 2004). For flotation ”shaker test” has been proposed by Vos et al. (2014) 

but it has not gained popularity.  

 

Based on the test results a predictive model is created. As input parameters the model takes 

properties provided in the geological data set. Parameters like elemental grades (e.g. Cu wt%), 

mineralisation type and hosting lithology are commonly used. As an output the model gives production 

forecast: throughput, concentrate tonnages (mass pull), metal recoveries, concentrate quality parameters, 

tailing properties and economic key figures. 

 

One problem in collecting such a data set is to select how many samples are needed for different 

assays and techniques to develop reliable geometallurgical model. If the number of samples is too small 

then the model can be inaccurate or even defective. By increasing the samples at some point the gain in 

prediction accuracy don’t justify the costs and time spent.  Good sampling strategy is needed. It must take 

into account geological and metallurgical variability together with sampling (Gy, 1976; Minnitt et al., 

2007), analysis and modelling errors (Bulled and Mcinnes, 2005).  

 

Number of required samples for different characterisation methods in geometallurgical programs 

is a widely discussed topic. David (2014) recommended up to 30 variability samples for metallurgical 

testing in different mine design stages. Williams and Richardson (2004) assumed several hundred of 

samples for metallurgical and geometallurgical testing, more than a thousand of samples for mineralogical 

study and more than ten thousand of samples for traditional chemical assays. In a mineralogical approach 

the mineralogical information: mineral grades and texture properties, are required for several thousand of 

samples (Parian et al., 2015).  

 

Adequate geometallurgical sampling requires good knowledge of the ore body. Geological 

database and block model accompanied by internal company expertise on both ore body and beneficiation 

process often provide solid basis for planning and conducting sampling campaigns. Yet, the fact that 

geological information is mostly qualitative and its quality if difficult to estimate, is a challenge. Therefore 
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primary sampling, mainly by drilling, and secondary sampling for geometallurgical testing is often an 

iterative process. Geological information is used as default information in classification and domaining but 

they are critically evaluated against the results of the geometallurgical tests. 

 

There are several unanswered questions around the development of a geometallurgical model. 

How many samples are required? How the samples should be assayed? What kind of geometallurgical tests 

should be used and how many samples are needed? How qualitative information can and should be used? 

Is mineralogical information needed or does it give some benefits? How the domaining should be done or 

is it really needed at all? How the modelling should be done? In what details the model should go? How to 

estimate the error in the whole chain? What kind of error can be accepted in different stages? 

 

It is obvious that there are no universal answers to above posed questions but they vary from case 

to case. Studying different alternatives and finding feasible solutions is slow and tedious with real case 

studies. A synthetic ore body and corresponding geometallurgical system could provide an environment 

where different scenarios could be tested effectively. 

 

Previously the sampling problem has been studied with synthetic geological data by and 

Malmqvist et al. (1980). The focus was in mineral exploration and sampling for mineral resource 

estimation of deep sited sulphide ore bodies. More recent examples of simulation for reproduction of 

complex geological structures and behaviour of the spatial geological data can be found in Chatterjee and 

Dimitrakopoulos (2012) and Mustapha and Dimitrakopoulos (2011). Modelling by simulation is a well-

documented practice commonly used in the mining industry to evaluate alternative process designs (see 

Everett 2001, 2007; Howard et al., 2005; Everett et al., 2010, Jupp et al. 2013a). Such modelling is 

typically undertaken as an optimisation study to increase the efficiencies and productivity of operating 

mines where actual short-term grade variability data are available from production records. In these cases 

the real data is used as an input data into the simulation of different scenarios. Jupp et al. (2013b) created a 

synthetic ore body model and used it in geometallurgy to study the most effective way to reduce the 

variability in daily scheduling system.  

 

In all the previous studies the modelling of the ore body has been restricted to lithology, density 

and elemental grades. The processing properties have been almost totally excluded and therefore as such 

they are not suitable for a test bed to study different geometallurgical questions listed earlier. A simulated 

synthetic ore body for geometallurgy must satisfy three conditions: it must include processing properties; it 

must show realistic variability within synthesised data and there must be spatial cohesion between data. 

Additional parameters, such as constraints of a mining method, processing performance, and economic 

response would produce more realistic output. A synthetic geometallurgical testing framework (SGTF) is 

described in this paper as a solution for answering different geometallurgical problems. The framework 

comprises of synthetic ore body together with processing and economic models to represent the major part 

of the mine-to-metal value chain. The aim of this paper is to describe a new technique for planning 

geometallurgical sampling, testing and model building by application of the synthetic framework. This 

allowed describing the effect of geological and metallurgical variability on sampling strategy. Malmberget 

iron ore deposit in Sweden (Lund et al., 2013) was selected for the ore type to mimic. 

 

METHODOLOGY 

 

A geometallurgical system is a complex value chain comprised of geological, mining, mineral 

processing and other metallurgical downstream processes. The simulation environment developed here for 

studying geometallurgical questions is called synthetic geometallurgical testing framework (SGTF). Three 

modules of the synthetic framework were used in this study: synthetic ore body, sampling & assay module 

and process simulation. Study conducted within the developed framework included three phases: sampling; 

geometallurgical testing; sample re-classification and metallurgical testing (see Figure 1). 
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Figure 1 – Experimental setting performed as a part of the synthetic geometallurgical testing framework. 

 

Synthetic Ore Body 

 

Synthetic ore body of the framework was developed in Matlab. It allows generating a geological 

model of an ore body using mineralogical approach (Hoal et al., 2013; Lamberg et al., 2013; Lishchuk et 

al., 2015b). Geological description is a spatial model represented by the cloud of points within a defined 

volume. The smallest units, points, are called voxels and their size should be smaller or equal than smallest 

possible sample to be collected by drilling and sampling from the synthetic ore body. Description of the 

geological properties is given for each voxel including information on lithology, mineralogy, chemical 

composition, mineral textures (textural archetype) and specific gravity. 

 

The lithology is modelled as a set of geometric shapes enclosing voxels. The grade of each 

commodity mineral in any given voxel is defined based on spatial grade model: 

 

��� = � + � + � → ��� = ��	
, �, �, min � = �� , max� = �� 	�� = ��	
,�, �, min � = �� , max � = ��	�� = ��	
,�, �, min � = �� , max� = �� 	 (1) 

 

where, ���is mineral grade in a given voxel; P is primary, S secondary and T is tertiary 

component. P, T and S are functions of coordinates (x, y, z) of the point, a and b are the minimum and the 

maximum values of each component. �  indicates that parameter was not scaled to the defined range and ��	
 ,�, �, ��	
,�, �, ��	
,�, � are trigonometric functions that describe P, T and S. The commodity 

mineral can be represented fully independent on lithologies. The reason behind generating commodity 

minerals separately from the lithology minerals was to have capability to describe the grade distribution of 

important minerals accurately. 

 

After defining the grade of the main commodity minerals in each voxel the remaining mass 

differing from 100% is filled with lithology based minerals. For each lithology the average grade and 

standard deviation is provided for each mineral present. This information together with normal distributed 

random numbers is used to complete the modal composition. 

 

The textural information of each voxel is provided by textural archetypes. For each type full 

mineral liberation information in certain particle size (distribution) is provided in a global library. 

Chemical composition of minerals by lithology is also provided in library. Derivatives of voxels like 

chemical composition, specific gravity, magnetic susceptibility and other mineral based properties are 

calculated for each voxel from the modal composition and the library data.  
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Using Malmberget as a Case Study 

 

Synthetic ore body for this study was created based on Malmberget iron ore deposit located in 

northern Sweden (Lund, 2013). Malmberget ore is comprised of several ore bodies, mainly of massive 

magnetite. Iron ore grade is high, 51-61 % Fe. Magnetite and hematite are the main ore minerals. Apatite 

and actinolitic amphibole comprise main gangue minerals. The accessory minerals include biotite, albite, 

pyrite, chalcopyrite and titanite. The massive ore, high in Fe and low in SiO2, is surrounded by a semi-

massive mineralisation. The semi-massive mineralisation can be several tens of meters thick, occurring as 

rims or as inclusions in the massive ore with a decreasing iron grade. The main gangue minerals of the 

semi-massive ore are silicates, i.e. feldspars (albite and K-feldspar), amphibole, quartz and biotite in 

various proportions. 

 

The massive ore has broad variation of mineral-texture relations. Both fine- and coarse-grain 

textures exist. Mineralogically semi-massive ore is composed of several different mineral assemblages, i.e. 

lithologies, with more complicated textures than the massive ore itself. Lund (2013) identified two main 

textural types of the massive ore: Amp-(Ap-Bt) and Ap-(Amp), and one textural type of semi-massive ore - 

Fsp.  

 

The synthetic ore body was created by using one commodity mineral, magnetite, and three 

lithologies (Fsp, Amp and Ap) equalling three textural archetypes. These are referred as geometallurgical 

ore types. Four gangue minerals (albite, actinolite, apatite and biotite) were included. The average modal 

composition of each lithology type without commodity mineral (magnetite) is given in Table 1. The 

average composition of the ore after modelling the full mineralogy is given in Table 1. Mode of occurrence 

of magnetite in one size fraction (75-150 microns) of an average ore is given in Table 1 to illustrate how 

mineral liberation information was included in the model. The chemical composition of the minerals was 

taken from Lund (2013) and was defined to be identical in all lithologies.  Spatial distribution of 

lithologies, i.e. textural types, in Malmberget (Lund 2013) and in the generated synthetic ore body is 

compared in Figure 2. The synthetic ore body mimics reasonably well the lithological variation in 

Malmberget. 

 

 
 

Figure 2 – Spatial distribution of lithologies, the left image is from Lund (2013) and the right image was 

generated within the synthetic ore body.  
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Table 1 – Average modal composition of lithologies and average modal composition of ore types and mode 

of occurrence of magnetite in one size fraction, 75-150 microns. 

Average modal composition of lithology (no magnetite) 

Lithology Fsp Amp Ap 

Albite 52.1 9.6 7.7 

Actinolite 25.5 68.7 8.6 

Apatite 13.0 8.1 56.0 

Biotite 9.4 13.6 27.7 

Average modal composition of different geometallurgical ore types 

Geometallurgical ore type Fsp Amp Ap 

Magnetite 75.7 71.6 75.8 

Albite 12.7 2.7 1.9 

Actinolite 6.2 19.5 2.1 

Apatite 3.2 2.3 13.6 

Biotite 2.3 3.9 6.7 

Mode of occurrence of magnetite in 75-150 microns size fraction in an average ore 

Geometallurgical ore type Fsp Amp Ap 

Liberated 95.9 94.5 89.2 

In composite particles with albite 2.2 0.5 0.8 

In composite particles with actinolite 1.1 3.8 0.9 

In composite particles with apatite 0.5 0.4 6.0 

In composite particles with biotite 0.4 0.8 3.0 

 

Sampling and Assaying within the Synthetic Geometallurgical Testing Framework 

 

Geometallurgical sampling within the synthetic geometallurgical testing framework implied two 

separate actions: primary sampling by drilling and secondary sampling by selecting parts of the drill cores. 

Simulated drill cores were created in MATLAB environment by giving the collar coordinates, final depth 

of the drill core, azimuth and dip of each individual drill core. Each drill core retrieved information 

available from the crosscut voxels of the synthetic ore body (Figure 3). 

 

Voxels belonging to the same geometallurgical ore type, adjacent to each other and showing 

spatial continuity of metallurgical properties inside the ore body were referred to as domains (Hunt et al., 

2014 and David, 2007). Assaying of simulated drill cores was performed by applying an error model for 

the chemical analysis. The error model was based on  the precision and accuracy information given by 

Lund (2013) for XRF analyses . Standard deviation for each assay was computed as Hadamard product of 

elemental grades (G) and relative standard deviation (RSD) matrices (Equation 2). RSD for each element is 

given in equation (3). 

 

���� ��� ��� ����	 �
� �� ����� �
� �� ��

� ∘ ������ ����� ����� ��������	 ���
� ���� ��������� ���
� ���� ����

� = ���� ��� ��� ����	 �
� �� ����� �
� �� �� � (2) 

 

������ ����� ����� ��������	 ���
� ���� ��������� ���
� ���� ����

� = �1.0 3.2 1.0 2.0

2.4 2.8 1.4 0.1

2.0 1.1 0.7 6.5

�%  (3) 
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Figure 3 – Simulated drill core samples from 25 drill cores of the synthetic ore. Thicker points represent 

higher iron grade.  

 

Assays from the drill core samples were used to select the samples for geometallurgical testing. 

Initial hypothesis suggested that metallurgical performance can be linked to the lithology, i.e. 

geometallurgical ore types. Thus, geological parameters were isolated by clustering technique and assays 

of the drill core samples were classified by k-mean clustering algorithm (MacQueen, 1967). The Euclidean 

distance between the multivariate means of the n=2..N clusters was used as an indication of the difference 

between the geological parameters. Clustering for N=10 is presented in Figure 4, where elemental and 

mineral based approaches give almost identical results in classification. 

 

Clustering was performed on normalised data by computing standard score for each input 

according to equation  

� �
���

�
 (4) 

where, � is the arithmetic average, � is the standard deviation. 

 

The results of the virtual Davis tube tests for selected samples were created using HSC Sim 7.1 

process simulator (Outotec, 1974). For each sample sent for the virtual Davis tube test both modal 

composition and textural class information was provided. Based on this information the particle population 

of about 350 particles was generated in the simulator for given particle size distribution with P80=100 

microns. For more information on how modal composition and liberation information of an archetype was 

combined for defining the feed stream see Lund et al. (2015). In the magnetic separation the separation of 

minerals was set perfect: for fully liberated minerals 100% of magnetite was recovered into the concentrate 

and 100% of gangue minerals ended into the tailing. For composite particles the simulator calculated the 

distribution value (recovery) based on recoveries of fully liberated particles and their mass proportions in a 

composite particle. The final outcome of the virtual Davis Tube test was the concentrate grade (Fe), its 

quality (P and Si contents), mass pull and iron recovery. Chemical composition of the concentrate 

produced was assayed by virtual XRF including the above described error model, thus the result generated 

in the virtual Davis tube included experimental error. 

 

Real processing parameters were calculated in the same manner (but without experimental error) 

for all the voxels of the synthetic ore body since. These parameters are referred as “real parameters” or real 

case scenario (RCS). Geometallurgical sampling procedure was repeated several times by gradual increase 
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of n from 2 to N, until results from the test work converged with the real case (RCS). Results from the final 

iteration (N) were used to build a predictive geometallurgical model. 

 

   

   
 

Figure 4 – Classification of geometallurgical samples for mineralogical approach in top row (classification 

by magnetite (Mgt), apatite (Ap) and silica (Si) content); and for traditional head grade-approach in bottom 

row (classification by iron, phosphorous and silica content). Crosses show centres of different classes. 

 

Geometallurgical Model 

 

The main purpose of geometallurgy is to build a predictive model (Lamberg, 2011), and 

mineralogical approach is often used (Hoal et al., 2013; Lamberg et al., 2013; Lishchuk et al., 2015a, 

2015b). In reality the Davis tube results are further scaled-up to forecast the full scale production results 

(Niiranen and Böhm, 2012). Here a simplification was made that Davis tube equals to the metallurgical 

result in a full scale process. 

  

Two different approaches were used to build a geometallurgical predictive model: mineralogical – 

based on mineral grades; and elemental – based on elemental grades. Therefore, element to mineral 

conversion (EMC) (Parian et al., 2015) was done for obtaining modal composition for the ore body and 

Davis tube concentrate. Predictive model was based on the nearest neighbour algorithm and was predicting 

performance of each voxel based on iron, phosphorous, silica grade for the elemental approach and 

magnetite, apatite and silica grades for the mineralogical approach. 

 

RESULTS 

 

A total of 200 sampling & geometallurgical testing campaigns were simulated ranging from 2 to 

201 samples. Ten geometallurgical predictive models based on the nearest neighbour algorithm (for 2, 5, 

10, 15, 20, 25, 30, 50, 100, 200 samples) were investigated and compared. Comparison was made for the 

prediction of concentrate quality and quantity, see Table 3. Prediction for iron recovery and total 

concentrate tonnages reaches acceptable level (<5%) already when 10 samples are used as a base of the 

prediction. Whether the estimate is done based on mineral or elemental grades does not show any 

significant difference. However, the prediction of the concentrate quality in terms of detrimental 
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components, i.e. phosphorous and silica, is much more sensitive. Even with 100 samples the error in the 

estimates of production of different quality products is quite bad, >5%. Only in 200 samples the required 

accuracy is reached. 

 

Table 3 – Prediction on metallurgical performance based on 2-200 samples. Error gives difference between 

the real case scenario (100*[forecast-RSC]/RSC). 

 

Samples 

N= 

Prediction based on N samples Error compared to RCS 

% of ore gives Fe Rec, 

% 

Conc, 

kt 

% of ore gives Fe Rec,  

% 

Conc, 

kt HQ* RQ* LQ* HQ* RQ* LQ* 

2 0.0 36.4 63.6 94.5 1244 -100.0 46.5 29.3 1.1 5.1 

5 9.7 19.1 71.3 89.1 1026 -62.7 -23.3 44.8 -4.7 -13.3 

10 25.9 24.8 49.2 94.3 1208 0.0 0.0 0.0 0.9 2.0 

15 22.0 22.2 55.7 93.9 1211 -15.1 -10.5 13.2 0.4 2.3 

20 25.9 20.5 53.6 92.5 1158 -0.1 -17.6 8.9 -1.1 -2.2 

25 25.0 21.6 53.4 94.0 1203 -3.6 -12.8 8.4 0.5 1.6 

30 22.9 27.5 49.7 94.5 1211 -11.8 10.6 0.9 1.1 2.3 

50 23.9 25.8 50.3 93.7 1186 -7.9 4.1 2.1 0.2 0.2 

100 23.9 27.2 48.9 93.4 1179 -7.9 9.7 -0.7 -0.1 -0.4 

200 24.7 25.0 50.3 93.6 1187 -4.7 0.8 2.1 0.1 0.3 

RCS 25.9 24.8 49.2 93.5 1184 0.0 0.0 0.0 0.0 0.0 

*HQ = high quality product, RQ = regular quality product, LQ = low quality product. 

 

CONCLUSIONS 

 

The effect of geological variability on geometallurgical sampling within the ore body was 

assessed within synthetic geometallurgical testing framework. Synthetic ore body, a part of the framework, 

was used to critically evaluate the number of samples needed for geometallurgical testing to create reliable 

production forecast. For the iron ore case study it was concluded that the number of samples varies based 

on the parameter to be forecasted. For iron recovery and concentrate mass pull already 10 samples gave a 

good estimate in a system having three different geometallurgical types. The difference between the types 

in iron recovery was minor, but still significant, however the nearest neighbourhood method used in 

populating back the forecast worked well because of clear difference between the chemical compositions of 

the types. When the product quality was forecasted the number of samples for reliable forecast increased to 

200. It may be possible to improve this by using different deployment algorithm, like multivariate statistic 

or principle component analysis (e.g., Keeney, 2010). However, this indicates that more accurate 

geological information on mineral textures and liberation would be needed. This leads to a conclusion that 

there is significant potential to increase the quality geometallurgical forecast by collecting quantitative 

information on ore and mineral textures. Currently techniques available for this are either poor in quality 

(drill core scanning) or expensive to use (automated mineralogy). This is clearly an area where 

development is needed. 

 

The case study shows the strength of developed synthetic ore model. This study differs in couple 

of ways from previously used synthetic data sets in geometallurgy (Jupp et al. 2013b). First the ore body 

modelling is taken into mineral level, both the modal composition and quantitative data on mineral texture     

is assigned to each voxel. Second, the mineral processing (here Davis tube) is modelled and simulated on 

mineral liberation level. This gives access into a variability level which is very significant for metallurgical 

response but very challenging to map in the ore body. Therefore it gives realistic environment to test 

different important questions in geometallurgy. 
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