Effekterna av nackkoordinationsträning och stående balansträning med instabila system vad gäller nackproprioception och postural kontroll.

En experimentell pilotstudie

Atle Ager
Kasper Landin

Fysioterapeut
2017

Luleå tekniska universitet
Institutionen för hälsovetenskap
Effekterna av nackkoordinationsträning och stående balansträning med instabila system vad gäller nackproprioception och postural kontroll.

2017-05-31

Atle Ager och Kasper Landin

The effects of neck-coordination exercise and balance training with unstable systems regarding proprioception of the neck and postural control

Kurs: S0094H
Termin: Ht16
Handledare: Ulrik Röttjezon, Leg, fysioterapeut och universitetslektor.
Examinator: Agneta Larsson, Leg fysioterapeut och universitetslektor.
Vi vill rikta ett stort tack till vår handledare Ulrik Röijezon som har bidragit med sitt stora engagemang och kunskap.

Vi vill även tacka våra deltagare som tog sig tid att medverka i studien och gjorde det här arbetet möjligt.

Tack!
Innehåll
Abstrakt ... 4
Inledning ... 5
 Nackbesvär .. 5
 Motorisk kontroll .. 5
 Postural kontroll ... 6
 Proprioception ... 7
 Träning .. 8
 Fysioterapi ... 8
Syfte ... 9
Frågeställningar .. 9
Metod .. 10
 Deltagare .. 10
 Testprocedur .. 11
 Repositioneringstestet ... 11
 Postural kontroll ... 11
 Interventioner ... 12
 Balansträningen .. 12
 Nack-koordinationsträningen ... 13
Dataanalys .. 14
 Etiska överväganden ... 14
Resultat .. 16
 Balanstest .. 16
 Nackproprioceptionstest ... 20
Diskussion ... 22
 Metoddiskussion ... 22
 Resultatdiskussion .. 23
Konklusion ... 26
Referenser .. 27
Bilagor ... 30
Abstrakt

Inledning Muskuloskeletala besvär inklusive nackbesvär är vanligt förekommande. Besvären är associerade med neurofysiologiska förändringar som påverkar motoriska kontrollen genom förändrade neuromuskulära synergeter mellan global och stabiliserande muskulatur. Försämrad sensomotorisk funktion i nacken kan även försämrar balansförmågan. Motoriskt svåra uppgifter via instabila system som kräver anpassad kraft och/eller precision har potential att användas i behandling av nackbesvär. **Syftet** var att utvärdera två träningsmetoders effekt på nackens proprioception respektive balansfunktion i stående. Båda träningsmetoderna involverar instabila system, den ena via kontroll av en kula placerad på en platta på huvudet och den andra genom ståndes på ett instabilt underlag. **Metod** Åtta deltagare rekryterades, fyra slumpades till nackkoordinationsträningsgruppen (NT) och fyra till balansträningsgruppen (BT). Sju deltagare fullföljde hela studien. Tre tester utfördes före och efter träningsperioden – proprioception undersöktes med repositioneringstest av nacken och balans undersöktes med test av posturalt svaj i stillstående på stabilt respektive instabilt underlag. **Resultat** visade en förbättring hos NT i form av minskning i nackrepositioneringstestet på 20,43% och vid balanstesten sågs en minskning på 11,45% på hårt underlag och en minskning på 12,11% mjukt underlag i totalt svaj. I gruppen som utförde balansträning sågs en ökning med 21,19% i nackrepositioneringstestet men en förbättring vid balanstesten i form av minskning på 2,92% på hårt underlag och en minskning på 8,93% på mjukt underlag i totalt svaj. **Konklusion** Resultatet indikerar att NT med instabilitet system kan ha positiva effekter på nackproprioception och balans. Fler studier med större deltagarantal krävs för att möjliggöra statistiska analyser.

Nyckelord: balansträning, nackträning, posturalt svaj, proprioception
Inledning
Nackbesvär
Nackbesvär är vanligt förekommande. I en studie som undersökte prevalens utförd i norra Sverige visade sig 43% besvär av nacksmärtor. Kronisk Nacksmärta, definierad som ihållande besvär minst 6 månader, rapporterades av 22% kvinnor och 16% män, bland alla svarande (1). En översiktsartikel sammanställde material angående prevalens av Nacksmärtor över världen, ungefär hälften av artiklarna var skrivna i skandinavien. Resultatet var att mellan 16.7% och 75%, med ett medeltal på 37.2%, senaste året haft återkommande besvär av Nacksmärta. Prevalensen var något högre i de skandinaviska studierna (2).

Muskuloskeletala besvär, inklusive Nackbesvär, kan påverka individens rörelseförmåga på ett flertal sätt. Dels kan smärta medföra att personen minskar sin fysiska aktivitet av rädsla för att smärtan ska förvärras (3) och dels sker neurofysiologiska förändringar som påverkar motoriska kontrollen t.ex. i form av förändrade neuromuskulära synergier mellan bl.a. ytliga och djupa nackmuskler (4). Detta kan vara positivt i akut skede men förödande för individen om det kvarstår över längre tid. Vid långvariga (> 3 månader) Nackbesvär har ett flertal avvikelser i motorisk kontroll rapporterats såväl för specifika sensomotoriska funktioner vid Nackrörelser (4) men även för mer generella funktioner såsom balansfunktion (5-8). Detta medför begränsningar för Nackens rörelser såsom inskränkt rörighet, nedsatt proprioception och ryckiga rörelser (9-11).

Motorisk kontroll
Motorisk kontroll är förmåga att kontrollera och anpassa rörelser i förhållande till miljö för att klara en uppgift. Begreppet innefattar system (såsom anatomiska/strukturrella, sensoriska, motoriska och reglerande) som tillsammans kontrollerar Kroppens rörelse och stabilitet. Centrala delar i motorisk kontroll är sensorisk information från proprioception, känsel, syn och vestibulära system. Information från dessa system används för att få feedback på Kroppens och Kroppsdelarnas position och rörelse relativt varandra och relativt omgivningen. Därigenom kan Kroppen kontinuerligt justeras till lämplig hållning med anpassad stabilitet av leder och Kroppssegment (12). Som reglerande system använder nervesystemet feedforward och feedback mekanismer. Feedforward mekanismen involverar omedveten inlärd förmåga att rekrytera specifika muskler inför och under rörelse bland annat för att skapa stabilitet. Stabilisering av centrala Kroppsdelar är viktigt t.ex. för att hålla balansen och skydda...
Kolumna vid förflyttning av kroppens tyngdpunkt, dvs. center of mass (COM), och för att perifer rörelse ska få kraft och precision (4,12). Feedback-mekanismen involverar sensorisk återkoppling på rörelser, t.ex. reflexer men också information som tolkas medvetet och därigenom kan motoriska kommandon korrigeras under rörelsen, men även efter rörelsens utförande vid upprepning av samma uppgift. Återkopplingen sker via sensorisk information från rörelsen och positionen och miljön den utförs i (12). Svåra motoriska uppgifter, som att exempelvis utföra träning på instabilt underlag, ställer höga krav på feedback och feedforward mekanismer. Rörelser går från att initialt vara stela med mycket kokontraktioner mellan antagonist och antagonist för att skapa stabilitet till att, tack vare inlärning, bli mer flexibla och energieffektiva. Det sker genom att rekrytering av stabiliserande muskler optimeras till de rörelser som utförs via feedforward och feedbackmekanismer (13).

Postural kontroll

Postural kontroll kan testas och mätas rent kliniskt genom ett flertal olika funktionella test, till exempel enbensstående (12). Inom forskning är det vanligt att undersöka postural kontroll genom att mäta det posturala svajet – detta genomförs stillstående på kraftplatta och det är rörelsen av center of pressure (COP) som man mäter. Center of pressure är en definierad punkt för den samlade kraften som är mot underlaget, och som rör sig runt COM. Ju mer rörelse av COP desto större postural svaj hos individen (12). Olika typer av sensorisk information är viktigt för att kunna upprätthålla en god postural kontroll. Särskilt viktigt är sensorisk information från de vestibulära, visuella och somatosensoriska systemen, inklusive takttil information och propioceptionen (14).
Proprioception

Träning

Fysioterapi
Fysioterapi är en profession och ett vetenskapsområde som utgår från ett helhetsperspektiv av människors hälsa med rörelse som utgångspunkt. Detta genom att se till fysisk förmåga, psyke, sociala tillvaro och miljö. För att nå alla delar krävs noggrann undersökning i form av anamnesupptagande och specifika tester. För behandling krävs bland annat kunskap om kroppens delar i rörelse, skador, träning, sjuksmar och beteendevetenskap för att öka

Syfte

Syftet med studien är att utvärdera två träningstyders effekt på nackens proprioception respektive postural kontroll i stående. Båda träningstyderna involverar instabila system, den ena via kontroll av en kula placerad på en platta på huvudet och den andra genom ståendes på instabilt underlag.

Frågeställningar

- Vilken effekt har nackkoordinationsträning (NT) respektive balansträning (BT) på nackens proprioception?
- Vilken effekt har NT respektive BT på postural kontroll i stående på hårt respektive mjukt underlag?
Metod
Denna studie har lagts upp som en experimentell kvantitativ randomiserad kontrollerad pilotstudie som syftar till att utvärdera två träningsmetoders effekt på nackproprioception respektive postural kontroll i stillastående.

Deltagare
Åtta deltagare rekryterades med fördelning fyra in NT och fyra i BT. Deltagarna bestod av tre män och fem kvinnor. På grund utav könsfördelning gjordes valet att stratifiera lottningen så minst en man hamnade i varje grupp. Under studiens gång exkluderades en deltagare som inte hade möjlighet att fullfölja träningsperioden på grund utav sjukdom. Sju deltagare fullföljde hela studien. Deltagarna rekryterades via en studieförfrågan innehållande informationsbrev (se bilaga 1) samt samtyckesformulär (se bilaga 2). Studieförfrågan skickades till samtliga programstudenter vid Luleå Tekniska Universitet via e-mail som hämtades från universitets hemsida. Totalt elva individer visade intresse för att delta i studien, av dessa exkluderades två på grund utav att de inte förstår svenska i tal och skrift, samt en på grund utav att hon ej hade möjlighet att fullfölja hela studien. Samtliga deltagare signérade ett samtyckesformulär innan studien påbörjades (se bilaga 2). Deltagarna blev slumpmässigt lottade i en av två olika interventionsgrupper, för att få minst en man i varje grupp så stratifierades lottningen genom att en lapp med varje grupp togs ut och användes vid lottningen av männen. Dessa slumpas därefter via lottning in i två grupper om fyra personer i varje, en av varje kön i varje grupp. Deltagarna hade en medelålder på 24,8 år, medellängd på 173 cm och en medelvikt på 70 kg. Nackkoordinationsgruppen bestod av tre kvinnor och en man, hade en medelålder på 25,8 år, medellängd på 171,3 cm och en medelvikt på 59 kg.
Balansgruppen bestod av en kvinna och två män, hade en medelålder på 23,7 år, medellängd på 176 cm och en medelvikt på 84 kg.
I tabell 1 presenteras studiens inklusions- samt exklusionskriterier.

Tabell 1: Inklusions- och exklusionskriterier för studien

<table>
<thead>
<tr>
<th>Inklusionskriterier</th>
<th>Exklusionskriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Över 18 år</td>
<td>Ej möjlighet att fullfölja hela studien</td>
</tr>
<tr>
<td>Friska män och kvinnor</td>
<td>Skador/sjukdomar som påverkar förmågan att genomföra tester och/eller träningen</td>
</tr>
<tr>
<td>Förstår svenska muntligt och skriftligt</td>
<td>Har tränat balans systematisk senaste året</td>
</tr>
</tbody>
</table>

Elitsatsande inom någon idrott
Testprocedur
Tester av deltagarna genomfördes veckan före och veckan efter interventionens start respektive slut. Totalt genomfördes tre olika tester vid varje testtillfälle - repositioneringstest av nacken samt stillstående på stabilt respektive instabilt underlag. Samtliga tester genomfördes på rörelselaboratoriet Human Health and Performance Lab – Movement Science vid Luleå Tekniska Universitet av studieförfattarna och med teknisk hjälp av handledare Ulrik Röjezon. Testerna tog ca. 30 minuter att genomföra. Proprioception och motorik i nacke kan undersökas genom ett så kallat repositioneringstest där förmågan att repositionera huvudets position efter nackrörelser mäts (13,18) För test av postural kontroll användes stillstående på kraftplatta som används i tidigare studier (25).

Postural kontroll testades genom stå så still som möjligt, med slutna ögon, på stabilt respektive instabilt underlag. Testet gick till på följande sätt; deltagarna stod med fotterna något isär och händerna i kors över bröstet. Testet genomfördes barfota och en kil med mätten 27x8cm användes för att standardisera fotternas placering (se figur 1). Därefter blev deltagarna instruerade att titta på en punkt på väggen som är på 167cm höjd, och när de var redo att starta testet uppmanades de att blunda och stå så stilla de kan i 60 sekunder - de fick ett tio sekunders test-försök på sig innan de riktiga testen genomfördes. Testet genomförs på en kraftplatta (Kistler Force Measurements, type 9807, Kistler Instrumente AG Switzerland) och data från kraftplattan samlas på en dator och analyseras med mjukvaran MARS-software for Data Analysis Measurement (S2P Ltd., Slovenien) för beräkning av utfallsvariabler. Följande utfallsvariabler användes; sway path – total som innebär längden på det totala svajet. Sway average amplitude medial - lateral och sway average amplitude
anterior – posterior som innebär medelvärdet av svajet i höger-vänster respektive framåt-bakåt riktning. Sista utfallsvariablen som användes var area of 100% ellipse som innebär svajets area beräknat utifrån ytterligheterna av COP rörelse i båda riktningarna (höger-vänster respektive framåt-bakåt). Samma test genomfördes sedan på mjukt underlag - instruktionerna var exakt likadana förutom att testet genomfördes på en Airex balance pad (se figur 2).

Figur 1: Stillstående på mjukt underlag
Figur 2: Stillstående på hårt underlag

Interventioner
Interventionerna var upplagda som i tidigare studier för nackkoordinationsträning (25) respektive balansträning (22). Träningen pågick under fyra veckors tid och omfattade träning 2–3 gånger/vecka i ca 10–15 minuter per tillfälle, totalt 10 träningstillfällen per deltagare. Efter varje träningstillfälle fick deltagarna skatta sin ansträngningsgrad enligt BORG RPE skala (27). Samtliga träningstillfällen genomfördes vid lokaler på Luleå Tekniska Universitet under översikt av författarna till studien.

Balansträningen bestod av tandemstående, enbensstående och balansplatta (se figur 3). Övningarna genomfördes i 20 sekunders intervaller med 10 sekunders vila mellan, totalt sex gånger per övning och träningstillfälle. Deltagarna blev instruerade att hålla huvudet upprätt, armarna längs kroppen samt lätt böjda knän. På väggen fanns en prick uppsatt på 165cm höjd. Först var instruktionerna att fästa blicken på punkten och allt eftersom deltagarna blev bättre på att utföra övningen ökas svårighetsgraden genom att progression till ögonrörelser i
horisontalplan och därefter stängda ögon. Svårighetsgraden ökas när deltagaren klarade av att stå 20 sekunder kontrollerat utan att behöva korrigera. Övningen utfördes på instabilt underlag i form av en Airex Corona 185 matta.

![Figur 3: Balansövningar i form av tandemstående, enbensstående och balansplatta](image_url)

Dataanalys
Data i studien har analyserats deskriptivt och individuella resultat presenteras i löpande text samt via tabeller som visar varje individs resultat i posturalt svaj på hårt och mjukt underlag samt repositioneringstest. På gruppnivå presenteras deskriptiv data i form av löpande text samt diagramform där medelvärden i de valda parametrarna i posturalt svaj samt repositioneringstest redovisas. På gruppnivå och individnivå redovisas även procentuella förändringar i löpande text.

På grund utav studiens begränsade omfattning gjordes valet att inte genomföra någon statistisk signifikansuträkning med t-test eller motsvarande metod.

Etiska överväganden
Inför studien fick samtliga deltagare information muntligen och skriftligen (se bilaga 1) om studien. Informationen bestod av studiens upplägg, bakgrundsinformation samt etiska aspekter såsom skaderisk, nytta vs risk och datahantering. Före deltagande i studien fick deltagarna skriva under en blankett för deltagande i studien (se bilaga 2) som lämnades till studieansvariga som förvarade dessa. För att undvika att deltagare i studien ska kunna identifieras så aidentifierades all data och kodning användes vid hantering av data. Risken
för deltagarna som deltar i studien bedöms vara liten, det är friska individer som ska genomföra träning för motorisk kontroll under en kort tidsperiod och utan någon stor belastning. Därför bedöms nytta vara större än risken med tanke på att det här är en pilotstudie inom ett område som visar potential och som det krävs mer forskning inom. Samtliga deltagare blev omedda att vid obehag eller skador att kontakta studieansvariga omgående för ställningstagande. Samtliga har godkänt publicering av resultat och deltagarna kunde när som helst välja att avbryta studien, utan att uppg ge skäl.

Inför studien lämnades en etisk ansökan in till etikgruppen vid institutionen för hälsovetskap på Luleå tekniska universitet. Etikgruppen ansåg att studien ej behövdes granskas varpå studien påbörjades.
Resultat
Samtliga sju deltagare som fullföljde studien genomförde alla tio träningstillfällen. NT bestod av deltagare ett till fyra och BT bestod av deltagare fem till sju. I NT nådde samtliga fyra deltagare till det svåraste underlaget och i BT nådde en av deltagarna till stängda ögon på samtliga tre balansövningar, övriga två nådde till stängda ögon på tandemstående och balansplatta. Direkt efter varje träningstillfälle skattade deltagarna sin ansträngningsgrad enligt Borg RPE skala, resultatet presenteras i tabell 2. NT skattade i genomsnitt 12,5 och BT skattade i genomsnitt 12,3 enlig BORG RPE. En skattning på 11 bedöms som lätt ansträngning och 13 bedöms vara något ansträngande.

Tabell 2: Genomsnittliga BORG-skattningen för deltagarna

<table>
<thead>
<tr>
<th>Nackkoordinationsträningsgrupp</th>
<th>Ansträngning enligt BORG RPE Scale - genomsnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11,7</td>
</tr>
<tr>
<td>2</td>
<td>13,4</td>
</tr>
<tr>
<td>3</td>
<td>11,4</td>
</tr>
<tr>
<td>4</td>
<td>13,4</td>
</tr>
<tr>
<td>Balansträningsgrupp</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12,8</td>
</tr>
<tr>
<td>6</td>
<td>15,4</td>
</tr>
<tr>
<td>7</td>
<td>8,6</td>
</tr>
</tbody>
</table>

Balanstest
Individuella resultat för valda parametrar i posturalt svaj i stillastående på hårt respektive mjukt underlag redovisas i tabell 3. Överlag är det små förändringar i resultaten på hårt underlag, förutom deltagare tre som visar på en minskning på 38,6% i totalt svaj och deltagare sju som har en minskning på 23,6% i totalt svaj. Hos deltagare fem ses en ökning av det totala svajet med 22,6% på hårt underlag. På mjukt underlag ses övertal en tydlig minskning hos deltagarna ett (13,4%), två (21%), tre (15,6%), fyra (2,3%) och sju (20,8%) i totalt svaj men även i samtliga av de övriga valda parametrarna sågs förbättringar. Av ovannämnde deltagare förbättrades samtliga i alla parametrar utom deltagare tre som hade en ökning i 100% area of ellipse. Hos deltagare sex sågs en minskning på 26,4% av area of 100% ellipse.
Tabell 3: individuella resultat för posturalt svaj i stillstående på hårt- respektive mjukt underlag. Nackkoordinationsträningsgruppen (NT) och Balansträningsgruppen (BT).

<table>
<thead>
<tr>
<th>Deltagare</th>
<th>Sway path - Total(mm)</th>
<th>Sway average amplitude A-P (mm)</th>
<th>Sway average amplitude M-L (mm)</th>
<th>Area of 100% ellipse (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Före</td>
<td>Efter</td>
<td>Före</td>
<td>Efter</td>
</tr>
<tr>
<td>Hårt underlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>654,6</td>
<td>696,7</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>2</td>
<td>436,5</td>
<td>416,2</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>3</td>
<td>986,6</td>
<td>606,3</td>
<td>1,7</td>
<td>0,9</td>
</tr>
<tr>
<td>4</td>
<td>850</td>
<td>873,4</td>
<td>2,6</td>
<td>3,1</td>
</tr>
<tr>
<td>BT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>741</td>
<td>908,7</td>
<td>1,6</td>
<td>2,1</td>
</tr>
<tr>
<td>6</td>
<td>469,8</td>
<td>524,3</td>
<td>1,0</td>
<td>1,1</td>
</tr>
<tr>
<td>7</td>
<td>1247</td>
<td>953,1</td>
<td>2,9</td>
<td>2,5</td>
</tr>
<tr>
<td>Mjukt underlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2484</td>
<td>2152</td>
<td>12,6</td>
<td>8,8</td>
</tr>
<tr>
<td>2</td>
<td>2130</td>
<td>1683</td>
<td>9,0</td>
<td>8,3</td>
</tr>
<tr>
<td>3</td>
<td>3155</td>
<td>2663</td>
<td>11,3</td>
<td>10,4</td>
</tr>
<tr>
<td>4</td>
<td>3355</td>
<td>3279</td>
<td>17,9</td>
<td>17,6</td>
</tr>
<tr>
<td>BT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2563</td>
<td>2825</td>
<td>14,4</td>
<td>18,1</td>
</tr>
<tr>
<td>6</td>
<td>2157</td>
<td>2283</td>
<td>10,4</td>
<td>9,3</td>
</tr>
<tr>
<td>7</td>
<td>6819</td>
<td>5401</td>
<td>26,2</td>
<td>23,0</td>
</tr>
</tbody>
</table>
En analys på gruppnivå avseende totalt posturalt svaj (figur 5) presenterar intervention gruppernas före och efter resultat i posturalt svaj i stillastående på hårt respektive mjukt underlag. NT har en minskning på 11,5% på hårt underlag och en minskning på 12,1% på mjukt underlag. BT uppvisar en minskning på 2,9% på hårt underlag och på mjukt underlag ses en minskning på 8,9% i totalt svaj.

![Figur 5: Medelvärden på gruppnivå för parametern postural svaj total på hårt respektive mjukt underlag](image)

I figur 6 presenteras resultaten för 100% area of ellipse på gruppnivå för hårt respektive mjukt underlag. På hårt underlag ses en minskning i NT med 24,3% och på mjukt underlag en minskning på 21,7%. I BT syns en ökning med 12,1% på hårt underlag och en minskning med 5,6% på mjukt underlag.
Figur 6 Medelvärden på gruppnivå för parametern 100% area of ellipse på hårt respektive mjukt underlag

I figur 7 presenteras det genomsnittliga svajet framåt samt bakåt på gruppnivån. Både grupperna uppvisar små förändringar i avseende på svajet framåt och bakåt. NT uppvisar en minskning på 4,4% på hårt underlag och en minskning på 19,4% på mjukt underlag. BT har en ökning med 4,1% på hårt underlag och en minskning med 1,1% på mjukt underlag.

Figur 7 Medelvärden på gruppnivå för parametern sway average amplitude anterior-posterior på hårt respektive mjukt underlag
I figur 8 presenteras resultaten för sway average amplitude medial – lateral. I NT sågs minskningar med 45,1% på hårt underlag respektive en minskning med 23,1% på mjukt underlag. I BT sågs ökning med 27% på hårt underlag respektive en ökning med 13,7% på mjukt underlag.

Figur 8: Medelvärden på gruppnivå för parametern sway average amplitude medio-lateral på hårt respektive mjukt underlag

Nackproprioceptionstest
I tabell 5 presenteras de individuella resultaten för nackrepositioneringstestet, siffrorna som presenteras är absolut felet. Resultatet visar generellt sett små förändringar men deltagare tre uppvisar på en minskning på 1,3 grader som innebär en minskning på 37,1%. Deltagare ett har en minskning på 0,4 grader som innebär en minskning på 30,8%. Deltagare fyra har en minskning på 0,7 som innebär en minskning på 23,3%.

Tabell 4: Individuella resultat i absolut felet för nackrepositioneringstest, genomsnittet för de sex försöken. Nackkoordinationsträningsgruppen(NT) och balansträningsgruppen(BT).

<table>
<thead>
<tr>
<th>Deltagare</th>
<th>Före</th>
<th>Efter</th>
<th>Skillnad</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,3</td>
<td>0,9</td>
<td>-0,4</td>
</tr>
<tr>
<td>2</td>
<td>1,5</td>
<td>2,1</td>
<td>0,6</td>
</tr>
<tr>
<td>3</td>
<td>3,5</td>
<td>2,2</td>
<td>-1,3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2,3</td>
<td>-0,7</td>
</tr>
<tr>
<td>BT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2,4</td>
<td>2,6</td>
<td>0,2</td>
</tr>
<tr>
<td>6</td>
<td>1,3</td>
<td>1,6</td>
<td>0,3</td>
</tr>
<tr>
<td>7</td>
<td>1,6</td>
<td>2,3</td>
<td>0,7</td>
</tr>
</tbody>
</table>
I figur 9 presenteras resultaten från nackrepositioneringstesten på gruppnivå och där ses en minskning för NT på 19,4%. BT däremot uppvisar en ökning med 22,6%. I NT så hade tre av fyra deltagare en minskning och en av fyra hade en ökning. I BT har samtliga tre deltagare en ökning av sitt absolut fel, dock marginellt.

Figur 9: Medelvärden på gruppnivå för repositioneringstest
Diskussion
Syftet med vår studie var att utvärdera två träningsteknikers effekt på nackens proprioception respektive postural kontroll i stående. Båda träningsteknikerna involverar instabila system, den ena via huvudet och den andra via underlaget. I Resultatet framkommer det att NT visar positiva tendenser både i avseende på nackens proprioception och i postural kontroll i stående. BT visar inga tydliga tendenser, utan uppvisar en svag försämring i nackproprioception samt en svag förbättring i postural kontroll i stående.

Metoddiskussion

Samtliga deltagare i studien har genomfört alla to träningstillfällen, vilket innebär att deltagarna har haft en god compliance i träningen genom studien. Den goda compliance kan ha påverkats positivt av att träningen övervakades av författarna (28). Detta tyder på att utformningen av studien i avseende på tidsåtgång är rimlig för deltagarna. I tidigare studier har träningstiden varit liknande sett till träningstiden och antal träningstillfällen (22,25). Därför hade det varit intressant att undersöka om det hade blivit annorlunda med en studie
som löper över längre tid och med fler träningsstillfällen. Vid planeringen av studien var tanken att träningsperioden skulle vara fem veckor, men på grund av tidsplaneringen fick studien genomföras på fyra veckor istället. Detta för att hinna färdigställa arbetet inom önskad tidsram.

För att få fram utfallsvariabler vid testet för posturalt svaj användes mjukvaran MARS - software for Data Analysis Measurement (S2P Ltd., Slovenien) som har en del begränsningar i vilken data som den kan beräkna. Till exempel kan mjukvaran endast redovisa area 100% of ellipse, medan 95% hade varit mer önskvärt för att undvika att tillfälliga extremvärden påverkar resultatet på ett betydande sätt. I tidigare studier av liknande karaktär är det vanligt att använda area 95% of ellipse på grund av den ovan nämnda anledningen (25). Vid analyseringen av data för repositioneringstestet genomfördes beräkningar av absolut felet för samtliga deltagare, det ger ett faktiskt värde och en bra bild utav hur deltagaren klarade av att genomföra testet. Men för att få en mer komplet bild från testet hade det varit önskvärt att även räkna ut variabelt fel och konstant fel (15). Detta genomfördes ej på grund av tidsbrist.

Resultatdiskussion

Resultatet av balansträningen var motsägande och kan ha påverkats i hög grad av att det var få deltagare i studien. Balansträningen som genomfördes visade en försämring för gruppen i repositionering och en marginell förbättring i posturalt svaj. Studien som inspirerade till det valda upplägget testade inte posturalt svaj. Däremot visade den studien att personer med nacksmärta fick reducerad smärta och förbättrad proprioception genom att de presterade bättre i repositioneringstest för nacke (22). Andra studier har visat förbättrad balans av balansträning med instabila system som mjukt underlag (29) och att gå på lina (30). På individnivå går det att ha hypoteser om vad som kan ha påverkat resultaten, speciellt som resultaten från de tre deltagarna avvek från varandra.

I tidigare studier har de sett att personer med ländryggssmärta påverkas mindre då proprioception i ländryggen störs och mer då proprioceptionen störs i andra kroppsdelar jämfört med friska personer. Det visar att störd proprioception i ett område gör att personen måste förlita sig på proprioception från andra kroppsdelar och andra sensoriska system i högre grad. Samtidigt finns största potentialen att förbättra proprioception just där den är som sämst. Därför bör effekten av behandlingsmetoder variera på individnivå beroende på vilka system som har mest potential att tränas upp (19). Det kan vara en del av förklaringen till varierande resultat på individnivå som har påverkan för resultatet för de två grupperna som användes i studien. Samtliga deltagarna i studien har värden i nackrepositioneringstestet som anses vara normala och inte tyder på skador eller muskuloskeletala besvär. Även om deltagarna i vår studie anses som friska går det inte att utesluta att det kan finnas variationer i vilka system som är varje individ använder. Det kan ha påverkat hur stor
utvecklingspotential de har haft för den träningen de genomfört och därför ha påverkat resultatet. Normalt värde för repositionering anses vara under 4,5 grader (10).

Deltagare fem som deltog i BT hade marginellt sämre resultat i repositioneringstestet för nacke vilket skulle kunnat orsakats av slump eller dagsform. Dessutom ökade posturalt svaj både på hårt och mjukt underlag för alla parametrar som studerades, framför allt medialateral svajet. Deltagaren hade även förhållandevis högt värde och försämring i area of 100% ellips vilket tyder på att deltagaren svajade från mittpunkten med COM vid något tillfälle och fick möjligen några extremvärden som ökade arean. Närre detaljer och något som misstänks kunna påverka resultatet är att vi observerades avvikande rörelsemönster i cervikal rotation och även avvikande hållningsmönster i stående balanstest där bäcken/bål var något roterat. Dessa fynd skulle kunna tyda på musculoskeletala besvär från nacke och bål. Sådana besvär skulle kunna ha mer slumpvis påverkan på personens förmåga vid olika tillfällen beroende på variation i besvärsgrad (15). Samtidigt var ett rimligt antagande att träningen skulle kunna ha positiv effekt för deltagaren då liknande balansträning visat positiv effekt på musculoskeletala besvär kopplade till nacke (22).

Deltagare sex som deltog i BT hade marginellt ökade värden i både repositioneringstest för nacke och posturalt svaj, alltså en liten försämring som bedöms vara så liten att det kan antas vara slump. I testet för posturalt svaj hade deltagaren relativt sett mycket låga värden jämfört med övriga deltagare. Därför är det rimligt att anta att personen hade mindre utvecklingspotential än de flesta övriga deltagarna och att denne med mindre sannolikhet skulle uppnå förbättring.

Deltagare sju som tränade balansträning försämrades i repositioneringstest av nacke. Dock var utgångsvärdet lågt, 1,6 grader och värden efter studien på 2,3 anses fortfarande vara normalt värde för denna typ av test (10). Posturalt svaj förbättrades både på stabilt och instabil underlag. Hypotes för deltagarens enskilda förbättring är att deltagarens balans under tester och träning såg ut att påverkas relativt mycket av mjukt underlag och att balansera blundandes. Påverkan av dessa system såg dessutom ut att minska under träningens gång och vid återtestet efter träningssperioden. Därför kan den specifika balans träningen som utformats
just för att delvis koppla bort det visuella systemet och stimulera sensoriska system i hög grad ha varit speciellt gynnsamt för just denna deltagare.

Kliniskt är studier som kan utveckla nya metoder eller utvärdera befintliga behandlingar viktigt för fysioterapi. Detta kan bidra till effektivare omhändertagande av patienter och minska deras lidande och begränsning, men även viktigt för samhället då populationen blir mer välmående och produktiv i arbete (26). Från testerna i denna studie, som gjordes för nackens proprioception och för posturalt kontroll, indikerar våra resultat att dess funktioner kan tränas och förbättras hos friska personer. Tidigare studier har rapporterat att de även kan ha positiva effekter hos personer med nacksmärtor (22, 25). I vår studie var resultaten tydligast för NT vilket indikerar en potential att använda övningar som innefattar instabila system och precision kliniskt för att förbättra nackens koordination och stående balansförmåga hos personer med nedsättningar av dessa förmågor.

Konklusion

Efter träningsperioden har nackkoordinationsgruppen förbättras i samtliga utfallsvariabler både gällande repositioneringstest och det posturala svajet. Detta visar på att det finns tydliga tendenser om att NT kan ha positiv effekt på nackproprioceptionen och balans. BT visar på motsägande resultat mellan deltagarna gällande både nackproprioception och balans. Resultatet indikerar att vidare studier inom området behövs för att utforska sambandet mellan nackkoordinationsträningen, nackproprioceptionen och posturalt svaj. Förslagsvis genom liknande studiedesign men med större deltagaran tal för att möjliggöra statistiska analyser.
Referenser

Information till försökspersoner

2017-03-14

Information och förfrågan om medverkan i examensarbete

Härmed tillfrågas du ifall du vill delta i en jämförande pilotstudie mellan nack-koordinationsträning och stående balansträning med instabila system vad gäller effekter på nackproprioception och postural kontroll.

Bakgrund och syfte
Vi som genomför studien är två fysioterapeutstudenter som valt att göra denna studie som vårt examensarbete.

Vid besvär i nacken är det vanligt att rörelsekontrollen blir nedsatt, t.ex nedsatt rörelseprecision men även försämrad balanskontroll. Det finns mängder av träningsövningar för nacken varav vissa syftar till att specifikt förbättra rörelsekontrollen (motorisk kontrollträning). De flesta övningar för motorisk kontroll involverar förutsägbara uppgifter, t.ex. aktivera en specifik muskelgrupp.

Syftet är att jämföra två träningstodoters effekt på nackens rörelseprecision respektive balanskontroll i stående. Träningsmetoderna involverar instabila system, den ena genom att balansera en metallkula på huvudet och den andra genom balansträning på instabilt underlag som i detta fall är en balansplatta.

Deltagande
För att delta i studien ska du vara minst 18 år och frisk.

Du får inte ha nackbesvär, skada/smärta i bål eller ben som kan påverka balansfunktionen, besvär från balansorganen eller betydande nedsatt syn som inte är korrigerad. Deltagarna får inte ha tränat balans systematiskt med balansplatta det senaste året. Du får inte vara elitsatsande inom någon idrott.

Studiens genomförande
Innan och efter träningsperioden genomförs tester av balanskontroll i stående samt rörelseprecision av nacken. Testen tar bedöms ta högst 30 minuter/tillfälle.

Balanskontroll testas genom att stå så stilla som möjligt blundandes på en kraftplatta i 60 sekunder.

Rörelseprecision av nacken utförs med två tester

- Med rörelsesensorer monterade på huvud och övre bröstryggen som mäter sin position inbördes. Testet utförs genom att rotera huvudet åt höger/vänster och sedan återgå till startpositionen igen.

Därefter blir du lottad till en av två träningstyper, 1) nackkoordinationsträning eller 2) balansträning på balansplatta. Träningen kommer att genomföras 2ggr/vecka (ca 15 minuter per träningstillfälle) vid D-huset på Campus i Luleå under 5 veckors tid.

Hantering av resultat och sekretess

Ev. risker och fördelar
Risken för deltagare i studien bedöms vara liten. Ifall obehag mot förmodan skulle uppstå uppmanas deltagaren att kontakta oss för ställningstagande.

Fördelar kan vara att minska risken för framtida besvär genom förebyggande träning för nackens rörelsekontroll och balans.

Deltagande i denna studie är frivilligt och en deltagare kan när som helst under studiens gång välja att avbryta studien utan att ange skäl.

Vill du delta i studien eller har några frågor så är det bara att kontakt oss via telefon eller E-mail!

Kasper Landin, Tele: 070-3065561, E-mail: Kaslan-4@student.ltu.se
Atle Berglund Ager, Tele: 070-4219876, E-mail: Atlage-4@student.ltu.se
Bilaga 2

Förfrågan om medverkan i examensarbete/forskningsprojekt

Samtycker Du till medverkan i denna studie?

JA NEJ

Underskrift Deltagare

...

Namnförtydligande:

...

Underskrift studieansvarig

... ...

..............

Kasper Landin Atle Ager Berglund