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Abstract

The rotational motion of a hydraulic turbine runner makes pulsating flows ubiquitous in
different locations of the machine. The cyclic loading thus induced may generate large
pressure forces acting periodically on both stationary and rotating parts. In addition
to the presence of pulsating flows in a turbine runner, transient flows are encountered
at an increasingly higher rate due to the continual installation of intermittent sources
of renewable energy, such as wind and solar power. To mitigate the imbalance that
these unpredictable sources induce on the frequency of the electrical grid, hydropower
turbines are enforced to regulate their power production, and consequently flow rate,
thus leaving them to operate under transient conditions. In terms of wear and fatigue,
a start-up or shut-down of a hydraulic turbine corresponds to 10-20 hours of steady
state operation at the design point. Transient operation of a hydraulic machine can,
however, also be used in favor for measuring the discharge through the turbine using
the pressure-time method. A better understanding of pulsating and transient flows thus
has the potential both to mitigate problems associated with them, and to increase the
accuracy with which the turbine flow rate can be measured; two great merits for the
hydropower community. In light of these observations, the following work constitutes a
fundamental investigation of transient and pulsating turbulent flows in a straight pipe.
Studies have been performed experimentally using particle image velocimetry, hot-film
anemometry, laser Doppler velocimetry and pressure sensors.

A chief finding is that the time-developments of the wall shear stress and near-wall
turbulence fields exhibit significant similarities between transient and pulsating flows,
despite the different conditions of the mean flow. Whereas the former is initiated from
a statistically steady state, the latter is constantly subjected to a time-varying forcing.
Both types of unsteady flows have previously been investigated in detail; however, any
potential similarity between them has, largely, been unexplored. An important implica-
tion of this finding, then, is that knowledge acquired in one type of unsteady flow can
be used, if not interchangeably, at least as a guidance for the expected behavior in the
other type of flow. An example is the development of unsteady turbulence models.

Another important finding is that the frictional losses arising during the late stage
of a pressure-time flow rate measurement can be accurately modeled using an analytical
laminar formulation of the wall shear stress, despite the bulk of the flow being turbulent.
Two simplifying assumptions underpins the model, namely, i) that the effect of the
turbulence can be neglected, and ii) that the flow starts from rest. The assumptions
are shown to induce errors, and the frictional formulation can thus be improved by
incorporating corrections. Such improvement has not been addressed explicitly, though.
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Chapter 1

Thesis Introduction

1.1 General information

Hydropower provides Sweden with about 40% of the annually produced electricity. To-
gether with nuclear power, which too produces approximately 40% of the electricity in
Sweden, hydropower is a key source for producing base power. In addition, hydropower
is the principal source of regulation power because energy can be stored in reservoirs,
thus making it possible to produce electricity when it is desired; either when there is
a change in the demand from the market, or when the production from unpredictable
sources such as wind and solar power is altered due to changes in the weather conditions.

Each regulation implies a change in the flow rate supplied to the hydropower runner,
which as a consequence, results in a transient operation of the turbine. If the required
regulation power is so large that a turbine has to be started from rest, a rough estimate
is that the wear and tear associated with such start-up event corresponds to 10-20 hours
of steady operation at the best efficiency point (see Trivedi et al. [1]). If the turbine after
a regulation is enforced to operate away from its design point, the flow conditions may
induce various phenomena that produce severe wear and tear on the machine (see Amiri
et al. [2]). A particularly undesirable phenomenon is the rotating vortex rope (RVR),
which may arise in the turbine draft tube1 when the machine is operating at a flow rate
that is lower than that at its design point (see Goyal et al. [3]). As the name implies,
the RVR is a helical vortex structure that precesses around its axis. Figure 1.1(a) shows
laser Doppler velocimetry (LDV) measurements performed in the draft tube of a Kaplan
turbine model, with the operating condition being such that an RVR is present. The
data has been phase-resolved at the frequency of the RVR. A relatively quiescent flow is
observed during approximately 50% of the flow cycle, i.e., when the precessing motion
causes the RVR to be far away from the LDV measurement volume. However, during
the other half of the cycle, when the RVR approaches and passes the LDV measurement

1The draft tube is a conical diffuser found after the runner of reaction turbines.
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Figure 1.1: Examples of measurements of the tangential velocity component in the draft tube
of hydropower turbine model runners. (a) Kaplan turbine at off-design operation. (b) Francis
turbine operating at its design point.

volume, a large peak is observed in the velocity. The RVR thus causes a periodic, pulsat-
ing, response of the velocity with corresponding large pulsations in the pressure. These
large pressure peaks may harm both stationary and rotating parts of the turbine. RVRs
is not a specific for hydropower turbines; rather, it arises in many industrial applications
subjected to a swirling flow, including combustion engines, gas turbines and boilers (the
RVR goes under different names depending on the application in which it is found, a
common name is ‘precessing vortex core’; see Lucca-Negro & O’Doherty [4]). Despite
being a flow phenomenon that has been known for decades, the formation of the RVR is
not understood nor does it exist a reliable way to mitigate its harmful effects.

Owing to the rotational motion of hydropower turbines, pulsations in the velocity
and pressure fields are ubiquitous even when the operation is at the design point, as
seen in Figure 1.1(b) which shows LDV measurements performed in the draft tube of a
Francis turbine model that is operating at its best efficiency point. These pulsations are
not particularly harmful to the turbine, they do, however, increase the complexity of the
flow response compared to that of an undisturbed flow.

Other complexities characterizing the flow inside a hydropower turbine include a high
Reynolds number, swirl, rotor-stator interaction, fluid-structure interaction and separa-
tion, to name a few. Traditionally, the design and performance of turbines have been
assessed through model testing. Inasmuch as model testing is a well-proven and reliable
technique to perform such tasks, designing and testing a turbine model is expensive and
time consuming. Therefore, to reduce the expenses associated with model testing, there
exists an interest from the hydropower community to design and evaluate the perfor-
mance of turbines using numerical modeling instead. In addition, not only is numerical
modeling beneficial from an economical perspective, a simulation provides detailed data
of flow quantities that are not easily extracted from measurements. A reliable numerical
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tool could, also, be used to evaluate the performance of techniques developed to mitigate
the harmful effects of the RVR.

The rapid developments of super computers and large-scale computational clusters
have enabled simulating increasingly more complex flow phenomena using advanced nu-
merical techniques, such as direct or large-Eddy simulations (abbreviated DNS and LES
henceforth). These techniques are, presently, however only available to academia, and
the aforementioned complex features characterizing the flow in hydropower turbines pre-
clude a large-scale use of DNS/LES by the hydropower community over a far-reaching
future, and more rudimentary turbulence modeling will have to be used. Standard tur-
bulence models, such as the k − ε and k − ω models, are known to predict poorly the
flow in hydropower turbines, as was highlighted in the recently performed and ongo-
ing Francis-99 workshops, carried out as a collaborative project between Lule̊a Uni-
versity of Technology and the Norwegian University of Science and Technology (see
https://www.ntnu.edu/nvks/francis-99).

During commissioning of a turbine, an important objective for the owner is to assess
the performance of the machine in order to verify that the efficiency meets the guarantee.
Furthermore, measuring the turbine efficiency at regular intervals is needed to assure an
optimal functioning of the machine. At many turbine sites, the efficiency has to be
assessed indirectly by measuring the turbine flow rate because the only available method
that measures directly the turbine efficiency, namely, the thermodynamic method, can be
used only in power plants with a hydraulic head above 100 m. Furthermore, performing a
thermodynamic measurement is expensive because the method necessitates an excessive
sensor installation inside the turbine, which implies a long downtime of the machine, and
consequently, a reduced revenue due to loss of production. A cost-effective and easily
implemented method to measure flow rate in closed conduits is the pressure-time method.
As argued previously, a transient operation of hydraulic machines cause additional wear
and tear that are not present during steady-state operation. However, the underlying
principle of the pressure-time method is based on altering the discharge supplied to the
turbine; as such, there exist situations in which transient operation of a hydraulic machine
can be used advantageous. If the differential pressure, Δp, between two straight circular
sections separated by an axial distance L is measured, the differential change in flow rate
caused by the transient can be calculated using the pressure-time method through

−ΔQ = Q0 − Q(t) =
A

ρL

∫ t

0

(Δp + ξ) dt′. (1.1)

Q, A, ρ and ξ denote the flow rate, the cross sectional area between the measuring
sections, the fluid density and the frictional losses, respectively. Note that the frictional
losses are related to the wall shear stress, τ , through τ = ξD/(4L), in which D denotes the
pipe diameter. Typically, when a pressure-time measurement is performed, the turbine
is brought to a complete rest. For such cases, Q(t) represents the leakage flow through
the agency that generated the deceleration; for instance, the turbine guide vanes or a
gate. To achieve an accurate estimate of ΔQ, the frictional losses must be known with a
high accuracy. Since the flow in a hydropower turbine is turbulent (the Reynolds number
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Re = UbD/ν, with ν denoting the kinematic viscosity, is typically of order 107), there
exists no closed-form solution for ξ. As such, modeling is required because it is not
possible to directly measure the wall shear stress in a hydropower plant. Typically, the
uncertainty of a pressure-time flow rate measurement is smaller than ±2%. However,
despite being an old method dating almost one hundred years back in time, there still
exists potential to improve the accuracy of the pressure-time method; particularly by
improving the frictional modeling.

The pressure-time method is useful not only for measuring the flow rate in a full-scale
power plant, but also in the laboratory. From economy and safety perspectives, it is more
suitable to perform model testing of a turbine instead of measuring the performance of
the corresponding prototype. If transient operation of the model turbine is desired, the
momentary change in flow rate is typically of interest. Whereas a steady-state flow rate
is easily measured in the laboratory using, for instance, an electromagnetic flow meter,
measuring transient changes in Q is difficult because flow meters usually have a finite
response time, thus inducing a lag of the measured Q relative to the true change. In such
instances, the pressure-time method can be used because pressure sensors typically have
response times being much faster than a flow meter.

1.2 Thesis objectives

To reconcile the shortcomings of standard turbulence models, and to improve the accu-
racy of turbine flow rate measurements using the pressure-time method, the goal of this
project is to improve the understanding of transient and pulsating flows, particularly the
understanding of how the wall shear stress responds to the imposition transient and/or
pulsating unsteadiness. An improved understanding of these types of flows could, firstly,
enable a better modeling of the flow in hydropower turbines, for instance by developing
novel wall functions to be used in conjunction with standard turbulence models, and sec-
ondly, lead to an improved modeling of the frictional losses, ξ, entering the pressure-time
flow rate calculation (Eq. 1.1). To achieve the project goal, a number of experimen-
tal studies of generic turbulent transient and pulsating pipe flows have been performed,
and the outcome of these studies are reported in this thesis. Note that it is only the
development of the modeling of the frictional losses ξ, that is directly addressed in this
thesis. The development of wall functions is not addressed; however, it is believed that
the knowledge developed within this work can be used to achieve such task in a longer
term.



Chapter 2

Flow rate measurements

2.1 The pressure-time method

Assessing the efficiency of a hydraulic turbine (only hydraulic turbines are considered in
this work; thus, the phrasing ‘hydraulic’ is dropped in the sequel) is important for the
owner in order to optimize the power production. If the available head, H, is above 100
m, the efficiency can be measured directly using the thermodynamic method (see Ramdal
[5]). For turbines operating at a head below 100 m, however, the efficiency has to be
measured indirectly. The turbine efficiency is then calculated through η = P/(ρgQH).
The produced power, P , and the head can be measured with high accuracy, whereas the
fluid density, ρ, and the acceleration of gravity, g, are tabulated quantities. The main
challenge in accurately estimating turbine efficiency is thus the measurement of the flow
rate, Q.

A number of methods for measuring turbine flow rate exist. Examples include
acoustic, volumetric, tracer based, pressure-time and current meter methods. Only the
pressure-time method is of interest in this work; as such, none of the other methods are
discussed herein. Consider the pressure-time method in its most basic form, namely,
when the flow is brought to a complete rest. Figure 2.1(a-b) shows time evolutions of
Δp, ξ and the bulk velocity Ub, during the course of a pressure-time measurement. Data
have been obtained from a computational fluid dynamics (CFD) simulation, performed
in a 133D long straight pipe at an initial Reynolds number of 0.7 × 106 at a closing
time of approximately 4.66 s (in the simulation, the closing of the gate/guide vanes have
been mimicked by reducing the flow rate at the outlet, see Saemi et al. [6] for a detailed
discussion). Because the flow is steady before the commencement of the transient, the
pressure drop and the frictional losses balance at t = 0. The balance between Δp and ξ
for t < 0 s exists also in a prototype, given that the measurement is performed in a fully
developed straight pipe. Furthermore, measuring a transient change of the differential
pressure is straightforward in many instances. However, the time-development of the fric-
tional losses for t > 0 s cannot be measured in a full-scale hydropower plant because none
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Figure 2.1: Time evolutions of flow quantities obtained from a pressure-time CFD simulation.
(a) Δp and ξ, (b) Ub, (c) loss-coefficients C = ξ/Q2, (d) τ . The dotted vertical lines coincide
with the complete closure of the gate.

of the available methods for measuring wall shear stress, such as hot-film anemometry,
oil-film interferometry or a direct measurement of the velocity gradient at the wall, can
be used. Instead, modeling is required to estimate the time evolution of ξ. Currently, the
International standard - field acceptance tests to determine the hydraulic performance of
hydraulic turbines, storage pumps and pump-turbines, IEC41 [7], recommends to model
the frictional losses using a constant loss-factor C0, times the bulk flow rate squared. The
loss-coefficient is extracted from the pre-transient pressure drop, i.e., C0 = −Δp0/Q

2
0.

Since Q0 is the quantity of interest, the calculation procedure is iterative; an initial guess
for Q0 is assumed and the iteration continues until the results have converged. Since
the calculation procedure just described is recommended in the IEC 41 standard, it is
convenient to term the approach ‘standard pressure-time’ (SP for short).
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Despite its simplicity, the flow rate estimated using the SP approach produces accu-
rate results. For example, under controlled laboratory and full-scale conditions, Jonsson
et al. [8] and Jonsson & Cervantes [9] showed that the flow rate estimation error relative
an accurate reference was below ±1%. The SP approach can be interpreted as a quasi-
steady formulation of the losses in a pipe with surface roughness. However, from Figure
2.1(b), it is realized that the bulk velocity changes at an appreciable rate for t � 4 s
(although, strictly, such judgment must be made on non-dimensional grounds). Hence,
unsteadiness can be expected to influence the frictional losses for t > 4 s. The effect
of the flow unsteadiness is illustrated in Figure 2.1(c), showing how the constant loss-
coefficient compares with the instantaneous loss-coefficient C(t) = ξ/Q2(t). For t < 4.2
s, C(t) differs by less than ±3% from C0; for larger times, however, C(t) decreases at an
appreciable rate and thus deviates rapidly from the constant loss-coefficient. Since C0

represents the losses inaccurately during the late stage of the transient, a more accurate
modeling during this stage would improve the flow rate estimation (Eq. 1.1). By virtue
of this observation, Jonsson et al. [8] introduced an unsteady modeling of ξ using the so
called Brunone model [10]. In the Brunone model, the instantaneous friction loss is com-
posed of a quasi-steady contribution (i.e., the friction that would prevail in a statistically
steady flow at the instantaneous Reynolds number; fqs) plus a contribution proportional
to the instantaneous bulk flow acceleration, i.e.;

ξ =
1

2
ρ

(
fqs +

kD

Ub|Ub|
dUb

dt

)
Ub|Ub|L

D
, (2.1)

in which k is a Reynolds-number-dependent coefficient that can be calculated using
Vardy’s shear decay coefficient [11]. In its original form, the Brunone model also contains
an advective term in addition to the temporal acceleration. The advective acceleration
is, however, negligible compared to the temporal one during a pressure-time measure-
ment, as shown by Jonsson [12]. The loss-coefficient obtained using the Brunone model
is shown in Figure 2.1(c). The Brunone loss-coefficient overlaps with C(t) at all times
plotted in the figure, thus providing an improvement of the frictional modeling compared
to the SP approach. Since the friction modeling is improved using the Brunone model,
the flow rate estimation error is expected to decrease in comparison to the SP approach.
Indeed, Jonsson et al. [8] and Jonsson & Cervantes [9] verified a superior performance of
the ‘unsteady pressure-time’ approach (UP for short henceforth) in comparison to the SP
approach, both in laboratory and in full-scale measurements, although some exceptions
occurred. Typically, the improvement amounted to 0.2-0.4 percentage points.

Despite improving the accuracy of the flow rate calculation, the Brunone model re-
produces the friction badly for times following the complete blockage of the flow (t > 4.66
s), as shown in Figure 2.1(d). Following the complete blockage, the reference wall shear
stress (obtained from CFD) remain negative while oscillating with a peak-to-peak am-
plitude of less than 1 Pa. The wall shear stress predicted from the Brunone model, on
the other hand, oscillates around zero with a peak-to-peak amplitude of approximately
6 Pa. Clearly, there exists potential to improve the frictional modeling for the times fol-
lowing the complete blockage of the flow. Such improvement would, in the end, also lead
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to a more accurate pressure-time flow rate estimation. Even if the improvement would
amount only to a few tenths percentage points, every amelioration of the pressure-time
method, no matter how small, still represents a merit and thus justifies one of the goals
of the present project; namely, to improve the modeling of ξ.

Other means to improve the pressure-time method, none which will be further dis-
cussed in here, include the selection of the upper integration limit [13], the determination
of the leakage-flow after a complete gate/guide vane closure [14], and the incorporation
of a method-of-characteristics approach in the evaluation procedure [15].



Chapter 3

Unsteady flows

Laminar and turbulent flows subjected to either pulsating or transient unsteadiness
occur in the nature as well as in many technical applications not related to hydropower.
The flows in arteries, over airplane wings and in turbomachinery are all pulsatile in na-
ture. Transient turbulent flows arise in power plant start-ups and shut-downs. Leakages
in pipelines can be found by imposing a transient on the flow. Owing to their practical
importance, both pulsating and transient flows have been studied extensively over the
years, particularly the pulsating case. In this chapter, important concepts related to
these two types of unsteady flows are introduced. For a fuller coverage the reader is
referred to publications cited in this chapter and references therein. Note that the data
presented in the figures of this chapter have been obtained from measurements performed
by the present author, unless otherwise stated.

3.1 Transient flows

In here, a transient flow is defined as a flow ramping monotonically between two steady
states. The bulk velocity may either increase or decrease, thus including accelerations
and decelerations in this class of flow. Since the change in the bulk velocity is monotonic,
the ‘regular’ time average φ = limT→∞ 1/T

∫ T

0
φ dt, is not a meaningful operator to apply

on a generic flow quantity φ, because the net effect of such operator is to smear out all the
details in the time-development of the quantity being averaged. Instead, it is preferred to
apply ensemble averaging on the data. The ensemble average is calculated by collecting
an ensemble of nominally similar flow rate excursions, and averaging data corresponding
to the same time in each realization. The instantaneous velocity from a single realization
can then be represented using a slightly modified version of Reynolds decomposition

Ui(x, t) = 〈Ui〉 (x, t) + u′
i(x, t). (3.1)

In which 〈Ui〉 and u′
i represent, respectively, the ensemble average and the deviation

between one realization in the ensemble and the ensemble-averaged value of the ith com-

11
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Figure 3.1: Time-developments of the ensemble-averaged mean velocity for (a) a laminar flow
starting from rest undergoing a constant bulk velocity acceleration, and (b) the perturbation
velocity in a turbulent flow undergoing a constant bulk velocity acceleration. The profiles in (a)
have been computed whereas the data in (b) have been obtained from PIV measurements.

ponent of the velocity (i = 1, 2, 3). An equivalent decomposition of the pressure can
be introduced as well. Ensemble-averaged Reynolds stresses can be defined similarly
as in a steady flow if the time average is interchanged for the ensemble average; i.e.,〈
u′
iu

′
j

〉
= 〈UiUj〉 − 〈Ui〉 〈Uj〉.

A pioneering work on laminar fully developed transient pipe flow was performed by
Zielke [16, 17]. Expressions were derived for the time-dependent response of the local and
bulk velocities as well as for the wall shear stress, valid in a transient pipe flow subjected
to an arbitrary pressure gradient. Each expression consists of a convolution between the
time-derivative of the pressure gradient (or the time-derivative of the bulk velocity) and
a weighting function. More recently, Brereton [18] extended Zielke’s work and made the
results applicable to laminar channel flows as well.

In the special case of a flow starting from rest, it can be shown from the analytical
solution that the velocity, Ul(r, t), responds uniformly along the radial direction except
in a thin layer next to the wall to accommodate the no-slip boundary condition (see
Figure 3.1a; the data is plotted versus the wall-normal distance y = R − r, where r de-
notes the radial coordinate, and R denotes the pipe radius). As time proceeds, vorticity
generated at the wall diffuses into the flow, and the thickness of the uniform-velocity-
region diminishes. However, before the vorticity has diffused to the center of the pipe,
there is no imposed length scale because the flow appears to be unbounded since the
velocity gradient is zero in a neighborhood around the centerline. Furthermore, since the
vorticity generated at the wall is single-signed, no time scale is imposed either. Now,
from the classical textbook examples of the flow resulting from a suddenly moved plate
(Stokes’ first problem) and the diffusion of a vortex sheet, it is well-known that these
two problems too lack imposed length and time scales. A property of these examples
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is that the velocity distributions of both flows possess similarity solutions when plotted
versus η = y/

√
4νt (see Batchelor [19]). This suggests that Ul(r, t) too could possess

a self-similar distribution when plotted versus η. Indeed, when Ul(r, t) is scaled by the
centerline value and plotted versus η, the profiles collapse on the same line (see the small
inset in Figure 3.1a). Note that the property of self-similarity is restricted to transients
in which the centerline velocity develops according to Ul(R, t) = U0(t/t0)

m, with U0, t0
and m being constants (see Sherman [20], section 6.1.1, and paper C for a justification).

In the case of a fully developed transient turbulent pipe (or channel) flow, no an-
alytical solution has been found thus far. Instead, studies have been conducted either
experimentally or numerically (see [21, 22, 23, 24], e.g.). Lets firstly focus the attention
to accelerations, and postpone the discussion on decelerating flows. It has been estab-
lished that the flow responds in three stages following an acceleration. Firstly, consider
the development of mean and turbulence quantities in Stage 1. A uniform response of
the axial velocity, 〈U〉, occurs over an appreciable portion of the pipe radius also for
low-Reynolds-number turbulent flows undergoing a bulk velocity acceleration. It is only
within a thin layer next to the wall that the mean velocity profile changes shape, in
effect of the no-slip condition. If the time-development is investigated in terms of the
perturbation from the initial value, i.e., U∧(r, t) = 〈U〉 (r, t) − 〈U〉 (r, 0), the velocity
distributions resemble those of a laminar flow accelerating from rest, as shown in Fig-
ure 3.1(b). The similarity between U∧ in a turbulent accelerating flow and the laminar
profile of a flow starting from rest suggests that U∧(r, t)/U∧(R, t) too could exhibit a
self-similar distribution during Stage 1. In the special case of an impulse change in the
bulk velocity, He & Seddighi [25, 26] verified the self-similarity of U∧(r, t)/U∧(R, t) us-
ing direct numerical simulation (DNS) (without a theoretical justification, though), and
showed that the profiles collapse on the error function. In section 6.1.1 as well as in
paper C, it is proved analytically that U∧(r, t)/U∧(R, t) exhibit self-similarity for certain
types of accelerations, thus justifying the DNS results theoretically.

Now, consider the equation governing U∧, namely,

∂U∧

∂t
= −1

ρ

d 〈p〉∧
dx

+
1

r

∂

∂r

[
rν

∂U∧

∂r
− r 〈u′v′〉∧

]
. (3.2)

In which ‘∧’ designates the perturbation of each quantity as defined above. Since the flow
started from a turbulent state, the similarity between U∧(r, t) and a laminar flow implies
that the growth of the Reynolds shear stress, 〈u′v′〉∧, following an acceleration is small
in comparison to the growth of the pressure gradient such that U∧(r, t) is approximately
governed by the equation of a transient laminar flow. The slow response of the Reynolds
shear stress can be motivated as follows. Consider the equations governing the increase in
the productions of turbulence kinetic energy (TKE) and Reynolds shear stress following
an acceleration, viz.,

P∧
k = − 〈u′v′〉0

∂U∧

∂r
− 〈u′v′〉∧ ∂ 〈U〉0

∂r
− 〈u′v′〉∧ ∂U∧

∂r
, (3.3a)

P∧
〈u′v′〉 = − 〈v′v′〉0

∂U∧

∂r
− 〈v′v′〉∧ ∂ 〈U〉0

∂r
− 〈v′v′〉∧ ∂U∧

∂r
, (3.3b)
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where the subscripted ‘0’ denotes the ensemble-averaged value prevailing before the
commencement of the acceleration. Figure 3.2 shows time-developments of 〈u′u′〉 at
y+ = yuτ0/ν = 3.5, 〈v′v′〉 at y+ = 10 and 〈u′v′〉 at y+ = 6, plotted versus t+0 = tu2

τ0/ν
(t denotes the time elapsed since the commencement of the acceleration, and uτ0 the
initial friction velocity; uτ0 =

√〈τ〉0 /ρ. Note that 〈u′u′〉 and 〈v′v′〉 denote the axial
and radial components of the Reynolds normal stresses). The data have been obtained
from PIV measurements in a pipe flow subjected to a (close to) uniform bulk velocity
acceleration. Whereas the axial component of the Reynolds stress increases immediately
following the acceleration, the radial component remains largely unchanged at the initial
value for ∼ 100 time units. The increase in 〈u′u′〉 can readily be associated with an
increased production of turbulence kinetic energy, owing to the first and second terms in
Eq. (3.3a). However, as shown through DNS by He & Seddighi [25] and Seddighi et al.
[27], the growth of turbulence kinetic energy is not associated with ‘conventional’ turbu-
lence structures that would exist in a statistically steady flow. Instead, the turbulence
structures that pre-exist before the acceleration become amplified and form elongated
streaks in the streamwise direction. The delayed response of 〈v′v′〉 can be directly linked
to a delay in the response of the energy redistributive mechanism of pressure-strain, since
pressure-strain is the main source term for 〈v′v′〉. A consequence of this delay is that
the excess production, and hence growth, of the Reynolds shear stress is small initially
since the only significant contributor to P∧

〈u′v′〉 is through the first term in Eq. (3.3b).
Therefore, as long as the response of the pressure-strain is negligibly small, U∧ is approx-
imately governed by a laminar equation, and the flow remains in Stage 1. In the second
stage, the pressure-strain responds rapidly to the imposed acceleration, thus leading to a
rapid growth of 〈v′v′〉 as well as of 〈u′v′〉 (170 < t+0 < 230 in Figure 3.2), and a departure
from the laminar-like development of U∧. The second stage has been considerably less
investigated than the first. Furthermore, up to this date it is not clear which mecha-
nism that initiates its onset. In section 6.1.1 and in paper F, a potential mechanism
underlying the onset of the second stage is discussed. Finally, during the third stage, the
mean and turbulence quantities converge toward their steady distributions dictated by
the final Reynolds number.

The three temporal stages bear similarity to the three spatial regions typically dis-
cussed in connection to the laminar-turbulent bypass transition; namely, the buffeted-
laminar, the intermittent and the fully turbulent regions (see Jacobs & Durbin [28] for
a discussion on the bypass transition). The formation of elongated streamwise streaks
during Stage 1 is similar to how free-stream turbulence enters a flat-plate boundary layer
and form elongated streaks in the buffeted laminar region. The increasingly more rapid
development of the turbulence during Stage 2 is analogous to the formation and merging
of turbulent spots in the intermittent region, whereas Stage 3, when the flow adapts to
the conditions set by the final Reynolds number, can be linked to the fully turbulent
region. Recently, much of the discussion on temporally accelerating flows has been on
this similarity. A terminology similar to the one used in the bypass transition, namely,
naming the three temporal stages pre-transitional, transitional and fully turbulent, in-
stead of Stage 1, 2 and 3, has been adopted for accelerating flows. That terminology is
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Figure 3.2: Time-developments of the ensemble-averaged Reynolds stresses 〈u′u′〉, 〈v′v′〉 and
〈u′v′〉 following an acceleration. The data have been obtained from PIV measurements.

not used in the present study to avoid the potential misconception that the flow actually
undergoes a laminar-turbulent transition.

The discussion in this chapter has focused on accelerations. Recently, Mathur [29]
showed that many of the phenomena just described exist also in a decelerating flow.
These similarities are further discussed in section 6.1.1 as well as in paper F.

3.2 Pulsating flows

When a periodic forcing is superimposed on a non-zero mean flow, it is classified as
pulsating or pulsatile. The imposed unsteadiness results in a time-dependent organized
response of the flow, in addition to the ‘typical’ time average and random turbulent fluc-
tuation. The coherent response of the flow makes the ‘normal’ Reynolds decomposition
unsuitable; instead, a triple composition as first introduced by Hussain & Reynolds [30]
is more appropriate

Ui(x, t) = U i(x) + Ũi(x, t) + u′
i(x, t) = 〈Ui〉 (x, t) + u′

i(x, t). (3.4)

The instantaneous velocity Ui is thus decomposed into a time average U i, an oscillating
component Ũi, and a turbulent fluctuation u′

i. It is convenient to introduce a phase

average 〈Ui〉 = U i + Ũi, because the phase average inherits many of the properties of the
regular time average. Specifically, 〈u′

i〉 = 0; thus, multiplying Eq. (3.4) with Uj and phase
averaging gives

〈
u′
iu

′
j

〉
= 〈UiUj〉 − 〈Ui〉 〈Uj〉. Therefore, the turbulence too is modulated

and the Reynolds stresses can be decomposed into a mean value plus an oscillating

component, i.e.,
〈
u′
iu

′
j

〉
= u′

iu
′
j + ũ′

iu
′
j. Note that the ensemble average introduced in

the previous section and the phase average are analogous, and therefore share the same
notation. In a laminar fully developed flow, the response of the oscillating component
of the velocity is solely at the frequency of the forcing. For a fully developed turbulent
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Figure 3.3: Amplitudes of the fundamental mode of the oscillating component. (a) Wall-normal
distribution of the amplitude of the mean velocity. (b) Mean wall shear stress amplitude versus
l+s . The data in (a) have been obtained from PIV measurements, whereas the data in (b) comes
from hot-film measurements and from the DNS by Weng et al. [31] (filled symbols).

flow, however, non-linear interactions between the mean and turbulence fields distribute

the spectral content of both Ũ and ũ′
iu

′
j to higher-order harmonics, in addition to the

frequency of the forcing. Consequently, for a turbulent flow, 〈U〉 and
〈
u′
iu

′
j

〉
are most

readily represented by Fourier series

〈U〉 (r, t) = A0(r) +
N∑

n=1

An(r, t)cos(ωnt + Φn), (3.5)

with equivalent representations existing for the Reynolds stresses. A0 denotes the time
average, and An the amplitude of the nth mode of the oscillating component. Typically,
investigations of pulsating flows have sought to characterize the response of A0, A1 and
Φ1, both of the mean velocity and of the Reynolds stresses, function of the imposed
frequency and Reynolds number. The two non-dimensional parameters most widely used
for characterizing pulsating flows are l+s = uτ ls/ν and ω+ = ων/u2

τ (see [31, 32, 33]).
uτ , ls and ω = 2πf denote the time-averaged friction velocity, the Stokes length (to be
introduced below) and the radian frequency. Note that the similarity parameters are
related through l+s =

√
2/ω+. The amplitude of pulsation; i.e., the amplitude of the

bulk velocity divided by the time-averaged bulk velocity Ã = A
˜Ub
/U b, has generally

been ascribed as being of minor importance. This statement is, however, questionable as
discussed in section 6.1.2 and paper B.

In a laminar flow, ũ′
iu

′
j is identically zero and an analytical expression for Ũ can be

derived in simple geometries such as fully developed pipe and channel flows (see [34, 35]
for the pipe and channel flow geometry, respectively). From the analytical solutions it
follows that the oscillating component of the shear diffuses a distance of order ls =

√
2ν/ω

(termed the Stokes layer in memorial of the early works by G. G. Stokes [36]). Outside
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this layer, Ũ oscillates uniformly as illustrated in Figure 3.3(a).

For a turbulent pipe flow, Ũ is governed by Eq. (3.2) if perturbation quantities are
replaced by oscillating quantities. Thus, the departure of the oscillating component of
the phase-averaged mean velocity from the corresponding laminar solution depends on
the magnitude of the oscillating Reynolds shear stress relative to the magnitude of the
oscillating pressure gradient. The response of ũ′v′ depends on how ls and ω compares to
relevant length and time scales of the turbulence, namely, the viscous scales δν = ν/uτ

and tν = ν/u2
τ . During each cycle of pulsation, oscillating shear is generated at the

wall. As the shear diffuses away from the wall, it contributes to modulations in the
productions of turbulence kinetic energy and Reynolds shear stress through the first terms
in Eq. (3.3a-b) (the modulation of the productions are governed by these equations if
‘·∧’ is replaced by ‘ ·̃ ’ and the quantities having a subscripted zero are interchanged for
time averages). The modulation of the Reynolds shear thus produced leads to a further
increased modulation in the production of TKE through the second term in Eq. (3.3a).
Similarly as for a transient flow, the energy redistribution by pressure-strain needs time
to respond to changes in the bulk velocity. Therefore, for rapid oscillations (l+s < 8,
say), even though the TKE can be significantly modulated, the radial component of the
Reynolds stress will not be modulated to a comparable extent because there is not ample
time for the turbulence to redistribute the energy within an oscillation cycle. Since the
radial component of the Reynolds stress is not significantly modulated, the amplitude of
the Reynolds shear stress, too, will be small (at least relative to the amplitude of the
pressure gradient) thereby implying that the oscillating component of the mean velocity
is approximately governed by a laminar equation. By analogy, then, a rapidly oscillating
flow can be thought of as remaining in Stage 1 during the entire period of the pulsation.
For large l+s , on the other hand, there is ample time within each oscillation cycle to
redistribute the TKE among the components. Thus, the second term in Eq. (3.3b)
exhibit modulation which, in effect, leads to an even larger modulation in the production
of TKE. Again, this TKE can be redistributed among the components to increase the
modulation in the Reynolds shear even further. Clearly, the Reynolds shear stress exhibits
significant modulation for large l+s , thus resulting in a response of the oscillating mean
velocity that deviates from the laminar solution.

Figure 3.3(a) shows wall-normal distributions of the amplitude of the fundamental
mode of the oscillating velocity (denoted A

˜U). Profiles are shown for l+s = 7 and l+s = 26,
and the results have been obtained from PIV measurements. At the higher forcing
frequency (l+s = 7), the distribution of A

˜U agrees fairly well with the laminar solution at
all wall-normal positions. For l+s = 26, on the other hand, the profile of A

˜U is appreciably
different from the analytical solution; close to the wall, A

˜U is larger than the laminar
solution whereas the situation is reversed in the core flow. As the wall is approached, the
data in Figure 3.3(a) implies that the amplitude of the oscillating component of the wall
shear stress, Aτ̃ , is close to the corresponding laminar value, Aτ̃s , for l+s = 7, whereas
the amplitude is larger for l+s = 26. Interestingly, however, the change from a quasi-
laminar state to a turbulent state is not monotonic. Instead, Aτ̃/Aτ̃s is smaller than one
over the range 8 < l+s < 17, reaching as low as 0.8 at l+s = 14 (see Figure 3.3b). The
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Figure 3.4: Time-averaged quantities in pulsating flows. (a) Mean velocity function of wall-
normal distance; PIV measurements. (b) Mean wall shear stress function of oscillation ampli-
tude and l+s ; hot-film measurements.

phenomenon has been observed in many studies; but still, no satisfactory explanation
to how turbulence can reduce friction has been given. This paradoxical phenomenon is
elucidated in paper E.

From the foregoing discussion it has been argued and demonstrated that Ũ and ũ′
iu

′
j

exhibit a strong dependence on l+s . The time-averaged components of the phase averages
do, however, not change from their corresponding steady-state values over a large range
of forcing frequencies and amplitudes. An example of this insensitivity is illustrated in
Figure 3.4(a), showing distributions of U at a fixed amplitude of 0.15 for l+s = 7 and 26, as
well as for a fixed l+s = 16 at amplitudes of 0.15 and 0.43. Within experimental tolerances,
there is no dependence of the time-averaged velocity, either on the amplitude nor on the
forcing frequency. Exceptions from this robustness occur, though, and this happens i) if
the amplitude of the bulk velocity exceeds the time-averaged value [37, 38], and ii) if the
amplitude is large, but not above one, and l+s is large. The first point is of minor interest

in here because all studies have been conducted for Ã < 1. The second point, however,
is more interesting. At large amplitudes and low forcing frequencies, there is consensus
in that the time-averaged axial component of the Reynolds stress is larger than the value
that would prevail in a statistically steady flow at the time-averaged Reynolds number
[39, 40]. Furthermore, using a semi-analytical approach, it can be shown that the time-
averaged wall shear stress is larger in a flow that approaches quasi-steadiness, compared
to the corresponding steady flow at the time-averaged Reynolds number. Specifically, the
following relation can be used to estimate the time-averaged value of the wall shear stress:
τQS/τ steady = 1 + (21/64)Ã2, derived by Tardu et al. [39]. Clearly, the formula predicts
that τQS is larger than the corresponding steady value for low-frequency large-amplitude
pulsations; a result that is confirmed in Figure 3.4(b), which shows that τ/τ steady increases

with Ã and l+s ; i.e., when the flow approaches a large-amplitude quasi-steady state.



Chapter 4

Experimental facilities

In the present work, transient and pulsating flows have been experimentally investi-
gated. Measurements have been performed at Lule̊a University of Technology (LTU), as
well as at the Norwegian University of Science and Technology (NTNU). In this chap-
ter, the experimental facilities are presented whereas chapter 5 discusses the respective
experimental technique that has been utilized.

All measurements have been performed in circular pipe flows. Figure 4.1 shows a
sketch of a pipe illustrating the convention for coordinates and velocities. A cylindrical
coordinate system is utilized in which the axial, radial and circumferential coordinates
are designated x, r and θ. The corresponding velocity components are denoted U , V and
W .

4.1 The LTU setup

A previously designed and manufactured small-scale experimental apparatus was avail-
able to perform measurements under unsteady conditions. The test section consisted of
a series of flush-connected Plexiglas pipes of internal diameter 100 mm, having a total
length of approximately 10 m; see Figure 4.2. Before entering the test section, the flow
was accelerated through a contraction and tripped at the inlet to speed up the flow devel-
opment. The working fluid was fed to the Plexiglas pipe from a 700 liter tank through a
series of copper pipes and armored plastic hoses, using an Oberdorfer N1100 gear pump.
The pump is a positive displacement pump, implying that the shaft speed is directly
proportional to flow rate. The rotational speed of the pump was controlled from a fre-
quency converter which was operated externally using an in-house computer code. The
code can produce an arbitrary time variation in the rotational speed of the pump, and
consequently, of the flow rate. A manually adjustable butterfly valve located just prior
to the collector tank, assured that the test section was completely filled with the working
fluid at all times. It was, however, not possible to replicate a pressure-time measurement
by closing the valve since the experimental apparatus had not been designed to withstand
the large pressure peaks associated with such operation. A cooling system placed inside
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Figure 4.1: Definition of the coordinate system.

Figure 4.2: Schematic illustration of the LTU setup.

the collector tank kept the temperature of the working fluid within 20◦C ± 0.1◦C.
A Krohne Optiflux electromagnetic flow meter mounted on the copper pipe mon-

itored the flow rate. At steady-state operation, the accuracy of the flow meter is
±0.7%. For unsteady operation, though, there exist additional uncertainties related
to the finite response time of the flow meter. PIV measurements of the bulk velocity
showed that the flow meter exhibited a near-constant time delay of 0.55 s over the range
0.02 Hz < f < 0.125 Hz, of forcing frequencies. Similarly, for transient flows, the time
delay was also close to 0.55 s. Thus, all calculations which involved the bulk velocity
measured using the flow meter were compensated for this time delay.

The maximum rotational speed of the pump corresponded to a Reynolds number of
approximately 35,700. For sufficiently low rotational speeds, on the other hand, laminar
flow conditions could be achieved. In here, however, the interest was not to investigate
the laminar to turbulent transition. As such, a minimum Reynolds number of 4,500 was
selected to ensure that the flow would remain turbulent at all times. Transient mea-
surements have thus been performed in the range 4, 500 < Re < 35, 700. Time-averaged
Reynolds numbers ranging between 10,000 and 14,500 were selected for the measurements
performed under pulsating conditions.

Velocity measurements have been conducted using both LDV and particle image ve-
locimetry PIV (to be described more thoroughly in chapters 5.1-5.2). In conjunction to
velocity measurements, hot-film anemometry has been used to measure wall shear stress
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(also to be described more thoroughly, see chapter 5.3). The LDV and PIV measurement
sections were located approximately 70D away from the inlet, whereas the hot-film mea-
surements were performed 10D further downstream. The minimum development length
before the flow can be considered fully developed has not been investigated herein. The
topic has, however, been discussed in detail elsewhere. For example, Doherty et al. [41]
used a rake of five vertically mounted hot-wires to study the development length in a
pipe flow at Reynolds numbers 105 and 2 × 105. The first measurement station was
located at the pipe inlet, and measurements were performed every 2.5D to an axial po-
sition located 228D away from the inlet. Mean flow quantities were shown to become
invariant after 50D, whereas turbulence statistics required 80D to become independent
of the axial coordinate. In the present setup, the development length of the turbulence
statistics is expected to be shorter than the value reported by Doherty et al. [41] because
the Reynolds numbers are considerably smaller (the development length decreases with
decreasing Reynolds number; c.f. the relation L/D = 0.5/f + 5/

√
f , due to Zagarola &

Smits [42], which predicts L/D = 50 at Re = 35, 700). In conclusion, it is believed that
the present measurements were performed at axial locations in which both the mean and
turbulence statistics were fully developed.

4.2 The NTNU setup

A large-scale laboratory facility comprising a 300 mm internal diameter pipe, designed
by Jonsson [12] and Ramdal [5] was available to perform pressure-time measurements.
The test section had a total length of 26.67 m (∼ 89D), and was supplied with water
from a 9.75 m high constant-head tank, see Figure 4.3 for a schematic illustration. After
the test section, the pipe bends twice in order to direct the working fluid to a large sump.
After collected in the sump, the water was pumped back into the header tank using a
centrifugal pump. Since the centrifugal pump supplied the header tank with a flow rate
that was larger than that exiting to the test section, a constant head throughout each
measurement was ensured by using an overflow pipeline which removed the excess water
entering the header tank. Due to the large dimensions of the sump, the water tempera-
ture could not be regulated and maintained constant throughout a measurement series.
Instead, the temperature increased slightly over the course of each day. Typically, the
temperature rose with 0.2 − 0.3◦C from the start to the end of a measurement series. In
this setup, the highest achievable flow rate is close to 0.41m3s−1, which corresponds to
a Reynolds number of approximately 1.7 × 106 at a temperature of 20◦C. Pressure-time
measurements can be replicated by closing a computer-controlled, hydraulically driven
knife gate located at the end of the test section.

Measurements of wall shear stress and pressure were performed. Owing to ex-
perimental difficulties, velocity measurements were not performed. Since the pipe was
manufactured in steel, a section would have had to be interchanged into Plexiglas (or an-
other transparent material) to allow for optical access. The pressure rise during a typical
pressure-time realization was 1.5 bar. For a Plexiglas pipe to sustain this dynamic pres-
sure, a wall thickness of 30 mm would have been required (private communication with a
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Figure 4.3: Schematic illustration of the NTNU setup.
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Figure 4.4: Dependence of axial location on the measured differential pressure. In (a), Δp was
measured at axial locations between 58D and 71D away from the inlet, and in (b) the sensors
were located between 39D and 52D.

Plexiglas manufacturer). This thickness corresponded to 6,000 viscous units at the max-
imum initial Reynolds number (δν = 5μm). Thus, only core flow measurements would
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have been possible to perform. Since the main interests were the time-developments of
the wall shear stress and the near-wall turbulence, it was not deemed fruitful to perform
velocity measurements in the core.

The pressure measurement stations were located 39D and 52D away from the inlet
(corresponding to 50D and 37D away from the gate), whereas wall shear stresses were
measured at one axial location 55D from the inlet (34D from the gate) at three circum-
ferential positions using hot-film sensors. The relation L/D = 0.5/f + 5/

√
f yields a

development length of 93.5 at Re = 1.7 × 106, which is longer than the pipe itself. In
theory, the pressure sensors could have been moved further into the test section to have
the first station at an axial location of 50D, say, to comply with the results of Doherty
et al. [41]. In practice, however, this turned out not to be feasible because disturbances
originating from the downstream double-bend caused an anomalous pressure drop, signif-
icantly different from that in a fully developed flow. The problem with the downstream
bend is illustrated in Figure 4.4(a-b), showing the pressure drop in the Reynolds number
range 0 < Re < 1.7 × 106, obtained from direct measurements and predictions using

the friction factor (Δp = 0.5ρfU
2

bL/D). An implicit relation for the friction factor due
to Zagarola & Smits [42], 1/

√
f = 1.901 log(Re

√
f) − 0.432, have been used to obtain

the estimates of the differential pressure. In (a), the results have been obtained with
the pressure sensors located between 58D and 71D from the inlet. The measured pres-
sure drop is significantly larger than the predictions for all Re. In fact, at the highest
Reynolds number, the measured value is a factor three larger than the prediction. With
the sensors located between 39D and 52D, on the other hand, the measurements are in
good agreement with the predictions, see Figure 4.4(b). Now, since the friction factor
due to Zagarola & Smits [42] has been obtained by curve fitting data from a fully devel-
oped pipe flow, the good agreement of the measurements performed between 39D and
52D and the predictions, indicates that the measured quantities did not suffer from inlet
effects, despite the small L/D.
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Chapter 5

Experimental methods

Within the scope of this thesis, the well-established measurement techniques laser
Doppler velocimetry (LDV), particle image velocimetry (PIV), constant temperature
anemometry (CTA) and pressure sensors have been used. In this chapter, the working
principle of each method is introduced on a rudimentary level, and focus is spent on the
specific issues that had to be considered to assure a proper functioning of each method.

5.1 Laser Doppler velocimetry

LDV is an optical non-intrusive technique to measure the velocity of transparent and
semi-transparent fluids. In LDV, the velocity of seeding particles passing through a
measurement volume is determined using the Doppler effect. The measurement volume
is formed at the intersection of two collimated, monochromatic coherent laser beams.
The light scattered by the particles passing through the volume exhibit two different
Doppler shifts, one for each laser beam. A photodetector records the two signals and
the interference between the light waves creates a beat frequency that can be directly
related to the velocity of the seeding particle. By selecting seeding particles that are
sufficiently small, and that have a similar density as the fluid, the velocity of the seeding
particle can be taken the same as that of the fluid. Typically, the linear dimensions
of the measurement volume are of order 0.1 mm × 0.1 mm × 1 mm. Thus, for an
LDV measurement to be considered a true representation of the local fluid velocity, these
dimensions must be small, or at least comparable to, a length scale over which the velocity
changes appreciably. The steep gradients in both the mean and turbulence fluctuating
velocities close to solid walls thus makes LDV measurements difficult in regions subjected
to large shear.

In here, a two-component LDV system from Dantec Dynamics comprising a 300 mW
Argon-ion laser, an 85 mm fiber probe equipped with a 310 mm focal length lens, and
standard signal processing utilities was used to measure the velocity of steady and pul-
sating turbulent flows in the LTU setup. Water was used as the working fluid, whereas
the pipe was made of Plexiglas. The refractive indices of water and Plexiglas differ

25



26 Experimental methods

10
1

10
2

1

1.5

2

2.5

3

y+

u
+ r
m
s

 

 

Uncorrected measurements

DNS El Khoury

(a)

10
1

10
2

1

1.5

2

2.5

3

y+

u
+ r
m
s

 

 

Corrected measurements

DNS El Khoury

(b)

Figure 5.1: LDV measurements of the axial component of the r.m.s. turbulent velocity in a
steady flow. (a) Uncorrected values. (b) Corrected values using the method developed by Durst
et al. [44]. The data of El Khoury et al. can be found in [45].

significantly (nwater = 1.33 whereas nP lexiglas = 1.49); hence, the laser beams distort
when passing between the materials. The distortions were partially remedied by placing
a square box filled with paraffin oil around the pipe. The difference in the refractive
indices makes measurements of the radial component of the velocity particularly chal-
lenging because the beam intersection angle is difficult to calculate, and the orientation
of the measurement volume is cumbersome to determine; both which are needed in order
to correct for systematic errors resulting from the optical distortions, see Zhang [43].
Owing to these difficulties, the tangential velocity component (in addition to the axial
component) was measured instead of the radial, although measuring the radial velocity
component is more fruitful because it enables calculating the Reynolds shear stress.

Figure 5.1 illustrates the aforementioned difficulty of performing near-wall measure-
ments, showing the streamwise component of the root mean square (r.m.s.) turbulence
fluctuating velocity in the region 4 < y+ < 100 measured in a steady-state flow at a bulk
Reynolds number of 14,500. Reference data from the DNS performed by El Khoury et al.
[45] has been included. For y+ > 16, the experimental data agree with the DNS, whereas
a marked difference exists closer to the wall. Clearly, the error arise within the region in
which the mean velocity gradient attains its largest values. Now, if the longest side of
the LDV measurement volume is aligned with the direction of the gradient, which it was
during the present measurements, the size of the measurement volume can amount to
several viscous units. For such circumstances, large errors might arise because the LDV
measurement represents the average over a domain (the measurement volume) in which
the mean and turbulence velocities change appreciably. Since an LDV time-series can be
interpreted as a spatial integration, Durst et al. [44] suggested that an improved estimate
of the measured mean and turbulence velocities can be obtained by expanding the ‘true’
values as a truncated Taylor series around the center of the measurement volume. The



5.2. Particle image velocimetry 27

correction thus obtained for the axial component of the Reynolds stress reads

〈u′u′〉+I = 〈u′u′〉+M − d+2

16

(
∂U

+

∂y+

)2

, (5.1)

with indices I and M signifying improved and measured values, respectively. d+ is the
length of the measurement volume in the direction of the gradient. For the present
measurements, the axial velocity component was measured such that d+ corresponded

to 7.6 viscous units. Since ∂U
+
/∂y+ is of order one close to the wall, the correction is

significant. The improved estimates of u′+
I,rms are shown in Figure 5.1(b). Clearly, the

corrected values agree more closely with the reference data for all wall-normal positions.
Corrections exist also for the mean velocity and the higher-order moments. The correction
of the mean velocity turned out to be negligible, whereas investigations of the higher-
order moments have not been performed within the scope of this thesis.

In the derivation of Eq. (5.1), no assumption is made about the mean flow; i.e., it
can be either steady or unsteady. The LDV measurements performed under pulsating
conditions were therefore, too, corrected using Eq. (5.1). The correction has been ver-
ified under stationary conditions by Durst et al. [44, 46]. However, Gorji [47] claimed
that Eq. (5.1) cannot be used to correct measurements performed under unsteady con-
ditions. As such, there existed a need to verify the adequacy of using the correction for
unsteady measurements. A successful extension of Eq. (5.1) to unsteady conditions was
assured by comparing the corrected time-averaged r.m.s. velocity with the time average
of the corrected phase-averaged r.m.s. velocity; these overlapped within experimental
uncertainty.

5.2 Particle image velocimetry

Like LDV, PIV is an optical method to measure the velocity of seeding particles. Since
the light generating source (a double-pulsed laser) and the recording media (a camera)
are placed outside the flow of interest, PIV is, too, non-intrusive. A light sheet, or a
light volume, is generated by a set of lenses. The light scattered, emitted if fluorescent
particles are used, by the particles passing through the light sheet (volume) is recorded by
a camera. The resulting particle images are discretized into smaller sub areas (volumes),
called interrogation areas (volumes). A benefit of a PIV measurement is that the velocity
distribution within the entire interrogation region is measured at a time, thus presenting
a great merit compared to an LDV measurement which gives the velocity in a single
point at a time.

A PIV system from Dantec Dynamics, comprising an Nd:YAG laser with a power of 50
mJ per pulse at 532 nm, a 4 megapixel FlowSense CCD camera and a PC equipped with
the software DynamicStudio has been used to perform two-component measurements
of the velocity. The laser was positioned in a horizontal plane located below the pipe
at right angle with the flow direction. The light sheet was directed into the pipe by
a mirror which was placed parallel to the pipe axis. To minimize the parasitic effects
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of sedimentation of seeding particles accumulated on the bottom of the pipe, particle
images were captured on the upper half of the pipe1.

Preliminary investigations using a Plexiglas pipe and water as the working fluid re-
vealed that the particle images were of poor quality next to the wall due to the difference
in refractive index between the pipe and working fluid. However, since the greatest in-
terest was the near-wall flow, means to match the refractive indices had to be sought. If
the Plexiglas pipe was to be retained in the setup, potential working fluids would have
included, but not been limited to, a mixture of water and a salt of high refractive index,
like Ammonium thiocyanate or Sodium iodide (see Khayamyan et al. [48] and Bai &
Katz [49]). These salt-water mixtures remedies the optical distortions, but they pose
new problems instead. Ammonium thiocyanate is corrosive and hazardous, whereas a
solution of water and sodium iodide becomes non-transparent when exposed to UV-light
and (or) oxygen (Scholz et al. [50]). Exchanging the pipe to avoid the use of these salts
was, therefore, deemed a more suitable way to match the refractive indices. In a pipe
flow LDV study by den Toonder & Nieuwstadt [51], part of the test section had been
manufactured in Fluorinated ethylene propylene (FEP). FEP has a refractive index of
approximately 1.34 (see Keathley & Hastings [52]), which is similar to that of water. In
the LDV study, measurements of the mean and turbulence fluctuating velocities were
performed to a wall-normal distance of seven viscous units at a bulk Reynolds number
of 24,600. The successful implementation of FEP by those authors inspired a similar
approach for the present setup. To that end, a one meter long pipe manufactured in
FEP was installed in the test section. FEP has poor mechanical properties, as such, a
direct exchange of one of the ∼ 3 m long Plexiglas pipes were precluded; instead, a new
set of Plexiglas pipes had to be installed in order to preserve the total length of the test
section. The FEP configuration reduced, but did not eliminate, the optical distortions
resulting from the curved pipe surface. To increase the refractive index of the working
fluid, glycerin was added to water until the refractive indices were matched. The pro-
portions of glycerin and water were 5% and 95%, respectively. A square box filled with
the same water-glycerin solution was placed around the pipe.

The index-matching provided potential for studying the near-wall flow development
in detail. However, achieving a fine wall-normal resolution while measuring the entire
pipe radius is not possible. Therefore, separate measurements of the near-wall and core
flows were performed. For the near-wall measurements, an AF MICRO NIKKOR 200
mm lens from Nikon was used. A series of extension rings were mounted between the
lens and the camera, thus resulting in a magnification of 2.35 at a field of view of 6.2
mm by 6.2 mm. Rectangular interrogation areas of size 64 pixels by 256 pixels in the
radial and axial directions were used to discretize the measurement area. The correspond-
ing spatial resolution was 97 μm by 780 μm. The wall-normal resolution corresponded
to 0.5δν and 1δν (δν = ν/uτ denotes the viscous length scale) at the lowest and high-
est Reynolds numbers, respectively. For the core flow measurements, the camera was
equipped with a MICRO NIKKOR 55 mm lens from Nikon. The field of view covered

1In hindsight, the laser should have been placed above the pipe to maximize the light intensity in the
particle images.



5.3. Constant temperature anemometry 29

the entire pipe radius, i.e., 50 mm by 50 mm. The corresponding wall-normal resolution
was 4δν and 8δν at the lowest and highest Reynolds numbers. Fluorescent Rhodamine-B
coated Polymethyl methacrylate particles with maximum excitation/emission at 532 nm
and 585 nm, respectively, were used for seeding. Fluorescent particles were used because
an excessive amount of laser light was reflected and refracted at the pipe surface, thus
enforcing the use of a filter on the camera’s lens not to blur the particle images. During
the experiments, the collector tank contained more than 200 liters of the water-glycerin
mixture. Using monodisperse particles would therefore have been economically imprac-
tical. Hence, sieved-fractioned particles having a diameter distribution ranging between
1 μm and 20 μm were used. Around 70% of the particles had a diameter between 8 μm
and 16 μm, and the mean diameter was 12 μm.

Calibration was straightforward since the same scale-factor could be used for the axial
and radial directions. The calibration was performed by emptying the test section and
placing a square plate at the measurement station. After positioning the calibration
target at the correct place, the test section was refilled with the working fluid and the
plate was photographed. The distance between 48 equispaced dots separated by 125 μm
was measured to determine the scale-factor.

The fine wall-normal resolution next to the wall allowed estimating the wall shear
stress, τ , using the near-wall velocity data. Following Durst et al. [53], the wall shear
stress was calculated by fitting a fifth-order polynomial to the data points closest to the
wall

U =
u2
τ

ν
(y − y0) − u2

τ

2Rν
(y − y0)

2 + D̂(y − y0)
4 + Ê(y − y0)

5, (5.2)

in which y0 can be interpreted as a systematic error related to the determination of the
exact wall position. The uncertainty in the wall position can be minimized by treating
y0 as a free parameter. The friction velocity (τ = ρu2

τ ) is the free parameter of interest,
whereas D̂ and Ê are of no direct concern. Durst et al. [53] developed the method by em-
ploying a Taylor-series expansion of the Reynolds shear stress in the statistically steady
momentum equation. In here, the method is applied to unsteady flows; hence, the perfor-
mance of the method under unsteady conditions must be verified. Such qualification test
is presented in Figure 5.3(a-b). To calculate the wall shear stress, the dynamic viscosity,
μ = ρν, is required. The numerical values of the required quantities; ρ = 1011 kg m−3

and ν = 1.16 × 10−6m2 s−1, were obtained from an empirical relation presented in Cheng
[54].

5.3 Constant temperature anemometry

A wall-mounted 55R46 hot-film sensor from Dantec was used for measurements of the
wall shear stress. The sensing element consist of a 0.2 mm × 0.75 mm Nickel film that
is mounted on a quartz substrate. The sensor is held at a constant temperature by con-
necting it as one of the four legs in a Wheatstone bridge [55]. When a fluid of lower
temperature than the Nickel film flows over the sensing element, heat is transferred to
the fluid from the sensor. As the sensor cools off, its resistance drops thus causing an
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imbalance in the bridge; an amplifier senses the imbalance and thus increases the current
supplied to the sensor to reheat it and bring the bridge back to balance. In the ideal case
of heat being transferred solely by convection in the axial direction and by diffusion in the
wall-normal direction, a steady-state analysis yields Aτ 1/3 = E2, where E is the voltage
required to keep the sensor at a constant temperature, and A is a constant that depends
on the fluid and sensor properties. In practice, heat is conducted into the substrate on
which the nickel film is mounted, in addition to the heat that is transferred to the fluid.
Furthermore, diffusion of heat in the axial direction is non-negligible under many cir-
cumstances. Hence to account for these additional heat losses, an extra term is needed
such that E2 = A′τ 1/3 + B′. Note that A′ is different from A, and that A′ and B′ are
most readily determined by measuring the hot-film voltage at various Reynolds numbers
in a flow with known wall shear stress. B′ represents the direct effect of conduction to
the substrate. Under steady conditions, the heat that is conducted into the substrate is
transported back into the fluid indirectly. This indirect heat transfer reduces the direct
heat transfer from the sensor as the fluid above it is heated, thus causing A′ to differ
from A.

If the flow under study is statistically unsteady, the response of the wall shear stress
might no longer follow the relation E2 = A′τ 1/3 + B′. Firstly, A′ and B′ were obtained
from a statistically steady calibration, when the heat conduction into the substrate was
stationary in time. Hence, if the hot-film voltage E changes in relation to a time-varying
shear, the heat conduction to the substrate changes too. The corresponding changes in
the indirect heat transfer from the substrate to the fluid might thus cause errors when
using the calibration relation. Secondly, even in the ideal case of zero conduction into
the substrate, the thermal boundary layer might still exhibit a lag relative to the mo-
mentum boundary layer because the time constants might differ between the boundary
layers. The adequacy of using hot-film sensors (and electrochemical sensors, which oper-
ate under a similar working principle) for unsteady wall shear stress measurements can
be investigated using numerical modeling. The complexity of these models increases with
the number of parasitic effects included. For example, Mao & Hanratty [56] considered
the response of an electrochemical sensor to a sinusoidally varying wall shear stress in-
cluding axial diffusion (electrochemical sensors do not suffer from a parasitic effect of a
substrate), whereas Tardu & Pham [57] investigated the response of a hot-film sensor
considering both axial diffusion and the effect of the substrate. These studies showed
that both the amplitude and phase of the phase-averaged wall shear stress estimated by
the sensors deviate from the imposed wall shear stress at sufficiently high forcing frequen-
cies. Inasmuch as a numerical study can provide an indication of the performance of a
hot-film (or electrochemical) sensor, the numerical setup hinge on assumptions regarding
boundary conditions. Furthermore, the numerical solution exhibit singularities at the
leading and trailing edges of the sensor. Owing to these difficulties, it was deemed more
suitable to investigate the performance of the hot-film sensor under unsteady conditions
by comparing the response of the wall shear stress measured by the sensor with that
measured by an independent reference. The comparison is made between the response of
the wall shear stress measured by PIV and by hot-film. Now, since both measurements
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are subjected to uncertainty, an overlap in the results between the two techniques should
work as a proof of concept for both methods (since it is not likely that both techniques
suffer from the same error sources). The comparison is presented in Figure 5.3(a-b), and
a discussion on the results is presented in the next section.

To determine the constants A′ and B′, calibration was performed in situ. For each
measurements campaign, calibration was performed at least twice a day to assure a proper
functioning of the sensor(s). The hot-film voltage and flow rate were recorded in steady-
state flows for a range of Reynolds numbers. At each calibration point, the wall shear
stress was estimated using the friction factor and flow rate; i.e., τ = 0.125ρfU2

b . Unless
the friction factor has been specifically determined in the facility that the measurements
are performed, this is an indirect method to calibrate the sensor because the approach
assumes the existence of a universal friction factor. In a steady flow, there exists a force
balance between the differential pressure and wall shear stress; τ = ΔpD/(4L). Using
the latter relation is, therefore, a direct method to assess the wall shear stress. The direct
approach was, however, not used because of difficulties in measuring the small differential
pressures prevailing at low Reynolds numbers. In the LTU setup, dp/dx typically ranged
between a few tenths Pa m−1 to about 10 Pa m−1, which was too small to be measured
with the available equipment. In the NTNU setup, the differential pressure can be
accurately measured at high Re because dp/dx is in the order of a few hundred Pa m−1

(see Figure 4.4). At low Re, on the other hand, the differential pressure is small and
becomes difficult to measure accurately. One approach, then, could have been to estimate
the wall shear stress from the force balance at high Re, and from the friction factor
at low Re (it is easier to measure flow rate than differential pressure at low Reynolds
numbers). However, in order to have a consistent calibration procedure of the sensor
over the entire range of Reynolds numbers, the approach of using the friction factor was
chosen altogether.

In the LTU setup, the range of Reynolds numbers over which the sensor was calibrated
covered the entire range of wall shear stresses encountered during the unsteady measure-
ments, thus avoiding extrapolation of the calibration curve (when required, a centrifugal
pump was used in conjunction to the gear pump to reach high enough Re). In the NTNU
setup, on the other hand, some (but not all) measurements were performed at an initial
discharge corresponding to the maximum achievable flow rate of the experimental stand;
hence, the calibration curve had to be extrapolated in those cases.

5.4 Verification

Before presenting results from unsteady cases, it is necessary to verify the quality of
the present measurements. The verification is performed under statistically stationary
conditions, as well as for unsteady conditions. Comparisons are made among the different
measurement techniques, and with benchmark data.

In Figure 5.2(a), profiles of the steady-state mean velocity measured using LDV and

PIV are plotted as U
+

= U/uτ versus y+ = yuτ/ν (note that the over bar has been
skipped on y+; a notation that will be used throughout the remainder of this text). The
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bulk flow Reynolds number is 14,500 (Reτ = 447) for the LDV data set, and 17,100
(Reτ = 484) for the PIV data. The frictional Reynolds number, also known as the
Kármán number, is defined as Reτ = uτR/ν. Despite having the same shape over the
entire pipe radius, the profiles lack quantitative agreement at all radii. The discrepancy
is not likely to be an effect of the different Reynolds numbers, since the difference in
Re is small, but rather a reflection of the difficulty in obtaining an accurate estimate of
the friction velocity. For the LDV data, uτ was obtained from hot-film measurements,
whereas Eq. (5.2) was used to obtain uτ for scaling the PIV data. For the calibration of
the hot-film, the Blasius friction factor (f = 0.316Re−0.25) was used, and the bulk veloc-
ity was measured using the electromagnetic flow meter. An estimate of the uncertainty in

the friction velocity can thus be assessed by examining the friction factor f = 8
(
uτ/U b

)2
.

As illustrated in Figure 5.2(b), the Blasius relation differ by up to 5% with the values
obtained from PIV in the Reynolds number range 7, 900 < Re < 17, 000. Owing to dif-
ferences between the bulk velocities determined using PIV and the flow meter, up to 5%
uncertainties exist also in the determined uτ . One of the data sets can thus be ‘adjusted’
for the uncertainty in the friction velocity, as shown by the vertically shifted profiles in
Figure 5.2(a). The adjustment in the friction velocity is 4%, and it brings the profiles
to collapse almost perfectly in the range 6 < y+ < 260. The profiles differ for y+ > 260
because of the difference in the Reynolds number between the data sets.

To further emphasize the difficulty in measuring the friction velocity, note that a one
percent increase in uτ determined from the PIV data can be realized by displacing the
wall position, y0, in Eq. (5.2) by 10 μm. The difficulty in determining the friction ve-
locity gives rise to problems not only for scaling mean and turbulence velocity profiles,
but also for discussing the universality of the results among different studies. In paper F,
the universality of the duration of Stage 1 in an accelerating flow (consult section 3.1 for
a recap on Stage 1) scaled in viscous units, i.e., t+Stage1 = tStage1u

2
τ0/ν is discussed. The

duration is correlated versus the non-dimensional parameter δ = ν/u2
τ0 〈Ub〉−1

0 d 〈Ub〉 /dt.
Clearly, considering only the data originating from the present study, there exists an
uncertainty of at least 5%, both in t+Stage1, as well as in δ related to the determination
of uτ0. This uncertainty exists in addition to the determination of tStage1 itself. Now,
incorporating data from other studies, it can only be speculated how the uncertainty
in the determination of uτ0 in those studies affect the degree to which results can be
considered universally applicable. For example, He et al. [58] used hot-films to study the
development of the wall shear stress in a turbulent pipe flow undergoing a close-to linear
increase of the bulk velocity. They calibrated the hot-film sensors using the Haaland
friction factor [59]. The agreement between Haaland’s friction factor and the PIV data is
better than the agreement between the PIV data and the Blasius relation. On average,
however, the Haaland relation predicts a larger friction factor than the PIV data.

From the foregoing discussion it is clear that measuring the wall shear stress using
Eq. (5.2), is challenging even under statistically stationary conditions. In the deriva-
tion of Eq. (5.2), Durst et al. [53] used the steady-state mean momentum equation.
Hence, additional uncertainties must be accounted for if Eq. (5.2) is used when there
is a variation of the bulk velocity with time. Furthermore, as discussed in section 5.3,
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Figure 5.2: Steady-state verification. (a) Mean velocity profiles obtained from LDV and PIV
measurements. (b) The friction factor f = 8(uτ/U b)

2 obtained from PIV and from the Blasius
relation f = 0.316Re−1/4. The upper set of data in (a) have been shifted by five units in the
vertical direction.

performing hot-film measurements of the wall shear stress under unsteady conditions
might be challenging too because of potential delays in the response of the sensor. Since
the two methods for measuring the wall shear stress are independent, a good way to
investigate their adequacy for unsteady measurements is to compare the response of the
wall shear stress estimated by the two techniques. To that end, the response of the wall
shear stress measured with PIV and hot-film in flows subjected to transient and pulsating
unsteadiness are shown in Figure 5.3. To remove bias errors associated with the afore-
mentioned determination of the dimensional value of 〈τ〉, the data from the transient
case have been normalized with the initial wall shear stresses, whereas the data from the
pulsating flow have been normalized using the time-averaged values. Overall, there is
good agreement between the data sets (at this point it suffices to note that responses
are similar between the measuring techniques; detailed discussions on the mechanisms
behind the responses can be found in papers E and F). Upon closer inspection, though,
the hot-film data seem to lag behind the PIV data, but only slightly. For the transient
case, the lag amounts to approximately three viscous units, which can be compared with
the duration of the acceleration and the duration of Stage 1, these being approximately
170 and 180 viscous units, respectively. The lag is relatively small in comparison with
the previously discussed uncertainties and it appears that both the PIV and the hot-film
measurements of the wall shear stress are adequate.

Next, consider Figure 5.4(a) which shows wall-normal distributions of the amplitude
of the oscillating component of the mean velocity in a pulsating flow, measured with
PIV and LDV. The amplitude profiles are plotted versus ys = y/ls. The values of l+s
are approximately equal among the cases; l+s ≈ 18 and l+s ≈ 25, whereas the frictional
Reynolds numbers differ; Reτ = 300 for the PIV cases, and Reτ = 450 for the LDV
cases. For the lower frequency cases (l+s ≈ 25), the LDV and PIV data overlap quite
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Figure 5.3: Comparison of unsteady measurements of the wall shear stress using PIV and
hot-film for (a) transient, and (b) pulsating unsteadiness. ΔT denotes the duration of the
acceleration and the pulsation period, respectively.
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Figure 5.4: Wall-normal distributions of the amplitudes of the oscillating components of (a) the
mean velocity, and (b) the turbulence intensity.

well. For l+s ≈ 18 the agreement between the data sets are only qualitative. However,
as discussed in section 3.2, the oscillating component of the mean velocity undergoes a
quite rapid relaxation from a quasi-laminar response to a turbulent response for l+s > 10.
The quantitative difference between the profiles for l+s ≈ 18 can therefore reside in the
determination of uτ . Performing the 4% adjustment of the friction velocity as was done
for the time-averaged mean velocity in Figure 5.2, amounts to increase the normalized
Stokes length by one unit; a difference in l+s large enough to explain the quantitative
discrepancies between the data sets.

Figure 5.4(b) shows amplitudes of the turbulence intensity A
˜u′

rms
/A

˜U along the wall-
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Figure 5.5: Time-developments of the r.m.s. turbulence velocities at y+ = 17 following an
acceleration, showing in (a) the axial component, and in (b) the radial component. The data of
Seddighi et al. can be found in reference [27].

normal direction for the same cases as discussed in the previous paragraph. The data
collapse fairly well among the different cases, and is also in reasonable agreement with
the data of Scotti & Piomelli [40] (l+s = 35 and Ã = 0.79).

As a final verification, consider Figure 5.5(a-b) which shows time-developments of
the axial and radial components of the r.m.s. turbulence velocities in a transient flow
undergoing a linear increase of the bulk velocity. Reference data from the DNS of an
accelerating channel flow performed by Seddighi et al. [27] have been included. The
data is plotted at a wall-normal position y+0 = yuτ0/ν ≈ 17, and the time-development

is shown versus l+0 = 2.9
√
t+0 (a justification of plotting the data versus l+0 is given in

section 6.1.1 and paper F). Both components of the r.m.s. velocities show qualitative
agreement with the DNS data. After an initial delay, both u′

rms and v′rms responds to the
new flow conditions set by the acceleration (a detailed discussion is postponed till section
6.1.1 and paper F). The turbulence quantities from the DNS responds somewhat later
than the PIV data. These quantitative differences are likely an effect of the difference
in the strength of the imposed acceleration. In terms of the previously introduced non-
dimensional parameter δ, the PIV data have been taken at δ = 0.0065, whereas the DNS
corresponds to δ = 0.0044 (the strength of the acceleration increases with δ).
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Chapter 6

Results

6.1 Unsteady flows

In this subsection results obtained from the LTU setup under transient and pulsating
unsteadiness are presented. Tables 6.1-3 summarize the experimental conditions to be
discussed; the subscripted ‘0’ and ‘1’ in the tables designate initial and final values,
respectively. As described in section 4.1, the unsteadiness was introduced on the mean
flow by varying the supply voltage to the pump in order to change the rotational speed
of the shaft, and in effect, the flow rate. For the cases of transients, a particular interest
existed for flows in which the bulk velocity changed linearly with time. Firstly, these flows
are expected to attain a self-similar velocity distribution when normalized appropriately.
Secondly, since d 〈Ub〉 /dt is constant, finding non-dimensional parameters for scaling
becomes easier than if there is a time-variation of the acceleration. However, owing to
characteristics of the pump, it was not possible to obtain an exactly linear variation of 〈Ub〉
with time, as illustrated in Figure 6.1(a). The figure shows the variation of Re with time
for an accelerating and a decelerating flow in which the supply voltage to the pump was
changed linearly with time. The results have been obtained from integrated PIV velocity
profiles. The deviations from a linear change in the Reynolds number is larger for an
accelerating flow than for a decelerating one, and it is particularly pronounced during
the first third of the transient. Despite these deviations from a constant d 〈Re〉 /dt, the
transients are designated ‘linear’. For pulsating flows, on the other hand, the pump
produced the desired time-variation of Re excellently, as shown in Figure 6.1(b).

The layout of this subsection is as follows. Firstly, it is shown theoretically that
the perturbation velocity, U∧(r, t), attains a self-similar distribution for certain types of
transients during Stage 1. Secondly, time-developments of the radial component of the
ensemble-averaged Reynolds stress following an acceleration is presented, and it is shown
that results from different studies can be unified when plotted versus a diffusion distance,
l ∼ √

νt. A potential mechanism underlying this unification is discussed. Subsequently, it
is shown that many of the phenomena that are observed in an accelerating flow occur also

37
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Table 6.1: Summary of the transient measurement conditions. ΔT denotes the ramp-time over
which the transient was effective. The ∗ in the second column signifies that the final value of
Reτ had not been reached when the measurements ended. For the naming convention, the first
letter designates the type of unsteadiness; accelerating or decelerating, and the second letter
denotes the measurement method; PIV or hot-film.

Reτ0 Reτ1 Re0 Re1 ΔT+ ΔT (s) δ Case

243 470 7,900 17,100 170 6.1 0.0065 AP1
248 470 7,900 17,100 85 3 0.013 AP2
484 ∗ 17,100 7,900 663 6.1 0.00084 DP1
480 ∗ 17,100 7,900 320 3 0.0017 DP2
360 960 35,600 11,400 360 7 non-linear AH1

Table 6.2: Summary of measurement conditions for the cases of a pulsating flow subjected to a
single forcing. For the naming convention, the first letter designates the type of unsteadiness;
pulsating, and the second letter denotes the measurement method; PIV or hot-film.

Reτ0 Reτ1 Reτ Re l+s ω+ Ã Case

240 440 360 12,500 16 0.008 0.43 PP1
180 620 470 14,200 19 0.0057 0.77 PH1
400 510 450 14,500 26 0.003 0.16 PH2
330 590 460 14,700 26 0.003 0.38 PH3
190 700 460 14,200 26 0.003 0.68 PH4
260 650 450 14,700 36 0.0015 0.52 PH5

in the case of a deceleration. Following the discussion on transient flows, it is shown that
the time-development of the phase-averaged walls shear stress in a pulsating flow bears
similarity to the corresponding development of the ensemble-averaged wall shear stress
following an acceleration. The subsection is concluded by showing that the robustness of
the time-averaged quantities in a pulsating flow, as discussed in section 3.2, prevail also
in the case that multiple forcings are imposed on the mean flow.

6.1.1 Transient flows

Accelerating flows: The self-similarity of U∧

Recall the definition of the perturbation of a generic flow quantity φ in a transient flow,
namely, 〈φ〉∧ = 〈φ〉 − 〈φ〉0. The equation governing the ensemble-averaged perturbation
mean velocity in a fully developed turbulent pipe flow reads

∂U∧

∂t
= −1

ρ

d 〈p〉∧
dx

+
1

r

∂

∂r

[
rν

∂U∧

∂r
− r 〈u′v′〉∧

]
. (6.1)

Previous studies (see He & Jackson [60] and Mathur et al. [61], e.g.) have shown that
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Table 6.3: Summary of measurement conditions for the cases of a pulsating flow subjected to
multiple forcings. For the naming convention, P designates the type of unsteadiness; pulsating,
and L the measurement method; LDV.

Re l+s ω+ Ã Case

14,500 25 & 8 0.003 & 0.03 0.1 & 0.075 PL1
14,500 25 & 18 0.003 & 0.006 0.1 & 0.1 PL2
14,500 18 & 8 0.006 & 0.03 0.1 & 0.075 PL3
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Figure 6.1: Time-developments of the ensemble/phase-averaged Reynolds number for (a) tran-
sient flows; case AP1 and DP1, and (b) a pulsating flow; case PP1. ΔT denotes the duration
of the acceleration/deceleration and the period of the pulsation, respectively.

the response of the perturbation Reynolds shear stress is slow during Stage 1 following
an acceleration. During this initial stage, then, a good approximation is to neglect
the Reynolds shear stress in Eq. (6.1), thus leaving a purely viscous formulation for
U∧. From the discussion advanced in section 3.1, and from the data in Figure 3.1(b),
it is clear that U∧ has zero curvature in a neighborhood around the pipe axis; hence,
−ρ−1d 〈p〉∧ /dx = dU∧

c /dt. Changing the dependent variable to W = U∧
c − U∧, and

substituting the expression for the pressure gradient transforms Eq. (6.1) into

∂W

∂t
= ν

∂2W

∂r2
+

ν

r

∂W

∂r
. (6.2)

The substitution of the dependent variable changes the frame of reference such that it is
the pipe wall that is moving while there is no motion on the centerline. Close to the wall,
the gradients scale as

√
νt (because the problem is purely viscous), whereas the term r−1

scales as R−1 (only the near-wall behavior is of interest since each term is identically zero
at large wall-normal distances). The first term is thus of order t−1 times a differential
change in W , whereas the second term is of order (tR2/ν)−1/2 times a differential change
in W . The ratio R2/ν is typically very large; thus, the second term on the right hand
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side of Eq. (6.2) can be neglected. Making the substitution y = R − r gives the final
form of the equation governing W

∂W

∂t
= ν

∂2W

∂y2
,

W (0, t) = U∧
c (t),

W (∞, t) = 0,

W (y, 0) = 0.

(6.3)

The boundary condition on the axis of the pipe can be specified at ‘infinity’, because for
the times of interest, the perturbation vorticity has not had the time to diffuse to the
centerline. The formulation in Eq. (6.3) is a generalized form of Stokes’ first problem of
the flow resulting from a suddenly moved plate. For centerline velocities developing like
U∧
c (t) = U0(t/t0)

m, with U0, t0 and m being constants, the equation governing W/U∧
c can

be transformed into an ordinary differential in η = y/
√

4νt, and W/U∧
c thus possesses

a self-similar solution (see Sherman [20] for details). Specifically, m = 1, m = 1/2
and m = 0 can approximately be related to turbulent flows for which the bulk velocity
increases linearly, according to a square-root function, and impulsively. In terms of U∧,
the solutions are

U∧(y, t)/U∧
c = 1 −

[
(1 + 2η2)erfc(η) − 2√

π
ηe−η2

]
, (6.4a)

U∧(y, t)/U∧
c = 1 −

[
e−η2 − √

πηerfc(η)
]
, (6.4b)

U∧(y, t)/U∧
c = 1 − erfc(η), (6.4c)

with erfc(·) denoting the complementary error function. The validity of Eq. (6.4c) for
a plane turbulent channel flow undergoing an impulse change in the bulk velocity was
originally found by He & Seddighi [26] using DNS. The merit of the present analysis
is the theoretical justification of their result, and the extension of the self-similarity of
U∧(y, t)/U∧

c for other cases than an impulse acceleration.
Figure 6.2(a) shows U∧(y, t)/U∧

c from case AP2. Data has been plotted for 14 < t+0 <
84, and Eqs. (6.4a-c) have been included for reference. The normalized perturbation ve-
locity collapse reasonably well on Eq. (6.4a), thus verifying the self-similarity of the
perturbation velocity in turbulent flows undergoing a uniform acceleration. An implica-
tion of the self-similarity is that the wall-normal transport of the perturbation vorticity
generated at the wall is predominately due to viscous diffusion. Hence, in a time interval
t following the commencement of the acceleration, the perturbation vorticity diffuses a
distance l ∼ √

νt. By comparing the similarity solutions plotted in Figure 6.2(a), it is
realized that the shear diffuses faster with decreasing values of m. Hence, defining the
diffusion distance, l, at the value of η for which the similarity solution attains a value of
0.99, we have l = 2.9

√
νt, l = 3.2

√
νt and l = 3.64

√
νt for m = 1, m = 1/2 and m = 0,

respectively.
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Figure 6.2: Normalized perturbation velocity in transient flows. (a) Acceleration, (b) decelera-
tion. The data of Mathur can be found in [29], whereas the data of Seddighi et al. [27] cannot
be found directly in the reference; it has been reproduced by the present author by combining
different data sets.
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Figure 6.3: Time-developments of the radial component of the Reynolds normal stress in tran-
sient flows. (a) Accelerating flow, (b) decelerating flow. The upper bundle of curves are plotted
against the upper x-axis, and the curves have been shifted in the vertical direction. The lower
bundle of curves are plotted versus the lower x-axis. He & Seddighi is data from [25] and the
data of Mathur is found in [29]. In (a), the ‘S’ and ‘L’ in the legend entries signify whether
the diffusion distance is based on a square root or a linear similarity solution.

Accelerating flows: The time-development of 〈v′v′〉

It is instructive to plot the response of the radial component of the ensemble-averaged
Reynolds stress, 〈v′v′〉, versus t+0 as well as versus l+0 following an acceleration. Such
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data is plotted in Figure 6.3(a), with the upper x-axis corresponding to t+0 , and the
lower x-axis corresponding to l+0 . The data come from case AP1, as well as from the
DNS of an impulsively accelerating channel flow by He & Seddighi [25] and from case
A1 of Mathur [29]. The data of Mathur have been obtained from experimental measure-
ments; hence, as for the present cases, imperfections in the experimental stand make it
difficult to unambiguously classify which type of acceleration that was imposed on the
bulk flow. It is, however, more likely that the flow rate developed closer to a square
root function, rather than a linear one. For, in conjunction to the experimental work, a
DNS and an LES was performed of case A1 of Mathur. As shown in Figure 6.2(a), the
normalized perturbation velocity from Mathur’s numerical simulations collapse well on
Eq. (6.4b). Furthermore, the profiles are in reasonable agreement with the experimen-
tal data (the experimental data is no plotted herein but can be found in Figure 6.5(a)
of [29]). The time-development of 〈Ub〉 used in the simulations was obtained from the
time-development of the bulk velocity from the experimental data (which, by visual in-
spection look like square-root functions). Despite having the appearance of a square-root
function, the time-development of the bulk velocity is, however, not believed to strictly
follow a square root dependence (A. Mathur (2018) private communication). Therefore,
for completeness, the data of 〈v′v′〉 from Mathur have been plotted with definitions of l+0
corresponding both to a linear as well as a square root time-development of 〈Ub〉.

Firstly, consider the response of 〈v′v′〉 plotted versus t+0 . For each case, the Reynolds
stresses remain unchanged at their pre-transient values initially. The duration of this
phase depends on the type of acceleration; it is shortest for the impulse acceleration due
to He & Seddighi (∼ 80tν), followed by case A1 of Mathur (∼ 100tν), and finally case
AP1 (∼ 120tν). Following this phase of negligible development, 〈v′v′〉 starts increasing,
at first rather slowly for a duration depending on the type of acceleration, and thereafter
much more rapidly until reaching the values dictated by the final Reynolds numbers.
The time at which 〈v′v′〉 starts to grow rapidly coincides with the onset of Stage 2, and a
complete breakdown of the self-similarity of the normalized perturbation velocity. Since
the duration of the phase of a negligible response of 〈v′v′〉 depends on the type of accel-
eration, this suggests that t+0 is not the appropriate way to present the time-development
of the radial component of the Reynolds stress. Consider, instead, the response plotted
versus l+0 . Now, the data from each case collapse until l+0 ≈ 30 (note that the same holds
true also for the data of Seddighi et al. [27] plotted in Figure 5.5b). If case A1 of Mathur
[29] is considered to belong to m = 1, this data set diverge from case AP1 and the DNS
for l+0 > 30. If case A1 of Mathur, on the other hand, is considered as m = 1/2, then, the
data from all cases collapse until l+0 ≈ 42. A potential explanation to the good agreement
between the cases when plotted versus the diffusion distance l+0 might derive from how
energy is supplied to 〈v′v′〉. Whereas the streamwise component of the Reynolds stress
extract energy directly from the mean flow through turbulence production, the source of
〈v′v′〉 is through energy redistribution by pressure-strain. The component of the pressure-
strain tensor redistributing energy to 〈v′v′〉 reads R = 2 〈p′∂v′/∂r〉, in which p′ denotes
the turbulent fluctuating part of the pressure. Following an acceleration, excess shear is
generated next to the wall and propagates toward the core as shown in Figure 6.2. The
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production of turbulence kinetic energy next to the wall, therefore, increases directly
following an acceleration. The response of the pressure-strain, on the other hand, exhibit
a delay relative to the imposed acceleration (see Figure 7 of Seddighi et al. [27]). Now,
the fluctuating pressure satisfies the following Poisson equation

1

ρ
∇2p′ = −2

∂ 〈U〉
∂r

∂v′

∂x
+ NLS. (6.5)

With NLS denoting a non-linear source term. Since the initial, slow response of 〈v′v′〉
occurs when ∂U∧/∂r has diffused a distance l+0 ∼ 30, irrespective of the type of acceler-
ation, the origin of this response might reside from an activation of p′ in relation to the
first source term in Eq. (6.5). If the excess p′ thus generated correlates with ∂v′/∂r, this
activates R which, in effect, leads to an increase of 〈v′v′〉.

The close collapse of all data sets (if case A1 of Mathur is considered as m = 1/2) for
l+0 < 42 is believed to be a coincidence, and not a general trend. In support of this state-
ment, the data of Seddighi et al. [27] plotted in Figure 5.5 do not collapse with case AP1
for l+0 > 30. Now, as argued in the previous paragraph, the duration of the first (laminar-
like) stage ends when there is a rapid response in 〈v′v′〉, and not when there is a slow
response (the slow response is referred to the slow increase that is observed to start around
l+0 ≈ 30, irrespective of the type of acceleration). Recall the non-dimensional parameter
δ = ν/u2

τ0 〈Ub〉−1
0 d 〈Ub〉 /dt that was introduced in section 5.4. This parameter can be

interpreted as a ratio between the shear induced by the acceleration (〈Ub〉−1
0 d 〈Ub〉 /dt),

and the shear pre-existing before the acceleration
(
ν/u2

τ0 = (−d 〈U〉0 /dr|r=R)−1). In
light of the argument that it is the perturbation shear that initiates the slow response
of 〈v′v′〉 in relation to the first term in Eq. (6.5), the duration of Stage 1 is expected to
decrease with an increasing δ since a relatively ‘stronger’ induced shear should activate
the linear source term in Eq. (6.5) more efficiently than a ‘weaker’ one, with the net
effect being a shorter duration of the phase of the slow increase of 〈v′v′〉 (and in effect,
a shorter Stage 1). Figure 6.6(b) confirms that the duration of Stage 1 expressed as

l+Stage1 = 2.9
√
t+Stage1, is a decreasing function of δ. Data from cases in which the bulk

velocity increases linearly in time have been included (impulse accelerations and linear
decelerations are included in paper F). In addition to the present measurements, data
come from Seddighi et al. [27], He et al. [58], Jung & Chung [62] and from Talha &
Chung [63] (note that slightly different definitions of the duration of Stage 1 have been
utilized, see section 3.1 of paper F for a discussion). The data exhibit scatter, potentially
in relation to the difficulty in determining accurately the friction velocity, as discussed
in section 5.4, and also in relation to fact that slightly different definitions of Stage 1
have been utilized (different definitions have been used because the data available in the
references do not allow for a unique definition; however, investigations of the present PIV
and hot-film data indicate that using the different definitions amounts to a few percent
uncertainty, at maximum). Furthermore, the accuracy of the measurements, and of the
numerical simulations is a source of scatter. In conclusion; despite the scatter it is clear
that l+Stage1 exhibit a decreasing trend with δ, thus supporting the argument advanced
after Eq. (6.5). Verifying the argument has, however, not been possible because such
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verification require either tomographic PIV or DNS data; none of which have been avail-
able within the present work.

Decelerating flows: The self-similarity of U∧ and the time-development of 〈v′v′〉

It will now be demonstrated that features of the time-developments of mean and turbu-
lence quantities that were observed for a flow undergoing an acceleration, occur also in
the case of a deceleration. Firstly, consider the time-development of U∧/U∧

c following a
linear deceleration. Figure 6.2(b) shows profiles of the normalized perturbation velocity
plotted versus the similarity variable η. Data come from case DP2 and from a DNS per-
formed by Mathur [29]. The DNS data is in excellent agreement with Eq. (6.4a), whereas
the agreement of the PIV data is less satisfactory. A potential explanation to the larger
scatter of the PIV data is that the ensemble of data used to calculate U∧/U∧

c is several
thousand times smaller than the ensemble used for the DNS calculations. Furthermore,
the PIV profiles have been stitched together since the near-wall and core flows were mea-
sured separately; this stitching could induce scatter. An implication of the self-similarity
of U∧/U∧

c is that the response of 〈u′v′〉 is slow following a deceleration. Similarly as for
an acceleration, then, the response of 〈v′v′〉, too, is slow following a deceleration. The
slow response of 〈v′v′〉 is illustrated in Figure 6.3(b), showing data from case DP1 as
well as from DNS of impulsively and linearly decelerating channel flows performed by
Mathur [29]. Again, the data are plotted versus t+0 and l+0 . In terms of t+0 , the duration
of the phase of a negligible response of 〈v′v′〉 depends on the type of deceleration; it is
shorter for an impulse type than for a linear. Investigating the response versus l+0 , on the
other hand, shows that the data from different studies overlap quite closely for l+0 < 50.
Furthermore, the phase of the frozen response of 〈v′v′〉 lasts for about l+0 ≈ 36 in each
case. The latter result supports the argument about an activation of p′ in relation to the
diffusion of perturbation shear.

6.1.2 Pulsating flows - similarities with transient flows

In the previous subsection it was argued that the response of 〈u′v′〉 is slow following a
transient. Now, consider time-developments of the phase-averaged Reynolds shear stress
in a pulsating flow with Ã = 0.43 and l+s = 16, at wall-normal positions y+ = 5, 12 and
30 plotted in Figure 6.4(a). Note that t/ΔT = 0 corresponds to the commencement of
the accelerating portion of the flow cycle. To comply with the approach of studying a
transient flow, the initial values of 〈u′v′〉 have been subtracted from the data. Similarly
as for a monotonically accelerating flow, there is hardly any activity in the perturbation
Reynolds shear stresses initially, and these remain sensibly constant for t/ΔT < 0.3.
The slow initial response is particularly evident next to the wall, whereas the Reynolds
shear stress decreases slightly for 0 < t/ΔT < 0.3 at y+ = 30. Similarly as for a
transient flow, the pressure and the Reynolds shear stress can be split into an initial value
and a perturbation thereof; 〈p〉 = 〈p〉0 + 〈p〉∧ ; 〈u′v′〉 = 〈u′v′〉0 + 〈u′v′〉∧. Consequently,
the time-development of the phase-averaged mean velocity can, too, be split into two
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Figure 6.4: Data from case PP1. (a) Time-development of perturbation Reynolds shear stress.
(b) Time-development of the initial velocity, 〈U ′〉, and of the perturbation velocity. 〈U〉∧p des-
ignates the perturbation velocity taking only the pressure gradient into consideration. (c) Nor-
malized perturbation velocity plotted versus the similarity-variable η. ΔT denotes the pulsation
period.

contributions; 〈U〉 = 〈U ′〉 + 〈U〉∧, where 〈U ′〉 is the velocity distribution at t/ΔT = 0.
Unlike a transient flow, however, 〈U ′〉 is not necessarily in equilibrium with d 〈p〉0 /dx
and r−1∂(r 〈u′v′〉0)/∂r. It is therefore necessary to consider the equation governing 〈U ′〉,
in addition to the equation governing 〈U〉∧, i.e,

∂ 〈U ′〉
∂t

= −1

ρ

d 〈p〉0
dx

+
1

r

∂

∂r

[
rν

∂ 〈U ′〉
∂r

− r 〈u′v′〉0
]
, (6.6a)

∂ 〈U〉∧
∂t

= −1

ρ

d 〈p〉∧
dx

+
1

r

∂

∂r

[
rν

∂ 〈U〉∧
∂r

− r 〈u′v′〉∧
]
. (6.6b)
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However, since d 〈Ub〉 /dt = 0 at the commencement of the split, and since the phase
difference between 〈U〉 (r, t) and 〈U〉 (R, t) is small at all radii (< 12 degrees as shown
in Figure 4 in paper B), there is hardly any evolution of 〈U ′〉 for t/ΔT > 0; see Figure
6.4(b). Now, since the time-development of 〈u′v′〉∧ is slow for t/ΔT < 0.3 − 0.4 (this
duration is believed not to be universal, but a specific for the plotted case), this suggests
that the perturbation of the phase-averaged velocity close to the wall evolves akin to a
laminar flow during these times. The dominance of the pressure gradient on the near-
wall response of 〈U〉∧ is confirmed in Figure 6.4(b). For y+ < 14 and t/ΔT < 0.4, there
is excellent agreement between the solution to Eq. (6.6b) considering only the pressure
gradient as the forcing (termed 〈U〉∧p ), and the solution to the full problem. Away from
the wall for y+ > 23, the agreement between the laminar solution of Eq. (6.6b) and
the solution to the full problem is slightly worse with 〈U〉∧p overshooting 〈U〉∧; however,
the overshoot is only 10% at y+ = 54 and t/ΔT = 0.4. However, since the centerline
velocity of 〈U〉∧p does not evolve according to 〈U〉∧p,c = U0(t/t0)

m, 〈U〉∧p / 〈U〉∧p,c does not
attain a self-similar distribution at any time during the pulsation cycle. The wall-normal
profiles of 〈U〉∧p / 〈U〉∧p,c plotted versus η are, however, not vastly different from a self-
similar distribution, as shown in Figure 6.4(c). For reference, the self-similar profile
corresponding to a uniform acceleration has been included. With time, the profiles from
the pulsating flow approach Eq. (6.4a) from left, thus implying that the propagation
speed of the excess shear generated for t/ΔT > 0 increases in time. An average speed
of propagation, and thus also the diffusion distance l, can be defined also for a pulsating
flow by calculating the mean value of the profiles of 〈U〉∧p / 〈U〉∧p,c over the times for which

U∧ ≈ U∧
p close to the wall. In this case, l+0 = 2.55

√
t+0 , with t+0 calculated based on the

wall shear stress prevailing at t/ΔT = 0. Now, since the data in Figure 6.4(b) show that

U∧
p and U∧ differ only marginally near the wall (y+ < 50, say), l+0 = 2.55

√
t+0 can be

used also for the diffusion distance in a turbulent pulsating flow.
The similarity between transient and pulsating flows is more pronounced for large

amplitudes of the pulsation (see Figure 6.5). Only one case of a (moderately) large-
amplitude pulsation has been measured using PIV. However, hot-film measurements
have been performed over a large range of l+s and Ã. To that end, consider the time-

development of 〈τ〉 plotted versus l+0 = 2.55
√
t+0 at a fixed l+s ≈ 26 for Ã = 0.15, 0.37 and

0.68, as shown in Figure 6.5(a-c). The fundamental mode of the Fourier series of 〈τ〉 (see
Eq. 3.5) has been included for reference. As for the data in Figure 6.4, the onset of the
accelerating portion of the pulsation cycle starts at l+0 = 0 (t/ΔT = 0). For the smallest
forcing amplitude, the fundamental mode provides an excellent fit of 〈τ〉 over the entire
period of pulsation (the data look somewhat awkward because of the scale on the x-axis).
As the amplitude is increased, however, the fraction of the power spectral density being
contained in the fundamental mode decreases. For Ã = 0.37 and 0.68, the responses of the
phase-averaged wall shear stresses exhibit significant similarities to the development of
the ensemble-averaged wall shear stress in a flow undergoing a monotonic (non-uniform)

acceleration (see Figure 6.5f). Similarly, for l+s = 19 and Ã = 0.77, respectively for

l+s = 36 and Ã = 0.5, the time-developments of 〈τ〉 differ significantly from a pure
sinusoid. Again, the time-development of the phase-averaged wall shear stress exhibit
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Figure 6.5: Time-developments of wall shear stress. (a-e) Pulsating flow, cases PH2, PH3,
PH4, PH1 and PH5. (f) Accelerating flow, case AH1.
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Figure 6.6: Laminar-like response in pulsating and transient flows. (a) Definition of the
laminar-like duration in a pulsating flow. (b) Duration of the laminar-like stage in pulsat-
ing and accelerating flows correlated with non-dimensional parameter δ. The curve fit has been
obtained using data from accelerating flows.

similarities to the response in a monotonic acceleration.
For a pulsating flow, the parameter δ = ν/u2

τ0 〈Ub〉−1
0 d 〈Ub〉 /dt can be defined by

calculating the mean value of d 〈Ub〉 /dt during the accelerating phase, and by using
the values of 〈Ub〉 and 〈uτ 〉 prevailing at the onset of the acceleration. The duration
of the laminar-like stage can then be defined to last from t/ΔT = 0, until the instant
when 〈τ ′rms〉 / 〈τ〉 responds rapidly, as illustrated in Figure 6.6(a). Figure 6.6(b) shows
the duration of the laminar-like stage l+Stage1 plotted versus δ (the laminar-like stage is
termed Stage 1 to comply with the terminology used in the previous subsection). Data
from linearly accelerating flows have been included for reference. The duration of a
laminar-like development is in good agreement with the data from linearly accelerating
flows. This result is intriguing; however, the implication must be investigated in more
detail before a firm conclusion can be drawn.

6.1.3 Pulsating flows - the effect of multiple forcings

Pulsating turbulent flows have been studied for more than half a century, see Karlsson
[64] for one of the earliest studies. However, the effect of simultaneously imposing mul-
tiple frequencies on the mean flow has not been investigated, despite the large number
of studies that have been performed on single-frequency cases (see [65, 66, 38, 67], e.g.).
The flow in a hydropower turbine is subjected to multiple forcings; for instance due to
the passage of the runner and a higher-order harmonic owing to the number of blades
of the runner. Hence, there exist an inherent interest to investigate the response of a
turbulent pulsating flow subjected to multiple forcings. In this subsection, the response
of a pulsating turbulent pipe flow subjected to two simultaneous forcings is briefly inves-
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Figure 6.7: Time-averaged quantities in a double-frequency pulsating flow. (a) Mean velocity.
(b) Axial component of r.m.s. turbulent velocity.

tigated.
Figure 6.7(a-b) shows the time-averaged mean and r.m.s. velocities, respectively.

Both the mean and the turbulence velocities are seen to be unaffected by the imposition
of two simultaneous forcings. A fuller discussion on the topic is presented in paper A.

6.2 The pressure-time method

This subsection is divided into two parts. In the first part, measurements of the wall
shear stress performed in the NTNU setup are presented. Following the presentation of
the experimental results, a new frictional formulation is derived. Finally, the performance
of the novel friction model for flow rate calculations using the pressure-time method is
tested.

6.2.1 Wall shear stress measurements

The conditions under which pressure-time measurements have been performed in the
NTNU setup are summarized in Table 6.4. Two initial Reynolds numbers, 1.7 × 106

and 0.7 × 106, were investigated for two closing times of approximately 4-4.5 s and
8.5-9 s. The four cases are named LS1-4. For the time-developments of 〈τ〉 plotted
in Figure 6.9, data from cases LS1 and LS3 are presented, whereas data from all four
cases are presented to investigate the accuracy of the flow rate calculation (see Figure
6.13). The results have been obtained from 22 repeated runs. For each case, a total of
50 repetitions were performed; however, although the gate movement was controlled by
a computer, the closing time (denoted ΔT ) among different runs differed by ±0.25 s.
Using repetitions with this large distribution of closing times would have smeared out
the time-development of 〈τ〉. As such, more than 50% of the performed repetitions had
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Table 6.4: Summary of pressure-time measurements performed in the NTNU setup.

Re0 ΔT (s) Case

1.7 × 106 4 LS1
1.7 × 106 9 LS2
0.72 × 106 4.5 LS3
0.69 × 106 8.5 LS4
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Figure 6.8: Time-development of differential pressure during a single realization of case LS1.

to be discarded to ensure that ΔT was constant within ±0.1 s. An effect of using such
a small ensemble for averaging was a large fluctuation level of the data. However, as
discussed more thoroughly in paper D, the data from the three hot-film sensors showed
that the flow was sensibly symmetric around the circumference. Hence, the fluctuations
could be damped by using the average of the three sensors. Alongside the measured
wall shear stresses, estimates obtained using the SP and UP approaches are presented
(recall that the abbreviations stand for standard pressure-time and unsteady pressure-
time, respectively). The estimates have been obtained in an iterative fashion using the
measured Δp and Eq. (1.1). Figure 6.8 shows a measured time history of the differential
pressure obtained from case LS1. The flow rate calculation is initiated by assuming a
Q0 that decreases linearly to zero. An update of Q(t), and consequently ξ(t), is thus
obtained and the calculations are repeated until convergence. The estimates presented
in Figure 6.9(a-d) are the ensemble-averaged values of the same 22 repetitions that were
used to calculate the measured 〈τ〉. Note that the origin of time for the results presented
in Figure 6.9 is at the commencement of the gate closure.

Figure 6.9(a-d) shows measured and estimated time-developments of 〈τ〉 for cases LS1
and LS3. The time-developments of the bulk velocity are included in figures (a) and (c).
Owing to the characteristics of the gate, there is hardly any change in the bulk veloc-
ity initially, although a constant closing speed of the gate is imposed. The implication






















































