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ABSTRACT 
Complexity of production processes, high computing capabilities, and massive data 
sets characterize today’s manufacturing environments, such as those of continuous and 
batch production industries. Continuous production has spread gradually across 
different industries, covering a significant part of today’s production. Common 
consumer goods such as food, drugs, and cosmetics, and industrial goods such as iron, 
chemicals, oil, and ore come from continuous processes. To stay competitive in 
today’s market requires constant process improvements in terms of both effectiveness 
and efficiency. Statistical process control (SPC) and design of experiments (DoE) 
techniques can play an important role in this improvement strategy. SPC attempts to 
reduce process variation by eliminating assignable causes, while DoE is used to 
improve products and processes by systematic experimentation and analysis. However, 
special issues emerge when applying these methods in continuous process settings. 
Highly automated and computerized processes provide an exorbitant amount of 
serially dependent and cross-correlated data, which may be difficult to analyze 
simultaneously. Time series data, transition times, and closed-loop operation are 
examples of additional challenges that the analyst faces.  

The overall objective of this thesis is to contribute to using of statistical 
methods, namely SPC and DoE methods, to improve continuous production. 
Specifically, this research serves two aims: [1] to explore, identify, and outline 
potential challenges when applying SPC and DoE in continuous processes, and [2] to 
propose simulation tools and new or adapted methods to overcome the identified 
challenges.  

The results are summarized in three appended papers. Through a literature 
review, Paper A outlines SPC and DoE implementation challenges for managers, 
researchers, and practitioners. For example, problems due to process transitions, the 
multivariate nature of data, serial correlation, and the presence of engineering process 
control (EPC) are discussed. Paper B further explores one of the DoE challenges 
identified in Paper A. Specifically, Paper B describes issues and potential strategies 
when designing and analyzing experiments in processes operating under closed-loop 
control. Two simulated examples in the Tennessee Eastman (TE) process simulator 
show the benefits of using DoE techniques to improve and optimize such industrial 
processes. Finally, Paper C provides guidelines, using flow charts, on how to use the 
continuous process simulator, “The revised TE process simulator,” run with a 
decentralized control strategy as a test bed for developing SPC and DoE methods in 
continuous processes. Simulated SPC and DoE examples are also discussed. 

Keywords: Process industry, Continuous process, Statistical process control, Design 
of experiments, Process improvements, Simulation tool, Engineering process control.  
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APPENDED PAPERS 

This licentiate thesis summarizes and discusses the following three full appended papers.  
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1 Paper A was presented by Francesca Capaci on July 4, 2017, at the 24th International Annual EurOMA Conference: 
Inspiring Operations Management in Edinburgh, Scotland. 
 
2 An early version of paper C was presented by Francesca Capaci on September 13, 2016, at the 16th International 
Annual Conference of the European Network for Business and Industrial Statistics (ENBIS-16) in Sheffield, United 
Kingdom.  
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THESIS STRUCTURE 

The overall structure of this thesis is organized in four parts: theoretical foundations, 
empirical work and findings, future research, and the appended papers. Figure I 
illustrates the chapters included in each part, except for the appendix, which shows 
the order and type of the appended papers.  

 
Figure I. Structure of the thesis, including its parts and chapters. The type and order of the 
appended papers are also shown. 

Chapter 1 (Introduction) provides an introduction and the background to the 
research area. The research objective and scope are outlined. The chapter ends with 
a brief summary of the appended papers and the thesis structure. Chapter 2 (Research 
Method) summarizes the research process and the methodological choices made during 
the research. Chapter 3 (Results) outlines the main results, conclusions, 
recommendations, reflections, and contributions drawn from the results of this 
research. Chapter 4 describes the ideas and research questions that arose during the 
research process, and that I would like to investigate further in my doctoral studies. 

Contributions to the Use of Statistical Methods for 

Improving Continuous Production 
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Introduction

PART II: EMPIRICAL WORK AND FINDINGS
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Results
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PART I: THEORETICAL  
FOUNDATIONS 

 
 

“He who loves practice without theory is  
like the sailor who boards ship without a rudder and  

compass and never knows where he may cast.” 
Leonardo da Vinci 
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1. INTRODUCTION 

Chapter 1 provides an introduction and background to the research area. The research objective and 
scope are outlined. The chapter ends with a brief summary of the appended papers and the thesis 
structure. 

1.1.  SPC and DoE for quality control and improvement  

tatistical process control (SPC) and Design of Experiments (DoE) are two 
important and well-established methodologies that include statistical and analytical 
tools to analyze quality problems and improve process performance. A 

manufacturing process uses a combination of resources (e.g., tools, operations, machines, 
information, and people) to transform a set of inputs (mainly raw materials) into a finished 
output (or product). Process inputs are controllable process variables, such as temperature, 
pressure, and feed rate, whereas the process output can be associated with one or more 
observable and measurable response variables. Response variables can be process 
performance indicators, such as cost or energy consumption and/or final product quality 
characteristics. Changing the (controllable) inputs usually induces a related change in the 
response variable(s). Other inputs, called noise factors, typically also affect the response 
variable(s), but they are impossible, difficult, or expensive to change or control (i.e., they 
are uncontrollable) (Montgomery, 2012b). Figure 1.1 illustrates a general model of a 
process, highlighting how SPC and DoE interact with process inputs and response 
variables for quality control and improvement.  

Control charts are the main and most well-known tools of SPC techniques. 
Applied to the process response variable(s), control charts provide a means for online 
monitoring of the process performance. Alarms issued by control charts indicate the 
presence of so-called assignable causes, which can be investigated further. If their root 
cause can be uncovered, the assignable causes can be systematically eliminated, thus 
reducing unwanted process variability (Montgomery, 2012a).  

A designed experiment allows for systematically changing the controllable inputs 
to study the effects on the process response variable(s) of interest. Factorial designs and 
fractional factorial designs are two major types of designed experiments, in which factors 
are varied together in such a way that all, or a subset of combinations of factor levels are 
tested. Therefore, most DoE methods are offline quality improvement tools, which aim 
to reveal potential causal relationships between the process inputs3 and the response 
variable(s). Knowledge of the crucial process inputs is essential for characterizing a process 

                                        
 
3“Controllable process inputs” are often called, for brevity, “process inputs.” Hereafter, “process inputs” refer to 
“controllable process inputs,” unless otherwise specified.  
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and optimizing its performance by steering it toward a target value and/or reducing the 
process variability (Montgomery, 2012b).  

When the key process variables4 have been identified, an online process control 
chart can be routinely employed for process surveillance to promptly adjust the process 
whenever unusual events drive the process toward out-of-control situations. 

 

 

Figure 1.1. A general model of a process that highlights how SPC and DoE interact with process 
inputs and outputs. Adapted from Montgomery (2012b). 

1.2.  Continuous processes 

Reid and Sanders (2012) classify production processes into two fundamental categories 
of operations: intermittent and repetitive operations. Depending on the product volume 
and degree of product customization, intermittent operations can be divided further into 
project processes and batch processes, while repetitive operations can be divided into line 
                                        
 
4“Controllable process inputs” are sometimes also called “process variables,” “process factors,” “experimental factors,” 
or “experimental variables” in the DoE literature. Therefore, these terms are used interchangeably in this thesis.  
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processes and continuous processes (ibid.). Figure 1.2 presents a classification of 
production processes and their main characteristics.  

Batch and continuous production represent the main process technologies in the 
process industry. The process industry is responsible for about 30% of the worldwide 
production (Lager, 2010) and involves industries such as pulp and paper, oil and gas, food 
and beverage, steel, and mining and material, among many others.  

A common misconception is that the terms “process industry” and “continuous 
processes” are interchangeable, when in fact, they have different meanings (Abdulmalek 
et al., 2006). In line with this concept, Dennis and Meredith (2000) use the definition of 
the American Production and Inventory Control Society (APICS, 2008 p. 104) to define 
the process industry as: 

 
“production that adds value by mixing, separating, forming and/or performing chemical 
reactions by either batch or continuous mode” 

and a continuous process as: 

“a production approach with minimal interruptions in actual processing in any one 
production run or between production runs of similar products.” 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.2. Classification and characteristics of production processes. Adapted from Hayes and 
Wheelwright (1979). 

 
Three main features differentiate continuous processes from other types of manufacturing 
processes: the types of incoming materials, transformation processes, and outgoing 
materials (Lager, 2010). Incoming materials in continuous processes are usually raw 
materials, often stemming directly from natural resources and, therefore, with inherent 
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characteristics that can vary substantially (Fransoo and Rutten, 1994). Engineering 
process control (EPC) is often necessary to stabilize product the quality and process 
characteristics of continuous processes (Montgomery et al., 1994; Box and Luceño, 
1997). The transformation process includes several operation units, such as tanks, reactors, 
mixing units that work in a continuous flow, and input-output relationships that might 
not be immediately clear (Hild et al., 2001; Vanhatalo, 2009). Finally, the outgoing 
materials (and often also the incoming materials) are non-discrete products, such as 
liquids, pulp, slurries, gases, and powders that evaporate, expand, contract, settle out, 
absorb moisture, or dry out (Dennis and Meredith, 2000). The nature of the handled 
materials makes these processes more sensitive to stoppages and interruptions because of 
the loss in production quality and long lead-times for startup (Duchesne et al., 2002; 
Abdulmalek et al., 2006; Lager, 2010).  

1.3.  SPC and DoE in continuous processes 

For decades, management improvement programs such as Robust Design, Total Quality 
Management, and Six Sigma have been promoting the use of statistical improvement 
methods such as SPC and DoE to improve processes and the quality of products 
(Bergquist and Albing, 2006; Bergman and Klefsjö, 2010). Although these methods are 
well established in the statistics and quality engineering literature, their application has 
been found to be relatively rare in industry (Deleryd et al., 1999; Bergquist and Albing, 
2006; Tanco et al., 2010). The use of SPC and DoE in industrial applications within 
discrete manufacturing production environments faces barriers such as a lack of 
theoretical knowledge, change management, practical problems, and a lack of resources 
for internal training (ibid.). In addition to these barriers, the implementation of SPC and 
DoE methods in continuous processes is complicated by the need to promote and adapt 
such methods to continuous production environments, as well as the new and complex 
challenges they offer (Bergquist, 2015b; Vining et al., 2015).   

1.3.1. SPC challenges in continuous processes 

The literature on SPC and related fields, such as chemometrics and control engineering, 
identifies several challenges that may arise when using SPC in continuous processes. 
These challenges are summarized in this section. 

Multivariate nature of process data 
Researchers in different areas are increasingly focusing on the issue of managing big data, 
although SPC requires more application-oriented and methodological research to handle 
this modern challenge (Vining et al., 2015). The increasing availability of high-tech 
sensors and storage capacity make it possible to take measurements at multiple locations 
and with a high sampling frequency. Thus, the uninterrupted flow of continuous 
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processes can produce massive data sets in terms of both variables and observations, 
exhibiting varying degrees of auto- and cross-correlation (Saunders and Eccleston, 1992; 
Hild et al., 2001).  

Historically, most SPC research and industrial applications have focused on 
univariate control charts, in which process and product variables are monitored 
individually. However, in data-rich environments, such as those of continuous processes, 
the univariate monitoring of each variable in separate control charts is often both 
inefficient and misleading (Kourti and MacGregor, 1995). Instead, the simultaneous 
monitoring of multiple process variables is needed, leading analysts to the field of 
multivariate SPC. Multivariate monitoring charts, based on latent variable techniques 
such as a principal component analysis (PCA) and partial least squares (PLS), have already 
been used successfully in industrial applications (e.g., see Kourti et al. 1996, and Ferrer 
2014). The strength of latent variable methods is their dimensionality reduction 
properties. Using the cross-correlation of process variables, these methods reduce an 
original data set to a few linear combinations of process variables (so-called latent-
variables) that can be considered as the main drivers of the process events (Frank and 
Friedman, 1993; MacGregor and Kourti, 1995). Commonly, a Hotelling T2 control chart 
simultaneously monitors the retained latent variables from the PCA/PLS model, while 
the squared prediction error (Q) chart monitors the model’s residuals. However, control 
charts based on PCA can handle the cross-correlation, but cannot address the 
autocorrelation issue (Vanhatalo and Kulahci, 2016). An extension to PCA, called 
dynamic PCA, deals with autocorrelation by adding time-lagged variables (Ku et al., 
1995). 

Autocorrelated data 
In continuous production processes, the data sampling of automated data collection 
schemes is usually performed more frequently than the process dynamics and, 
consequently, the collected data are typically highly (and normally positively) 
autocorrelated (Hild et al., 2001; Vanhatalo and Bergquist, 2007). Autocorrelation in the 
data violates the basic assumption of time- independent observations, on which SPC 
methods rely, affecting both univariate and multivariate SPC techniques. Specifically, the 
positive autocorrelation affects the process variability estimation, which, in turn, leads to 
deflated control limits in the control charts and increased false alarm rates (Mastrangelo 
and Montgomery, 1995; Runger, 1996; Bisgaard and Kulahci, 2005). 

The literature suggests two solutions to dealing with multivariate and 
autocorrelated data. The first is to use a standard multivariate control chart, adjusting the 
control limits to achieve the desired in-control alarm rate. However, this procedure 
requires an ad-hoc adjustment to each case, which is awkward and time consuming. The 
second solution requires “filtering out the autocorrelation” using a multivariate time 
series model, and then applying a multivariate control chart to the residuals from this 
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model (Harris and Ross, 1991). However, fitting a multivariate time series model for 
many variables is challenging owing to the large number of parameters that must be 
estimated. Moreover, fault detection and isolation become non-trivial problems.  

The autocorrelation also affects the estimation of process capability indices, 
limiting the possibilities for assessing the process performance (Shore, 1997; Zhang, 1998; 
Sun et al., 2010; Lundkvist et al., 2012).  

Closed-loop operations 
In continuous processes, EPC systems are often used to stabilize product quality and 
process characteristics. These process control systems are designed to maintain crucial 
process variables around their set-points by transferring the variability into upstream input 
process variables (i.e., manipulated variables) (MacGregor and Harris, 1990; Hild et al., 
2001). When a process involves EPC, the fault detection of SPC charts applied to all 
output of the process could fail. However, the identification and elimination of potential 
assignable causes of variation may still be pursued by applying a monitoring control chart 
to both the manipulated variables and the controlled output. Thus, SPC and EPC can 
complement each other effectively. Indeed, the former attempts to control the process 
in the long-term by detecting and eliminating the occurrence of an assignable cause. The 
latter attempts to control the process in the short-term by transferring the variability to 
another variable. 

The effectiveness of integrating SPC and EPC has already been shown in the 
literature (Montgomery et al., 1994; Box and Luceño, 1997). However, further research 
is needed to adjust the traditional SPC paradigm to monitor process output when EPC 
is in place (Box and Kramer, 1992). 

1.3.2. DoE challenges in continuous processes 

This section summarizes the challenges that may emerge when applying DoE methods 
to continuous processes.  

Large-scale experimentation 
Continuous-process plants are usually spread out over a large area and operate around 
the clock. Thus, experimentation in full-scale continuous processes may involve the 
majority of the production staff, making coordination and information flow essential 
requirements. Experimental campaigns can carry on for a long time, jeopardizing the 
production plan and producing off-grade products. Therefore, time and costs are often 
significant constraints.  

Continuous production process characteristics unavoidably affect the 
experimentation strategy. Therefore, planning, conducting, and analyzing experiments 
require proper adjustments in continuous process settings. An experimental campaign 
should always start with the careful planning of the activities preceding the experiments, 
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because they are critical to successfully solving the experimenters’ problem (Coleman and 
Montgomery, 1993; Box et al., 2005). Vanhatalo and Bergquist (2007) provide a 
checklist for planning experiments in continuous-process settings, where limited 
numbers of experimental runs, easy-/hard-to-change factors, randomization restrictions, 
and design preferences are particularly relevant. Time restrictions and budget constraints 
force the analyst to consider experiments with few factors and runs, and replicating 
experiments may not always be possible (Bergquist, 2015a). Therefore, two-level 
(fractional) factorial designs are important, but analyzing unreplicated designs might not 
always be easy to accomplish owing to the impossibility of estimating the experimental 
random variation and/or the lack of degrees of freedom when calculating the model’s 
unknowns (i.e., the factors’ effects). When split-plot designs are needed, for example to 
reduce the transition times between runs, the analysis might be complicated further. 
Moreover, not resetting the factor levels leads to a correlation between adjacent runs and 
to designs called randomized-not-reset (RNR) designs (Webb et al., 2004). Further 
methodological research could be beneficial to improve the analysis methods used to 
understand the experimental results.  

Owing to their sequential nature, the response surface methodology (RSM) and 
evolutionary operations (EVOP) are also appealing strategies in experiments involving 
continuous processes (Box and Wilson, 1951; Box, 1957). However, these techniques 
may need to be adjusted for closed-loop operations because, for example, it might not 
be immediately clear which variables can be optimized.  

Closed-loop operations 
Conventional applications of DoE methods implicitly assume open-loop operations. In 
this process configuration, the potential effects of changes to process inputs can be 
observed directly in the process outputs (Montgomery, 2012b). Under closed-loop 
operations, process outputs that might be interesting responses are usually maintained 
around desired target values (i.e., the set-points). Hence, input–output causal 
relationships might not be immediately clear (Hild et al., 2001). The potential effects of 
changes to process inputs are displaced to other process variables (so-called manipulated 
variables) if the control loop works properly. Therefore, closed-loop operations require 
a different strategy for experimentation and analysis, which need further research to 
improve the understanding of the experimental results. 

Process dynamics  
In a continuous process, production steps such as mixing, melting, reflux flows, or 
product state changes make the process dynamic. In a dynamic process, effects of changed 
process inputs on the process outputs develop gradually until the process stabilizes to a 
new steady state (Nembhard and Valverde-Ventura, 2003; Bisgaard and Khachatryan, 
2011). The time needed for a response to reach a new steady state is called the transition 
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time (Vanhatalo et al., 2010), and its characterization is a crucial issue when 
experimenting in continuous processes.  

To correctly estimate the effects of factor changes on the process response 
variables, it is important that the process reach a steady-state condition. Hence, transition 
times affect the run length of the experiments (Vanhatalo and Vännman, 2008). Knowing 
the transition times, the experimenter can avoid unnecessary long and costly run length 
or run length that are too short, yielding misleading estimates of the effects. However, 
to determine transition times in continuous processes is difficult, for several reasons. 
Changes to the process inputs often affect the process responses in several ways, and 
transition times may vary for different responses in terms of both length and behavior. 
For example, Vanhatalo et al. (2010) developed a method for estimating transition times 
in dynamic processes, combining PCA and transfer function-noise modeling. However, 
the proposed method is an offline method that needs to determine the transition times a 
priori during the planning phase of the experiment. Methodological research for an 
online estimation of transition times in continuous processes could help to solve 
experimentation challenges in these production environments. 

Autocorrelated and cross-correlated responses 
In continuous processes, the high sampling frequency induces a positive correlation in 
the process response variables (Hild et al., 2001). Ignoring the autocorrelation in the 
responses might lead to ineffective or erroneous analysis of the experimental results. For 
example, using the run averages of the response might be a poor alternative, because it 
likely leads to an incorrect estimation of the effects. Instead, a time series analysis seems 
to be a useful tool to analyze the experimental results, because the time series nature of 
the data and the autocorrelation can be taken into account. However, few attempts have 
been made to combine the benefits of DoE and time series analysis. As shown in 
Vanhatalo et al. (2010), the dynamic input–output relationships of a process can be 
modeled using transfer-function noise modeling and intervention analysis, improving the 
efficiency of the results (Bisgaard and Kulahci, 2011; Vanhatalo et al., 2013; Lundkvist 
and Vanhatalo, 2014).  

In continuous production processes, process variables are often related to each other. 
These interrelationships make it difficult to identify variables that can be changed 
independently from one another and used as experimental factors. Moreover, a change 
in one experimental factor often affects several variables, because they are simply 
reflections of the same underlying event (Kourti and MacGregor, 1995; Kourti and 
MacGregor, 1996; Kourti, 2005). Hence, a multivariate analysis approach, using latent 
variable techniques such as PCA and PLS, should be preferred to a univariate approach. 
Interpreting the results of cross-correlated variables using a univariate approach can be 
considered analogous to a “one-at-a-time” experimentation approach in the presence of 
interaction effects (MacGregor, 1997; Vanhatalo and Vännman, 2008). However, latent 
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variable methods used in conjunction with DoE techniques need further research in 
order to overcome the issues highlighted in Section 1.3.1, which hold for DoE 
applications as well. 

1.4.  Research objective and scope 

The overall objective of this thesis is to contribute to using SPC and DoE methods to 
improve continuous production. Specifically, this research serves two aims: 

I. to explore, identify, and outline potential challenges when applying SPC and 
DoE in continuous processes, and 

II. to propose simulation tools and new or adapted methods to overcome the 
identified challenges. 

This thesis focuses on filling the academic gap between the methods available to 
researchers and practitioners in empirical sciences and the challenges offered by today’s 
manufacturing environments, such as those of continuous industries. Rapid data 
collection from multiple and interconnected sources and massive data sets are common 
for such processes. In the last few decades, the concept of big data has attracted the 
attention of researchers in many fields, including machine learning, data mining, 
computer engineering, and cloud computing. However, research on SPC and DoE has 
been slower in providing answers to this new paradigm. When applying SPC and DoE 
methods, the importance of big data does not revolve around how much data are 
available, but on how to handle the data properly and the challenges they offer in 
addressing questions of interest. The SPC and DoE methods available for industrial 
practitioners are limited, insufficient, or non-existent for this new paradigm.  

Therefore, the core of this research is built on a quality engineering perspective, 
with the aim of contributing to the development of statistical methodologies for quality 
and productivity improvements in continuous processes.  

1.5.  Introduction and authors’ contributions to the appended papers 

This section introduces the appended papers and highlights the relationships between 
them and the research aims. Contributions to the appended papers are also presented.  

Paper A: Managerial Implications for Improving Continuous Production 
Processes. Capaci, F., Vanhatalo, E., Bergquist, B., and Kulahci, M. (2017). 

Paper A outlines SPC and DoE implementation challenges described in the literature for 
managers, researchers, and practitioners interested in continuous production process 
improvements. Besides research gaps and state-of-the-art solutions, current challenges are 
also illustrated. This is the first appended paper since it serves to introduce the research 
topic and relates to aim I of the research. 
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The idea for this paper came from Francesca Capaci when there was an opportunity to submit a 
contribution to the 24th International Annual EurOMA Conference. Francesca Capaci performed 
the four phases and eight review stages of the literature review process including searches for data 
collection, screening steps, and analysis of data. The co-authors commented throughout the emerging 
analysis steps. Francesca Capaci wrote the paper with contributions by all co-authors.  

Paper B: Exploring the Use of Design of Experiments in Industrial Processes 
Operating Under Closed-Loop Control. Capaci, F., Bergquist, B., Kulahci, 
M., and Vanhatalo, E. (2017). 

Paper B can be described as an in-depth study of one of the challenges identified 
in Paper A and is related to aim II of the research. Paper B conceptually explores 
issues of experimental design and analysis in processes operating under closed-loop 
control and illustrates how DoE can help in improving and optimizing such 
processes. The Tennessee Eastman (TE) Challenge process simulator is used to 
illustrate two experimental scenarios. 

All the authors jointly developed the idea of exploring the use of DoE in systems operating under 
closed-loop control. Francesca Capaci then worked to understand the TE process simulator with the 
aim to find viable scenarios for conducting experiments. Francesca Capaci planned, simulated, and 
analyzed the experimental scenarios while all authors were involved in the discussions leading up to 
the results. Francesca Capaci wrote the paper with contributions by all co-authors.  

Paper C: The Revised Tennessee Eastman Process Simulator as Testbed for 
SPC and DoE Methods. Capaci, F., Vanhatalo, E., Kulahci, M., and Bergquist, 
B. (2017). 

Paper C provides guidelines for how to use the revised TE process simulator, run with a 
decentralized control strategy, as a testbed for SPC and DoE methods in continuous 
processes. Flow charts give details on the necessary steps to get started in the Matlab 
Simulink® framework. The paper also explains how to create random variability in the 
simulator and two examples illustrate two potential applications in the SPC and DoE 
contexts. Paper C thus mainly relates to aim II of the research.  

The idea to use the revised TE process as testbed for SPC and DoE methods in continuous 
processes was jointly developed by all the authors. Francesca Capaci located the revised 
simulator, performed all work required to understand the details of the simulator, and was 
mainly responsible for the development of the idea on how to create random variability in the 
simulator. Francesca Capaci also developed the illustrated examples and was responsible for 
all simulations and analyses. All the authors were involved in the discussions leading up to 
the results. Francesca Capaci wrote the paper with contributions by all co-authors. 
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2. RESEARCH METHOD 

This chapter summarizes the research process and the methodological choices made during the 
research. 

2.1.  Introduction to the academic research 

y first experience of statistical thinking as a well-recognized methodology for 
continuous improvement was in the bachelor’s and master’s degree courses 
in the industrial and management engineering program at Universitá degli 

Studi di Palermo (UniPa). During my time as a student, I got to learn about both 
technical and industrial applied statistical concepts, in addition to managerial, economic, 
and strategic aspects of business management. During my time at UniPa, quality 
technology and industrial applied statistics increasingly attracted my attention. Quality 
technology and Six Sigma, SPC, and DoE were courses I was intrigued by. In March 
2014, I presented my master’s thesis on a methodological study about metamodeling 
techniques in computer experiments. During the development of this work, I had the 
chance to learn other programming languages, such as R and Matlab, and to discover my 
research interest in industrial applied statistics. I then decided to look for a PhD position, 
and found an open position in an interesting topic at Luleå University of Technology 
(LTU). I applied, was admitted, and started my research in September 2014 after moving 
from Italy to Sweden.  

My PhD position was part of a project aiming to develop industrial statistical methods 
for quality and productivity improvements in continuous production processes. The 
research project, funded by the Swedish Research Council and supervised by Bjarne 
Bergquist, Erik Vanhatalo, and Murat Kulahci, is still ongoing, and will formally end in 
December 2017. However, my research related to the project aims is planned to continue 
until September 2019.  

2.2.  Summary and background of my research process 

Figure 2.1  illustrates a Gantt chart containing the main research activities thus far. The 
authors’ contributions in developing the appended papers are also highlighted. In the 
chart, upside down triangles mark the beginning of a research study. Circles indicate 
conference presentations for the appended papers, and triangles and diamonds indicate 
papers that have been submitted (or accepted) for publication.  
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My research officially started at the beginning of September 2014 when my 
supervisors and I agreed on prioritizing activities aimed at enhancing my technical 
background and increasing my understanding of the research topic. In addition to 
attending courses, my focus was on reading and discussing literature connected to my 
research topic with my supervisors. This activity was organized as a weekly meeting, 
where my supervisors and I discussed a preselected article. During each meeting, we 
discussed the article’s main message, as well as areas of special interest or aspects we did 
not understand. These discussions led to additional readings, selected from among known 
seminal works of my research field or from the articles’ reference lists. The knowledge 
acquired during this literature study was later used to support the research study 
conducted in paper A. 

In the first half of 2015, I realized there was a need for a simulator that could 
emulate a continuous production process. This simulator needed to offer a good balance 
between realistic simulations of a continuous process and the flexibility necessary for 
methodological research on SPC and DoE. The main reason a simulator was needed was 
that my research project does not involve industrial collaborators where SPC and DoE 
methods can be studied. Even with access to industrial processes, it would have been 
difficult to gain access to processes that would allow for full-scale methodological 
developments. When developing and testing SPC methods, data sets with specific 
characteristics, such as sample size, sampling time, and the occurrence of specific known 
faults, need to be available. Furthermore, DoE applications in full-scale industrial 
processes may unavoidably jeopardize the production plants, affecting their production 
goals. This would make it difficult to convince top management to start large and costly 
experimental campaigns. Thus, finding a realistic simulator became a priority.  

Reading the literature, I discovered that many published articles in chemometrics, 
an important field of research connected to continuous processes, used the TE process as 
a testbed to illustrate new methods being developed (e.g., see Lee et al., 2004, Liu et al., 
2015, and Rato et al., 2016). Downs and Vogel (1993) further supported this interest in 
an in-depth study of the TE process simulator. In fact, the authors originally proposed 
the TE process as a test problem providing a list of potential applications in a wide variety 
of topics such as plant control, optimization, education, non-linear control and, many 
others. Moreover, the TE process simulator can emulate many of the challenges 
frequently found in continuous processes, such as the multivariate nature of the data, 
process dynamics, and autocorrelated and cross-correlated responses. However, the TE 
process simulator has to be run with an implemented control strategy to overcome its 
unstable operation in an open-loop. The need to run the TE process simulator in a closed 
loop widened its usability to studying the challenges that arise when applying SPC and 
DoE in continuous processes operating under closed-loop control. 

An internet search showed that there were many control strategies available to 
control and stabilize the TE process. Among these, the characteristics of the decentralized 
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control strategy simulator proposed by Ricker (1996) was the most suitable for my 
research purposes, offering the following advantages: 

 
 the simulator is implemented in the Matlab Simulink® interface and is fairly easy 

to use and free to access, 
 the set-points of the controlled variables and the process inputs can be modified, 

as long as they are maintained within the restrictions of the decentralized control 
strategy, and 

 the analyst can specify the characteristics of the simulated data (e.g., the length of 
an experiment, sampling frequency, types of process disturbances, etc.).  
 
As my understanding of the TE process simulator grew, I started simulating and 

analyzing planned experiments in order to explore the use of DoE in industrial processes 
operating under closed-loop control. The results are summarized in Paper B. Analyzing 
the experimental data of the TE process highlighted an important limitation of the 
decentralized TE process simulator (Ricker, 1996), namely, its deterministic nature. The 
decentralized TE process variables are only affected by white Gaussian noise, mimicking 
typical measurement noise, so that repeated simulations with the same setup produce the 
same results, except for measurements errors. The value of a model containing only 
measurement noise is limited when running repeated simulations to assess the 
performance of an SPC method. Moreover, the impossibility of simulating the 
experimental error, essential for estimating the effects of experimental factors on the 
responses under study, renders important DoE concepts such as randomization and 
replication unusable.  

The deterministic nature of the decentralized TE process simulator limited its 
usability for SPC and DoE applications. Hence, additional research was needed to 
understand how to overcome the limitations of the decentralized TE process simulator 
of Ricker (2005). This research led to finding out about a new release of the decentralized 
TE process simulator (Bathelt et al., 2015b), known as the revised TE process model 
(Bathelt et al., 2015a). Guidelines on how to use the revised TE process as a testbed for 
SPC and DoE methods are provided in Paper C. Among other possibilities, the revised 
simulator enables the disturbances introduced into the process to be scaled and the seed 
of each simulation to be changed. Scaling the random variation disturbances makes it 
possible to add variability to the results without overly distorting them. Moreover, the 
seed change of the random numbers forces the simulator to generate different results for 
repeated simulations with the same starting conditions. Combining these two features, I 
found a way to overcome the deterministic nature of the simulator, making the revised 
TE model suitable for testing SPC and DoE methods in continuous processes. 
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2.3.  Methods used in the appended papers 

The following subsections describe the methodological choices in the appended papers, 
as well as the relationships between the papers and the aims. 

Paper A 
Paper A relates to aim I of the research objective, and was motivated by the need to 
summarize the results of the literature searches and the results of a more systematic 
literature review. A systematic literature review is an essential step in any research process. 
Being familiar with the existing literature helps to, for example, determine what 
researchers already know about a research topic, summarize the research evidence from 
high quality studies, identify research gaps, and generate new ideas to fill these gaps 
(Tranfield et al., 2003; Briner and Denyer, 2012). 

This article aimed to highlight the SPC and DoE implementation challenges 
described in the literature for managers, researchers, and practitioners interested in 
continuous production process improvement. The literature review was conducted in 
four phases, based on the eight review stages suggested by Briner and Denyer (2012), as 
shown in Table 2.1.  

Table 2.1. Four phases and eight review stages of the literature review process (based on 
Briner and Denyer (2012)). 

Phases Review stages 

To plan 
1. Identify and clarify the addressed question(s) 
2. Determine the types of studies that will answer the question(s) 
3. Establish the audience 

To conduct 
4. Search the literature to locate relevant studies 
5. Sift through the studies and include or exclude following predefined criteria 

To analyze 6. Extract the relevant information from the studies 
7. Classify the findings from the studies 

To remember 8. Synthesize and disseminate the findings from the studies 

 
Moreover, using Cooper’s literature review taxonomy (Randolph, 2009), the review 
process’s characteristics were outlined in the “to plan” phase, as follows: 

 focus: to identify methods for SPC and DoE in continuous processes; 
 goal: to classify central issues related to the identified methods; 
 perspective: to present the review findings assuming a neutral position (i.e., 

reporting the results); 
 coverage: to consider publications that are central or pivotal to achieving the goal; 
 organization: to be structured around concepts (i.e., around the central issues 

identified by the findings of the literature review); 
 audience: researchers and practitioners in the field, as well as top management. 
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The other phases shown in Table 1 were conducted twice, in five steps, once for the 
SPC field and once for the DoE field. Specifically, the “to conduct” phase was realized 
in April 2017 using the Scopus database, limiting the search to publications in English in 
the past 30 years. Sequential searches were conducted using keywords and combined 
queries, such as (“statistical process control”) AND (“continuous process” OR 
“continuous production”) for the SPC literature searches, and (“design of experiments”) 
AND (“continuous process” OR “continuous production”) for the DoE literature 
searches. Starting from the search results (Step 1), the items were sequentially screened 
in two further steps (Steps 2 and 3), excluding all items not related to SPC and DoE 
applications in continuous processes and those that did not highlight potential challenges 
in applying SPC and DoE methods in continuous processes. Conference articles were 
excluded if a later journal article by the same authors and with the same title was found. 
In Step 4 (“to analyze” phase in Table 1), I classified the remaining publications in order 
to identify challenges or development needs for SPC and DoE in continuous production 
processes using a Microsoft Excel® worksheet and a color-coded system. In Step 5 (“to 
remember” phase in Table 1), I added publications known to be relevant, but that were 
missed by the searches. This final step provided the pivotal or central publications making 
up the representative sample on which the paper’s results were based.  

Paper B 
Paper B relates to aim II of the research objective, aiming to overcome one of the 
challenges identified in the literature review, namely, how to run experiments in 
continuous processes operating under closed-loop control. The paper explores issues of 
experimental design and analysis in closed-loop environments, explaining how DoE can 
improve and optimize such processes for researchers and practitioners. Two experimental 
scenarios, using the decentralized TE process simulator (Ricker, 2005) as a testbed, 
exemplify the conceptual ideas outlined in the paper.  

Design Expert® (version 9) was used to generate the experimental plans and to 
analyze the experimental results. The experiments were simulated using the Matlab 
Simulink® decentralized TE simulator (Ricker, 2005), together with Microsoft Excel® 
and Matlab scripts for extracting averages and saving results. 

The first scenario explored the role of experimental factors acting as disturbances 
in closed-loop systems. A 22 randomized factorial design with three replicates was 
generated with the aim of estimating the location effects (main effects and the interaction) 
of two variables not involved in control loops on controlled variables and on associated 
manipulated variables. 

The second scenario exemplified a screening design using the set-points of the 
controllers as experimental factors. A two-step sequential experiment was used to 
estimate the impact of the controllers’ set-points on the process operating cost. A 2  
fully randomized fractional factorial design with four additional center points was 
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followed by a full-fold over in a new block to explain some aliased effects. The final 
design was of resolution IV.  

In both experimental scenarios, the analysis of the numerical examples was based 
on calculating the averages of each experimental run in order to perform an analysis of 
variance (ANOVA). Vanhatalo et al. (2013) recommend removing apparent dynamic 
behavior at the beginning of each run to avoid a biased estimation of the effects. 
However, in the first experimental scenario, the initial observations were included to 
investigate whether the control loops were effective, because the control action may not 
succeed in immediately removing the impact on the controlled variable. On the other 
hand, in the second experimental scenario, a transition time of 24 hours was removed at 
the beginning of each run before calculating the run averages.  

Paper C  
Paper C relates to both aim I and aim II of the research objective. The paper can be 
classified as a tutorial on the revised TE process simulator (Bathelt et al., 2015b), run 
using a decentralized control strategy, for researchers and practitioners who want to 
explore SPC and DoE in a continuous process operating in closed-loop. 

The tutorial provides guidelines on the steps required to initialize the revised TE 
process simulator and to simulate data for SPC and DoE applications using flow charts. 
The flow charts were created using Bizagi modeler®, based on the business process 
modeling notation (BPMN) (e.g., see Chinosi and Trombetta (2012) and the BPMN 
archive (2011)). Furthermore, two simulated examples demonstrate the strategy for 
creating random variability in the simulator and potential SPC and DoE applications. 
The reader is referred to Paper C for further detail. 
 The first example demonstrates how closed-loop operations can affect the shift 
detection ability of control charts. Therefore, I used the Matlab Simulink® revised TE 
process model to simulate the Phase I and Phase II data, and the free software RStudio 
to analyze the collected data using a Hotelling T2 multivariate control chart. 

The second example employs a response surface methodology approach, based on 
sequential experimentation, and using a subset of the controllers’ set-points in the TE 
process to improve the overall performance indicator (i.e., the production cost). Here, 
Design Expert® (version 10) was used to generate the experimental designs and to 
analyze the experimental results. In addition, I used the revised Matlab Simulink® TE 
simulator together with Microsoft Excel ® and Matlab Scripts® to simulate the 
experiments.  

The sequential experimentation started with a 25 1 fully randomized fractional 
factorial design, with four additional center points in order to screen five controllers’ set-
points. Then, a central composite design was created by augmenting the resolution V 
fractional factorial design with 10 additional axial points, run in a new block, allowing 
for the estimation of a second-order model. The numerical optimization tool in Design 
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Expert® (version 10) was used to search the design space to find the settings for the set-
points that would produce the lowest predicted cost. Finally, three additional runs were 
simulated to confirm the results. During the sequential stages, the experimental results 
were analyzed using ANOVA tests by calculating the averages of each run after removing 
24 hours of transition time, as suggested by Vanhatalo et al. (2013). 

2.4.  Summary of methodological choices 

Table 2.2 provides an overview of the methodological choices made in the studies 
connected to the three appended papers and the papers’ relationships with the research 
purposes. 
 

Table 2.2. Overview of methodological choices in the appended papers. 
 Paper A Paper B Paper C 

Aim of the 
research objective 

I II I, II 

Type of paper Literature review Conceptual Tutorial 

Target audience 
Managers, researchers, 

and practitioners 
Researchers and practitioners 

Researchers and 
practitioners 

Tool for 
data collection 

Scopus TE process Revised TE process 

Methods for 
data collection 

Searches using 
keywords and queries 

DoE; 
Simulations 

DoE; 
SPC; 

Simulations 

Data analysis 

Sequential screening  
and classification of 

publications identified 
during the searches 

ANOVA 
ANOVA; 

Multivariate Hotelling T2 
chart 

Illustration of 
the results 

Summary of classified 
SPC and DoE 
challenges in 

continuous processes 

Two simulated examples BPMN flow charts; 
Two simulated examples; 

Software used Microsoft Excel® 

Design Expert® version 9; 
Matlab®; 

Matlab Simulink®; 
Microsoft Excel®; 

 

Bizagi Modeler®; 
Design Expert® 

version 10; 
Matlab®; 

Matlab Simulink®; 
Microsoft Excel®; 

RStudio; 

 



 

23 
 

3. RESULTS 

This chapter summarizes the results presented in the three appended papers and links these results 
to the state-of-the-art in the research area. The chapter ends with a presentation of the main 
contributions of the research.  

3.1.  SPC and DoE in continuous processes 

he technological advances characterizing today’s production environments, such 
as those of continuous processes, requires adaptation and new development of 
SPC and DoE methods. High-tech operations, robots, the development of new 

and inexpensive sensors, and increased storage capacity provide an exorbitant amount of 
process data, requiring that researchers to adapt SPC and DoE methods to the challenges 
of the big data era (Vining et al., 2015).  

Researchers must be aware of the needed research effort that this data rich 
environment brings to SPC and DoE so that practitioners can take full advantage of the 
methods by making proper adjustments. Moreover, these adjustments need managerial 
support, because they require resources and a company culture that understands the 
competitive advantage that SPC and DoE methods can offer (Hild et al., 1999; Bergquist, 
2015b). In continuous production, any managerial attempt to improve products and 
processes in order to reduce waste, increase productivity, optimize resource 
consumption, or to produce in a sustainable way should consider SPC and DoE methods 
and support the adjustments necessary for the data rich environment. The author’s view 
on the connection between these methods, challenges, and organizational decision-
making is summarized in the thought map in Figure 3.1. That is, top management can 
find support in improving competitive advantage of companies by encouraging the use 
of SPC and DoE methods. Researchers and practitioners need to develop methods and 
provide answers to the challenges posed by continuous processes. These answers can 
support the decision-making process of top management, while development requires 
managerial support in joint efforts for continuous improvement.  

The results of the literature review in Paper A are presented with this objective in 
mind. That is, the results help managers supporting the use of SPC and DoE methods, as 
well as making researchers and practitioners aware of SPC and DoE challenges in 
continuous processes, resulting in the need for methodological development. 

T 
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Figure 3.1. Connection between top managers and researchers, and practitioners to support SPC and 
DoE methods implementation and development.  

SPC in continuous processes 
The existing literature in the SPC field recognizes the need for control charts that can 
handle multiple quality characteristics or multiple process variables simultaneously 
(Kourti and MacGregor, 1995). There are several options to consider here. The Hotelling 
T2 control chart is commonly used for multivariate data with 10 or fewer variables 
exhibiting moderate cross-correlation. For larger numbers of variables and observations 
in industrial processes, there are several multivariate SPC tools available (Shi and 
MacGregor, 2000; Qin, 2012; Ge et al., 2013). The choice of multivariate SPC methods 
should depend on assumed process characteristics: Gaussian/non-Gaussian, 
static/dynamic, and linear/non-linear. The dimensions and degree of autocorrelation of 
the data will also affect the choice. Ge et al. (2013) classify these methods into five 
categories: Gaussian process monitoring methods (e.g., latent structure variable methods, such 
as PCA/PLS), non-Gaussian process monitoring methods (e.g., independent component 
analysis), non-linear process monitoring methods (e.g., neural networks), time varying and 
multimode process monitoring (e.g., adaptive/recursive methods), and dynamic process 
monitoring (e.g., dynamic multivariate SPC methods). Among these methods, PCA-
/PLS-based monitoring techniques are popular and important, having been used 
successfully in the process industry (e.g., see MacGregor and Kourti, 1995, Kourti et al., 
1996, and Ferrer, 2014). Taking advantage of the many times high cross-correlation 
between process variables, SPC based on latent variable methods reduces the dimensions 
of the monitoring problem while retaining the majority of the content of the data (Frank 
and Friedman, 1993; Kourti and MacGregor, 1995). When data are both autocorrelated 
and cross-correlated, a recommended approach is to expand the data matrix by adding 
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time-lagged versions of the original variables to transform the autocorrelation into cross-
correlation. Performing PCA on this extended data matrix is called DPCA (Ku et al., 
1995). 

Typically, continuous processes provide multivariate autocorrelated and cross-
correlated data that have been handled using PCA-/PLS-based monitoring techniques 
and their extensions. However, the literature review presented in Paper A highlighted 
some technical issues and development needs to improve the applicability of these 
methods. While the knowledge of the above-mentioned solutions can help managers to 
promote the adoption of these methods, researchers and practitioners should be aware of 
the following issues, because they need to be overcome. Relevant problems include the 
following:  

 how to select the number of latent variables to retain and lags to add in DPCA 
(Himes et al., 1994; Ku et al., 1995; De Ketelaere et al., 2015; Vanhatalo et al., 
2017), 

 fault detection/isolation (Kourti and MacGregor, 1996; Dunia et al., 1996; Yoon 
and MacGregor, 2001), and 

 how to handle outliers in data (Stanimirova et al., 2007; Serneels and Verdonck, 
2008).  

Moreover, Vanhatalo and Kulahci (2016) recently showed that control charts based on 
PCA can handle the cross-correlation, but that both PCA and its use in process 
monitoring are impacted by autocorrelation. Furthermore, autocorrelation affects the 
estimation of the covariance matrix, leading to an increased false alarm rate (Mastrangelo 
and Montgomery, 1995; Runger, 1996; Kulahci & Bisgaard, 2006). When assessing the 
process capability, the autocorrelation problem also extends to process capability analyses 
(Shore, 1997; Zhang, 1998; Sun et al., 2010; Lundkvist et al., 2012), but an extensive 
study of this issue is still lacking in the literature.  

The results of paper A also show that another important SPC challenge comes 
from the need to monitor real continuous processes run under closed-loop operation. In 
a closed-loop operation, unwanted deviations in controlled process variables are 
mitigated by adjusting a manipulated variable (MacGregor and Harris, 1990; Hild et al., 
2001). Therefore, closed-loop operations imply that the propagation of a disturbance 
through the process might not always be visible in the controlled response variable, but 
may instead be displaced to the manipulated variable. This behavior is well illustrated 
through the SPC example simulated in the revised TE process in Paper C. Here, the 
analysis of the results shows that the traditional approach of applying a control chart on 
(controlled) process output needs to be complemented with a control chart on the 
manipulated variables. The concurrent use of both control charts confirms the presence 
and effectiveness of the control system by analyzing the control chart for the controlled 
variables and identifying potential assignable causes by analyzing the control chart for the 
manipulated variables.  
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While the benefit of complementing SPC and EPC has already been explained in 
the literature (e.g., see Box and Kramer, 1992, Keats et al., 1996, and Box and Luceño, 
1997), further research is needed to adjust the traditional SPC paradigm when EPC is in 
place. 

DoE in continuous processes 
The results of the literature review conducted in paper A highlighted both the challenges 
and existing solutions when conducting experiments in continuous production processes. 
However, while the challenges affect all the experimental phases (i.e., planning, 
conducting, and analyzing the experiment), related solutions are not always available or, 
if available, need further development. 
 Following the recommendations of Coleman and Montgomery (1993) who 
highlight the critical importance of the planning phase, Vanhatalo and Bergquist (2007) 
provide a systematic approach to planning an industrial experiment in continuous 
processes. The authors provide a list of 12 important steps for the planning phase, where 
the need for both technical and organizational choices emerge due to the complexity of 
a large-scale experimentation. The choice of design preferences, need for restricted 
randomization, and factors levels are as critical as the need to assign responsibilities in 
coordinating the experiment or collecting relevant background information.  

Vanhatalo and Bergquist (2007) also recommend identifying the presence of 
controlled variables in the planning phase, suggesting that closed-loop operations affect 
the entire experimentation strategy. In Paper A, experimentation under a closed-loop is 
classified as one of the important issues when conducting experiments in continuous 
processes, because conventional DoE methods implicitly assume open-loop operations 
(Montgomery, 2012b). Paper B explicitly focuses on exploring the use of DoE in closed-
loop operations. Therefore, the reader is referred to Section 3.2, where experimentation 
under closed-loop operations is discussed in more detail.  
 Paper A also discusses issues that emerge when analyzing experiments conducted 
in continuous processes. Continuous processes are dynamic systems with inertia, meaning 
that the impact of an experimental factor change on the responses can take time to reach 
its full impact (Nembhard and Valverde-Ventura, 2003; Vanhatalo et al., 2010; Lundkvist 
and Vanhatalo, 2014). These transition times need to be considered in both the planning 
and the analysis phases. Moreover, responses from continuous processes are chronological 
sequences of observations, and their analysis relates to the field of time series (Bisgaard 
and Kulahci, 2011). He et al. (2015) review the methods that can be used to analyze 
dynamic process responses, and point out that there are several methods available to do 
so. These include, for example, functional analysis, time series analysis, and shape analysis. 
Nevertheless, it is fair to expect that these analysis methods will receive increasing 
attention from both academia and industry, owing to their considerable importance (He 
et al., 2015; Vining et al., 2015). 
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 Other challenges in the analysis phase are related to the need to use multivariate 
statistical analysis of the experiments. In continuous processes, the presence of many 
cross-correlated responses suggests that a univariate approach to analysis might be 
ineffective (MacGregor, 1997). PCA and PLS methods can be used to summarize the 
variation in the experimental response variables. Thus, the latent variables can be used as 
new responses to test the statistical significance of the effects of the experimental factors. 
El-Hagrasy et al. (2006), Vanhatalo and Vännman (2008), Baldinger (2012), and Souihi 
et al. (2013), among others, provide examples of multivariate analysis combined with 
DoE.  

3.2.  Experimentation in closed-loop operations 

Continuous production processes often operate under closed-loop control for plant 
security and personal safety reasons (Box and MacGregor, 1974; 1976). As highlighted 
in Paper A, closed-loop operations affect all the experimental phases, i.e. planning, 
conducting, and analyzing the experiment. The continuous interference of the 
controllers indeed makes experimenting challenging as the control action can potentially 
eliminate the impact of the experimental factors on the process responses (Box and 
MacGregor, 1974; 1976). Paper B thus explores issues of experimental design and analysis 
in processes operating under closed-loop control and illustrates how DoE can help in 
improving and optimizing such processes.  
 Ogata (2010, p. 7) defines an open-loop system as “a system where the output is 
neither measured nor fed back for comparison with a desired target.” To each desired 
target, there corresponds a fixed operating condition and the accuracy of the system 
depends on calibration. In an open-loop system, the experimenter can thus observe the 
potential impact of experimental factors changes in the process response(s). In this case, 
the purpose of DoE is essentially to reveal potential causal relationships between the 
experimental factors, i.e. process inputs, and the process response(s) (Figure 3.2). Instead, 
Ogata (2010, p. 6) defines a closed loop system as “a system that maintains a prescribed 
relationship between the output and the desired target by comparing them and using the 
difference as a means of control.” In a closed-loop system, given that the response is a 
controlled variable, an automatic controller compares the process response measurements 
to a target value, the so-called set-point value, and adjusts the measured deviation 
regulating a manipulated variable, namely, a process input (Figure 3.2). That is, in a 
closed-loop system, the causal relationships between manipulated variable and 
(controlled) process response are already established and known and are normally not the 
focus of the designed experiment. Moreover, the manipulated variables involved in 
control loops cannot be considered as potential experimental factors as they are not free 
to vary independently such as in an experimental design. 

Results of Paper B shows that experimentation under closed-loop operation can 
still be valuable. When controllers are in place, at least two experimental scenarios exist. 
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In the first scenario, the experimenter can consider any set of system inputs not involved 
in control loops as potential experimental factors. In this case, both the manipulated and 
the controlled variables are interesting process responses. The analysis of the manipulated 
variables can reveal if experimental factors affect important process phenomena controlled 
in the loops, whereas the analysis of the controlled variables can provide information 
about the effectiveness of the controllers. 

Open-loop system 

 

Closed-loop system 

 

Figure 3.2. Schematic overview of an open-loop system and a closed-loop system (inspired by Ogata, 
2010). 

In the second scenario, the experimenter can change the set-point of the control 
loops (experimental factors) to study their effect on overall process performance indicators 
such as cost, quality and/or energy consumption (response). The suggested experimental 
scenarios can generate knowledge and contribute to process improvement in closed-loop 
systems, as they make it possible to study: 

 the presence of the controllers if it suspected but unknown, 
 the efficiency and cost effectiveness of the controllers, 
 the impact of experimental factors on process phenomena, and 
 how the set-points of the controlled loops affect process performance 

indicators. 



RESULTS 

29 
 

3.3.  The TE simulator for SPC and DoE methods development 

It is usually difficult to test new SPC or DoE methodological developments in real 
continuous process plants. Method development of SPC does not usually affect the 
production plan but the need to have datasets with specific characteristics, such as sample 
size, sampling time, and occurrence of a fault, could limit, or slow down the testing 
process. On the contrary, DoE method development may jeopardize the production 
plant and affect the production goals. Therefore, it may be inconvenient to invest time 
and money on lengthy experimental campaigns. Simulation tools can thus be 
instrumental in methodological research on both SPC and DoE.  
 Reis and Kennet (2017) map a wide variety of interactive resources and simulators 
that can be used to teach statistical methods such as Virtual Lab in Statistics, StatLab, 
PENSIM, RAYMOND, and many others. The authors classify the simulators based on 
three characteristics: (1) linear/non-linear elements in the simulation model, (2) time 
independent/dependent behavior, and (3) size of the simulator. In this classification 
scheme, the TE process is considered one of the most complex simulators as it is a large-
scale, nonlinear, and dynamic simulator. Moreover, the TE process is open-loop unstable 
and needs to be run in closed-loop operations (Downs and Vogel, 1993).  

The decentralized control strategy of the TE process (Ricker, 1996) is attractive 
from a SPC and DoE method development perspective because it can mimic the 
challenges frequently found in continuous processes (see Sections 1.3.1 and 1.3.2). 
Ricker (2005) devised a Matlab Simulink® model of the TE decentralized control 
strategy. Recently Bathelt et al. (2015a; 2015b) implemented a new version known as 
revised TE process simulator also using the Matlab Simulink® interface. 

Table 3.1 provides a comparison of the main characteristics of the decentralized TE 
process simulator implementations by Ricker (2005) and Bathelt et al. (2015b).  

 
Table 3.1. Comparison between the characteristics of the decentralized TE process by Ricker (2005) 
and by Bathelt et al. (2015b).  

Characteristic 
Decentralized 
TE process 

(Ricker, 2005) 

Revised Decentralized  
TE process  

(Bathelt et al., 2015b) 
Set simulation seed  X 
Set simulation length and sampling frequency X X 
Introduce process disturbances X X 
Scale process disturbances  X 
Monitor output of the disturbances  X 
Random generator uses different state variables for 
process disturbances and measurements noise  X 

Possibility to pause and resume the simulation 
using final process conditions 

X X 

Repeatability of simulation results  X 
Graphical User Interface NA NA 
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As shown in Table 3.1, the revised TE process simulator offers more flexibility to 
do simulations than the simulator originally developed by Ricker (2005). The new 
possibilities, described in Paper C, widen the usability of the revised TE process simulator 
making it more suitable for methodological tests of SPC and DoE methods. The results 
of the examples illustrated in Paper B and C, simulated using Ricker’s simulator and the 
revised TE process respectively, highlight this concept as well. The possibility to change 
the seed of each simulation and to scale the disturbances make it possible introduce 
random variation needed for random simulations, which is essential for testing SPC and 
DoE methods. However, the revised TE process lacks a graphical user interface (GUI) 
and new users would probably find it challenging to understand the details of the revised 
TE process and to get it to run. Results of Paper C are illustrated with this awareness and 
aim to increase the possibility of interaction between a new user and the simulator. 
Therefore, flowcharts using the Business Process Modelling Notation (BPMN) provide 
a step-by-step description on how to get started with the simulator and simulate data for 
SPC and DoE applications.  

3.4.  Main contributions 

This research explicitly explores and describes challenges that are usually encountered 
when applying SPC and DoE methods in continuous production processes. Exploring 
and describing these challenges can be considered a contribution for supporting the use 
of SPC and DoE methods in continuous processes and for involving, on different levels, 
managers, practitioners, and researchers in their future methodological development.  

 An important contribution is a description of the benefits of using DoE methods 
in a closed-loop environment that is a different framework than the one usually found in 
textbooks or traditional DoE applications. Specifically, the results contribute to increase 
the understanding of DoE in these environments and to widen the applicability of DoE 
methods for closed-loop systems. The traditional open-loop experimental framework is 
adjusted to the closed-loop framework and implications are also discussed. In this 
adjustment, the two suggested closed-loop experimental strategies classify the potential 
experimental factors as either a set of system inputs not involved in control loops or the 
actual set-point of the control loops. In the former case, the manipulated variables and 
the controlled variables become the responses. In the latter case, typical responses include 
overall process performance indicators such as cost and/or quality. 

A further contribution relates the use of SPC methods when engineering process 
control is place. Under closed-loop control, control actions may partly or completely 
displace the impact of a disturbance from the controlled variables to manipulated 
variables. The traditional approach of applying a control chart on the (controlled) process 
output then needs to be supplemented with a control chart on the manipulated variables. 

Other important contribution of the research is to provide a detailed tutorial of a 
the TE process, a flexible simulation tool, that can be used to further develop SPC and 
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DoE methods to overcome the challenges offered by continuous process environments. 
The TE process has been used for methodological work especially in the SPC field for a 
long time. However, the previous simulator’s deterministic nature has likely hampered 
researchers in doing methodological work and making fair comparisons of methods. By 
following the ideas and recommendations presented in this research, the deterministic 
nature of the TE process can be overcome and its usability for method development 
substantially increased. 
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“Somewhere, something incredible is 
 waiting to be known.” 

Carl Sagan 
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4. FUTURE RESEARCH DIRECTIONS 

This chapter presents ideas and new questions for future research that emerged during the research 
process. My plan is to pursue these future research directions as part of the PhD studies and beyond.  

 believe that SPC and DoE methods are far from being obsolete and that companies 
will not take full advantage of the big data transition without proper adjustments of 
these statistically based methodologies for learning and improvement. In the next 

years, it is reasonable to assume that the research community will increase the attention 
around the challenges offered by the modern manufacturing environments. Both 
methodological and application-oriented research is needed to effectively and efficiently 
solve problems coming from process industry. 

The background and the development of this research allows me to undertake 
both methodological and applied future research directions. The fact that a more flexible 
simulator of the TE process is available allows more in-depth studies of the challenges 
described in the thesis such as multivariate nature of process data, process dynamics, 
closed-loop operations. Moreover, thus far most of the suggested multivariate SPC 
methods have been tested using pre-simulated training and testing data sets in the TE 
process. The characteristics of the revised TE simulator make it possible to revisit 
suggested multivariate SPC methods and to perform improved and more realistic 
comparative studies between existing methods or between existing and new methods.  

At this stage of the research process, I personally would like to pursue the research 
related to the challenge of applying SPC and DoE methods in continuous processes under 
closed-loop operations. This direction is a natural continuation to build on the results 
already accomplished so far. My priority will be on development of DoE methods in 
closed-loop operation and therefore the next research steps planned are described below 
in three studies. 

Study 1 
Paper B explores issues of experimental design and analysis in processes operating under 
closed-loop control. However, Paper B mainly focuses on how to conduct experiments 
in closed-loop systems and illustrate examples of why it may still be valuable to experiment 
in such process environments. I believe that the analysis of experimental results in these 
environments deserves further attention.  

In Paper B, the experimental analysis was handled taking the time series nature of 
the data into account but used a simplified approach based on the run averages as scalar 
response values. However, analysis methods to model the dynamic relations between 
several experimental factors and the time series response(s) under closed-loop operations 
would be interesting to explore. From this perspective, the first scenario described in 
Paper B is of special interest (see also Section 3.2). By a more in-depth study of the 
control engineering theory, I would like to develop a two-step analysis method for 

I 
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analyzing two-level factorial designs with time series responses. In the first step, the 
closed-loop system will be transformed to the relative open-loop system by filtering back 
the effect of the control action on the controlled output. In the second step, the effect of 
the experimental factors changes on the manipulated variables, on the controlled output, 
and on the “back-filtered” output will be analyzed and compared. Analysis methods 
based on transfer function-noise models for a multiple input setting and the standard 
ANOVA approach will be compared.  

The two-steps analysis method will first be performed on process data simulated 
by using a small-scale simulator in the Matlab Simulink® interface and then, if possible, 
using the revised TE process. Because this study requires knowledge of engineering 
control theory, system identification, and DoE, collaborations with PhD students or 
researchers who have a control engineering background is a potential way forward.  

Study 2  
Further interesting research relates on how to adapt and apply sequential experimentation 
techniques, such as RSM and EVOP, in processes run under closed-loop control. 
Adjustments of the experimentation strategy are also needed in this framework. For 
example, the analyst needs to decide on which response variable(s) to optimize.  

This research study will build on the results of Paper B and “Study 1”. The two 
experimental scenarios described in Paper B (see also Section 3.2) will be used to conduct 
experiments in closed-loop systems. RSM and EVOP methodologies will be then 
adjusted for the two experimental scenarios. 

In the first scenario, input variables not involved in control loops will be the 
experimental factors. In this case, using the results of “Study 1”, the closed-loop will be 
transformed to the relative open-loop system. An optimization procedure based on the 
RSM or EVOP approach will be implemented for the “back-filtered” output. The best 
setting of the experimental factors will be the one that provides the response value closest 
to the target value (i.e. the set-point of the control loop). It is fair to assume that this 
strategy will minimize the needed control action and therefore the overall cost for 
controlling and stabilizing the process. Data will be analyzed using the most promising 
analysis method identified in “Study 1”. 

In the second scenario, the set-points of the control loops will be the experimental 
factors. An optimization procedure based on the RSM or EVOP approach will be 
implemented for a process performance indicator such as process cost or product quality. 
Data will also be analyzed using the most promising analysis method identified in “Study 
1”. The best setting of the experimental factors will be the one that optimize the process 
performance indicator.  

For both scenarios, data will be simulated using a using a small-scale simulator in 
the Matlab Simulink® interface and, if possible, using the revised TE process. 
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Study 3 
The closed-loop operations environment also offers interesting research opportunities in 
the SPC field. In Paper C, the SPC example shows that the concurrent use of control 
charts based on controlled process outputs and manipulated variables is important to judge 
if a process operates in statistical process control. However, this result may be difficult to 
generalize because process variables may behave differently depending on the 
implemented control strategy and the type of fault. I think it would be interesting to 
understand how SPC charts behave for different faults and for different implemented 
control strategies. Such a “scenario analysis” could provide useful guidelines for 
practitioners on how to use SPC charts when different automated control strategies are 
in place and different kind of faults occur. 

Process data for the different scenarios will be simulated using a small-scale 
simulator in the Matlab Simulink® interface and then, if possible, using the revised TE 
process. 
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Abstract  
 
Data analytics remains essential for process improvement and optimization. Statistical 
process control and design of experiments are among the most powerful process and 
product improvement methods available. However, continuous process environments 
challenge the application of these methods. In this article, we highlight SPC and DoE 
implementation challenges described in the literature for managers, researchers and 
practitioners interested in continuous production process improvement. The results may 
help managers support the implementation of these methods and make researchers and 
practitioners aware of methodological challenges in continuous process environments.  
 
Keywords: Productivity, Statistical tools, Continuous processes 
 
 
Introduction 
Continuous production processes (CPPs), often found in, e.g., pulp and paper, chemical, 
steel, or other process industries, constitute a significant part of goods production. In a 
CPP, the product is gradually and often with minimal interruption refined through 
different process steps (Dennis and Meredith, 2000). Raw materials in these processes 
often stem directly from natural resources and characteristics of inputs such as ores or 
wood will therefore vary substantially. CPPs are often large-scale and tend to include 
interconnected process steps and complex flows. Continuous production environments 
are typically inflexible producing only one or a few products, require large investments, 
and occupy a large area. Wear and varying raw material characteristics are examples of 
frequent disturbances, making engineering process control (EPC) necessary to stabilize 
product quality and process characteristics (Montgomery et al., 1994; Box and Luceño, 
1997). Although EPC keeps quality characteristics on target, CPPs require continuous 
improvements to remain competitive (Hild et al., 2001).  
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The main possibilities to learn and improve any process come from the analysis of 
observational and experimental process data. While first principles support correlations 
among observational data, process analyst usually needs experiments to discover causal 
relationships in industrial processes (Montgomery, 2012).  

In this article, we focus on statistical process control (SPC) and design of experiments 
(DoE) since they constitute two fundamental process improvement methodologies. The 
purpose of SPC is to monitor the process and reduce process variation through 
identification and elimination of assignable causes of variation. In the SPC field 
univariate and multivariate control charts constitute the most important improvement 
tools. Alarms issued by control charts indicate the presence of potential assignable causes 
(i.e., unusual events). Root-cause analysis is the next step to uncover reasons for these 
events and if possible, to eliminate their causes. SPC is a long-term improvement 
methodology, while EPC is a short-term control strategy that transfers variability from 
the controlled variable to manipulated variables (MacGregor and Harris, 1990). The 
purpose of DoE is to plan, conduct and analyse experiments to improve products and 
processes in a systematic and statistically sound manner.  

Since their introduction in the early twentieth century, management controlled 
improvement programs such as Robust Design, Total Quality Management, and Six 
Sigma have been promoting these methodologies. Their apparent omission from the 
currently popular lean program descriptions, as well as methods within popular data 
analytics and machine learning, indicate that textbook implementation of these methods 
may be ill-suited for today’s production environment. It is becoming increasingly 
apparent that standard SPC and DoE methods need to be adapted to challenges such as 
rapid data collection from multiple and interconnected sources and massive datasets 
(Vining et al., 2015), which are common for CPPs. We argue that DoE and SPC are far 
from obsolete and that companies will not take full advantage of the big data transition 
without such proper statistically based methodologies for learning and improvements. 
However, practitioners must be aware of the challenges that this data rich environment 
brings to SPC and DoE.  

McAfee et al. (2012) highlight leadership and decision-making as important 
management challenges in the big data era. If managers of CPPs understand SPC and 
DOE challenges, they can support pairing their data with effective improvement methods. 
Hild et al. (1999) suggest using thought maps to promote improvement methods and 
critical thinking. While managers need to be aware of techniques such as DoE and SPC 
to reduce resources, to meet customer requirements and, perhaps most important, they 
should also promote their use (Lendrem et al., 2001; Bergquist and Albing, 2006; Tanco 
et al., 2010).  

The purpose of this article is to highlight challenges and development needs described 
in the literature for SPC and DoE in CPPs. We also provide some examples of state-of-
the-art solutions to current challenges.  

 
Method 
Literature searches were conducted in April 2017 using the Scopus database, limited to 
publications in English in the last 30 years (1987->). Table 2 and 3 show sequential search 
steps and keywords used. We examined reference lists of selected publications in Search 
4 to minimize the risk of missing relevant publications, following recommendation by 
Randolph (2009).  
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Table 2 – Search terms and number of publications in each step in the SPC search. 
Search # Search terms and queries Step 1 Step 2 Step 3 Step 4 Step 5 

Search 1 
(“statistical process control”) AND 

(“continuous process” OR “continuous 
production”) 

136 32 14 

C
la

ss
ifi

ca
tio

n 

23  
(7) 

Search 2 
(“statistical process monitoring”) AND 
(“continuous process” OR “continuous 

production”) 
16 2 0 

Search 3 (“statistical process monitoring”) AND 
(“process industry”) 9 4 3 

Search 4 References of selected publications in 
Search 1, 2 and 3 436 64 35 

 
The initial sample from Step 1 is the number of publications found using the keywords 

in Scopus. Duplicates were deleted in each search. In Step 2, the initial sample was 
reduced by screening titles, author keywords, and sources. Conference articles were 
excluded if a later journal article of the same authors and with the same title was found. 
Many publications were rejected after abstracts were read in Step 3. We then classified 
challenges or development needs for DoE and SPC in CPPs in Step 4. Publications were 
further analysed in Step 5 to identify the central or pivotal publications on which our 
results are mainly based. Additional relevant publications known by the authors 
(indicated in brackets at Step 5 in Tables 2 and 3) were also added and analysed.  

 
Table 3 – Search terms and number of publications in each step in the DoE search. 

Search # Search terms and queries Step 1 Step 2 Step 3 Step 4 Step 5 

Search 1 (“design of experiments”) AND (“continuous 
process” OR “continuous production”) 49 27 8 

C
la

ss
ifi

ca
tio

n 

20 
(11) 

Search 2 (“experimental design”) AND (“continuous 
process” OR “continuous production”) 50 25 15 

Search 3 (“experimental design”) AND (“process 
industry”) 12 7 2 

Search 4 References of selected publications in 
Search 1, 2 and 3 877 66 40 

 
SPC challenges in continuous production processes 
The literature review revealed many technical solutions to challenges arising when using 
SPC in continuous processes. The aim of this section is to provide an overview of 
challenges and potential strategies that managers can promote. Technical details are 
therefore not be completely covered in this article.  
 
Process transitions and data acquisition  
Operating conditions frequently change due to grade changes, restarts or process 
adjustments and process inertia leads to transition phases. Data storage should be 
designed as to preserve the history of transitions phases and interrelation of process 
variables during transitions (Kourti, 2003). Process transitions may involve loss of 
production time and increased costs due to produced sub-grade products. The monitoring 
phase in SPC should begin after the transition is complete (Duchesne et al., 2002). 
Moreover, properly stored historical data is crucial to gain process knowledge.  
 
Multivariate nature of process data 
Important reactions such as phase changes from ore to metal are difficult to measure 
accurately. Instead, engineers try to measure a multitude of secondary variables such as 
temperatures and pressures as proxies to the real, hidden process events. Technological 
development continuously reduces sensor costs and increases data storage capacity. 
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Today measuring, e.g., a reactor temperature at multiple locations is easily achieved. With 
many underlying phenomena, the analyst soon has hundreds of cross-correlated variables 
that need simultaneous monitoring.  A univariate approach with each variable in separate 
control charts is inefficient and often misleading.  

Fortunately, there are many multivariate SPC tools available (see, e.g., Shi and 
MacGregor, 2000; Qin, 2012, and Ge et al., 2013). These methods can be classified in 
five categories: Gaussian process monitoring methods (e.g. latent structure variable 
methods), non-Gaussian process monitoring methods (e.g. independent component 
analysis), non-linear process monitoring methods (e.g. neural networks), time varying 
and multimode process monitoring (e.g. adaptive/recursive methods), and dynamic 
process monitoring (e.g. dynamic multivariate SPC methods). The choice of multivariate 
SPC method depends on assumed process characteristics: Gaussian/non-Gaussian, 
static/dynamic, and linear/non-linear. Data characteristics such as if data are two or 
multidimensional or if data can be assumed to be time independent also affect the choice. 
An important multivariate process monitoring technique is to use a few linear 
combinations of the process variables (the so-called latent variables). Multivariate 
monitoring based on latent variables such as Principal Component Analysis (PCA) and 
Partial Least Square (PLS) are popular and important especially due to their 
dimensionality reduction properties (Frank and Friedman, 1993; MacGregor and Kourti, 
1995). Kourti et al. (1996) provide a review of examples with industrial applications of 
latent variable monitoring techniques in process plants such as a chemical smelter, a 
polymerization process, a pulp digester, and others. Ferrer (2014) illustrates how latent 
variable methods for process understanding, monitoring and improvement can be used 
effectively in a petrochemical CPP. Latent variable techniques use the process variables’ 
cross-correlation. Process monitoring uses a few linear combinations of the process 
variables (the so-called latent variables). Commonly, a Hotelling T2 control chart 
simultaneously monitors the retained latent variables from the PCA/PLS model whereas 
the squared prediction error (Q) chart monitors the model’s residuals. When the charts 
signal an out-of-control observation, these composite statistics are often decomposed into 
the original variables for fault identification (Himes et al., 1994; Ku et al., 1995; Kourti 
and MacGregor, 1996; Yoon and MacGregor, 2001; De Ketelaere et al., 2015) 

 
Serial correlation (autocorrelation) 
Process variables in CPPs are often highly (and positively) autocorrelated due to high 
sampling rates and process dynamics. This challenge is increasing due to sensor 
development and availability of almost unlimited data storages. Serial correlation usually 
means that the current observation is similar to the previous one. Since autocorrelation 
affects the estimation of the process’ variability, autocorrelation can lead to increased 
false alarm rates in both univariate and multivariate control charts or incorrectly estimated 
process capability indices (Tracy et al., 1992; Runger, 1996; Mastrangelo et al., 1996; 
Bisgaard and Kulahci, 2005; Jarrett and Pan, 2007). 

Two ways to handle SPC of multivariate, autocorrelated data have been suggested. 
The first employs a standard univariate or multivariate control chart but with adjusted 
control limits to achieve the desired in-control alarm rate. The second requires ‘filtering 
out the autocorrelation’ through a univariate or multivariate time series model and 
applying a control chart to the residuals from this model. However, fitting a multivariate 
time series model with many variables is difficult.  

Latent variables based SPC is recommended for cases with multiple and highly cross-
correlated process variables. Vanhatalo and Kulahci (2015) show that autocorrelated 
process variables still affect the monitoring performance of PCA based control charts 
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since the principal components also are autocorrelated. Control charts based on PCA/PLS 
are well equipped to deal with cross-correlated, independent, and stationary data but will 
be affected by autocorrelation. De Ketelaere et al. (2015) review extensions of PCA/PLS 
based monitoring methods available for more complex process and data characteristics, 
see Figure 1. Specifically, dynamic PCA/PLS have been promoted for handling the 
autocorrelation by adding time-lagged variables (Ku et al., 1995) to transform 
autocorrelation into the cross-correlation that is suitable for PCA/PLS. 

 

 
Figure 1 – Process and data challenges and available PCA/PLS methods. 

 
Process capability analyses are important and popular for assessing process performance, 
frequently used in six sigma companies and promoted by various management and 
industrial systems standards. However, positive autocorrelation would lead to an 
overestimation of process capability indices (Shore, 1997; Zhang, 1998; Sun et al., 2010; 
Lundkvist et al., 2012).  

The literature seems to lack a comprehensive solution to assessing process capability 
from processes with autocorrelated and multivariate data. Pan and Huang (2015) develop 
two multivariate process capability indices for autocorrelated data and compare their 
performance via a simulation study and, Mignoti and Oliveira (2011) propose an 
adjustment of multivariate capability indices to handle autocorrelation. 

 
Presence of engineering process control  
Fault detection using SPC control charts could fail when EPC is applied. Integrating SPC 
and EPC requires applying control charts to manipulated and not to controlled process 
variables. Box and Kramer (1992) provide a comprehensive discussion on the interface 
between EPC and SPC and Montgomery et al. (1994) demonstrate the effectiveness of 
integrating SPC and EPC in process surveillance. Contributions related to this challenge 
for most CPPs can also be found in Box and Luceño (1997), Janakiram and Keats (1998), 
Capilla et al. (1999), Tsung (2000) and in Huang and Lin (2002). 
 
DoE challenges in continuous production processes 
The literature seems unanimous on the benefits of using DoE but also on the need of 
managerial support for increased use of DoE in industry (Tanco et al., 2009; Bergquist, 
2015b). In this section, we describe specific challenges when applying DoE in CPPs but 
also suggest remedies. 



 

6 
 

 
 
Large scale and costly experimentation 
Operations in CPP plants typically occur around the clock with few operators in charge. 
Full-scale experiments may thus involve the majority of the production staff, making 
managerial support, coordination, and information flow essential. Moreover, the often 
lengthy experimental campaigns can jeopardize the production plan. Previously 
unexplored factor settings may lead to production of low-grade products. Time and costs 
are therefore unavoidable constraints. Nevertheless, the need for improvements often 
make experimentation necessary. Relevant examples include Wormbs et al (2004) who 
describe experimentation to evaluate production methods of milk using a three factors, 
two-levels full factorial design in a dairy company and, Gonnissen et al. (2008) who show 
how a continuously produced powder mixture can be optimized using DoE.  

We have found two best practices that managers can promote: (i) support and allocate 
resources to the planning phase of the experiment and (ii) create awareness of 
experimental strategies suitable for large scale experimentation. 

Montgomery (2012) and Box et al. (2005) highlight the planning activities preceding 
the actual experiments. However, recognizing that the planning phase is seldom a taught 
skill, Coleman and Montgomery (1993) provide a systematic approach to plan an 
industrial experiment. Later, Vanhatalo and Bergquist (2007) adapt this approach to 
CPPs. Beside a well-chosen design, the planning phase should include, e.g., a clear 
problem statement, background such as expert knowledge or previous experiments, and 
someone responsible for coordination and information flow. Of special importance for 
CPPs is a list of experimental restrictions such as the number of possible experimental 
runs, easy/hard-to-change factors, randomization restrictions and design preferences.  

Due to restrictions, cost, and time constraints, experiments in CPPs typically involve 
few factors, runs and replicates (Vanhatalo and Bergquist, 2007). Two-level (fractional) 
factorial designs are especially important to reduce the number of runs and factor level 
changes (Bergquist, 2015a). Box-Behnken designs also require few runs and are 
particularly suitable when extreme regions of the experimental space need to be avoided 
(Stazi et al., 2005; Kamath et al., 2011; Iyyaswami et al., 2013). Needs for restricted 
randomization, for instance to minimize transition times, may require split-plot designs 
(Sanders and Coleman, 1999; Bjerke et al., 2008; Vanhatalo and Vännman, 2008).  

Response surface methodology (Box and Wilson, 1951; Myers et al., 2004) and 
evolutionary operation (Box, 1957) are two useful sequential experimental strategies 
when the goal is process optimization. Kvist and Thyregod (2005) demonstrate 
evolutionary operation for optimizing an industrial enzyme fermentation process.  

 
Closed loop process operation 
Applying EPC means running CPPs under closed-loop control, which complicates 
experimental design and analysis. Conventional DoE methods make the implicit 
assumption of open-loop operation in which effects of changes of experimental factors 
on responses may be studied directly. In closed-loop, many potentially interesting 
variables are kept around a certain values (set-points) to achieve desired product quality 
and/or for plant safety reasons. Potential effects of experimental factors on controlled 
variables are masked when manipulated variables are adjusted to counteract their 
deviations from set-points (Figure 2).  

Capaci et al. (2017) suggest two closed-loop experimental strategies that classify the 
potential experimental factors as either a set of system inputs not involved in control loops 
or the actual control loop set-points, see Figure 2. In the former case, the manipulated 
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variables become the responses. The experimenter can also use controlled variables as 
responses to study controller effectiveness. In the latter case, typical responses include 
overall process performance indicators such as cost and/or quality. 

 

 
Figure 2. Schematic overview of process operating under closed-loop control 

 
Process transitions and time series responses  
High sampling frequencies in CPPs produce time series responses. Moreover, process 
dynamics often cause effects of experimental factors to develop gradually and then 
stabilize (Nembhard and Valverde-Ventura, 2003; Bisgaard and Khachatryan, 2011). 
These process transitions need consideration. Vanhatalo et al. (2013) develop possible 
analysis methods for experiments with time series responses. If the analyst can estimate 
the transition time (see for example Vanhatalo et al., 2010), the analyst can (i) use 
averages of the response in each run after eliminating transition time or (ii) use transfer 
function-noise modelling. However, transition times may prolong experimentation since 
it may be unclear when the process reaches steady state. Lundkvist and Vanhatalo (2014) 
apply a version of the second method to model time series of factors and responses of a 
full-scale blast furnace experiment. He et al. (2015) provide a recent review of additional 
available methods to analyse dynamic process responses in DoE. 
 
Multivariate responses 
Cross-correlations among responses often make multivariate analysis methods effective. 
Applications of multivariate projection methods such as PCA and PLS have been used to 
reduce the dimensionality and restrict the loss of information compared to univariate 
response analysis. A multivariate analysis approach also controls the Type I error rate. 
Vanhatalo and Vännman (2008) use principal components as new responses for a blast 
furnace experiment. El-Hagrasy et al. (2006), Baldinger (2012) and Souihi et al., (2013) 
provide additional multivariate analysis examples in DoE. 
 
Conclusions and discussions 
In this article, we focus our attention on discussing challenges of employing SPC and 
DoE for improving CPPs. Existing challenges do not mean that these methods cannot be 
used or should be discouraged. Similar or other challenges will be encountered also in 
other data analytics methods as in machine learning or neural networks. Managers of 
CPPs environments need to be aware that data-rich environments produce challenges for 
most employed methods. This is true also in applying SPC and DoE. We are aware that 
many of the mentioned challenges are not unique for CPPs and lie outside of the general 
managerial knowledge domain. A managerial implication is thus to guide analysts to a 
proper choice of tools by posing questions of how to address these challenges. We 
recommend that managers should solicit the competence of a statistically trained data 
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analyst until process engineers gain such competence. This is especially true during SPC 
method selection, or when designing and analysing experiments. 

Our literature review has revealed challenges in using SPC and DoE in CPPs, but also 
many remedies to overcome those challenges. Applications of SPC in CPPs are often 
multivariate, need to deal with autocorrelation and process transitions, as well as to work 
alongside EPC procedures. DoE may need to deal with the large-scale, closed-loop 
operation and multivariate time series responses. An important message is also that SPC 
and DoE methods can be applied readily using proper adjustments presented in the 
literature. We also recommend managers to make sufficient resources available to 
engineers and analysts to adapt methods and to acquire software that can support 
application. Software are continuously developing to meet some of the challenges we 
highlight in this article. Examples of commercial software that can aid the application of 
SPC in CPPs are Prosensus® (www.prosensus.com), Simca® (www.umetrics.com), and 
Unscrambler X® (www.camo.com). Available DoE software include JMP® 
(www.jmp.com), Design Expert® (www.statease.com), and Modde® 
(www.umetrics.com). For the more experienced analyst free software such as the R 
statistics software are interesting alternatives.  
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Exploring the Use of Design of Experiments in
Industrial Processes Operating Under Closed-
Loop Control
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Erik Vanhataloa

Industrial manufacturing processes often operate under closed-loop control, where automation aims to keep important
process variables at their set-points. In process industries such as pulp, paper, chemical and steel plants, it is often hard to
find production processes operating in open loop. Instead, closed-loop control systems will actively attempt to minimize
the impact of process disturbances. However, we argue that an implicit assumption in most experimental investigations is
that the studied system is open loop, allowing the experimental factors to freely affect the important system responses. This
scenario is typically not found in process industries. The purpose of this article is therefore to explore issues of experimental
design and analysis in processes operating under closed-loop control and to illustrate how Design of Experiments can help in
improving and optimizing such processes. The Tennessee Eastman challenge process simulator is used as a test-bed to
highlight two experimental scenarios. The first scenario explores the impact of experimental factors that may be considered
as disturbances in the closed-loop system. The second scenario exemplifies a screening design using the set-points of
controllers as experimental factors. We provide examples of how to analyze the two scenarios. © 2017 The Authors Quality
and Reliability Engineering International Published by John Wiley & Sons Ltd

Keywords: Design of Experiments; engineering control; feedback adjustment; simulation; Tennessee Eastman process

1. Introduction

I
ndustrial processes often involve automated control systems to reduce variation of quality characteristics or variables affecting
plant safety. Sometimes, the control relies on human intervention, such as subjective evaluation of the process state followed
by an operator’s control action. Processes operating under such control regimes are operating under some form of closed-loop

control. Experimenting in these processes will be challenging due to controllers’ continuous interference, see Box and MacGregor.1,2

Because the control action will potentially eliminate the impact of experimental factor changes, experimentation in closed-loop
systems may be seen as futile. However, we argue that well designed and properly analyzed experiments run under such conditions
can yield valuable information.

This article relates to system identification, which aims at building mathematical models of dynamic systems based on observed
data from the system, see Ljung.3 Experimental design in that sense typically concerns the selection of a proper input signal
disturbance to discover the causal relationships between the disturbance and the responses or manipulated variables. This way,
system identification allows for the estimation of model parameters to optimize a feedback controller, see, e.g. Jansson.4 Typically,
experimental design research in the system identification field studies ‘optimal’ input signals to model the system.

In this article, we are primarily concerned with factor screening, factor characterization or process improvement and optimization
rather than modeling process dynamics through factors that are already known to affect the response. Similar to system identification
experiments, allowable factor ranges are usually restricted, the experiments could be run in full-scale production and the number of
experimental runs are limited. However, compared to system identification, the experiments we consider are run for longer periods of
time and, most importantly, they have a more overarching purpose of improving or optimizing a process rather than to guarantee
stability of a control loop.
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Closed-loop environments add complexity to experimental design and analysis because the control strategy affects the choice of
experimental factors. For example, some input variables are manipulated within control loops and therefore may not be suitable as
experimental factors. Moreover, even though closed-loop operation is common, we argue that Design of Experiments (DoE) literature
typically rests on the implicit assumption that the studied system is operating in open loop, hence allowing the experimental factors
to freely affect the response(s). However, as pointed out by, e.g. Vanhatalo and Bergquist5 and Hild et al.,6 process control systems are
designed to maintain the important process variables at their set-points with low variability. Hence, control loops may counteract
deliberate changes of experimental factors and thereby displace the effect from typical responses to manipulated variables. An
analysis implication is that these manipulated variables instead may have to be used as responses to understand the experimental
factors’ impact on the system.

The purpose of this article is therefore to explore experimental design and analysis issues in processes operating under closed-loop
control and to illustrate how DoE can add value in improving or optimizing such processes. We will pursue this through the help of a
process simulator. Process simulators in general have limitations in mimicking the behavior of a real process, but they also offer the
flexibility required for methodological developments without jeopardizing plant safety or product quality.

A well-known simulator in the engineering control community is the Tennessee Eastman (TE) challenge chemical process simulator
first described by Downs and Vogel.7 The TE simulator has been primarily used in the development of different process control
strategies and for the development of statistical process monitoring methods mainly in chemometrics literature, see for example
Kruger et al.8 In this article, we run the TE process with a decentralized control strategy to simulate and illustrate experiments in a
closed-loop system.

The remainder of this article is organized as follows: Section 2 establishes important concepts and provides a general comparison
of open loop and closed-loop systems from a DoE perspective. Section 3 provides a general description of the TE process simulator
and the chosen control strategy. Section 3 also outlines the two experimental scenarios we illustrate in closed-loop operation of the
process. The experimental scenarios are elaborated and analyzed in Sections 4 and 5, respectively. Finally, conclusions and discussion
are provided in Section 6.

2. Experiments run in open vs. closed-loop systems

Experiments imply that one or many input variables (experimental factors) are allowed to vary to affect the output (response(s)) with
the aim of revealing potential causal relationships (effects) between factors and responses, and providing estimates of these effects.
The response could be also affected by random disturbances, see Figure 1.

In a process operating under closed-loop control, unwanted variable deviations are mitigated by adjusting a manipulated variable,
see Figure 2.

From an experimental perspective, the manipulated variables involved in control loops are not potential experimental factors. In
fact, because manipulated variables are involved in control loops, the control engineers have an idea, e.g., from a past experiment,
how the manipulated variables affect the response. In relation to Figure 2, the experimental factors in a closed-loop setting should
be viewed as disturbances to the system operating under closed-loop control. The potential effects of a disturbance on the controlled
variable(s) are therefore typically masked and displaced to one or several manipulated variables if the control system is working

Figure 1. Experimental paradigm for open-loop operation. Figure inspired by Montgomery.9

Figure 2. Schematic overview of a process under closed-loop control.
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properly. This constitutes the first message we would like to convey in this article. That is, if the control action is ignored, the
experimental factor changes will likely not affect the response (the controlled variable) significantly. An erroneous conclusion from
the lack of detectable reaction would then be, depending on the effectiveness of the control action, that the factor is unimportant.
However, if the presence of the controller is suspected or known, controlled variables may be used as responses primarily to test
the presence and the effectiveness of the controllers. Manipulated variables may thus be considered as responses to study the impact
of the experimental factors on the system and its dynamics due to the displacement of the potential effects from controlled to
manipulated variables.

We classify experimental factors for processes operating under closed-loop control as (i) either a set of system inputs not involved
in any control loop (should be viewed as disturbances in Figure 2) or (ii) the actual set-point values in the control loops. In the former
scenario, both the manipulated and controlled variables can be used as experimental responses, while in the latter case more natural
responses may be overall process performance indicators such as cost and/or product quality.

3. The Tennessee Eastman process simulator

Downs and Vogel7 introduced the TE chemical process simulator for studying and developing engineering control design. The
process is open loop unstable meaning that it will deviate and stop after a certain time period without any active control. With an
appropriate control strategy, however, the process will remain stable. Several different control strategies for the TE process have been
proposed; see for example McAvoy,10 Lyman and Georgakis,11 and Ricker.12 The TE process has also been used as a test-bed for
methodological development of multivariate statistical process monitoring.8,13–16

In the remainder of this section, we will describe some of the details of the TE process to facilitate the understanding of the
experimental scenarios we use.

3.1. Process description

The TE process is a chemical process for which the components, kinetics, processing and operating conditions have been modified for
proprietary reasons, see Downs and Vogel.7 Following four irreversible and exothermic reactions, the process produces two liquid
products from four gaseous reactants. With an additional byproduct and an inert product, eight components are present in the
process. The process has five major unit operations: a reactor, a product condenser, a vapor–liquid separator, a recycle compressor
and a product stripper as shown in a simplified process overview in Figure 3. A more detailed process map is given in the original
reference.7

The physical inputs to the process consist of four gaseous streams, out of which three are fed to a reactor. After the reaction, the
product mixture flows into a condenser, in which most of the gas is condensed. Some non-condensable components remain as
vapors and the two phases are separated in the vapor–liquid separator. Vapor is partially recycled and purged together with the inert
product and the byproduct. The product stripper separates remaining reactants from the products. The reactants are recycled, and
the products exit the process from the stripper.

The TE process simulator has 12 manipulated variables (XMVs) and 41 measured variables (XMEASs). Out of 41 measured variables,
22 are measured directly while the remaining 19 variables can be calculated by the composition of the directly measured streams. In
addition to XMVs and XMEASs, operating costs, production and product quality data are also recorded.

Figure 3. A schematic overview of the TE process.
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The TE process has six different operating modes based on the production ratio of the two products and the production rate. Mode
1 is the most commonly used base case in research articles, which we also employ in this article. Five operating constraints need to be
fulfilled to avoid process shutdown. There is also a possibility to activate 20 pre-set process disturbances (IDVs) during process
operation. Downs and Vogel7 provide more information on manipulated and measured variables, operating constraints, disturbances
and the different operating modes.

3.2. Implemented process control strategy

A control strategy is a prerequisite for experimentation in the TE process because it is open loop unstable. Ricker12 developed a
decentralized control strategy for the TE process for improved performance, especially for the maximization of the production rate.
The decentralized approach partitions the TE plant into 19 sub-units to each of which a controller is added. Tables I and II list the
control loops, controlled variables, their set-points and manipulated variables. Note that we also provide XMV(i) and XMEAS(j); the
ith manipulated variable and the jth measured variable given in Tables III and IV of the original article by Downs and Vogel7 for ease
of comparison. The manipulated variables listed with different codes, such as Fp, r7 etc. come from the decentralized control strategy
settings given in Ricker.12

We use a Matlab/Simulink decentralized control simulator (available at: http://depts.washington.edu/control/LARRY/TE/download.
html#MATLAB_5x). In this configuration, all constraints are satisfied and the process can operate without undesired shutdowns.
Moreover, the set-point values for some controlled variables and the values of inputs (XMVs) not involved in control loops may be
varied, thereby allowing for experimentation.

The override loops 18 and 19 are exceptions to the control procedure described in Section 2. These control loops are only active
when abnormal conditions occur that require an operating strategy change. Severe disturbances such as an introduction of the feed
loss of A (IDV 6) activate the override loops. The production index Fp and the compressor recycle valve XMV(5) are not manipulated
when the process operates without disturbances. All variables that can be manipulated except for the stripper steam valve XMV(9)
and the agitator speed XMV(12) are involved in control loops in the decentralized control strategy. Consequently, XMV(9) and
XMV(12) may be varied during experimentation and should then be viewed as disturbances in Figure 2.

3.3. Chosen experimental scenarios in the TE process

Two experimental scenarios in the TE process will illustrate experimentation in a process under closed-loop control. The first scenario
will demonstrate an experiment when the system is disturbed by experimental factors. Input variables not involved in control loops
can act as such disturbances and therefore be defined as experimental factors. The second scenario will demonstrate the use of the
set-points of the control loops as experimental factors.

3.3.1. Scenario 1. The aim of this scenario is to demonstrate and visualize how experimental factor variation effects are distributed
among the controlled and manipulated variables and how these effects can be analyzed. Recall that the stripper steam valve XMV(9)

Table I. Control loops for the decentralized control strategy (Ricker12)

Loop

Controlled variable Manipulated variable

Name Code Name Code

1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3)
2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1)
3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2)
4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4)
5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6)
6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7)
7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8)
8 Production rate (stream 11) XMEAS(41) Production index Fp
9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7
10 Separator liquid level XMEAS(12) Ratio in loop 6 r6
11 Reactor liquid level XMEAS(8) Set-point of loop 17 s.p. 17
12 Reactor pressure XMEAS(7) Ratio in loop 5 r5
13 Mol % G (stream 11) XMEAS(40) Adjustment to the molar feed rate of E Eadj
14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1
15 Amount of A + C in reactor feed, yAC (stream 6) XMEAS(6) Sum of ratio in loop 1 and 4 r1 + r4
16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10)
17 Separator temperature XMEAS(11) Condenser cooling water flow XMV(11)
18 Maximum reactor pressure XMEAS(7) Production index Fp
19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5)
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and the agitator speed XMV(12) are the only two manipulated variables not involved in control loops. Moreover, if the process is run
without introducing any of the pre-set disturbances (IDVs), the compressor recycle valve XMV(5) is not manipulated and can be
considered as another possible experimental factor. Because the TE simulator is designed the way it is, these factors not involved
in control loops can be seen as potential experimental factors (disturbances), and an experiment can be designed to evaluate their
impact on the system. We would like to note that in a real process the experimental factors need not only come from a list of numeric
input variables not involved in control loops but can rather be drawn from a variety of potential disturbances to the system, such as
different raw materials, methods of operation etc. Our choice here is convenient because XMV(5, 9, and 12) can be changed rather
easily in the simulation model.

Three experimental factors are thus available in this scenario. Response variables will be the controlled variables as well as the
manipulated variables in the control loops (see Section 2). Table III presents base case values of XMV(5, 9 and 12) and their allowed
ranges in operating Mode 1 of the TE process.

Table II. Set-point values in the control loops for the decentralized control strategy (Ricker12)

Loop Controlled variable

Set-point

Base case values Units

1 A feed rate (stream 1) 0.2505 kscmh
2 D feed rate (stream 2) 3664.0 kg h�1

3 E feed rate (stream 3) 4509.3 kg h�1

4 C feed rate (stream 4) 9.3477 kscmh
5 Purge rate (stream 9) 0.3371 kscmh
6 Separator liquid rate (stream 10) 25.160 m3 h�1

7 Stripper liquid rate (stream 11) 22.949 m3 h�1

8 Production rate (stream 11) 100 %
9 Stripper liquid level 50 %
10 Separator liquid level 50 %
11 Reactor liquid level 75 %
12 Reactor pressure 2705 kPa
13 Mol % G (stream 11) 53.724 mol%
14 Amount of A in reactor feed, yA (stream 6) 54.95 %
15 Amount of A + C in reactor feed, yAC (stream 6) 58.57 %
16 Reactor temperature 120.40 °C
17 Separator temperature 80.109 °C
18 Maximum reactor pressure 2950 kPa
19 Reactor level override 95 %

Table III. Potential experimental factors in scenario 1. Input variables not involved in control loops

Variable name Code Base case value (%) Low limit (%) High limit (%)

Compressor recycle valve XMV(5) 22.210 0 100
Stripper steam valve XMV(9) 47.446 0 100
Agitator speed XMV(12) 50.000 0 100

Table IV. Potential experimental factors of the TE process: set-point values of the control loops

Loop Controlled variable Base set-point

7 Stripper liquid rate (production) 22.949 m3 h�1

9 Stripper liquid level 50%
10 Separator liquid level 50%
11 Reactor liquid level 75%
12 Reactor pressure 2705 kPa
13 Mole % G 53.724 mol%
14 Amount of A in reactor feed (yA) 54.95%
15 Amount of A + C in reactor feed (yAC) 58.57%
16 Reactor temperature 120.40 °C
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3.3.2. Scenario 2. The aim of this scenario in the TE process is to explore the set-points of the controllers to reveal their potential
impact on the process operating cost. That is, to see causal relationships between the process’ operating conditions and an important
process performance indicator. By changing the set-points, the second experimental scenario indirectly uses the levels of the
controlled variables as experimental factors. However, some of the set-points are actually controlled in a cascaded procedure based
on directives generated by other controllers. Thus, only a subset of the controlled variables may be considered potential experimental
factors. Table IV lists the controlled variables that may be used as potential experimental factors and their set-point values for
operating Mode 1.

4. Scenario 1: design and analysis

This section and Section 5 through examples illustrate the two experimental scenarios explained above. We would like to clarify that
the aim of these examples is not to show the ‘best’ experimental designs or analysis procedures but rather to illustrate issues related
to experimentation in closed-loop operation.

4.1. A two-level factorial design

Scenario 1 involves a 22 randomized factorial design with three replicates with the aim of estimating location effects (main effects and
interaction) of the stripper steam valve XMV(9) and of the agitator speed XMV(12) on controlled variables and associated manipulated
variables. Control loops 9, 10, 11, 12 and 16 (see Table I) include constraints implemented for securing plant safety and adequate
control actions to avoid shutdown.

The run-order of the experiments and the averages of the controlled and manipulated variables are given in Table V. The TE
process was run for 36 h under normal operating conditions, i.e., the base case values for operating Mode 1, before starting the first
experimental run. This ‘warm-up phase’ allows for the process to reach a steady-state condition before the manipulated variables are
changed. Thereafter, every run lasted 50 h, and all 12 runs were run in sequence during continuous operation of the process. We did
not apply any of the possible pre-set disturbances (IDVs) during experimentation. Including the warm-up phase, the entire experiment
contained 636 h of simulated operation (real simulation time is only 115 s on a computer using an Intel® Core™ i5-4310 U processor
running at 2.0 GHz with 16 GB of RAM.) The controlled and manipulated variables were sampled every 12 min.

Due to the process’ continuous nature, the experimental factors and responses need to be viewed as time series. For example,
Figure 4 illustrates the impact of the experimental factors on the controlled and manipulated variables in Loop 16 which controls
the reactor temperature, XMEAS(9), by adjusting the reactor cooling water flow, XMV(10).

As seen in Figure 4, the experiment has a substantial impact on the manipulated variable – reactor cooling water flow, XMV(10).
However, even though the levels of the experimental factors are changing, the controlled reactor temperature XMEAS(9) exhibits a
random variation around its set-point value, indicating that the impact on this controlled variable is small or non-existent. A similar
behavior has been observed also for loops 9, 10 and 11.

4.2. Statistical analysis

In the first scenario, the manipulated variables of loops 9, 10, 11, 12 and 16 are considered as the main response variables. A simple
but reasonable way to analyze the experiments with time series responses is to ignore the time series aspect of the responses and to
calculate the average value for each run in Table V, see Vanhatalo et al.17. Vanhatalo et al.18 recommend removing apparent dynamic
behavior at the beginning of each run. However, the initial observations are here included to investigate if the control loops are
effective because the control action may not succeed to remove the impact on the controlled variable instantly. The run averages
can be used to perform analysis of variance (ANOVA). Table VI presents a summary of the ANOVA based on the averages in
Table V. The analysis was performed using the software Design-Expert® version 9.

Based on the high p-values for the controlled variables in Loops 11, 12 and 16, the results do not indicate that the experimental
factors affect their related controlled variables. However, as revealed by the low p-values for the manipulated variables in Loops 12
and 16 in Table VI, the experimental factors affect process phenomena controlled by these loops. Furthermore, Loops 9 and 10 fail
to remove the full impact of the experimental factor variation on the controlled variables as indicated by the low p-values on the
controlled variables. There is no evidence that the experimental factors are affecting process phenomena controlled by Loop 12.
Furthermore, the low p-value of the main effect of the stripper steam valve XMV(9) on the stripper liquid level in Loop 9, XMEAS(15),
is explained by the inclusion of the transition time. The run averages are affected because the control action of Loop 9 is delayed.

4.3. Concluding remarks for scenario 1

When experimenting in a closed-loop system, the analyst should expect that the impact of the experimental factors could be partly or
completely displaced from the controlled variables to manipulated variables. This is true despite using inputs not involved in control
loops as experimental factors, if the experimental factors affect the phenomena controlled in the loops. However, as illustrated, the
analysis may reveal potential ineffectiveness of the controllers to completely or instantly remove disturbances acting on controlled
variables. We therefore recommend viewing the responses as two important and closely related groups: [1] controlled variables
and [2] manipulated variables when analyzing an experiment in a closed-loop system as illustrated above.
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5. Scenario 2: design and analysis

The second scenario illustrates a different way of running experiments in closed-loop controlled processes. Now, we consider the set-
points of the control loops as experimental factors. Our major concern is no longer to reveal cause and effect relationships between
inputs and important measured variables in the process. These should have been identified already in the engineering control design
phase. Instead, we are exploring the set-points of the controllers to see causal relationships between the process operating conditions
and process performance indicators with the aim of optimizing the process.

5.1. A screening experiment

In this case, we focus on the process operating cost as an important response. We have nine possible set-points to change (see
Table IV), and we wish to test their impact on the process operating cost using a two-step sequential experiment. The starting point

Figure 4. Overview of experimental factors’ impact on variables related to control loop 16. The manipulated variable, XMV(10), is given in the top chart and controlled
variable, XMEAS(9), in the bottom chart. The levels, in coded units, of the experimental factors XMV(9) and XMV(12) are superimposed on the plots. The duration of each

experiment is 50 h.
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is a 29�5
III fully randomized fractional factorial design with four additional center points. This resolution III design is then followed by a

full fold-over in a new block to entangle some aliased effects. The final design, i.e., the original plus the fold-over, is of resolution IV.
Some factor setting combinations will invoke a process shutdown and some shutdown limits are also given in the Downs and

Vogel7 paper. The base case value of each factor (rounded to the nearest integer) was chosen as either the low or high factor level
in the design. The other level of each variable was defined by trial and error by either adding to or subtracting from the base case
value while trying to keep the process from shutting down. Table VII provides the low and high levels of each experimental factor
(set-point) used in the experiment.

Furthermore, we chose to keep XMVs (5, 9 and 12) fixed at their base case values given in Table III during the experiment because
they are not involved in the loops but do affect the process behavior.

A ‘warm-up phase’ of 36 h was once again used before the start of the first run of the experiment. During this phase, the
experimental factors (set-points) were fixed to their base case values for operating Mode 1. The 40 runs of the experiment are given
in Table VIII. Each experimental run lasted 50 h. Including the warm-up phase, the entire experiment contained 2036 h of operation
(simulation time was 147 s for all runs). From the TE simulator, the process operating cost ($/h) can be extracted, and we have the
operating cost for every 12 min. Figure 5 illustrates the impact of the experimental factors on the process operating cost during
the first three experiments in run order.

Table VII. Low and high level of the set-points used as experimental factors

Loop Controlled variable Base set-point Low level High level

7 Stripper liquid rate (production) 22.949 m3 h�1 21 m3 h�1 23 m3 h�1

9 Stripper liquid level 50% 50% 60%
10 Separator liquid level 50% 35% 50%
11 Reactor liquid level 75% 70% 75%
12 Reactor pressure 2705 kPa 2600 kPa 2705 kPa
13 Mole % G 53.724 mol% 54 mol% 62 mol%
14 Amount of A in reactor feed (yA) 54.95% 55% 65%
15 Amount of A + C in reactor feed (yAC) 58.57% 50% 59%
16 Reactor temperature 120.40 °C 120 °C 127 °C

Table VIII. Run order, standard order of the runs and average operating cost both before and after removal of transition time at
the beginning of each run

Block 1: 29�5
III experimental design Block 2: Full fold-over

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

1 14 201.11 201.68 21 38 139.46 130.84
2 2 156.51 154.51 22 26 130.55 131.72
3 9 148.60 143.56 23 34 152.75 146.08
4 4 127.37 140.00 24 27 156.25 157.61
5 6 185.37 172.01 25 35 182.89 170.58
6 20 124.19 129.89 26 22 125.28 126.76
7 1 139.87 141.24 27 30 175.37 157.19
8 17 133.27 131.09 28 39 120.70 131.02
9 11 123.56 129.74 29 33 151.78 150.66
10 12 255.76 215.15 30 24 166.46 155.20
11 8 175.52 187.61 31 29 129.43 142.91
12 16 164.44 160.05 32 31 186.93 167.84
13 18 127.84 130.15 33 28 166.30 167.94
14 15 147.23 142.59 34 36 164.98 165.41
15 19 130.64 132.81 35 37 128.14 132.72
16 5 104.70 109.27 36 21 145.67 140.70
17 13 181.27 161.61 37 32 104.34 115.46
18 3 128.85 127.87 38 23 174.01 166.69
19 7 182.26 177.45 39 25 213.02 198.88
20 10 117.49 127.62 40 40 127.23 135.06
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5.2. Statistical analysis

The aim of the experiment is to find set-points which reduce the long-term operating cost. In contrast to scenario 1, it makes sense to
remove transition time from the runs and then use the remaining observations to calculate run averages. To keep the observations
during the transition time in the calculation of run averages will lead to an underestimation of the location effect of the factors and
interactions, see Vanhatalo et al.17 The process operating cost exhibits some transition time before reaching the steady state as
illustrated in Figure 5. A visual inspection of the operating cost reveals that 24 h can be considered as a reasonable transition time
(grey shaded area in Figure 5), and thus the observations obtained during the first 24 h of all runs were removed before calculating
the run averages, see Table VIII.

Table IX presents an ANOVA table of the 40-run experimental design in Table VIII based on a significance level of 5%. We have also
repeated the analysis including the transition time. The results of that analysis are not reported in this article, but with the transition
time included, the same main effects turn out to be active, but the significant interaction effects differ. As seen in Table IX, seven main
effects and eight two-factor interaction alias strings are active (interactions of order three or higher are ignored). It is perhaps not
surprising that most factors affect the operating cost because control loops aim to control important process phenomena which tend
to affect the production cost. Moreover, the interconnectedness of the different control loops is demonstrated by the many
significant interactions.

Note that the curvature test is significant and that the model exhibits significant lack of fit, suggesting that a higher order model is
appropriate. The fitted model in Table IX is thus ill-suited for optimization and prediction but provides a starting point for future
response surface experimentation. The many significant two-factor interaction alias strings would need further investigation to decide
which among the aliases are actually active. However, as we mentioned earlier, the main purpose of this article is not necessarily to
provide an optimization procedure on a simulated process but rather to draw attention to possibilities and pitfalls in experimentation
under closed-loop operation. Hence, for demonstration purposes, we simply assume that the first interactions of the interaction
strings in Table IX are the important ones, ignoring the interactions in brackets. We proceed to use the estimated model to provide
suggested factor settings for the lowest operating cost within the experimental region. In this case, the lowest cost will be at a corner
point on the multidimensional hyperplane. The settings of the factors and the predicted operating cost at this point (104.5 $/h) are
provided in Table X. The significant curvature, the lack of fit tests and the R2 for prediction indicate that the predictive ability of the
model is poor. A confirmation run in the TE process simulator using the suggested factors settings gives the long-term average
operating cost 109.1 $/h. The 4.6 $/h discrepancy between the predicted cost and the confirmation run is likely due to the models’
poor predictive ability. Nevertheless, this rough analysis provides a significant improvement of the process operating cost. A
simulation of the process keeping the factors settings at the base set-points values given in Table VII gives a long-term average
operating cost of 170.2 $/h. Hence, running the process at the suggested factors settings leads to a substantial cost reduction of
61.1 $/h. Further reduction of the operating cost is likely possible but outside the scope of this article.

5.3. Concluding remarks for scenario 2

The second scenario illustrates how designed experiments can be used to improve process performance indicators using the set-
points of variables controlled in closed-loop. This scenario also exemplifies the importance of considering, and here removing, the
transition time during analysis. We want to point out that the set-points of the controllers in this example and in real life in general
affect important process operating conditions. The experimenter should therefore expect that improper choices of factor levels of the

Figure 5. The operating cost during the first three runs of the experiment. Note the dynamic behavior of the response during the first part of each run. The shaded areas
highlight the removed observations before calculating the run averages. The duration of each experiment is 50 h.
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set-points may lead to unexpected process behavior or even shutdown. Special care should be taken in choosing the levels because
the window of operability may be irregular or unknown.

6. Conclusion and discussion

This article explores important issues in designing and analyzing experiments in the presence of engineering process control. The
closed-loop operation increases process complexity and influences the strategy of experimentation. Two experimental scenarios

Table X. Suggested settings of the set-points of the control loops to provide the lowest operating cost of the estimated model
within the experimental region

Loop Set-point Suggested setting

7 Stripper liquid rate (production) 21 m3 h�1

9 Stripper liquid level Not in model, use base case
10 Separator liquid level Not in model, use base case
11 Reactor liquid level 70%
12 Reactor pressure 2705 kPa
13 Mole % G 62 mol%
14 Amount of A in reactor feed (yA) 65%
15 Amount of A + C in reactor feed (yAC) 50%
16 Reactor temperature 120 °C

Resulting predicted process operating cost: 104.5 $/h

Table IX. ANOVA and estimated effects based on the averages of the response after removing the transition time. The model
includes only terms significant at 5% level. Aliased two-factor interaction aliases that based on the heredity principle are less likely
given in italic text within brackets. The control loop numbers are indicated by (#) in the factor names

Source
Sum of
squares df

Mean
square F value Prob > F

Estimated standardized
effects

Block 15.11 1 15.11
Model 18 431.18 15 1228.75 83.97 <0.0001
A: #7—Production 3946.30 1 3946.30 269.68 <0.0001 11.11
D: #11—Reactor level 321.10 1 321.10 21.94 0.0001 3.17
E: #12—Reactor
pressure

3131.68 1 3131.68 214.01 <0.0001 �9.89

F: #13—Mole %G 4085.75 1 4085.75 279.21 <0.0001 �11.30
G: #14—yA 443.48 1 443.48 30.31 <0.0001 �3.72
H: #15—yAC 2444.72 1 2444.72 167.07 <0.0001 8.74
J: #16—Reactor temp 126.25 1 126.25 8.63 0.0076 �1.99
AD (BH CG FG) 124.36 1 124.36 8.50 0.0080 1.97
AF (BG CH DE) 207.73 1 207.73 14.20 0.0011 �2.55
AG (BF CD EH) 78.98 1 78.98 5.40 0.0298 �1.57
AH (BD CF EG) 151.98 1 151.98 10.39 0.0039 �2.18
AJ 532.42 1 532.42 36.38 <0.0001 �4.08
FJ 282.93 1 282.93 19.34 0.0002 2.97
GJ 619.92 1 619.92 42.36 <0.0001 4.40
HJ 1933.59 1 1933.59 132.14 <0.0001 7.77
Curvature 3415.43 1 3415.43 233.40 <0.0001
Residual 321.93 22 14.63
Lack of Fit 305.16 16 19.07 6.82 0.0129
Pure Error 16.77 6 2.80
Cor Total 22 183.66 39

R2 83.1%
Adjusted R2 72.1%
R2 prediction 67.2%
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based on the TE process simulator are used to answer the questions why and how to conduct and analyze experiments in closed-loop
systems.

Even though we have prior experience with experiments lasting several weeks in continuous processes, the 2038 h of
experimentation we use in our examples may admittedly be considered unrealistically long in practice. This is, however, beside the
point because the examples we provide are for demonstration purposes, and we did not necessarily focus on shortening the duration
of the experiments.

The first experimental scenario illustrates how the experimental factors not directly involved in control loops impact the closed-
loop system and how the controllers affect the analysis. The controllers adjust manipulated variables to limit or eliminate the
experimental factor effects on the controlled variable(s). We note that this will only occur if the experimental factors affect
phenomena/variables governed by the closed-loop system. The effect on the controlled variables is partly or fully transferred to
the manipulated variables depending on the effectiveness of the controllers. Hence, both the controlled and manipulated variables
should be used as responses. Analyzing the effects of experimental factors on controlled variables may give important information
about the effectiveness of the engineering process control. The effects on the manipulated variables instead reveal whether the
experimental factors affect important process behavior.

In the second scenario, the experimental factors are the set-points of the controlled variables. The set-points are target values for
the controlled variables and are typically closely tied to important process operating conditions. A level change of the set-points can
therefore be considered equivalent to shifting the location of the process. Overall process performance indicators such as operating
cost or product quality may then be suitable responses.

Using two scenarios we have illustrated that DoE can generate knowledge and aid process improvement in closed-loop systems.
More specifically, DoE can be used to study:

• if the engineering process control is efficient and cost effective;
• if experimental factors affect important process phenomena; and
• how controlled variable set-points affect important process performance indicators.

We believe simulation software like the TE process offer great opportunities for methodology development in experimentation in
closed-loop systems. In this article, we simply provide some basic ideas and approaches, but more research is needed for further
development of experimentation and analysis methods for better process understanding and optimization in closed-loop systems.
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Abstract 
Engineering process control and high-dimensional, time-dependent data present great 

methodological challenges when applying statistical process control (SPC) and design of 

experiments (DoE) in continuous industrial processes. Process simulators with an ability 

to mimic these challenges are instrumental in research and education. This article focuses 

on the revised Tennessee Eastman process simulator providing guidelines to use it as a 

testbed for SPC and DoE methods. We provide flowcharts that will help new users get 

started in the Simulink/Matlab framework, and illustrate how to run stochastic simulations 

for SPC and DoE applications using the Tennessee Eastman process. 
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Engineering process control, Closed-loop. 
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1. Introduction 
Continuous production during which the product is gradually refined through different 

process steps and with minimal interruptions (Dennis and Meredith 2000) is common 

across different industries. Today these processes manufacture both consumption goods 

such as food, drugs, and cosmetics, and industrial goods such as steel, chemicals, oil, and 

ore. Full-scale continuous production plants present analytical challenges since they are 

characterized by, for example, high-technological and complex production machinery, low 

flexibility, engineering process control (closed-loop operations) and high production speed. 

Automated data collection schemes producing multi-dimensional and high-frequency data 

generate additional analytical challenges. However, these processes still need to be 

improved continuously to remain competitive. Statistical process control (SPC) and design 

of experiments (DoE) techniques are essential in these improvement efforts. 

The literature on the use of SPC and DoE in process industrial applications is 

extensive. However, a majority of these examples fail to capture essential challenges that 

analysts face when applying these methods in modern continuous processes. Recent SPC 

literature highlights the need to adapt SPC practices to the new manufacturing 

environments with massive datasets, multistep production processes, or greater computing 

capabilities (Ge et al. 2013, Ferrer 2014, Vining et al. 2015). Similarly, features of 

continuous processes unavoidably affect experiments and how experimental design 

strategies should be adapted, see, e.g., Vanhatalo and Bergquist (2007) and Capaci et al. 

(2017). 

Methodological work to upgrade current SPC and DoE methods to address the 

continuous production challenges is needed, but it is often overly complicated to do 

methodological development using real processes. Tests of SPC or DoE methods in full-

scale plants tend to require considerable resources and may jeopardize the production 

goals. Simulators may offer a reasonable trade-off between the required flexibility to 

perform tests and the limitations in mimicking the behavior of a real process.  

Reis and Kenett (2016) map a wide range of simulators that can be used to aid the 

teaching of statistical methods to reduce the gap between theory and practice. They classify 

existing simulators based on various levels of complexity and guide educators to choose a 

proper simulator depending on the needed sophistication. Reis and Kenett (2016) classify 



 

3 
 

the Tennessee Eastman (TE) process simulator (Downs and Vogel 1993) as one of the more 

complex simulators (medium-/large-scale nonlinear dynamic simulator) suggesting its use 

for advanced applications in graduate or high-level statistical courses. Downs and Vogel 

(1993) originally proposed the TE process as a test problem providing a list of potential 

applications in a wide variety of topics such as plant control, optimization, education, non-

linear control and, many others. However, older implementations of the TE process that 

we have come across have a fundamental drawback in that the simulations are 

deterministic, apart from measurement error that is added. An almost deterministic 

simulator is of limited value in methodological development since random replications as 

in Monte Carlo simulations are not possible. However, the revised TE process by Bathelt 

et al. (2015a) does provide flexibility enough to create random errors in simulations. 

Especially after this latest revision, we believe that the TE process simulator can help 

bridge the gap between theory and practice as well as provide a valuable tool for teaching. 

However, as argued by Reis and Kenett (2016), the TE process simulator together with 

other advanced simulators lack an interactive graphical user interface (GUI), which means 

that the user still needs to be able to have some programming skills. 

In this article, we therefore aim to provide guidelines for how to use the TE process 

simulator as a testbed for SPC and DoE methods. We use the revised TE process presented 

in Bathelt et al. (2015a) run with a decentralized control strategy (Ricker 1996). Flowcharts 

based on the Business Process Modelling Notation (BPMN) illustrate the required steps to 

implement the simulations (Chinosi and Trombetta 2012). Finally, we provide examples 

of SPC and DoE applications using the TE process.  

The next section of this article provides a general description of the revised TE 

process simulator and the chosen control strategy. The following two sections describe how 

to run simulations for SPC and DoE applications, respectively. We then present two 

simulated SPC and DOE examples in the TE process (Sections 5 and 6). Conclusions and 

discussion are provided in the last section.  

2. The Tennessee Eastman Process Simulator 
The TE process simulator emulates a continuous chemical process originally developed for 

studies of engineering control design. The control engineering community has developed 
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different control strategies for the TE process. We argue that, among these, the 

decentralized control strategy proposed by Ricker (1996) is attractive from a method 

development perspective since it mimics most of the challenges that continuous processes 

offer sufficiently well.  

Over the years, the TE process has been popular within the chemometrics 

community, and simulated TE process data have been used extensively for methodological 

development of multivariate statistical process control (MSPC) methods. For instance, the 

TE process simulator has been used for work on integrating dynamic principal component 

analysis (DPCA) into process monitoring, see Ku et al. (1995), Rato and Reis (2013), and 

Vanhatalo et al. (2017). Other TE process simulator examples for multivariate monitoring 

include Kruger et al. (2004), Lee et al., (2004), Hsu et al., (2010), and Liu et al., (2015). 

Instead, examples of DoE applications using the TE process are limited. Capaci et al. 

(2017) illustrate the use of two-level factorial designs using the TE process run under 

closed-loop control. However, the previous simulator’s deterministic nature of the TE 

process has likely hampered researchers in doing methodological work. 

We intend to illustrate how the new revised simulation model of the decentralized 

TE process implemented by Bathelt et al. (2015b) can be manipulated to allow stochastic 

simulations and replications. The simulator has the following additional advantages: 

 the simulator is implemented in the Simulink/Matlab® interface and can be obtained 

for free, 

 the set-points of the controlled variables and the process input can be modified as 

long as they are maintained within the restrictions of the decentralized control 

strategy, 

 the analyst can specify the characteristics of the simulated data as, for example, 

length of experimentation, sampling frequency, type and magnitude of process 

disturbances, and 

 the simulation speed is fast. For example, to simulate the SPC example in this article 

with 252 hours of operation takes less than a minute (56.26 seconds) on a computer 

using an Intel® Core™ i5-4310U processor running at 2.0 GHz with 16 GB of RAM. 
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2.1. Process Description 

The TE process plant involves five major units: a reactor, a condenser, a vapor-liquid 

separator, a product stripper and a recycle compressor (Downs and Vogel 1993). The plant 

produces two liquid products from four gaseous reactants through four irreversible and 

exothermic reactions. It also produces an inert product and a byproduct purged as vapors 

from the system through the vapor-liquid separator (Figure 1).  

 
Figure 1. A simplified overview of the TE process flow. 

Reactants A, D and E flow into a reactor where the reaction takes place. The output from 

the reactor is fed to a condenser. Some non-condensable vapors join the liquid products, 

but the following vapor-liquid separator again splits the substances into separate flows. 

Vapor is partially recycled and partially purged together with the inert product and the 

byproduct. The stripper separates the remaining A, D and E reactants from the liquid and 

another reactant C is added to the product. The final products then exit the process, and the 

remaining reactants are recycled.  

The TE process has 12 manipulated variables (XMVs) and 41 measured variables 

(XMEAs). Tables in Downs and Vogel (1993) provide detailed information about all the 

process variables and the cost function that provides the process operating cost in $/h. The 

combination of three G/H mass ratios and four production rates of the final products define 

six different operating modes of the process. The user can also choose to activate 20 preset 

process disturbances (IDVs).  
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The TE process is open-loop unstable and shuts down rapidly without engineering 

controller systems. A control strategy is therefore necessary for process stability. To avoid 

shutdowns and for securing plant safety, the control strategy should abide by five operating 

constraints related to the reactor pressure, level and temperature, the product separator 

level, and the stripper base level. Even with controllers working correctly, the TE process 

is sensitive and may shut down depending on the controller tuning and the set-points of the 

controlled variables. 

2.2. Decentralized Control Strategy 

The decentralized control strategy partitions the plant into sub-units and designs a 

controller for each one, with the intent of maximizing the production rate. Ricker (1996) 

identified nineteen feedback control loops to stabilize the process. Table 1 provides the 

control loops and the related controlled and manipulated variables. The original article by 

Ricker (1996) provides detailed information about the design phases of the decentralized 

control strategy. 

Table 1. Controlled and manipulated variables in the 19 loops of the decentralized control strategy. The 
manipulated variables with codes such as Fp and r7 come from the decentralized control strategy settings 
(Ricker 1996). XMV(i) and XMEAS(j) are numbered according to the original article by Downs and Vogel 
(1993). 

Loop Controlled variable Code Manipulated variable Code 
1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3) 
2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1) 
3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2) 
4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4) 
5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6) 
6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7) 
7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8) 
8 Production rate (stream 11) XMEAS(41) Production index Fp 
9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7 
10 Separator liquid level XMEAS(12) Ratio in loop 6 r6 
11 Reactor liquid level XMEAS(8) Setpoint of Loop 17 s.p. 17 
12 Reactor pressure XMEAS(7) Ratio in loop 5 r5 

13 Mol % G (stream 11) XMEAS(40) Adjustment of the molar 
feed rate of E Eadj 

14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1 

15 
Amount of A+C in reactor feed, yAC(stream 
6) XMEAS(6) Sum of loops 1 and 4 ratio r1 + r4 

16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10) 

17 Separator temperature XMEAS(11) 
Condenser cooling water 
flow XMV(11) 

18 Maximum reactor pressure XMEAS(7) Production index Fp 
19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5) 
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2.3. The Revised TE Simulation Model 

Ricker (2005) devised the decentralized TE control strategy as a Simulink/Matlab® code. 

Bathelt et al. (2015b) recently developed a revised version of the simulation model. The 

revision is an update of Ricker’s (2005) code that widens its usability by allowing for 

customization of the simulation by modifying a list of parameters in the process model 

function. Below we describe how to initialize the revised TE simulator and how to use the 

model function parameters to achieve intended simulator characteristics. 

 

Initialization of the revised TE model 

The files of the revised model are available as a Simulink/Matlab® code at the Tennessee 

Eastman Archive (Updated TE code by Bathelt et al. (2015b)). Figure 2 illustrates the 

workflow to initialize the simulator through a simulation test, using the BPMN standard 

(Chinosi and Trombetta 2012). During the simulation, four online plots display the reactor 

pressure, process operating cost, production flow, and product quality trend. When the 

simulation ends, the simulator provides datasets of XMVs and XMEAs as well as the 

related plots. Installation is then completed.  

The simulator can be run in both operating Mode 1 and 3. Operating Mode 1, which 

we use in this article, seems to be the most commonly used in the literature. The model 

“MultiLoop_mode1” runs the process at Mode 1 when the set-points of the input variables 

not involved in control loops and of the controlled variables are set up according to the 

base case values given in Tables 2 and 6.  

In Figure 2, “DoE applications” and “SPC applications” consist of different 

compound activities, expanded later, that the user must follow depending on which method 

is being applied. The definition of the model function parameters is one of these activities 

and can be done following the instructions below.  

Table 2. Base case set-points of the input variables not involved in control loops for operating Mode 1 (Capaci 
et al. 2017). 

Variable name Code Base case value (%) Low limit (%) High limit (%) 
Compressor recycle valve XMV(5) 22.210 0 100 

Stripper Steam Valve XMV(9) 47.446 0 100 
Agitator Speed XMV(12) 50.000 0 100 
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Using the model function parameters to customize the simulation 

The model function “temexd_mod” contains the “TE code” and it is located in the “TE 

Plant” block of the Simulink model. A double-click on “temexd_mod” opens a dialog 

window. In the field “S-function parameters,” the user can define three model function 

parameters separated by commas. Square brackets are used for undefined parameters. The 

simulation can be customized to fit different needs by changing these parameters. Table 3 

provides more details of the model function parameters. 
Table 3. Description and settings of the parameter list for the process model function “temexd_mod” 
(Bathelt et al. 2015a). An example of settings for parameter 3 is given. 

Parameter list of 
“temexd_mod” Description Setting 

1 

An array of the initial values of the 50 states 
of the model. The user can specify a vector 

of 50 states of the model to run the 
simulator in a specific operating mode 

Empty: default values of  
process operating Mode 1 are used 

(Downs and Vogel 1993). 

2 Initial value (seed) of the random generator Every integer number greater  
than 0 is valid. 

3 

Model structure flag Example (11100010)2 = (226)10 Bit Description 
0 Additional measurements points 0 

Integer value equivalent  
to the binary number 

activating/deactivating the bit 
of the model structure flag 

1 Monitoring outputs of the 
disturbances 1 

2 Monitoring outputs of the reaction 
and process 0 

3 Monitoring outputs of the 
component’s concentration 0 

4 Deactivation of measurement noise 0 

5 
Random generator uses different state 
variables for process disturbances 
and measurements noise 

1 

6 Solver-independent calculations of 
the process disturbances 1 

7 Disturbances are scaled by the value 
of the activation flags 1 

15 Reset model structure to original 
structure of Ricker (2005) 0 

 

Parameter 1 relates to the initial values of the model states. Since we wish to run the 

process in Mode 1, we assume hereafter that this parameter is set as empty unless otherwise 

specified. The default “xInitial” array is therefore used when we launch the simulator. 

Parameters 2 and 3 enable the customizations introduced in the revised TE code.  

The possibility to change the seed of each simulation (parameter 2) creates the 

opportunity to avoid deterministic simulations, but only when the user activates process 

disturbances (IDVs) of the type random variation in the model, see Table 4. Parameter 3 

allows for activating/deactivating the model flags listed in Table 3. Each model flag 
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corresponds to a bit that can be switched using the binary notation. The value of parameter 

3 corresponds to the decimal integer of the binary number obtained after setting the value 

of each bit. For example, the binary number (11100010)2 is equivalent to the parameter 

value of (226)10, which produces the exemplified model structure given in Table 3. Note 

that for the right conversion from a binary to a decimal number, the binary number must 

be written starting from the highest to the lowest bit position (from 15 to 0). 

As a rule of thumb, model flags 5 and 6 should be active during the simulation while 

the user can set the other model flags to adjust the model to the simulation needs. Further 

details of the model flag structure are given in Bathelt et al. (2015a).  

2.4. Creating random simulations in the revised TE process simulator 

The TE process is complex (Reis and Kenett 2016) and in that sense mimics a real chemical 

process. While the high degree of complexity makes it useful as a testbed for 

methodological development, the same complexity imposes some limitations. As already 

stated, without customization, the TE simulator provides output that does not differ much 

from a deterministic simulation where all measurement error is set to zero.  

Figure 3 shows a schematic overview of the revised TE simulation model 

highlighting potential sources of random variation. Note that when random disturbances of 

type “random variation” are turned off, the TE process variables are only affected by white 

Gaussian noise mimicking typical measurement noise. Thus, repeated simulations with the 

same setup will produce, except for measurements errors, identical results, which limit the 

model’s value when running repeated simulations. These are for instance used when 

assessing the performance of an SPC method or when replicates of experimental runs are 

needed. 

To overcome this limitation, we suggest running the simulator with added 

measurement noise and one or more of the random disturbances (IDVs) listed in Table 4 

activated. Indeed, the possibility to scale random variation disturbances allows the user to 

add variability without overly distorting the results. Moreover, the simulator can generate 

different results for repeated simulations with the same starting conditions by changing the 

seed of the random numbers, making the revised TE model more suitable for 

methodological tests of SPC and DoE methods.  
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Please note that the choice of the scale factor(s) to adjust the random variation 

depends on the random disturbance(s) introduced in the simulation model and the aim of 

the simulation study. The random disturbances vary in both magnitude and dynamics, and 

hence have a different impact on the process. We, therefore, leave the choice of 

disturbances and the scale factor(s) to the user but explain the ideas behind our choices in 

our examples. 

 
Figure 3. Schematic overview of the revised TE simulation model with a focus on potential sources of 
random variation.  

3. The TE Process Simulator in the SPC Context 
SPC applications require historical in-control data (Phase I dataset) and an online collection 

of data to perform Phase II analysis. Samples from Phase I and Phase II are typically 

collected in one shot in the TE process simulator. Using the BPMN standard, the upper half 

of Figure 4 presents the tasks required to simulate Phase I and Phase II data. Table 4 lists 

possible process disturbances that can be used as faults in Phase II. Note that the revised 

TE model adds eight “random variation” disturbances to the simulator, IDV(21)-IDV(28). 

A characteristic of the revised simulator valuable for SPC applications is that the analyst 

can now scale all process disturbances by setting their disturbance activation parameter 

values between 0 and 1. 

The TE process simulator can emulate three important SPC challenges that 

frequently occur in continuous processes: 

Multivariate data: The 53 variables available in the TE process (12 XMVs and 41 

XMEAs), some of which are highly cross-correlated, allow for studies of multivariate 

monitoring methods. The TE process has been used extensively within the chemometrics 

literature to test monitoring applications and fault detection/isolation methods based on 

TE Model 
(Equations, Derivatives)

Set-Points

Input Variables 
Not Involved in 
Control Loops

Controlled/
Measured Variables

Measurements Noise 
(White Gaussian Noise)

Process Disturbances (IDVs)
(Random Variation)

ON
ON/OFF

(if ON: 0 < Scale Factor )

Seed/Generator of the Random Numbers 
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latent structures techniques such as principal component analysis (PCA) and partial least 

square (PLS). The simulator will not produce missing data, but the analyst may remove 

data manually if needed. 

Autocorrelated data: The user can choose the variables’ sampling rate in the TE 

process, but for most choices, the resulting data will be serially correlated (autocorrelated). 

Autocorrelation will require adjustment of the control limits of control charts since the 

theoretical limits typically will be under/overestimated. This faulty estimation will affect 

in-control and out-of-control alarm rates (Bisgaard and Kulahci 2005, Kulahci and 

Bisgaard 2006), and this also extends to process capability analysis affecting both 

univariate and multivariate techniques. 

Closed-Loop Operation: Engineering process control is constantly working to adjust 

process outputs through manipulated variables in the closed-loop operation of the TE 

process simulator. The closed-loop operation provides an interesting SPC challenge. 

Control charts applied to controlled outputs could fail to detect a fault and might 

erroneously indicate an in-control situation. The traditional SPC paradigm to monitor the 

process output when engineering process control is in place requires proper adjustments, 

and the TE process simulator provides a good testbed for this challenge. 

4. The TE Process Simulator in DoE Context 
The lower part of Figure 4 provides a guide on how to simulate data in TE process for 

testing DoE methods for continuous processes operating under closed-loop control. Note 

that one of the early tasks is to activate one or more process disturbances of type “random 

variation,” see Table 4, to overcome the deterministic nature of the simulator. Two 

experimental scenarios can, for example, be simulated using the TE process simulator 

(Capaci et al. 2017). In the first scenario, the experimental factors can include the three 

manipulated variables not involved in control loops, XMV(5), XMV(9), and XMV(12), 

see also Table 2, while the responses can include both manipulated and controlled 

variables. In the second scenario, the experimenter can use the set-point values of the 

control loops as experimental factors and the operating cost function as a response. 

However, a cascaded procedure based on directives generated by the decentralized control 

strategy will make some set-points dependent. Therefore, the experimenter only has the 
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subset of the nine set-points given in Table 5 available as experimental factors in the second 

scenario. 
Table 4. The 28 process disturbances available (Downs and Vogel 1993, Bathelt et al. 2015a). 

Variable 
Number Process Variable Type 

IDV(1) A/C feed ratio, B composition constant (stream 4) Step 
IDV(2) B composition, A/C ratio constant (stream 4) Step 
IDV(3) D feed temperature (stream 2) Step 
IDV(4) Water inlet temperature for reactor cooling Step 
IDV(5) Water inlet temperature for condenser cooling Step 
IDV(6) A feed loss (stream 1) Step 
IDV(7) C header pressure loss- reduced availability (stream 4) Step 
IDV(8) A,B,C proportion in stream 4 Random variation 
IDV(9) D feed temperature (stream 2) Random variation 

IDV(10) A and C feed temperature(stream 4) Random variation 
IDV(11) Water inlet temperature for reactor cooling Random variation 
IDV(12) Ater inlet temperatur for condenser cooling Random variation 
IDV(13) Variation coefficients of reaction kinetics Random variation 
IDV(14) Reactor cooling water valve Sticking 
IDV(15) Condenser cooling water valve Sticking 
IDV(16) Variation coefficient of the steam supply of the heat exchanger of the stripper Random variation 
IDV(17) Variation coefficient of heat transfer in reactor Random variation 
IDV(18) Variation coefficient of heat transfer in condenser Random variation 
IDV(19) Unknown Unknown 
IDV(20) Unknown Random variation 
IDV(21) A feed temperature (stream 1) Random variation 
IDV(22) E feed temperature (stream 3) Random variation 
IDV(23) A feed flow (stream 1) Random variation 
IDV(24) D feed flow (stream 2) Random variation 
IDV(25) E feed flow (stream 3) Random variation 
IDV(26) A and C feed flow (stream 4) Random variation 
IDV(27) Reactor cooling water flow Random variation 
IDV(28) Condenser cooling water flow Random variation 

 
Table 5. Base-level set-points of available experimental 
factors in the TE process for operating Mode 1. 

Loop Controlled variable Base set-point 
7 Stripper liquid rate (production) 22.949 m3 h-1 
9 Stripper liquid level 50 % 

10 Separator liquid level 50 % 
11 Reactor liquid level 75 % 
12 Reactor pressure 2705 kPa 
13 Mole % G  53.724 mol% 
14 Amount of A in reactor feed (yA) 54.95 % 
15 Amount of A+C in reactor feed (yAC) 58.57 % 
16 Reactor temperature  120.40 oC 

 

The TE process simulator allows the user to pause, analyze the experiment, and make new 

choices based on the results. Thus, sequential experimentation, a cornerstone in 

experimental studies, is possible to simulate. The experimenter can repeat the experimental 

runs and expand the experiment with an augmented design since the seeds for the random 

disturbances can be changed. Hence, TE process simulator can emulate potential 

experimentation strategies such as response surface methodology (Box and Wilson 1951) 
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and evolutionary operation (Box 1957). Even though cost and time concerns are not 

important when experiments are run in a simulator, and the number of experimental factor 

levels and replicates are practically limitless compared to a real-life experiment, there are 

only a few potential experimental factors available. The simulator may aid studies on the 

robustness and the analysis of an experiment where the number of experimental runs is 

limited, such as unreplicated designs with a minimum number of runs. 

Below we highlight three challenges for the analyst when applying DoE in the TE 

process. These challenges are also commonly found in full-scale experimentation in 

continuous processes: 

The closed-loop environment: The TE process experimenter must select 

experimental factors and analyze process responses while considering the presence of 

feedback control systems (Capaci et al. 2017). The decentralized control of the TE process 

will mask relationships between process input and output, and feedback control loops will 

limit the possibility to vary all the process inputs freely. Furthermore, the experimenter 

must restrict potential experimental factor changes within constrained operating regions to 

avoid any process shuts downs. 

Transition times between runs: The time required for different responses to reach a 

new steady state in the TE process will differ depending on the factors and the magnitude 

of the change. The characterization of transition times is crucial to minimize their effect on 

the experimental results as well as to allocate the time needed for the treatments to take full 

effect (Vanhatalo et al. 2010). Long transition times between steady-state conditions add 

to the costs of randomizing the runs in a real experiment. The literature suggests using split-

plot designs to restrict factor changes in this situation. Moreover, it is common to avoid 

resetting the levels of factors between consecutive runs where the factors are to be held at 

the same level for time and cost concerns. However, maintaining the factor level settings 

between adjacent runs and disregarding resetting lead to a correlation between neighboring 

runs and to designs called randomized-not-reset (RNR) designs (Webb et al. 2004). These 

can also be studied in the TE process. 
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Time series data for factors and responses: the continuous nature, the dynamic behavior, 

and the transition times of the TE process lead to  the fact that experimental factors and 

responses become time series. The analysis of the experiments from the TE process allows 

for considering the time series nature of factors and responses. The response time series 

need to be summarized in averages or standard deviations to fit in a standard analysis such 

as the Analysis of Variance (ANOVA). Transfer function-noise modeling may be used to 

model the dynamic relations between experimental factors and the response(s) (Lundkvist 

and Vanhatalo 2014). 

5. Example 1: The TE process simulator and SPC 
Note that the aim of the examples provided here is not to describe the most complex 

scenarios available nor is it to suggest the “best solution” to the illustrated challenges. The 

examples are provided to show how the TE process can act as a testbed for developing and 

testing methodological ideas. In the first example, we illustrate how closed-loop operation 

can affect the shift detection ability of control charts. In particular, this example 

demonstrates how control charts applied to the (controlled) output could fail to detect a 

fault and might therefore erroneously indicate an in-control situation. 

The example focuses on control loops 9-12 and 16 (Table 1). These loops regulate 

the process operating constraints needed to secure plant safety and to avoid unwanted 

shutdowns. Five process inputs (r5, s.p.17, XMV(10), r6, and r7), i.e., the manipulated 

variables, control the related TE process outputs (XMEAS 7-9, 12 and 15). We here refer 

to control loops 9-12 and 16, and their related variables as critical control loops, critical 

controlled variables (C-XMEAS) and critical manipulated variables (C-XMVs) 

respectively.  

5.1. Selecting and scaling disturbances 

After a preliminary study of the available process disturbances of type random variation 

(Table 4) to introduce in the TE process, we further analyzed the behavior of IDV(8) and 

IDV(13). IDV(8) varies the proportion of the chemical agents (A, B, C) in stream 4 of the 

process, mimicking a reasonably realistic situation, whereas IDV(13) deviates the 

coefficients of reaction kinetics propagating its impact through the whole process. We 

performed four sets of 20 simulations each with a scale factor of the disturbances equal to 
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0.25, 0.5, 0.75 and 1 to understand the impact of IDV(8) and IDV(13) on process behavior. 

Each simulation, run with a randomly selected seed, lasted 200 hours in the TE process and 

the output of the random disturbances was collected with a sample time of 12 minutes. We 

maintained inputs not involved in control loops and set-points of the control loops at the 

base case values of operating Mode 1 (Tables 2 and 5). 

Based on the averages and standard deviations presented in Table 6, and to achieve 

random variation in the TE process, we ran Phase I and Phase II data collection with both 

IDV(8) and IDV(13) active, with randomly selected scale factors between 0 and 0.25 and, 

0 and 0.5 respectively.  

We then performed a preliminary simulation with the same simulator settings for the 

random disturbances to select the magnitude of the step size (fault) for Phase II. Table 6 

shows the magnitude of the step size for the scale factor equal to 0.25, 0.5, 0.75 and, 1. We, 

therefore, introduced a step change in the water inlet temperature of the reactor coolant in 

Phase II, i.e., IDV(4), with a randomly selected scale factor between 0.25 and 0.5. 

Table 6. Step size of IDV(4) for different scale factor values. Averages and standard deviations of IDV(8) 
and IDV(13) based on 20 simulations.  

Variable 
number Process variable Scale factor Average Step size Standard deviation 

IDV(4) Cooling water inlet temperature of 
reactor 

0.25n 
n =0,1,…,4 35 +1.25n - 

     n=1 n=2 n=3 n=4 

IDV(8) 
Proportion of A in stream 4 0.25n 48.51  0.372 0.748 1.126 1.50 
Proportion of B in stream 4 0.25n 0.50  0.038 0.074 0.110 0.15 
Proportion of C in stream 4 0.25n 50.99  0.374 0.751 1.130 1.51 

IDV(13) 

Variation coefficient of reaction 
kinetics A + C + D  G 0.25n 

1  
0.03n Variation coefficient of reaction 

kinetics A + C + D  G 1  

 

5.2. Data Collection 

The TE process was first run for 144 hours at normal operating conditions (Phase I), i.e., 

base case values for operating Mode 1. A step change in the cooling water inlet temperature 

of the reactor (IDV4) was then introduced in the process for 108 hours (Phase II). The 

randomly selected scale factors of disturbances IDV(4), IDV(8) and IDV(13) in this 

simulation were 0.32, 0.1 and 0.25 respectively. Values on C-XMEAS and C-XMVs were 

collected in sequence during continuous operation of the process with a sampling time of 

12 minutes. 
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5.3. Multivariate process monitoring 

For illustration purposes, consider a standard Hotelling T2 multivariate control chart for 

individual observations for the five critical controlled variables of the TE process (C-

XMEAS). The Phase I sample was produced by excluding the start-up phase of the process. 

The critical controlled variables exhibit a dynamic behavior for about 36 hours or 180 

samples at the start of the simulation. After this “warm-up phase,” the TE process was 

deemed to have reached the steady state.  

Samples of C-XMEAS collected during steady-state operation provide a more stable 

estimation of the sample covariance matrix, S, and thus of the T2 values. We discarded the 

first 180 observations and used datasets of 540 samples both in Phase I and Phase II to 

build the Hotelling T2 chart, see Figure 5. The standard sample covariance matrix was used 

to form the T2 chart. The theoretical Phase I and Phase II upper control limits were based 

on the and F distributions, and on the assumption that observations are time-independent 

(Montgomery 2012). This assumption is unrealistic because of the observed positive 

autocorrelation in the critical controlled variables (and as a result in the T2 values), and 

consequently, the upper control limits could be adjusted. The point we want to make here 

is, however, still relevant using the theoretical control limits. 

There are a few T2 observations above the control limit in the Phase II sample based 

on C-XMEAS (top panel in Figure 5), but an analyst might as well conclude that there is 

little evidence to deem the process out-of-control. Moreover, a visual inspection of the C-

XMEAS univariate plots in Figure 6 seems to support this conclusion, as the critical and 

controlled variables appear to be insensitive to the step change in the cooling water inlet 

temperature for the reactor (IDV4). However, this conclusion is incorrect. Since the TE 

process is run in closed-loop operations, the analyst should know that the engineering 

process control seeks to displace most of the variability induced by the step change (fault) 

to some manipulated variable(s). In fact, the correct conclusion in this scenario is that the 

process is still working at the desired targets thanks to the feedback control loops. If the C-

XMVs are studied, the analyst would probably deem the process to be out-of-control. That 

the process is disturbed becomes evident by studying the Hotelling T2 chart based only on 

the five C-XMVs (bottom panel in Figure 5). While one may consider the process in 

statistical process control during Phase I, it is out-of-control in Phase II. Moreover, a visual 
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inspection of the univariate C-XMVs plots in Figure 6 suggests that an increase in the flow 

of the reactor cooling water, XMV(10) compensates for the effect of the introduced fault 

in the inlet temperature. Such a control action could, of course increase waste of water 

and/or energy while trying to maintain product properties on target.  

 

 
Figure 5. Hotelling T2 chart based on individual observations for the C-XMEAS (top) C-XMVs (bottom). 
The vertical red line divides phase I and phase II data.  

 

5.4. Closing remarks  

The example above shows a possible application of how to use the TE process as a testbed 

for SPC methods. As the TE process is run under closed-loop control, control actions may 

partly or completely displace the impact of a disturbance from the controlled variables to 

manipulated variables. The traditional approach of applying a control chart on the 

(controlled) process output then needs to be supplemented with a control chart on the 

manipulated variables. The concurrent use of both of these control charts allows for [1] 

confirming the presence and effectiveness of the controller by analyzing the control chart 

for the controlled variables and [2] identifying potential assignable causes by analyzing the 

control chart for the manipulated variables.  
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Figure 6. Univariate time series plots for C-XMEAS (left column) and C-XMVs (right column) during 
both Phase I and II.  

6. Example 2: DoE in TE process simulator 

This example illustrates a response surface methodology approach based on sequential 

experimentation using a subset of the set-points of the control loops in the TE process. The 

example starts with a two-level fractional factorial design, which is augmented to a central 
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composite design, followed by confirmation runs in the simulator. The example describes 

how to use the TE process for experimentation. Hence, we conduct a simplified analysis of 

the experimental results applying ANOVA on the average values of the factors and the 

response of each experimental run, as suggested by Vanhatalo et al. (2013). 

Closed-loop process performance may improve by exploring the relationships 

between the set-points of the controlled variables and an overall performance indicator 

such as production cost. Consider an experiment where we first want to identify reactor 

set-points that affect the operating cost and then try to minimize this cost. Our experimental 

factors are in this case the five set-points of the controlled variables in loops 11, 12, 14, 15 

and 16. The response is the process operating cost. Table 7 presents the set-points of the 

starting condition, the average operating cost (long-term value) given these set-points and 

the chosen levels of the set-points in the two-level experimental design. Note that the 

choices of experimental factor levels were found using trial and error by changing the base 

case values and in the meantime trying to keep the process from shutting down. The input 

variables that were not involved in control loops were set at operating Mode 1 values (Table 

2) in all simulations.  
Table 7. Long-term average operating cost at the starting set-point settings. Low and high level 
of the set-points used as experimental factors. 

Loop Controlled variable Starting set-point setting Low level High level 
7 Stripper liquid rate (production) 22.949 m3 h-1 - - 
9 Stripper liquid level 50 % - - 
10 Separator liquid level 50 % - - 
11 Reactor liquid level 75 % 70 % 75 % 
12 Reactor pressure 2705 kPa 2600 kPa 2705 Kpa 
13 Mole % G (product quality) 62 mol% - - 
14 Amount of A in reactor feed (yA) 54.95 % 55 % 65 % 
15 Amount of A+C in reactor feed (yAC) 58.57 % 50 % 59 % 
16 Reactor temperature  120.40 oC 120 oC 127 oC 

Long-term average operating cost 147.60 $/h   
 

6.1. Selecting and scaling disturbances 

Real processes are often disturbed by unknown sources. The random process variation in 

the simulator needs to be comparable to disturbances affecting a real process. We used the 

random disturbances IDV(8) and IDV(13) to add random disturbances to the process. The 

impact of IDV(8) on the operating costs of the process was studied using 10 simulations 

with the starting values of the set-points given in Table 7. The scale factor of IDV(8) was 

then increased by steps of 0.1 in each run. Each simulation, run with a random seed, lasted 
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200 hours in the simulator and the operating cost was sampled every 12 minutes. We 

repeated the procedure for IDV(13), increasing the scale factor by steps of 0.1 in each run. 

Visual inspection of the resulting cost time series led us to the conclusion that scale factors 

between 0.1 and 0.4 produce reasonable random variability. 

The scale factors of IDV(8) and IDV(13) were determined to 0.31 and 0.1 

respectively throughout the simulations after drawing random numbers from a uniform 

distribution between 0.1 and 0.4. From another set of 20 simulations with these selected 

scale factors, the average (long-term) operating costs were 147.60 $/h with a standard 

deviation of 36.75 $/h. Visual inspection shows that the process operating cost exhibits a 

transition time of approximately 24 hours before reaching the steady state. We, therefore, 

removed observations of the cost function during the first 24 hours before calculating the 

average and standard deviation of the process operating cost.  

6.2. Experimental design and analysis 

Analyses reported in this section were all made using Design Expert® version 10.  

Phase I: Screening 

We chose a 2  fully randomized fractional factorial design with four additional center 

runs to screen the five factors (set-points) in Table 7. The experiment started by a “warm-

up phase” where the TE process was run for 36 hours (180 samples) using the starting set-

points settings in Table 7. After these 36 hours, the TE process was deemed to have reached 

steady state. When steady state was reached, all runs were conducted in sequence according 

to their run order during continuous process operation. The simulation runs were 50 hours 

(250 samples) and the simulation seed was randomly changed before each run. The 

operating cost was sampled every 12 minutes.  

We calculated response averages for each run to analyze the response time series of 

the cost. We then removed the observations of the transition time before calculating the run 

averages to avoid a biased estimation of the main effects and their interactions (Vanhatalo 

et al. 2013). The transition time during some runs were determined to be approximately 24 

hours through visual inspection. Some settings thus had an effect on process stability, 

which meant that the run averages were based on the run’s last 26 hours (130 samples). 
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Table 8 shows the run order during the experiment and the averages of the process 

operating cost for each run. 

Table 9 presents an ANOVA table of active effects (at 5% significance level) based 

on the first 20 experimental runs of Table 8. Four main effects and two two-factor 

interactions have statistically significant effects on the operating cost. We also included the 

main effect of factor E in the model due to effect heredity. However, the significant 

curvature suggests that a higher order model may be needed.  

Table 8. Run order, standard order of the runs and average operating cost after removing the transition time at 
the beginning of each run. The “c” in standard order marks the center points. 

  Block 1: 25 1  Block 2: Augmented plan 
Run 

order 
Standard 

order 
Operating  
Cost ($/h)  

Run 
order 

Standard 
order 

Operating 
Cost ($/h) Run order Standard 

order 
Operating 
Cost ($/h) 

1 9 163.66 11 17c 128.83 21 27 147.82 
2 14 162.79 12 19c 126.96 22 22 135.91 
3 12 155.84 13 3 144.00 23 21 126.96 
4 10 175.84 14 13 175.24 24 28 189.13 
5 7 127.38 15 2 180.51 25 29 168.99 
6 18c 131.29 16 1 140.62 26 26 136.39 
7 20c 123.26 17 16 159.84 27 24 117.51 
8 6 145.13 18 8 136.36 28 30 163.25 
9 5 151.53 19 11 158.39 29 23 147.95 
10 4 129.90 20 15 136.09 30 25 140.13 

Table 9. ANOVA and estimated effects based on the first 20 runs in Table 8. Third order and higher interactions are 
ignored. 

Source Sum of 
Squares df Mean 

Square F Value Prob > F 

Estimated 
Standardized 

Effects 
($/h) 

Model 3941.46 7 563.07 29.65 < 0.0001  
A: Reactor Liquid Level 151.89 1 151.89 8.00 0.0164 3.08 
B: Reactor Pressure 1360.21 1 1360.21 71.64 < 0.0001 -9.22 
C: Amount of A in the reactor feed (yA) 184.90 1 184.90 9.74 0.0097 -3.40 
D: Amount of A+C in the reactor feed (yAC) 1093.39 1 1093.39 57.58 < 0.0001 8.27 
E: Reactor Temperature 21.22 1 21.22 1.12 0.3131 -1.15 
CE 225.63 1 225.63 11.88 0.0055 3.76 
DE 904.21 1 904.21 47.62 < 0.0001 7.52 
Curvature 2017.86 1 2017.86 106.27 < 0.0001 3.08 
Residual 208.87 11 18.99    
Lack of Fit 174.46 8 21.81 1.90 0.3234  
Pure Error 34.41 3 11.47    
Cor Total 6168.18 19     
    R2 63.90% 
    Adjusted R2 42.84% 
    R2 prediction 34.71% 
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Phase 2 – Second-order model 

Augmenting the resolution V fractional factorial design with 10 additional axial points run 

in a new block produced a central composite design, allowing for estimation of a second 

order model. We simulated the second block of experimental runs in sequence as a 

continuation of the first 20 runs and used the same procedure to calculate run averages as 

in the first block. We did not impose any block effect in the simulations. The analysis of 

the 30-run augmented design gives the second order model shown in the ANOVA table 

(Table 10). The residual analysis indicated that the 15th run (standard order #2) could be an 

outlier. However, as we did not find a reasonable explanation for this run’s behavior, we 

chose to include it in the model despite the slight decrease in the R2, R2 adjusted, and R2 

predicted statistics. Table 10 thus presents the ANOVA table of the augmented design in 

Table 8 (5% significance level). The non-significant lack of fit and the high values of the 

R2 statistics indicate that the model has a good fit and predictive ability.  
Table 10. ANOVA and estimated effects for the augmented design using observations in both blocks. The model 
includes only those terms significant on a 5% significance level. Third order and higher interactions are ignored. 

Source Sum of 
Squares df Mean 

Square F Value Prob > F 
Estimated 

Standardized 
Effects 

Block 0.49 1 0.49    
Model 9896.57 10 989.66 51.10 < 0.0001  
A: Reactor Liquid Level 188.15 1 188.15 9.72 0.0060 2.80 
B: Reactor Pressure 1809.73 1 1809.73 93.45 < 0.0001 -8.68 
C: Amount of A in the reactor feed (yA) 159.56 1 159.56 8.24 0.0102 -2.58 
D: Amount of A+C in the reactor feed (yAC) 1924.18 1 1924.18 99.36 < 0.0001 8.95 
E: Reactor Temperature 37.30 1 37.30 1.93 0.1821 -1.25 
CE 225.63 1 225.63 11.65 0.0031 3.76 
DE 904.21 1 904.21 46.69 < 0.0001 7.52 
C2 160.68 1 160.68 8.30 0.0100 2.40 
D2 2772.06 1 2772.06 143.14 < 0.0001 9.95 
E2 2453.31 1 2453.31 126.68 < 0.0001 9.36 
Residual 348.58 18 19.37    

Lack of Fit 314.17 15 20.94    
Pure Error 34.41 3 11.47    

Cor Total 10245.64 29     
    R2 96.60% 
    Adjusted R2 94.71% 
    R2 prediction 89.49% 
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We then minimized the operating cost within the experimental design region spanned by 

the low and high levels of the factors in Table 8 based on the model in Table 10. The 

numerical optimization tool in the Design Expert® was used to search the design space, 

and Table 11 presents the settings of the reactor set-points that result in the lowest predicted 

cost.  
Table 11. The suggested setting of the reactor set-points to obtain lowest 
operating cost. 
Loop Controlled variable Suggested set-points setting 

7 Stripper liquid rate (production) Not in model (refer to Table 8) 
9 Stripper liquid level Not in model (refer to Table 8) 
10 Separator liquid level Not in model (refer to Table 8) 
11 Reactor liquid level 70.37 % 
12 Reactor pressure 2701.30 kPa 
13 Mole % G (product quality) Not in model (refer to Table 8) 
14 Amount of A in reactor feed (yA) 63.67 % 
15 Amount of A+C in reactor feed (yAC) 52.25 % 
16 Reactor temperature  124.25 oC 

Estimated process operating cost 117.07 $/h 
 

Phase 3: Confirmation runs 

Three additional confirmation runs were simulated in the TE process using the suggested 

set-points (Table 11). The average cost of these runs was 117.07 $/h. An average operating 

cost of 117.16 $/h represents a reduction of 30.44 $/h compared to the operating cost when 

starting set-point values are used, a reduction that most production engineers would deem 

considerable.  

6.3. Closing remarks  

The sequential experimentation example illustrates exploring DoE methodologies in 

processes where engineering process control is present using the TE process simulator as 

a testbed. The example shows how a continuous process operating in closed-loop can be 

improved by shifting the set-points of the controllers. Experimental plans can help to 

explore the relationship between set-points and overall process performance indicators 

such as process cost or product quality. Note that the change in operating conditions 

invoked by the recommended change of the set-points may require re-tuning of the 

controllers in the system. We have not done that. That is, we assume that the control 

configuration and settings can still maintain the stability of the system in the new operating 

condition based on the new set-points. In our approach, we use DoE as a systematic 

solution to reduce the cost of the TE process based on an existing control system without 
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redesigning it. As such, it resembles ideas in the so-called retrofit self-optimizing control 

approach from the engineering control domain described by Ye et al. (2016). 

7. Conclusions and Discussion 

The TE process simulator is one of the more complex simulators available that offers 

possibilities to simulate a nonlinear, dynamic process and operates in closed-loop useful 

for both methodological research and teaching. In this article, we provide guidelines for 

using the revised TE process simulator, run with a decentralized control strategy, as a 

testbed for new SPC and DoE methods. In our experience, understanding the details of the 

TE process simulator and getting it to run may be challenging for new users. The main 

contribution of this article is the flowcharts coupled with recommended settings of the TE 

process that will help a new user of the simulator to get started. Another contribution is the 

suggested approach of how to induce random variation in the simulator. The possibility of 

introducing random variability in the simulator improves the usability of the TE process 

simulator in the SPC and DoE contexts. This way, independent simulations can now be 

produced for SPC applications, and independent replicates can be run in an experimental 

application.  

In the two examples provided, we illustrate some of the challenges that an analyst 

normally face when applying SPC and DoE in continuous processes operating under 

closed-loop. We would like to reiterate that the illustrated examples are only examples of 

applications for which the TE process simulator can be used. We believe that the revised 

TE process simulator offers ample opportunities for studying other and more complicated 

scenarios that will mimic real-life applications.  
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