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Abstract

Lightweight materials and structures are essential building blocks for a future with sus-
tainable transportation and automotive industries. Incorporating lightweight materials
and structures in today’s vehicles, reduces weight and energy consumption while main-
taining, or even improving, necessary mechanical properties and behaviors. The envi-
ronmental footprint can, thereby be reduced through the incorporation of lightweight
structures and materials.

Awareness of the negative effects caused by pollution from emissions is ever increasing.
Legislation, forced by authorities, drives industries to find better solutions with regard
to the environmental impact. For the automotive industry, this implies more effective
vehicles with respect to energy consumption. This can be achieved by introducing new,
and improve current, methods of turning power into motion. An additional approach
is reducing weight of the body in white (BIW) while maintaining crashworthiness to
assure passenger safety. In addition to the structural integrity of the BIW, passenger
safety is further increased through active safety systems integrated into the modern
vehicle. Besides these safety systems, customers are also able to chose from a long list of
gadgets to be fitted to the vehicle. As a result, the curb weight of vehicles are increasing,
partly due to customer demands. In order to mitigate the increasing weights the BIW
must be optimized with respect to weight, while maintaining its structural integrity and
crashworthiness. To achieve this, new and innovative materials, geometries and structures
are required, where the right material is used in the right place, resulting in a lightweight
structure which can replace current configurations.

A variety of approaches is available for achieving lightweight, one of them being the
press-hardening method, in which a heated blank is formed and quenched in the same
process step. The result of the process is a component with greatly enhanced properties
as compared to those of mild steel. Due to the properties of press hardened components
they can be used to reduce the weight of the body-in-white. The process also allows
for manufacturing of components with tailored properties, allowing optimum material
properties in the right place.

The present work aims to investigate, develop and in the end bring forth two types
of light weight sandwiches; one intended for crash applications (Type I) and another for
stiffness applications (Type II). Furthermore, numerical modeling strategies will be es-
tablished to predict the final properties. The requirements of reasonable computational
time to overcome the complex geometries will be met by so-called homogenization. Type
I, based on press hardened boron steel, consists of a perforated core in between two face
plates. To evaluate Type I’s ability to absorb energy for crash applications a hat profile
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geometry is utilized. The aim is to increase the specific energy absorption capacity com-
pared to a solid steel hat profile of equivalent weight. Type II consists of a bidirectionally
corrugated steel plate, placed in between two face plates. The geometry of the bidirec-
tionally core requires a large amount of finite elements for precise discretization, causing
impractical simulation times. In order to address this, a homogenization approach is
suggested.

The results from Type I indicate an increased specific energy absorption capacity,
due to the perforated cores in sandwich structures. The energy absorption of such a
sandwich was 20% higher as compared to a solid hat profile of equivalent weight, making
it an attractive choice for reducing weight while maintaining performance. The results
from Type II show that by introducing a homogenization procedure, computational cost
is reduced with a maintained accuracy. Validation by experiments were carried out as a
sandwich panel was subjected to a three point bend in the laboratory. Numerical and
experimental results agreed quite well, showing potential of incorporating such panels
into larger structure for stiffness applications.
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Chapter 1

Introduction

The background and motivation to the study on lightweight steel sandwiches are given
followed by the scientific background. The aim, objectives and limitations on the thesis
finalize the chapter.

1.1 Background and motivation

In an effort to reduce greenhouse gases associated with transportation, lightweight ve-
hicle components are necessary. This work, investigates how such lightweight structures
can be constructed for applications requiring energy absorption or structural stiffness.
Furthermore, in order to introduce lightweight material solutions to, for example, the car
industry, it is of great importance that accurate simulation methodologies are available
to describe the complex sandwich geometries. The simulation methodologies should be
time-efficient to facilitate design optimization regarding weight, stiffness and crashwor-
thiness already in the early product development.

According to the United Nation’s Intergovernmental Panel on Climate Change (IPCC)
it is feasible that humans influence has been the dominant cause of the observed warming
since the mid 20th century (Qin et al., 2014). Furthermore, it was stated that greenhouse
gases are a likely contributing factor to these effects. This point of view also seems to be
the consensus among climate experts. It has been reported that between 90% to 100%
of climate scientists share this consensus (Cook et al., 2016). These observations have
forced legislatures to establish laws and regulations aimed at reducing emissions such as
greenhouse gases, and strive to achieve a carbon free society. In particular, emissions
from greenhouse gases due to road transport is to be reduced by 67% by the year 2050
in order to meet long term goals set by the European Union.

Several approaches are possible for reducing emissions, and a few of these will be pre-
sented in the following. Optimizing the traffic signal timing is an approach reducing
unnecessary stops and delays in traffic, to keep an optimal speed, where fuel usage and
emissions are brought to a minimum (Stevanovic et al., 2009). Increasing engine efficiency
and considering renewable fuels are also beneficial with respect to reduced emissions. In
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4 Introduction

recent years the amount of electrical vehicles and plug-in hybrids has increased expo-
nentially. Such vehicles, together with renewable energy sources, have been reported
as promising for reducing emission and obtaining a sustainable transportation structure
(Saber et al., 2016). Furthermore, to reduce emissions from road transportation, new
materials and structures could also be introduced, allowing a reduced weight of vehicle
components while performance is kept intact or even improved. At the same time the
components must prove to be cost-effective to manufacture as well as requiring little
energy when recycled.

1.2 Scientific background

Legislation forces automotive manufacturers to reduce the environmental impact and
to meet these requirements there is a great potential in the development of lightweight
components for the vehicle’s body in white (BIW). While maintaining performance, such
as crashworthiness and structural integrity, sustainability must also be considered with
respect to manufacturing processes and recyclability.

The idea of reducing weight of vehicle components has been around for a long time. For
instance, in the 1970’s press hardening was invented by the former SSAB HardTech, now
Gestamp HardTech, and in the 1980’s Saab Automobile was the first automotive manu-
facturer to implement such components into the BIW. In the press hardening process, a
blank is heated up to a temperature where its microstructure consists of a single phase
namely austenite. At this point the steel exhibits a low yield stress and a ductile behavior.
Due to these properties the blank can, with ease, be formed into the desired geometry.
During forming, the blank is simultaneously cooled to achieve a martensitic structure.
Martensite steel exhibits high yield strength and ultimate tensile strength as compared to
austenite. Thus, press hardening is a valuable method for producing lightweight vehicle
components while maintaining crashworthiness and structural integrity (Li et al., 2003;
Georgiadis et al., 2016). Additionally, the press hardening process allows for manufac-
turing of tailored properties. This is done by adjusting the thermal history in areas were
soft zones are desired, allowing the formation of ferrite (Oldenburg and Lindkvist, 2011).

An alternative approach recieving a lot of attention is components based on fiber re-
inforced polymers (FRP). Their appeal is derived from their superior properties per unit
of mass density, due to their specific strength and specific energy absorption during axial
compression, compared to metals and steels. In particular, Grauers et al., 2014 illustrates
the properties of such materials during quasi-static crushing, where energy absorption
was studied specifically in order to understand the underlying mechanisms. It was shown
that the the peak crush force was near the mean crush force which would be a desirable
attribute during crash loading to reduce harm done to passengers. Furthermore, delam-
ination was discussed as one of the failure mechanism which must be modeled properly
for accurate numerical models. Further reading regarding the crash-worthiness of FRP is
available in e.g. Carruthers et al., 1998; Jacob et al., 2002 and Alkbir et al., 2016. In the
work by Främby et al., 2017 a modeling approach is suggested to capture initiating and
propagating delaminations. In addition to delamination, several other complex fracture
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mechanism arise for FRP such as fiber kinking and matrix failure. The benefits compared
to metals, are: lower weight, corrosion resistant, non-conductive, and superior specific
properties. However, there are drawbacks, such as: more complex manufacturing pro-
cess, expensive to repair, may exhibit more brittle behavior than metals, more sensitive
to temperatures. Thus, it comes down to having the proper material in the right place
for a given application.

In addition to selecting materials with suitable thermo-mechanical properties for a
given application, the geometrical structure of a component can be altered and optimized
in order to achieve desired properties, such as sufficient stiffness. A sandwich structure is
a good example, which has been reported to be used as early as 1849 in England (Vinson,
2005). Furthermore, sandwich structures based on plywood were also utilized in aircrafts
during World War II. Typically a sandwich consists of two stiff, strong skins separated by
a lightweight core. Therefore, the moment of inertia is increased with minor influence on
the total weight, thereby creating a structural element which efficiently resists bending
and buckling loads (Gibson and Ashby, 1999). These attributes have contributed to an
increased use of sandwich structures. Areas in which they are used include satellites,
aircraft, ships, automobiles, rail cars, wind energy system, bridge construction and many
more (Vinson, 2005). Sandwich structures are also present in nature, such as in the skull
of a human or in the wing of a bird.

The mechanical properties of the sandwich are significantly affected by the choice of
material in the face and core, as well as their geometries. Generally, some constrain on
the minimal stiffness is present in order to avoid failure under a given load. At the same
time the sandwich mass should be as small as possible. Thus, an optimization problem
can be formulated where the object function is the performance, such as stiffness, and
the design variables could be densities and thicknesses for core and face plates. For a
sandwich, the choice of a core is crucial because it should be a lightweight material while
still possessing sufficient stiffness to maintain distance between face plates. In general,
the core of a sandwich can consist of any material or geometric pattern. In the following
a hand full of core variants will be discussed.

A solid sandwich core is utilized by the TriBond composite by thyssenkrupp (thyssen-
krupp TriBond composite 2018), where the core consists of hot rolled hardened manganese
boron steel with a tensile strength of 1500 MPa. The face plates consist of cold rolled
manganese boron steel with a tensile strength of 500 MPa.

In addition to solid cores, foam cores are commonly used in sandwich structures. The
mechanical properties of foam are strongly influenced by the bulk material on which the
foam is based on (Gibson and Ashby, 1999). A review of steel foams is found in the work
by Smith et al., 2012, where manufacturing processes are presented as well as structural
applications and modeling approaches. Further work on steel foam can be found in Park
and Nutt, 2000; Szyniszewski, Smith, Arwade, et al., 2012; Szyniszewski, Smith, Hajjar,
et al., 2014. In addition to steel foam, a lot of work has been done on aluminum foam,
see for instance Sulong et al., 2014; Marsavina et al., 2016, which is a common choice
for improving crashworthiness in vehicles (Zhang et al., 2013). In Deshpande and Fleck,
2000 and Reyes et al., 2003 it is shown that such foam is a suitable choice for energy
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absorption applications. However, the benefits of a steel foam are the increased strength,
specific stiffness, lower raw material costs and higher melting temperatures. Furthermore,
steel foams are compatible with steel structures and components, thereby less energy is
required during recycling. Other bulk materials are also available, such as polymers, see
the work by Lachambre et al., 2013, Weinenborn et al., 2016 and Manjunath Yadav et al.,
2017.

Another option for obtaining a lightweight sturcutre is cores based on geometrical
patterns. A common choice, found in nature, is honeycomb which consists of prismatic
cells which nest together to fill a plane (Gibson and Ashby, 1999). The benefits of using
honeycomb cores are their inherent out of plane compression strength and low density,
which are desirable properties for sandwich panels. Adopting such cores has been done
by Aktay et al., 2008 and Nayak et al., 2013. In Mohr and Wierzbicki, 2005, a sandwich
with a perforated core is investigated for crashworthiness. A similar type of sandwich
structure is utilized in Zhou, Yu, Shao, Wang, and Tian, 2014 and Zhou, Yu, Shao, Wang,
and Zhang, 2016, where it is investigated with respect to flexural dynamics utilized in
mechanical structures such as national defense, transportation, and aerospace (Zhou, Yu,
Shao, Zhang, et al., 2016).

It should be mentioned that many additional types of cores are available, such as
truss cores and web cores. However, these will not be presented in further detail in the
present work. The final type of core that will be mentioned is the corrugated core. A
corrugated core typically consists of some periodic function dependent on one of the in-
plane coordinate axis. Such a core is suited for stiffness applications (Biancolini, 2005;
Kress and Winkler, 2010; Xia et al., 2012; Bartolozzi et al., 2013; Marek and Garbowski,
2015). A variation of the corrugated core is utilized in Chomphan and Leekitwattana,
2011, Besse and Mohr, 2012 and Zupan et al., 2003, where bidirectionally corrugated
cores are utilized.

The present thesis contributes to the scientific field by suggesting two types of sandwich
concepts. Type I consists of two skins separated by a perforated core, similar to what was
used by Mohr and Wierzbicki, 2005, suited for energy absorption applications. Weight-
saving is achieved by clever placement of the holes. Type II consists of a bidirectionally
corrugated core, which is suitable for stiffness applications. Superior stiffness is achieved
for panels, with the advantage that the core can be manufactured through continues
processes such as mill rolling. Both sandwiches are based on ultra high strength steel
(UHSS), namely the boron steel 22MnB5.

1.3 Aim and objective

The present thesis aims to reduce the energy consumption of vehicles by lightweight ma-
terials and components, thereby reducing the mass of vehicles. The initial objective of
this work is thus, to develop models and methods for lightweight steel sandwich construc-
tion. The second objective is to reduce computational time required for predicting elastic
stiffness for the geometries of the sandwich cores. The following research question can
be formulated: ”How should lightweight steel sandwiches be modeled to balance validity
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and computational cost?”

1.4 Scope and limitations

The scope of the present thesis is to bring forth lightweight steel sandwich structures,
to reduce weight of vehicles and energy consumption. The sandwiches are intended for
energy absorption and stiffness applications. These structures are evaluated numerically
with respect to stiffness and energy absorption. The scope also includes investigation of
homogenization methods to reduce computational time for the complex sandwich core
geometries. This thesis is limited to only study two types of sandwich cores. For the
homogenization procedure, a limit has been set to only predict structural stiffness. Rate
dependency has been neglected for both cores and debonding between face plates and
core is not taken into account in the numerical models.
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Chapter 2

Sandwich mechanics

Sandwich panels are increasingly used for lightweight applications due to their specific
properties, such as bending stiffness to weight ratio. Areas of use range from aerospace
applications to the automobile industry. In the present chapter a description of the
underlying concepts is presented.

2.1 Sandwich theory

A sandwich structure is a type of composite which typically consists of three layers:
two face plates kept apart by a core. The face plates are usually stiff with high tensile
strength whereas the core is kept as light as possible while still having enough stiffness
to withstand transverse load and shearing to keep the face plates apart. In various
applications, structures are subjected to distributed pressure loads, causing a curvature in
the beam. In the introductory courses to solid mechanics, one might have the opportunity
to study bending of beams subjected to such distributed loads. In order to illustrate the
benefits of sandwich structures, such a loading case will used as an example. During
such a state of deformation, stress and strain varies linearly through the height of the
beam cross section according to Euler-Bernoulli beam theory (Timoshenko, 1983). This
illustrated in Figure 2.1 and stated by Equations (2.1) and (2.2):

σxx =
Myz

Iy
(2.1)

εxx = κz (2.2)

where the coordinate system is defined in accordance with Figure 2.1. In Equation (2.1),
My is the bending moment around the y-axis, z is the coordinate along the height of
the beam with its origin in the neutral axis, and Iy is the moment of inertia around the
y-axis. In Equation (2.2), κ is curvature of the beam. Due to this stress distribution,
it is more efficient, with respect to weight, to remove material close to the neutral axis,
where the stress approaches zero. This is the case for an I-beam or an H-beam, where the
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10 Sandwich mechanics

flange carries the bending moment and the web handle the shear forces, which is also the
reason for adopting sandwich beams or panels where possible. Compared to an I-beam,
the sandwich structures offers continuous support of the face plates whereas for an I-beam
the support of the web is located in the middle. Additionally, a sandwich typically offer
higher strength and stiffness to weight ratios than a solid steel I-beam. In the following,
the engineering sandwich beam theory will be presented, and the normal stress and shear
stress distribution will be presented to illustrate the motivation for adopting sandwich
structures. In accordance with the Eurler-Bernoulli beam theory, the strain is written as

εxx(x, z) = −z d
2w

dx2
(2.3)

where w is the deflection of the beam. The stress is obtained as

σxx(x, z) = εxxE(z) = −zd
2w

dx2
E(z) (2.4)

which is integrated over the area, A, of the cross section in order to obtain the normal
force

N =

∫
A

σxxdA (2.5)

and the moment can be obtained as

M =

∫
A

zσxxdA. (2.6)

Inserting Equation (2.4) into Equation (2.6) the following is obtained

M = −
∫
A

z2
d2w

dx2
E(z)dA (2.7)

which can be written as

M = −Dd
2w

dx2
(2.8)

where D is the flexural stiffness according Equation (2.9).

D =

∫
A

z2E(z)dA (2.9)

Inserting Equation (2.8) into Equation 2.4 the following expressions is obtained for the
normal stress distribution:

σ =
EM

D
z (2.10)

In order to derive the shear stress distribution over the height of the sandwich beam, the
following is derived in in accordance with Figure 2.2. Equilibrium of the body requires
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the sum of the moments to equal zero. Thus, summing the moments around the point
A of Figure 2.2 the following is obtained.

−σxdy
dy

2
+ σydx

dx

2
+

(
σx +

∂σx
∂x

dx

)
dy
dy

2
−
(
τxy +

∂τxy
∂x

dx

)
dxdy+

+

(
τyx +

∂τyx
∂y

dy

)
dxdy −

(
σy +

∂σy
∂y

dy

)
dx
dx

2
= 0

(2.11)

By division with 2dxdy and let dx→ 0 and dy → 0 and the following is obtained.

τyx = τxy (2.12)

In a similar manner the force equilibrium in the x-direction is obtained as

− σxdy − τxydx+

(
σx +

∂σx
∂x

dx

)
dy

(
τxy +

∂τyx
∂y

dy

)
dx (2.13)

which reduces to

∂σx
∂x
− ∂τxy

∂y
= 0. (2.14)

Adopting the coordinate system used for the sandwich beam, Equation (2.14) is rewritten
as

τxz =

∫
∂σx
∂x

dz + C =

∫
zE(z)

D

dM

dx
dz + C (2.15)

where dM
dx

is equal to the shear force, V , and the following is obtained

τxz =
V

D

∫
zE(z)dz + C (2.16)

To solve for the integration constant, C, assume no shear stress is present at the top and
bottom of the sandwich. Thus, the following is obtained for the face plate of a sandwich
with core height, 2h, and face plate thickness, f ,

τ fpxz =
EfpV

D

∫ h+f

z

zdzC =
EfpV

D

[
z2

2

]h+f

z

+ C =
EfpV

2D

[
(h+ f)2 − z2

]
+ C. (2.17)

With the condition that τxz = 0 when z = h+ f , C = 0, and the following is obtained.

τ fpxz (z = h) =
V Efp(2hf + f 2)

2D
(2.18)

Furthermore, due to continuity in the shear stress distribution the following holds

τ fpxz (z = h) = τ cxz(z = h) (2.19)
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The shear stress in the core is obtained as

τ cxz =
EcV

D

∫ h

z

zdz + C =
V E2

2D

(
h2 − z2

)
+ C (2.20)

The integration constant is solved for by the results from Equation (2.18) and Equation
(2.19).

τxz(z = h) =
V Ec

2D

[
h2 − h2

]
+ C →

V Efp(2hf + f 2)

2D
= C

(2.21)

Equation (2.20) is then rewritten as

τ cxz =
V

2D

[
E2
(
h2 − z2

)
+ Efp(2hf + f 2)

]
(2.22)

The normal stress and shear stress distributions over the height of a cross section for
a sandwich are presented in Figure 2.3 and Figure 2.4. From these figures it is found
that the largest normal stresses are taken by the face plates and the core handles the
transverse shear. Thus, the necessary properties of the layers in a sandwich structure
can be identified. The face plates should be stiff and be able to withstand large tension
and compression stresses, whereas the core should have enough transverse stiffness to
maintain the initial distance set between the face plates. Furthermore, studying the
equation describing the normal stress and the shear stress distribution, Equation (2.15)
and (2.10), it is found that the maximum stress reduces with an increased cross section
height, since a larger area takes up the load. These distributions are presented in Figure
2.3 and 2.4. Furthermore, in addition to a lowered stress the flexural stiffness of the beam
increases with a cubical relationship, see Figure 2.5. In the figure, the flexural stiffness
is plotted as a function of the core height of the beam.

2.2 Sandwich structures for stiffness and energy ab-

sorption

For the present work two sandwich cores are investigated, see Figure 2.6, where the Type
I consist of a perforated core and Type II of a bidirectionally corrugated core. The
Type I sandwich is investigated for energy absorption applications, due to its out-of-
plane stiffness and shear rigidity, whereas the Type II is evaluated in structural stiffness
applications.

Manufacturing of the Type I sandwich was carried out by drilling holes in to the core
specimen, The core and face plates were then joined by a hot rolling process. It was found
that the hot rolling process, had contributed to the forming of grains over the interface
between face plates and core, this is presented in Figure 3. Thus a strong bond exists
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Figure 2.1: Linear strain distribution in a cross section of a beam subjected to an evenly
distributed load.

Figure 2.2: 2D stress state in equilibrium.

between the layers of the sandwich. After the hot rolling the geometry of hat profile was
obtained by hot stamping.

The Type II sandwich is based on 0.4 millimeters thick boron steel, 22MnB5. The
bidirectional geometry of the core is obtained through cold-rolling using patterned rolls.
The envelope surfaces of the rolls are are derived from a given sinusoidal function, thus
giving the core its desired geometry. Joining between face plates and core is performed
by laser welding.
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Figure 2.3: Normal stress distribution in a sandwich beam subjected to an evenly dis-
tributed load.

Figure 2.4: Shear distribution in a sandwich beam subjected to an evenly distributed
load.
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Figure 2.5: Flexural stiffness as function of core height for a sandwich beam.

(a) Type I - Perforated core. (b) Type II - Bidirectionally corrugated core.

Figure 2.6: Sandwich structures based on 22MnB5 steel utilized in the present work.
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Chapter 3

Modeling

In order to evaluate the performance of the structures investigated in the present work,
the finite element code LS-DYNA has been used. The current chapter aims to give
an introduction to the method. In order to emphasize the concept, the finite element
formulation is adopted for a one dimensional problem.

3.1 Finite element method

For the present work, the finite element code within the multi-physics solver LS-DYNA
was used. LS-DYNA is suitable for analyzing structures subjected to large deformations
for static and dynamic loads. Explicit time integration is mainly used, with a possibility
to trigger an implicit solution scheme. Contacts are typically handled using a penalty
based formulation, where springs are placed between all penetration nodes and contact
surfaces. Thus, when two contacting surfaces penetrate, a repulsive force proportional
to the distance of penetration is applied.

The finite element method (FEM) is a numerical approach in which physical phe-
nomena, described by differential equations, can be solved in an approximate manner. It
should be emphasized that the method is an approximation, and that the results typically
contain errors to some degree. If the order of the error is small enough and a sufficient
amount of elements is used, the approximated solution of the problem converges toward
a true solution.

In engineering, physical phenomena are typically described by differential equations.
When the differential equations have been established, a model can be formulated. For
the model to be useful in engineering applications, solutions of the differential equations
are required. However, it is not uncommon that the particular problem proves to be
too complicated to be solved using analytical methods. Thus, some numerical solution
scheme can be used to approximate the solution.

When the finite element method is adopted for approximating a solution, the differen-
tial equations, describing the physical problem, are assumed to be valid in a given region.
This region is then divided into sub-regions, namely finite elements. Thus, a continuum
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Figure 3.1: Axially loaded bar subjected to a tensile force, F, and its own weight, w. The
bar is of length L with area, A, and Young’s modulus, E.

with an infinite number of degrees of freedom has been reduced into a region with a finite
number of degrees of freedom. For each finite element an approximate solution is then
found for the differential equations.

A typical procedure is to first formulate the strong form, which corresponds to the
differential equation and its boundary condition. From the strong form the weak form
is obtained, which together with the Galerkin method is a basis for the finite element
formulation. In order to study this in greater detail the reader is referred to the literature
such as Ottosen and Petersson, 1992. However, in the following section the finite element
formulation will be derived for a one dimensional bar subjected to an axial load. The
displacements obtained from the finite element method will then be compared to an
analytical solution.

3.1.1 Axially loaded bar

The current section aims to give the reader an understanding of how the finite element
formulation is derived for a one dimensional problem.

Consider the one dimensional, presented in Figure 3.1. The bar is subjected to a tensile
force, F, and a body load, b. From the balance of forces and the fundamental relations
of solid mechanics, the ordinary differential equation of Equation (3.1) is obtained. It
should be noted that E and A correspond to Young’s modulus and the area respectively.
Furthermore, u(x) is the axial displacement and b the body load acting of the bar due
to gravity.

EA
d2u

dx2
+ b = 0. (3.1)

Equation (3.1) is of second order, thus, two boundary conditions are required. The
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boundary conditions may either be prescribed forces or displacements at the ends of the
bar. For the sake of the example, at x = L the force, F , is known, and at x = 0 the
displacement, u, is given. The strong form of the axially loaded bar is then given by the
differential equation and its boundary conditions.

In order to obtain the weak form, Equation (3.1) is multiplied by an arbitrary weight
function, v, and integrated over a region, 0 ≤ x ≤ L∫ L

0

v

[
EA

d2u

dx2
+ b

]
= 0. (3.2)

Adopting integration by parts, the following is obtained∫ L

0

dv

dx
EA

du

dx
dx =

[
vEA

du

dx

]L
0

+

∫ L

0

vbdx. (3.3)

It should be noted that the first term on the right hand side of Equation (3.3) contains
terms related to the end points of the bar, according to the following:[

vEA
du

dx

]L
0

= vFx=L − vFx=0 (3.4)

which corresponds to the force applied at the end nodes of the bar. Equation (3.3) is
then obtained as ∫ L

0

dv

dx
EA

du

dx
dx = vFx=L − vFx=0 +

∫ L

0

vbdx. (3.5)

In the general case a trial function is chosen to approximate the unknown quantity.
Typically, a polynomial to some degree is chosen. For the present case, the unknown
corresponds to axial displacement and a linear polynomial is chosen:

u ≈ α1 + α2x. (3.6)

Thus, the shape functions, N , for a linear element can be written as

N = [− 1

L
(x− xj)

1

L
(x− xi)] (3.7)

where xi and xj corresponds to the local element nodes. The displacement within an
element may then be expressed in terms of the end nodal values, a:

u = Na (3.8)

The derivative of the displacement can now be obtained as

du

dx
=
dN

dx
a = Ba. (3.9)

where B contains the derivatives of the shape function, N , according to
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a =
dN

dx
. (3.10)

Thus Equation (3.3) is rewritten as(∫ L

0

dv

dx
EABdx

)
a = vFx=L − vFx=0 +

∫ L

0

vbdx. (3.11)

A suitable weight function, v, must now be selected. The choice is made in accordance
with the Galerkin method, which is a type of weighted residual method. Thus, the
weight functions are chosen to be equal to the shape functions, which allows the following
reformulation of Equation (3.11)(∫ L

0

BTEABdx

)
a = NFx=L −NFx=0 +

∫ L

0

Nbdx. (3.12)

where the following can be identified:

K =

(∫ L

0

BTEABdx

)
(3.13)

fb = NFx=L −NFx=0 (3.14)

fl =

∫ L

0

Nbdx (3.15)

and the following can be written

Ka = fb + fl. (3.16)

To illustrate how the solution of the finite element converges toward the true solution
an analytic solution for the bar of Figure 3.1 is compared to the FEM solution. The bar
has the density, ρ, and is subjected to the gravity, g. The obtained analytical expression
is presented in Equation 3.17.

u(x)analytic =
Fx

EA
+
ρg

E

(
x2

2
− Lx

)
(3.17)

The FEM solution was obtained by discretizing the bar using beam elements, see Figure
3.2, where two bar elements have been used. The figure also illustrates the boundary
conditions imposed on the bar. The number of beam elements were increased twice in
order to show how the solution is affected, and converged toward the analytic solution.
The response from the two methods are presented in Figure 3.3. It is clear that for an
increasing number of beam elements, the response from the FEM will converge toward
the analytic solution.
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Figure 3.2: Axially loaded bar subjected to a tensile force, F , and its own weight, w.
The bar is of length, L with area, A, and Young’s modulus, E. The discretization of the
bar is also included, where an arbitrary amount of elements has been used. Also, the
imposed boundary conditions are displayed.

Figure 3.3: The analytical solution of an axially loaded beam is compared to the solution
from the FEM. The discretization of the beam was refined twice to illustrate how the
approximated displacement converges toward the true solution for an increasing number
of elements.
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3.1.2 Linear and nonlinear analysis

When the FEM is adopted for analyzing a structure, either a linear or a nonlinear analy-
sis can be performed. The difference between the two is how the stiffness of the structure
is handled. The term stiffness refers to the manner in which a structure responds when
subjected to a load, which is dependent on the geometrical stiffness, material stiffness,
and the stiffness contributed by boundary conditions. When a structure is subjected to
loading, the geometry may be distorted and the material may yield. Thus, the stiffness of
the structure has been changed and must be updated for the current state. The change
in stiffness may also arise from nonlinear boundary conditions and large displacements.
However, if the structure is loaded in such a way that the geometrical and material
changes are small enough, the stiffness can be assumed to remain constant. This is the
case for a linear analysis, which simplifies the problem to be solved. For a nonlinear
analysis, the stiffness must be updated during deformation and some numerical solution
scheme is required. The nonlinear behavior of materials is captured by selecting a consti-
tutive model which represents the material in a suitable manner (Ottosen and Ristinmaa,
2005; Bonet and Wood, 2008).

3.1.3 Material models

The present section aims to give a brief overview of some of the constitutive models used
for material representation. For a more detailed description of the subject, the reader is
referred to the litterature, such as Ottosen and Ristinmaa, 2005.

A fundamental necessity before performing a finite element analysis, is selecting a
material model. The material model should represent the material in such a way, that
physically correct and accurate results are produced when the material is subjected to a
load. Thus, when a continuum is subjected to deformation the material of the contin-
uum is strained. Due to the strain state, stresses arise. The manner in which strains and
stresses are coupled is handled by the constitutive relation. A variety of such relations
is available, such as elasticity, plasticity, visco-elasticity, visco-plasticity, and creep. Fur-
thermore, the material depend on the manner in which the loading is applied, thus some
strain rate dependent material model may be required. Furthermore, if plasticity is to
be considered, the manner in which the material behaves beyond yielding must then be
handled. Thus, it must be made sure that the constitutive model is able to predict what
the user wants to study. In the following, material models for capturing the plasticity
response will be discussed briefly.

If steel is assumed to behave in a linear elastic manner, Young’s modulus, E describes
the relation between the stress, σ, and strain, ε for a one dimensional case, see Equation
(3.18).

σ = Eε (3.18)

If the loading is increased, to such a point that the stress in the material exceeds a
given value, the material will experience permanent deformation, namely plastic strains.
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The stress level at which this occurs may be called the initial yield stress, σy0. Beyond
the point of σy0, some further method is required to determine the stress in the material.

A simple approach for handling the stresses beyond σy0, is to assume the material to
be perfect plastic. For such a case, the stress never rises above σf , and no further method
is required for updating the stress beyond this point.

Alternatively, the material can be approximated to harden linearly. That is, if the
stress reaches beyond σy0, the yield stress will increase as the material is experiencing
plastic flow. The yield stress may then be written in the following form

σy = σy0 +H · εpeff . (3.19)

where H is the hardening modulus corresponding to the slope of the hardening curve,
and εpeff is the effective plastic strain.

In addition to perfect plasticity and linear hardening, other types of hardening behavior
also exists, such as nonlinear hardening responses, typical for alloyed steel and aluminum,
or softening of the material, characteristic for rocks and concrete loaded in compression.

In the general case, a three dimensional stress state will arise in the material when
subjected to loading. If linear isotropic elasticity is assumed the following holds true

σij = Dijklεkl (3.20)

Dijkl = 2G

[
1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

]
(3.21)

where σij, εij, and Dijkl are the stress, strain and constitutive tensors respectively, and
G corresponds to the shear modulus. In order to evaluate if the stress state of Equation
(3.20), is yielding, the stress components must be combined in some manner. Typically,
some stress invariant is used that can be compared to the yield stress of a material. In
general, this yield criterion can be expressed as F (I1, J2, cos3θ) = 0, where Ii and Ji are
the Cauchy and deviatoric stress invariants respectively. Plastic deformations occurs if
F (I1, J2, cos3θ) > 0, and I1, J2, cosθ are given as

I1 = σkk (3.22)

J2 =
1

2
sijsji (3.23)

cos3θ =
3
√

3

2

J3

J
3/2
2

(3.24)

J3 =
1

3
sijsjkski (3.25)

where sij is the deviatoric stress tensor given by

sij = σij −
σkk
3
δij. (3.26)
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Figure 3.4: von Mises yield surface in the principal stress space, with the view along the
hydrostatic axis.

In general, it is possible to distinguish two groups of yield criterion: those that do not
depend on the hydrostatic pressure, I1/3 and those who do. The former typically applies
to metals and steel, whereas the latter applies to porous material such as concrete, soil
and rocks.

A common material model for predicting yield in metals and steels is the von Mises
criterion, which is also referred to as J2-plasticity since its yield function is only expressed
in terms of the second deviatoric invariant, J2, according to Equation (3.27). The von
Mises yield surface corresponds to a cylinder in the principal stress space, with its axis
of symmetry coinciding with the hydrostatic axis, see Figure 3.4. If FvonMises ≤ 0 is
not fulfilled, the material will yield. For steel, the material may experience isotropic or
kinematic hardening. Isotropic hardening indicates that the radius of the yield surface,
being a function of the plastic strains, will increase during plastic flow while the origin
is fixed. For kinematic hardening, the radius is fixed while the origin is moved during
plasticity. If hardening occurs, this will affect the yield surface and some method for
updating the yield surface must be utilized. In order to update the yield surface and
scale back to stress to fulfill the yield criterion, the radial return method, presented in
Schreyer et al., 1979 and Ottosen and Ristinmaa, 2005, is a suitable method. It should
also be mentioned that other yield surfaces exist for predicting yield in steels and metals,
such as the Tresca criterion which will not be presented in further detail here. However,
experiments have shown the von Mises criterion fits experiments well. Thus, the von
Mises criterion should preferred over the Tresca criterion.

FvonMises =
√

3J2 − σy0 (3.27)

A constitutive routine suitable for porous material, such as concrete, soil and rocks, is
the Drucker-Prager criterion, presented in Equation (3.28). The criterion is dependent
on the deviatoric stress invariant, J2, and the hydrostatic stress due to the presence of
I1. Furthermore, it should be noted that the expression reduces to Equation (3.27) if
α = 0. In the principal stress space, the Drucker-Prager yield surface forms a cone, which
should be compared to the cylinder obtained for the von Mises yield surface. In addition
to the Drucker-Prager criterion, the Coulomb criterion is available for representation of
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porous material. This will not be presented further, and the interested reader is referred
to Ottosen and Ristinmaa, 2005.

FDrucker−Prager =
√

3J2 + αI1 − β (3.28)
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Chapter 4

Summary of appended papers

The current chapter contains a summary of the appended papers of the thesis, and the
authors contribution is given.

4.1 Paper A

In Paper A, a sandwich structure is presented intended for structural stiffness applica-
tions. The sandwich is based on hardened boron steel, with a bidirectionally corrugated
core. Due to the complex geometry of the core, a homogenization procedure is proposed
in order to reduce computational time. The homogenization procedure is limited to pre-
dict structural stiffness. The aim of the paper is to be able to replace current vehicle
components with those based on the suggested sandwich structure, thereby reducing
weight and energy consumption of vehicles. It was found that the suggested sandwich
structure was able to provide stiffness and drastically reduce total weight of the compo-
nent, as a steel sheet would require to have 2.5 times higher mass than the sandwich, in
order to provide equivalent stiffness.

Author contribution: The present author performed the numerical simulations and
evaluation against the experimental data, as well as wrote the main part of the paper.

4.2 Paper B

In Paper B, a sandwich structures is presented intended for energy absorption applica-
tions. The sandwich is based on hardened boron steel, with a perforated core. In order
to numerically evaluate the properties of the sandwich, a hat profile geometry is utilized.
The hat profile is subjected to a crushing force in the form of a barrier. From the numeri-
cal simulations the force-displacement and energy absorption is evaluated, and compared
to a hat profile consisting of a solid steel sheet with the equivalent weight of the sand-
wich. It was found that the energy absorption ability is approximately 20% increased as
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compared to a hat profile consisting of a solid steel sheet.

Author contribution: The present author performed the numerical simulations and
wrote the main part of the paper.



Chapter 5

Discussion and conclusions

Due to legislation, the greenhouse gas emissions emitted by vehicles, are forced to be
reduced. In order to achieve this, new technologies are required, which provide more en-
ergy efficient vehicles. Further improvement, with respect to energy efficiency, is achieved
by lowering the weight of vehicle components. Thus, new materials and methods are re-
quired for construction of the BIW of vehicle. This thesis intends to contribute to the
knowledge of lightweight structures, with respect to construction and numerical modeling
for structural stiffness and energy absorption applications.

A sandwich panel with a bidirectionally corrugated core, suitable for stiffness appli-
cations, is suggested in Paper A. It is found that the specific stiffness of the sandwich
is superior to panels of equivalent stiffness, based on solid steel sheets. This finding
agrees with what has been reported in previous work (Bartolozzi et al., 2013). Compu-
tational time for predicting structural stiffness is reduced by utilizing a homogenization
procedure.

The sandwich of Paper A is suited for integration in vehicle structures, where panels
for structural stiffness are required, such as floors and battery boxes in car bodies. Due
to the sinusoidal nature of the core, the sandwich is less suited for components formed
across a radius. This would cause the wavelength of the core to be increased, reducing
the height of the sandwich and thereby its stiffness. The homogenization procedure is
limited to predicting structural stiffness, neglecting large deformations and plasticity.
This limits where the homogenized sandwich can be placed in a numerical car crash.

Cold-rolling is utilized for producing the panel in Paper A, allowing for an efficient and
continuous manufacturing process for large-scale production, keeping costs down.

A sandwich hat profile with a perforated core, evaluated for energy absorption, is stud-
ied in Paper B. Mohr and Wierzbicki, 2005 reports using a similar type of sandwich for
construction of a crash box, with no increase in the specific energy absorption. There-
fore, in Paper B, the hole distribution of the perforated core, is carefully distributed.
It is found that the specific energy absorption of the sandwich hat profile is enhanced
compared to hat profiles of equivalent weight, based on solid steel sheets.

Manufacturing of the sandwich is carried out by drilling holes in to the core specimen,
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according to a specified pattern. The core and face plates are joined by a hot rolling
process. It was found that grains formed over the interface between core and face plates,
ensuring a strong bond. From Paper B, it could be concluded that the perforated sand-
wich is suitable for components absorbing energy, such as crash beams of vehicle bodies.
Also, manufacturing methods for the perforated core must be investigated further, de-
veloping efficient and cost-effective processes for large-scale production.

Furthermore, the nature of the perforated core requires a large number of finite el-
ements for discretization, causing long simulation times. A homogenization method is
thus required which reduces the amount of elements while maintaining desired accuracy
for crash simulations. This issue is not dealt with in Paper B.



Chapter 6

Outlook

According Section 1.4, the homogenization procedure was limited to only being able to
predict elastic structural stiffness for small deformations. Future work involves studying
homogenization procedure able to predict the response during large deformations and
plasticity for both types of cores. Such a procedure is necessary if components based
on the suggested structures are to be used in vehicle structures, to keep simulation time
down. Thus, a future aim is to represent both the skins of the sandwich and the core
with a single solid and/or shell element. This applies to the sandwich structures of both
Paper A and Paper B.

The papers presented in this thesis, only deal with the numerical simulations of already
manufactured products, and not the manufacturing process itself. To base components
on the Type I sandwich structure, a feasible manufacturing process must be established,
allowing for cost-effective production. Numerical models of manufacturing is also neces-
sary in order to be able optimize the properties of the end product. Future work also
involves studying how the wavelengths of the Type II sandwich should be modified and
manufactured, in order to allow forming of components with bidirectionally corrugated
cores.

Furthermore, numerical models for predicting fatigue for the sandwich structures of
Paper A and Paper B is also to be investigated. This is of importance if the sandwich
structures are to be incorporated into the bodies of heavy duty vehicles.
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Homogenization, modeling and evaluation of stiffness

for bidirectionally corrugated cores in sandwich

panels

Samuel Hammarberg, Jörgen Kajberg, Göran Lindkvist, Pär Jonsén

Abstract

In order to achieve a sustainable society, legislations force the vehicle industry to lower
greenhouse gas emissions, such as carbon dioxide and nitrogen oxide. For the vehicle
industry to fulfill these demands, new materials and methods are required, for construc-
tion of the body in white. Methods for lightweight have been developed during the last
decades. In the present work, it is shown that current vehicle components for structural
stiffness, are possible to replace with lightweight steel sandwich panels with bidirec-
tionally corrugated cores. Numerical computational time is kept low by introducing a
homogenization procedures. It is found that, by introducing these panels, weight is re-
duced by 60% compared to a solid sheet panel of equivalent stiffness. The homogenization
procedure reduces the computational time with up to 99 %. Thus, the suggested panels
are promising lightweight contenders for structural stiffness applications.

1 Introduction

Awareness of the importance of creating a sustainable society is an ever increasing area
of interest. For a sustainable future all areas of society, from food production to trans-
portation, must be permeated.

Transportation, in itself, receives a lot of attention with respect to sustainability as
well as pollution. Regulations of greenhouse gas (GHG) emissions, such as carbon dioxide
and nitrogen oxide, contribute to this attention. Ways of reducing such emissions include
increasing energy efficiency of current engines, renewable fuel, and lowering weight of
vehicle components while maintaining performance such as crashworthiness. A fourth
option is of course electrical vehicles where the electricity is generated by renewable
energy sources such as solar power and wind power. However, reduced weight of vehicle
components is beneficial independent on what propels the vehicle forward.

For a vehicle with a combustion engine a benefit of lighter components is a decreased
fuel consumption, leading to less emissions. A lighter heavy duty vehicle, with maintained
strength, allows higher payload, reducing the number of trips required for transportation.
The electric vehicle would increase its range with lighter components, as well as reduce
emissions depending on how the electricity, running the vehicle, is produced.

Methods to reduce weight for body-in-white parts of cars have been under development
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during the last decades. One example is press-hardening of boron steels to produce crash-
worthiness parts, where forming and hardening are performed simultaneously resulting
high-strength and great form accuracy at a low cost. By controlling the temperature of
the forming tools, either cooler or hotter zones could be obtained and the final properties
of the part may therefore be tailor-made with respect to strength and ductility. Hence, a
press-hardened part may have both softer as well and harder regions. The weight-saving
potential by using high-strength steels is however correlated to thinner gauges. Too thin
sections might jeopardize the structural stiffness despite its high-strength. In order to
benefit from the high-strength without losing structural stiffness sandwich solutions are
attractive. The concept of the sandwich is a lightweight material, or a combination of
several, placed between two stiff solid sheets. Proper choice of core material makes it
possible to achieve a larger thickness than for a solid core, which results in an improved
structural stiffness as long as the core is prevented from collapsing. To hinder collapse,
the shear and uniaxial stiffness are of importance. Suitable materials to be used in sand-
wich cores include foams based on aluminum, steel or polymers. Other possibilities for
cores are honeycomb patterns and corrugated plates. A summary of the mentioned cores
is given in the following.

In the work performed by Zhang et al., 2013, it is stated that aluminum foams is a
common choice for enhancing crashworthiness of vehicles. Their work is dedicated to
the characterization of material parameters for aluminum foam at high strain rates. A
similar statement is found in Reyes et al., 2003, where aluminum foam is suggested as
a proper choice for energy absorption. In in their work, a constitutive model, based on
Deshpande and Fleck, 2000, is evaluated by comparison of experiments and simulations
of sandwiches with aluminum foam cores.

Studies of steel foam, with respect to characterization and simulation, can be found
e.g. in Smith et al., 2012; Mapelli et al., 2013; Szyniszewski et al., 2014; Park and
Nutt, 2000. Potential advantages with steel foam, over aluminum foam, are increased
strength and specific stiffness, lower material cost, higher melting temperature and better
compatibility with steel structure (Park and Nutt, 2000). Furthermore, recycling of a
structure solely based on steel requires less energy and is therefore beneficial. A detailed
review of steel foam, manufacturing methods, and applications can be found in Smith
et al., 2012. Foams based on other bulk materials are also available, such as polymer
foams investigated in e.g. Liu and Subhash, 2004; Liu, Subhash, and Gao, 2005; Bartl
et al., 2009.

Another weight-saving approach is the use of geometric patterns, such as honeycomb,
to to keep the face plates apart for an increased bending stiffness, see Aktay et al., 2008;
Nayak et al., 2013. Also, panels with corrugated cores for stiffness applications are found
in Biancolini, 2005; Kress and Winkler, 2010; Xia et al., 2012; Bartolozzi et al., 2013;
Marek and Garbowski, 2015. Typically, some periodic function describes the geometry
of the corrugated plate. Due to the repetetive pattern, each period can be characterized
using a unit cell. A variant of this type of core, is a bidirectionally corrugated core utilized,
for instance, by Chomphan and Leekitwattana, 2011 to redistribute the stresses within
the sandwich panel. A similar type of bidirectionally corrugated core is investigated by
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Besse and Mohr, 2012, where a detailed model of a unit cell is created from which shear
stiffness is found. Further studies on such cores for energy absorption applications are
conducted by Zupan et al., 2003, where it is found that the panel is a competitor if
compared to metallic foams considering costs.

In order to introduce lightweight material solutions to, for example, the car industry,
it is of great importance that accurate simulation methodologies are available to predict
the material response in situations such as forming operation and crash. The simulation
methodologies should be time-efficient to facilitate design optimization regarding weight,
stiffness and crashworthiness already in the early product development. The complex
geometries of the core materials have a drawback when it comes to modelling with the
finite element method. For example, the pore size of the foams is in the order of mi-
crons, causing impractical number of elements to discretize the exact geometry. It is
however reasonably possible to discretize corrugated cores, such as honeycomb, although
the number of elements in case the panels are used in a larger structure demand high
computation power. The approach to handle this challenge is to describe the combi-
nation of the complex core and the face plates with averaging equivalent finite element
by so-called homogenization. The number of elements is thereby drastically reduced.
Methods for homogenization of corrugated plates are presented inBiancolini, 2005; Kress
and Winkler, 2010; Xia et al., 2012; Bartolozzi et al., 2013; Marek and Garbowski, 2015,
where both analytic and numeric approaches are presented.

Thus it is found, in the aforementioned works, that corrugated panels are suitable
for structural stiffness applications and by adopting homogenization reasonable compu-
tational costs are obtained. For corrugated panels a characterization method is found
(Bartolozzi et al., 2013), where a detailed model of a unit cell is subjected to a state of
shear deformation to predict its shear stiffness.

The present works aims to bring forth lightweight sandwich structures which are able
to replace current vehicle components. A further aim is to reduce the numerical compu-
tational time for the sandwiches by adopting a homogenization procedure. Two panels,
denoted Type A and Type B, with bidirectionally corrugated cores are suggested for
stiffness applications. Numerical models of the sandwiches are created and subjected to
three-point bending. The response of the sandwich is compared to the response of two
references models, consisting of solid steel sheets with equivalent stiffness and weight
respectively.

Detailed models with a high amount of elements are required for the numerical dis-
cretization of the bidirectionally corrugated cores. In an effort to address this issue, a
homogenization procedure is applied to obtain an equivalent core material. The equiv-
alent material is introduced into the sandwich panel through two approaches. In the
initial approach solid elements are utilized for representing the equivalent material of the
core, while the outer face plates are modeled using shell elements. This approach reduces
both the number of elements and the computational time, even though solid elements
are utilized. The second approach uses one layer of shell elements to model the entire
panel. At each integration point, through the thickness, the corresponding material data
is defined. This method further reduces the number of elements and computational time.
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In order to validate the numerical models, a sandwich panel with a Type A core has
been manufactured. The panel is subjected to an experimental three point bend and the
obtained response is compared and evaluated against the numerical data.

2 Geometries and materials

In the present work sandwiches with bidirectionally corrugated cores are suggested for
stiffness applications. The panels are based on 0.4 millimeters thick boron steel, 22MnB5,
for both face plates and core. Young’s modulus and Poisson’s ratio is given as 206 GPa
and 0.3 respectively, with a density of 7850 kg/m3. The bidirectional geometry of the
core is obtained through cold-rolling using patterned rolls. The envelope surfaces of the
rolls are are derived from a given sinusoidal function, thus giving the core its desired
geometry. The panel, denoted Type A, is presented in Figure 1. Joining between face
plates and core is performed by laser welding. Due to springback, the manufactured cores
deviate slightly from the sinusoidal pattern of the rolls. Thus, the wavelength and the
amplitude must be altered when creating the numerical model. This is done by measuring
both wavelength, λ and peak to peak amplitude, A, of the manufactured panels, which
are found to be 139/9 millimeters per period and 2.9 millimeters respectively. A total
of 32 and 4 periods are found in the x- and y-direction respectively. Thus the length
and width of the panel is approximated to 32λ and 4λ respectively. For the numerical
simulations a CAD version of the geometry is created. This is presented in Figure 2. To
increase the welding area for an improved bond, an alternative core geometry, Type B,
is suggested where the peaks are flattened, see Figure 3

For the homogenization process, the core is characterized with respect to its elastic
properties. For the given core geometries a repeating pattern of the core is identified,
namely a unit cell, which is used for the characterization and homogenization processes.
The unit cells are presented in Figures 4 and 5.
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(a) Sandwich panel.

(b) Sandwich panel zoomed in.

Figure 1: Sandwich panel subjected to three point bending for stiffness evaluation.

Figure 2: Illustration of the geometry used for numerical simulations of panels with the
Type A core.
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Figure 3: Illustration of the geometry used for numerical simulations of panels with the
Type B core.

λ λ
A

Figure 4: A unit cell used for identification of stiffness properties for the Type A core. The
value of λ is set to 139/9 millimeters, corresponding to the wavelength of the function.
A is the peak to peak amplitude and has a value of 2.9 millimeters.

λ λ
A

Figure 5: A unit cell used for identification of stiffness properties for the Type B core. The
value of λ is set to 139/9 millimeters, corresponding to the wavelength of the function.
A is the peak to peak amplitude and has a value of 2.9 millimeters.
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Punch
Laser sensor
Sandwich panel
Support

Figure 6: Experimental setup for three point bending of a sandwich panel.

3 Experiments

In order to find the stiffness of the sandwich panel with a bidirectionally corrugated
core, see Figure 1, three-point-bending is performed. The experimental setup, presented
in Figure 6, is carried out using a servo-hydraulic testing machine, Instron 1272. The
applied force is measured by the load of the testing machine. The load line displacement
is tracked by a laser sensor, measuring the deflection of the panel. Three specimens of the
panel are tested and compared to see how consistent the response from the panels are.
Distance between the supports is set to 300 millimeters. The diameters of the supporting
rolls and punch are 25 millimeters.

4 Laminate theory

One of the modeling approaches, for the homogenized panels, adopts one layer of shell
elements to represent the panel. Laminate shell theory is utilized for predicting stiffness
in a proper manner. Thus, an introduction to the classical laminate shell theory in the
given in the current section.

In general a laminate consists of two or more laminae. The laminae are bonded together
to generate a structural element. Typically, the layers of the laminate, the laminae, are
oriented in such a manner that the laminate can withstand loading in several directions.
In the following, derivation of stiffness and strength of such material is presented. For the
classical laminate theory, the aim is to find accurate simplifying assumptions that reduce
the problem from three dimensions to two dimensions (such as plane stress condition).

The plane stress-strain relationship for a laminae of an orthotropic material given in
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the principal material coordinates is written asσ1σ2
τ12

 =

Q11 Q12 0
Q21 Q22 0
0 0 Q66

 ε1ε2
γ12

 (1)

where

Q11 ==
S22

S11S22 − S2
12

(2)

Q12 = − S12

S11S22 − S2
12

(3)

Q22 =
S11

S11S22 − S2
12

(4)

Q66 =
1

S66

(5)

and

S11 =
1

E1

(6)

S12 = −ν12
E1

= −ν21
E2

(7)

S22 =
1

E2

(8)

S66 =
1

G12

. (9)

It should be noted that Ei and G12 are material data for the particular laminae. Fur-
thermore, note that Equation (1) is only valid for the principal material directions. For
any other in-plane coordinate system the following holds trueσxσy

τxy

 =

Q′11 Q′12 Q′16
Q′21 Q′22 Q′26
Q′16 Q′26 Q′66

 εxεy
γxy

 . (10)

The transformed stiffness matrix, Q′ij, is given by the following, in accordance with Figure
7
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Figure 7: Illustration of a laminae. The fiber direction is aligned with the 1-direction,
rotated θ counterclockwise from the x-direction.

Q′11 = Q11 · cos4θ + 2(Q12 + 2Q66)sin
2θcos2θ +Q22sin

4θ

Q′12 = (Q11 +Q22 − 4Q66) sin
2θcos2θ +Q12 (sin4θ + cos4θ)

Q′22 = Q11 · sin4θ + 2(Q12 + 2Q66)sin
2θcos2θ +Q22cos

4θ

Q′16 = (Q11 −Q12 − 2Q66) sinθcos
3θ + (Q12 −Q22 + 2Q66)sin

3θcosθ

Q′26 = (Q11 −Q12 − 2Q66) sin
3θcosθ + (Q12 −Q22 + 2Q66)sinθcos

3θ

Q′66 = (Q11 +Q22 − 2Q12 − 2Q66) sin
2θcos2θ +Q66(sin

4θ + cos4θ)

(11)

Equation (1) and Equation (10) represent the stress strain relationship in a lamina in the
principal and the general direction respectively. Then, for a given layer of a laminate,
say the kth layer, the following is established

[σ]k = [Q′]k [ε]k . (12)

In the theory of classical laminates it is assumed that the laminae are perfectly bonded.
The displacements are continuous across lamina boundaries and no shear deformation
occurs in the bond. These assumptions lead to the assumption that the laminate acts as a
single plate or shell. Furthermore, the laminate is assumed to be thin and shearing strains
in planes perpendicular to the middle surface are equal to zero. These assumptions for
one lamina are equal to the Kirchhoff hypothesis for plates, so the strains, derived using
the deformation of Figure 8, can be written as
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Figure 8: Illustration of deformations in the x-z plane used for deriving strain relation-
ships based on the Kirchhoff hypothesis.

εx =
∂u

∂x
(13)

εy =
∂v

∂y
(14)

γxy =
∂u

∂y
+
∂v

∂x
(15)

where the displacement u, derived from Figure 8 at any point through the thickness of
the laminate and the angle, α, are obtained as

u = u◦ −
∂w◦
∂x

. (16)

α =
∂w◦
∂x

(17)

The displacement in the y-direction, out of the plane of Figure 8, is obtained in a
similar manner

v = v◦ − z
∂w◦
∂y

. (18)

Inserting the displacements of Equations (16) and (18) into the expressions for the strains
in Equations (13), (14), and (15) the following expressions are obtained

εx =
∂u◦
∂x
− z∂

2w◦
∂x2

(19)

εy =
∂v◦
∂y
− z∂

2w◦
∂y2

(20)
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γxy =
∂u◦
∂y

+
∂v◦
∂x
− 2z

∂2w◦
∂x∂y

(21)

which can be written as  εxεy
γxy

 =

 ε◦xε◦y
γ◦xy

+ z

 κxκy
κxy

 (22)

where ε◦x, ε◦y and γ◦xy correspond to the middle surface strains, and κx, κy and κxy corre-
spond to the middles surface curvature according to ε◦xε◦y

γ◦xy

 =

 ∂u◦
∂x
∂v◦
∂y

∂u◦
∂y

+ ∂v◦
∂x

 (23)

 κxκy
κxy

 = −

 ∂2w◦
∂x2

∂2w◦
∂y2

2∂2w◦
∂x∂y

 . (24)

Inserting Equation (22) into Equation (12) the following expression for the stress of the
kth layer is obtainedσxσy

τxy

 =

Q′11 Q′12 Q′16
Q′21 Q′22 Q′26
Q′16 Q′26 Q66

 ε◦xε◦y
γ◦xy

+ z

 κxκy
κxy

 . (25)

Integrating Equation (25) over the thickness results in the resultant forces and moments
acting on the laminae, which is given byNx

Ny

Nxy

 =

∫ t/2

−t/2

σxσy
τxy

 dz =
N∑
k=1

∫ zk

zk−1

σxσy
τxy

 dz (26)

Nx

Ny

Nxy

 =

∫ t/2

−t/2

σxσy
τxy

 zdz =
N∑
k=1

∫ zk

zk−1

σxσy
τxy

 zdz (27)

which are both rearranged on the following formNx

Ny

Nxy

 =
N∑
k=1

Q′11 Q′12 Q′16
Q′21 Q′22 Q′26
Q′16 Q′26 Q′66

∫ z:k

zk−1

 ε◦xε◦y
γ◦xy

 dz +

∫ zk

zk−1

 κxκy
κxy

 zdz
 (28)

Mx

My

Mxy

 =
N∑
k=1

Q′11 Q′12 Q′16
Q′21 Q′22 Q′26
Q′16 Q′26 Q′66

∫ z:k

zk−1

 ε◦xε◦y
γ◦xy

 zdz +

∫ zk

zk−1

 κxκy
κxy

 z2dz
 (29)
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A further simplification can be achieved by introducing the following

Aij =
N∑
k=1

(Q′ij)k(zk − zk−1) (30)

Bij =
1

2

N∑
k=1

(Q′ij)k(z2k − z2k−1) (31)

Dij =
1

3

N∑
k=1

(Q′ij)k(z3k − z3k−1) (32)

Equation (28) and (29) can then be written asNx

Ny

Nxy

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66

 ε◦xε◦y
γ◦xy

+

B11 B12 B16

B12 B22 B26

B16 B26 B66

 κxκy
κxy

 (33)

Mx

My

Mxy

 =

A11 A12 A16

A12 A22 A26

A16 A26 A66

 ε◦xε◦y
γ◦xy

+

D11 D12 D16

D12 D22 D26

D16 D26 D66

 κxκy
κxy

 (34)

in which Aij corresponds to extensional stiffness, Bij to the bending extension coupling
stiffness, and Dij to the bending stiffness. It should be noted that the strain displacement
relationship used in derivation of the connection between strains and forces/moments
given above holds true for plates. In the case of shells a more complicated strain-
displacement relationship may be necessary.

5 Homogenization

In the current section a detailed presentation is given of the homogenization procedure
adopted in the present work. This includes the models used for representing the volume
element, as well as how the fundamental constants, governing the elastic behavior, are
determined.

5.1 Work procedure

The aim of the homogenization process is to determine the fundamental constants, pre-
sented in Table 1, governing the elastic behavior of the sandwich cores of Figures 2 and
3. When the constants are determined they are imposed on an equivalent material. The
equivalent material is homogeneous, with the same outer dimensions as the core of the
sandwiches. It also requires less finite elements for discretization which reduces the com-
putational time. This makes numerical simulations of the panels in Figure 2 and Figure
3 less time consuming, being the aim of the homogenization procedure.
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Table 1: Elastic properties to be determined in general for an orthotropic material. The
x-coordinate corresponds to the longitudinal direction, the y-coordinate corresponds to
the width, and the z-coordinate is normal to the panel.

Young’s Modulus Shear Modulus Poisson’s ration
Exx Gxz νxy
Eyy Gyx νyz
Ezz Gzy νzx

Table 2: Reduced number of unique elastic properties to be determined for the unit cells.

Young’s Modulus Shear Modulus Poisson’s ration
Exx = Eyy Gxz = Gzy νyx

Ezz Gxy νzx = νyz

As a first step of the homogenization procedure a unit cell, representing the geometry
of the core, is identified, see Figure 4 and Figure 5. For each unit cell nine elastic
constants of Table 1 must be determined. These constants are found by subjecting the
unit cells to the appropriate state of deformation, from which these nine constants are
found. In general, three states of deformation are required for determining the three
values of Young’s moduli and Poisson’s ratios, as well as three for determining the shear
moduli. For the current case, the unit cells posses in-plane symmetry and it is evident
that Exx = Eyy, Gzx = Gzy and νxz = νyz. Thus the unique number of constants to be
determined are reduced from nine to six, see Table 2.

The obtained values of Young’s moduli and the shear moduli are given to the equiv-
alent material, so when the equivalent material is loaded uniaxially in the x-direction
its stiffness corresponds to that of the unit cell of Type A or Type B. Likewise, if the
equivalent material is loaded in pure shear it should produce the corresponding stiffness
of the unit cells.

In order to impose the states of deformation on the unit cells a numerical method is
adopted. The method is similar to of Bartolozzi et al., 2013, where FEA is utilized to im-
pose the proper deformation. From the results of the FEA the stress and strain required
to deform the unit cells are obtained, and for each deformation state the corresponding
elastic constants are obtained. In Section 5.2 this is presented in more detail.

With the constants determined, it is possible to reduce the complexity of the core
geometry by imposing the elastic properties on an equivalent model of the core. An
illustration of the reduced complexity is presented in Figure 9 where both the complex
core and the equivalent model are presented. The outer dimension of the core are kept
constant, and the homogenized model should have a reduced number of elements for the
homogenization process to meaningful, while still being able to predict the structural
stiffness.
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(a) Type A core.

(b) Equivalent core.

Figure 9: Illustrating going from a detailed core to a homogenized equivalent core with
equal outer dimensions.

5.2 Modeling of unit cells

A numerical approach is adopted for determining the elastic properties of the unit cells
presented in Figures 4 and 5. The multi-physics solver LS-DYNA is adopted with its
implicit solution scheme triggered. Initially, fully integrated shell elements (element
formulation 16 within LS-DYNA) with a size of 1 mm are used to represent the geometry
of the unit cell. However, as can be seen in Figure 10b a shell mesh size of 1 mm does
not quite capture the curvature of the unit cell. Reducing the size of the shell element
results in a poor aspect ratio. Therefor, a convergence study utilizing fully integrated
solid elements (ELFORM = 2 within LS-DYNA) is performed for each elastic constant.
It should be noted that for the convergence study only cubic solid elements (all side
lengths set equal) are utilized. The amount of solid elements through the thickness of
the plate is incrementally increased until the stiffness response converged. Convergence
is assumed when the following condition is fulfilled

Convergence =
ξi − ξi+1

ξi
≤ 1% (35)
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(a) Isometric view. (b) Isometric view zoomed in.

Figure 10: Unit cell of Type A with a shell mesh of 1 mm. It is illustrated how a shell
mesh of 1 mm not quite captures the curvature of the unit cell.

where ξi corresponds to the stiffness response for i solid elements through the thick-
ness. The obtained results are compared to the results obtained using shell elements.

5.3 Determination of elastic constants

In the current section, a detailed description is given on finding the elastic properties of
an arbitrary unit cell. A numerical approach is adopted where FEA is used to displace
the unit cell in a proper manner to obtain the constants of interest. Two cores are
investigated and their corresponding unit cells are presented in Figure 4 and Figure 5.

Due to the shape of the Type A core it is not possible to capture the curvature of the
geometry while maintaining a proper aspect ratio of the shell elements. Instead, cubical
solid elements with selective reduced integration are adopted. A choice which allows for
a proper representation of geometry and at the same preventing hourglassing. Generally,
five solid elements through the thickness are used.

Equivalent Young’s moduli Ex and Ey

Determination of Young’s moduli is performed by constraining the nodes on the left hand
side of Figure 11 in the x-direction (all other degrees of freedom are unconstrained) while
the nodes on the right hand side are given a prescribed displacement. It should be noted
that the unit cell has similar side lengths. When the simulation terminates, the sum of
the force required to deform the unit cell is found together with the final displacement
of the nodes.

For the current case an equivalent area, of the unit cell, perpendicular to the x-direction
is calculated as

Aequivalent = H · L (36)
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Figure 11: Side view of a unit cell of the Type A core. The marked nodes on the left
hand side are constrained in the x-direction whereas the nodes on the right hand side are
displaced in the x-direction.

and from the sum of the forces, F acting on the nodes the stress was calculated as

σxx =
F

Aequivalent

=
F

H · L
. (37)

From the total displacement, ∆xx, of the unit cell in the x-direction the strain is obtained
as

εxx =
∆xx

L
. (38)

With stress and strain known in the x-direction the equivalent Young’s modulus is de-
termined using Hooke’s law:

Exx =
σxx
εxx

=
F

H · L
/

∆xx

L
=

F

∆xxL
. (39)

Due to the symmetry planes, the xz-plane and the yz-plane, the equivalent Young’s
modulus in the y-direction is equivalent to the one in the x-direction.

Equivalent Young’s module Ez

In order to determine Young’s modulus in the normal direction of the unit cell, the
bottom nodes in the four corners are constrained in the z-direction. The nodes on the
top, where the amplitude of the greatest, is given a prescribed motion in the negative
(compression) z-direction. At termination the force on the nodes, which are given a
prescribed displacement, is summed up. With the force and displacement known, Young’s
modulus in the z-direction is determined. The equivalent area is obtained as

Aequivalent = L2 (40)

and thus the stress in the negative z-direction is obtained as

σzz =
F

Aequivalent

=
F

L2
(41)

From the total displacement, ∆zz, of the unit cell the strain is obtained as
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εzz =
∆zz

H
(42)

Applying Hooke’s law, Young’s modulus is obtained as

Ezz =
σzz
εzz

=
F

L2
/

∆zz

H
=

F ·H
∆zz · L2

(43)

Equivalent shear moduli Gzx and Gzy

To determine the out of the plane shear properties the unit cell of Figure 12 was subjected
to shear deformation. The specific stress state is achieved by constraining the corner
nodes, which are highlighted in red, in all directions, while subjecting the top nodes to
a prescribed displacement. Thus achieving what would be a state of pure shear stress
for the equivalent material. From the known displacements and the force requiring to
obtain the state of stress, the shear modulus is determined in the following manner. The
equivalent area, on which the shear force is acting is given by

Aequivalent = L2 (44)

and so the stress is obtained as

τzx =
Fzx

Aequivalent

=
Fzx

L2
. (45)

The shear strain is calculated as

γzx =
∆xx

H
(46)

and according to Hooke’s law the following expression for the shear modulus is obtained

Gzx =
τzx
γzx

=
Fzx

L2

∆xx

H
(47)

Equivalent shear modulus Gxy

In order to determine the in plane shear modulus, the highlighted nodes, in blue, of Figure
13 are given a constrain and the nodes on the opposite side are displaced, both in the
y-direction. From the known force and displacement, the shear modulus is determined.
The equivalent area on which the force acted is given by

Aequivalen = H · L (48)

and so the shear stress is obtained as

τxy =
Fxy

Aequivalent

=
Fxy

H · L
. (49)
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The shear strain is given by the following

γxy =
∆yy

L
(50)

Applying Hooke’s law the following expression is obtained for the equivalent, in-plane,
shear modulus

Gxy =
τxy
γxy

=
Fxy

H · L
/

∆yy

L
=

Fxy

H ·∆yy

(51)

Figure 12: A unit cell of the Type A core, where the nodes associated with the constraints
related to out of the plane shearing are highlighted.

Figure 13: A unit cell of the Type A core, where the nodes associated with the constrains
related to the in plane shearing are highlighted.

6 Numerical validation - three-point bending

In the current section the method adopted for verification of the homogenization proce-
dure is presented. The validation is carried out by subjecting sandwich plates to three-
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Figure 14: An illustration of the geometry used for the three point bend simulation for
validation of stiffness.

point-bending. In Figure 14 the dimensions of the model are presented, and it should
be noted that a symmetry condition is applied. Results are compared to experimentally
obtained data. Four numerical modeling approaches are adopted. These are listed below.

• Approach #1: Reference model. Shell elements are utilized for both face plates
and the core.

• Approach #2: Reference model. Solid elements are utilized for both the face plates
and the core.

• Approach #3: Homogenized model where the core is replaced by an equivalent
material. The properties found from the homogenization process is applied to the
equivalent material by the use of a composite constitutive routine within LS-DYNA.
The core is modeled using solid elements and the face plates are modeled using shell
elements.

• Approach #4: Homogenized model where the entire panel is modeled using one
layer of shell elements. The core is replaced by an equivalent material by us-
ing a composite constitutive routine available within LS-DYNA with the material
properties obtained from the homogenization procedure. The material through
the thickness of the panel is defined at each integration point by utilizing the
*PART COMPOSITE keyword.

A more comprehensive description of the four modeling approaches is given in the
following sections. It should be noted that the modeling approach presented below applies
to both the Type A and the Type B sandwich cores.
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6.1 Approach #1: Reference model - shell elements

This is the reference model where the entire complex core geometry of the sandwich panel
is modeled. A total of five parts make up the model: punch, support, upper face plate,
core, and lower face plate. This is presented in Figure 15 where a symmetry condition is
applied to reduce the number of elements of the model. The discretization is performed
using fully integrated shell elements (ELFORM = 16 within LS-DYNA) with a mesh
size of 1 millimeter and a thickness of 0.4 mm for all parts. The choice of shell elements
may seem contradictory since they to do not quite capture the curvature of the core,
as is mentioned in Section 5.2. However, from the results it will be clear that for a
three-point bending the discretization is good enough. Five points of integration are
used through the thickness. The core and the faceplates consist of hardened boron steel
which is modeled using the same constitutive routine and parameters as for the unit cells
presented in Section 5.2. The support and the punch are modeled as rigid bodies.

Contacts in the model are handled using a segment based automatic single surface
contact. The face plates are spotwelded to the core of the sandwich panel. In the model
the spotwelds are represented using beam elements together with the constitutive model
*MAT SPOTWELD as well as the *CONTACT SPOTWELD keyword. These spotwelds
are placed at each maximum and minimum amplitude of the core. For the constitutive
model of the spotwelds the same material input data is used as for the hardened boron
steel, which is presented in Section 6.2. A displacement of 3 millimeters is given to the
punch.

6.2 Approach #2: Reference model - solid Elements

The reference model based on solid elements is equal to the reference model based on shell
elements except for the type of elements used. Instead of shell elements, fully integrated
solid elements with selectively reduced integration are adopted. For the sandwich (face
plates and core) three cubic elements through thickness are used. The support and punch
are modeled as rigid bodies.

6.3 Approach #3: Homogenized plate - solid and shell elements

A total of five parts make up the model, where three are associated with the plate and
the remaining two correspond to the punch and support. Discretization of the core is
performed using fully integrated solid elements (ELFROM = 2 within LS-DYNA). The
number of elements in the three orthogonal directions (thickness, width, and length) is
varied to find which mesh density is required for the response to be mesh independent,
while keeping the computational costs low. In case the dimensions of the solid elements
in the XY-plane are much greater than in the z-direction, poor aspect ratios are obtained,
and ELFORM = -1 and ELFORM = -2 is used within LS-DYNA. These formulations
are intended for solid elements with a poor aspect ratio. Fully integrated shell elements
(ELFORM = 16 within LS-DYNA) are used for the face plates (as well as for the support
and barrier), with five integration points through the thickness.
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(a) Side view.

(b) Isometric view.

Figure 15: An illustration of the reference model with a core based on shell elements.

A composite failure model, namely *MAT 059 intended for solid elements within LS-
DYNA, is used for modeling of the constitutive behavior of the core. The determined
elastic constants are used as input data. The face plates are modeled using the same
constitutive routine as for the unit cells of Section 5.2. Punch and supports are modeled
as rigid bodies.

A segment based single surface contact algorithm is adopted for handling contacts. As
for the reference model the spotwelds between core and face plates are modeled using a
spotweld contact algorithm, where the constitutive behavior of the welds is represented
using *MAT 100, intended for spotwelds. See Section 6.2 for further information.

6.4 Approach #4: Homogenized plate - part composite

The model consists of three parts: plate, support, and barrier. The plate was modeled
using *PART COMPOSITE within LS-DYNA, see Figure 16. The figure illustrates how
each integration point, given by the user, is associated with a thickness and a material
identification number. Summation of the thickness of each individual integration point
corresponds to the total thickness of the sandwich. For a case where the stiffness varies
throughout the thickness of the sandwich, it is recommended to trigger laminate shell
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Figure 16: Illustration of how the *PART COMPOSITE keyword within LS-DYNA is
defined in the simulation. Each integration point, defined by the user, is given a thickness
and material identification number. The sum of the thickness corresponds to the total
thickness of the part.

theory within LS-DYNA, which is done in the *CONTROL SHELL keyword.
The constitutive routine, *MAT 022, was applied for modeling the core of the sandwich.

Young’s modulus, shear modulus, and Poisson’s ratio are given as input data, for the
corresponding directions, as well as density. The face plates are modeled using the
constitutive routine as for the unit cells of Section 5.2. The barrier and the support are
modeled as rigid bodies.

For handling of the contacts, a segment based single surface contact algorithm is ap-
plied. In accordance with classical laminate plate theory, perfect bonding is assumed.
Hence, delamination is not included in the mode.

7 Results and discussion

In the current section results are presented and discussed. Initially, results from the
homogenization procedure of the Type A and Type B core are presented and discussed.
The discussion concerns the modeling approach which is adopted and also how the results
converged. This is followed by results and discussion concerning the numerical three-point
bending. The results obtained from the numerical models are validated and compared
to the experimentally obtained data.

7.1 Homogenization procedure - Type A

The obtained elastic constants for the unit cell of the Type A core are presented in
Table 3. As mentioned in Section 5.2, shell elements with proper aspect ratios did not
represent the curvature of the core in a satisfactory manner. Therefore, fully integrated
solid elements are introduced. It should be noted that in the general case, such elements
can produce a too stiff response, as stated in Erhart, 2011. This problem is solved by
increasing the number of solid elements through the thickness, or by introducing one of the
following element formulations available within LS-DYNA: ELFORM = -1 och ELFORM
= -2, with a higher convergence rate for mesh independence. For the homogenization
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Table 3: Elastic constants obtained from the unit cell of the Type A core. For the shell
elements a mesh size of 1 mm was used, and for the solids 9 cubic elements through the
thickness was utlized.

Ex [GPa] Ez [GPa] Gxy[GPa] Gxz[GPa] νxy νzx
Shells 11.27 0.043 1.15 0.79
Solids 11.08 0.038 1.07 0.4

Difference 4.35% 13.16% 7.48% 97%

process, the numbers of solid elements through the thickness are increased until mesh
independence was achieved. It was found that the shell elements produced only a slightly
stiffer response, except for shear stiffness in the x-z-plane, where the shell elements were
almost twice as stiff. This may originate from the shell elements not being able to capture
the curvature of the unit cell.

7.2 Three-point bending - Type A

To validate the numerical models of Type A, three manufactured panels (Panel 01, Panel
02 and Panel 03), are subjected to three-point bending. The experimentally obtained
results are presented in Figure 17. In the figure it is noted that the stiffness differs
somewhat between the three panels. This difference may result from imperfections in the
geometry. It is also observed that the face plates were not perfectly plane which may be
a result of the laser welding that is carried out to join the face plates to the core.

In Figure 18 the reference model is compared to the experimental data of Panel 01,
showing a slight difference in stiffness. This difference in stiffness may arise from the non-
constant height along the panel, causing lowered stiffness. In an effort to introduce this
into the numerical model, a small perturbation is given to the top and bottom nodes of
the sandwich panel. This causes a varying height of the panel and also a slightly lowered
stiffness, which is observed in Figure 18. It should be noted that the same mesh size used
for the shell elements of the unit cell is used for the numerical model of the sandwich
panel. This is done even though it is found that for some deformation states the shell
elements, with a mesh size of 1 mm, do not produce proper results. This is motivated
by the fact that the shell only differed slightly when determining Young’s moduli. Since
bending stiffness is mainly dependent on the height of the plate and Young’s moduli,
this shell mesh is deemed good enough for the case of bending. Also, from the point of
practicality it is cumbersome to handle a model of the sandwich panel with five solid
elements through the thickness causing the computational time to increase drastically.
Finally, since the numerical sandwich panel agreed well with experiments this assumption
is deemed valid.

The results obtained from the homogenization of the sandwich panel is presented
and compared to the reference model in Figure 19. The stiffness is captured well
with the two approaches. It is only for larger displacements that the modeling, us-
ing *PART COMPOSITE, gives a stiffer response. This may be due to the fact that this
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Figure 17: Data obtained from experimental three point bend of three different panels
with core of Type A.

Figure 18: Response of Panel 01 is compared to the numerical model.

approach does not allow the core to collapse and thereby a stiffer response is obtained
for larger displacements.
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Figure 19: Response from the homogenized modeling approaches are compared to the
reference model.

Table 4: Elastic constants obtained from the unit cell of the Type B core. For the shell
elements a mesh size of 1 mm was used, and for the solids 9 cubic elements through the
thickness was utlized.

Ex [GPa] Ez [GPa] Gxy[GPa] Gxz[GPa] νxy νzx
Shells 12.44 0.062 1.55 0.63
Solids 9.01 0.033 1.00 0.3

Difference 38.07% 87.88% 55.00% 110%

7.3 Homogenization procedure - Type B

In the current section the elastic constants of the Type B core is presented. The approach
is equivalent to what is presented for the Type A unit cell. The obtained data is presented
in Table 4.

7.4 Three-point bending - Type B

The reference model for the Type B core is compared to the results from the two ap-
proaches of modeling the homogenized core, see Figure 20. Unlike the Type A core, the
response of the reference model is stiffer that the homogenized model based on solids
and shells. This is not unexpected since the difference in response between shell elements
and solid elements is greater for the Type B core as compared to the Type A core. The
stiffer response could therefore originate from the fact that the shell elements did not
represent the Type B core in a proper manner, thus causing a too stiff response. Solid
elements with up to 12 elements through the thickness are utilized for the characteriza-
tion process, so the elastic constants presented in Table 4, should be very close to the
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Figure 20: Response from the homogenized modeling approaches are compared to the
reference model.

true values. Therefore, the homogenized model based on solid and shell elements should
be able to produce a response close to the true response, which is the case for the Type
A core.

7.5 Comparing stiffness

In order to illustrate the benefits of the structures presented in this work, the force-
displacement response from the Type A and Type B sandwiches are compared to two
additional panels. The two additional panels consists of solid steel sheets, based on boron
steel. The additional panels are given the equivalent weight or stiffness of Type A and
Type B. It is found that to achieve an equivalent stiffness to that of the sandwich panel
with a Type A (or Type B) core, a solid plate would require a thickness of 2.925 mm.
The weight of such a panel is 750 grams compared to approximately 296 grams for the
sandwiches. Figure 21 also contains the response of a solid sheet with equivalent weight
to that of the sandwich panel. The stiffness of the sandwich panel is superior.
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Figure 21: The sandwich with a Type A core is compared to two solid panels. One
has equivalent mass to the Type A sandwich. The other one has its equivalent bending
stiffness.

8 General discussion

In this work a homogenization procedure has been successfully utilized to predict struc-
tural stiffness of sandwich panels. The homogenization process was designed only to
predict elastic stiffness for small deformations, thus plasticity and geometrical distortion
are not taken into consideration. In order to show the benefits of the panels presented in
this work two additional numerical models were created. The first consisted of a panel
with equivalent stiffness to that of the Type A sandwich panel and the second consisted
of a panel with the Type A sandwich’s equivalent weight. It was found that the panels
suggested in this work were superior, with respect to stiffness per unit weight.

It was found that for both types of cores, Type A and B, shell elements tended to
generate a too stiff response for certain states of deformation. By switching to solid
elements for the characterization step of the homogenization process, this issue was ad-
dressed. Shell elements was still utilized for the three point bending simulations due to
the vast amount of elements that would be required if solids had been used instead. This
decision was also motivated by the fact that the predicted Young’s modulus by the shell
elements only differed slightly compared to the results from the solid elements for the
Type A core. Since bending stiffness is mainly dependent on the height of the panel and
Young’s modulus shell elements were utilized.

However, for Type B the difference in response between shells and solids was greater.
The reference model of Approach #1 produced a slightly stiffer response than the ho-
mogenized model of Approach #3. Since the error in Approach #3 has been reduced
by the characterization process, it should predict stiffness with high accuracy. This was
also the case for the Type A core. Finaly, since the difference between Approach #1
and Approach #3 was small, shell elements should also be sufficient for predicting the
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Table 5: The number of elements is compared for the full model of the panel, Approach
#1, and the two methods for modeling of the homogenized panel, Approach #3 and
Approach #4. Reduction in computational time is also presented.

Approach #1 Approach #3 Approach #4
Number of elements 93 744 17 280 864
Computational time 100% 18% 1%

stiffness of panels based on the Type B core, when subjected to three-point bending.
Lastly, it should be mentioned that the computational times were reduced drastically

by the implemented homogenization procedure applied in the present work. The re-
duction of both the number of elements and computational time is presented in Table
5.

9 Conclusions

A sandwich panel with a core which resembles a three dimensional sinusoidal wave has
been investigated with respect to structural stiffness. Due to the geometric complexity
of the core a large amount of finite elements was required for the discretization of the
panel which would be computationally expensive. In order to reduce both the number
of finite element and the computational time a homogenization procedure was suggested
where the core was replaced by an equivalent material. The equivalent material should
have equal properties to those of the core with respect to structural stiffness.

Two approaches were suggested with respect to modeling of the homogenized panel.
The initial approach modeled the core with solid elements using a material model in
which the six elastic constants can be set individually. The second approach adopted a
shell element for the entire panel and the materials and properties are defined at each,
through the thickness, integration point.

Initially a numerical model was created of a sandwich panel when subjected to three
point bending. This was validated against experiments and it was found that the numer-
ical results and the experimental results agreed well. To verify the reduction in compu-
tational cost the homogenized sandwich panel was also subjected to three-point-bending.
It was found that a drastic reduction in computational time was achieved. Furthermore,
the stiffness response obtained from the sandwich panels was also compared to the stiff-
ness predicted by the homogenized panels and the results agreed well.

It has been proven that it was possible to model bidirectional sandwich panels in
an efficient manner with respect to computational power and accuracy. This makes it
possible to incorporate such panels into larger finite element models while keeping the
necessary computational time at a decent level. Furthermore, it was concluded that
the panel could be utilized for structural stiffness applications where plasticity was not
of interest. The homogenization procedure utilized in the current work thus provides
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accurate and valid results for stiffness applications where plasticity was not of interest.
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Abstract

Legislations force the vehicle industry to reduce greenhouse gas emissions. Introduc-
ing lightweight components, with maintained performance, into the body in white is one
contribution to achieve this goal. The present work suggests lightweight boron steel sand-
wiches with perforated cores for energy absorption applications to address this issue. Hat
profile geometries, subjected to crushing, are adopted to investigate energy absorption
properties. The energy absorbed by the sandwich is compared to a solid steel sheet hat
profile with equivalent weight. It is found that the specific energy absorption properties
have been increased through the introduction of the sandwich structures. The findings
suggests the possibility to reduce vehicle weight by incorporation of sandwich hat profiles
based on perforated cores.

1 Introduction

Legislation regarding green house gas emissions force vehicle manufacturers to bring forth
new and innovative solutions. These solutions may refer to more efficient engines and
lighter components of the vehicle’s body in white (BIW).

Methods for reducing vehicle weight have been developed over the last decades. In
the 1970’s, press hardening was invented by the former SSAB HardTech, now Gestamp
HardTech, resulting in increased performance of steel, reducing the weight of the BIW.
As the first automotive manufacturer, Saab Automobile implemented such components
in the 1980’s. Further development of press hardening made it possible to manufacture
components with with tailored properties by adjusting the thermal history in areas where
soft zones are desired, further reducing the weight (Oldenburg and Lindkvist, 2011).

An additional method for reducing vehicle weight is incorporation of sandwich struc-
tures into the BIW. A typical sandwich consists of stiff face plates separated by a light
weight core. The ideal core has the lowest possible weight with sufficient stiffness to
withstand transverse and shear loads, maintaining the initial distance between the face
plates. A wide range of cores exist, such as foams, geometrical patterns, and solid cores.

In Gibson and Ashby, 1999 it was shown that the mechanical properties of foams are
strongly influenced by the bulk material of the foam. Thus, the selection of bulk material
is of importance when the foam is selected. Smith et al., 2012 has presented a review
on steel foam, including manufacturing processes and structural applications. Additional
work has been performed by Park and Nutt, 2000, where steel foam was manufactured
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and found to have substantial specific energy absorption properties. The manufactur-
ing method was deemed simple and affordable for small to mid sized components. In
Szyniszewski, Smith, Arwade, et al., 2012, a Desphande-Fleck constitutive model was
utilized to model the triaxial behavior of steel foam. After calibration, the constitutive
model results comparable to experimental data. Further work on modeling of steel foam
was conducted in Szyniszewski, Smith, Hajjar, et al., 2014. A lot of work has also been
done on aluminum foam, see for instance Sulong et al., 2014 and Marsavina et al., 2016,
which is a suitable choice for imporving crashworthiness Zhang et al., 2013. Özer et al.,
2017 utilized a sandwich structure for crash applications. A crash box was generated with
a core based on syntactic foam which proved beneficial with respect to energy absorption.
In the work conducted by Xiao et al., 2015 crashworthiness was investigated for a foam
filled bumper beam. It was found that utilizing functionally lateral graded foam within
the bumper beam was beneficial with respect to energy absorption. Thus, it can be found
that several candidates for bulk material are available. However, mixing materials may
cause some difficulties during recycling when the materials must be separated. Thus,
from that point of view, it may be beneficial to manufacture homogeneous components
with respect to the included materials.

Adopting geometrical patterns has been done by Aktay et al., 2008 where the crush
behavior of honeycomb was studied both experimentally and numerically. Nayak et al.,
2013 utlized honecomb sandwich panels, which were designed for optimal blast load
mitigation. Additional work on such geometries was carried by Sun et al., 2017. The
studdy contributes to increase the knowledge of crashworthiness and collapse modes of
the aforementioned type of core. Honeycomb patters were also studied by Wu et al.,
2017, where varies honeycomb geometries were investigated at low impact velocities.
The core consisted of aluminum whereas carbon reinforced polymer (CFRP) was used
as face plates, which was compared to a panel solely based on CFRP. The increased
performance of the sandwich was evident. A variation of a geometrical pattern for core,
was used by Mohr and Wierzbicki, 2005, and consists of a perforated steel plate, where
box columns were subjected to a axial loading.

The present work suggests a lightweight sandwich structure with a perforated core,
similar to that of Mohr and Wierzbicki, 2005, for energy absorption applications. The
aim is to reduce weight while maintaining crashworthiness. Weight is reduced due to
the hole pattern, which is carefully placed in order to maintain performance. In contrast
to several of the aforementioned works, the sandwich is homogeneous with respect to
material through the thickness, i.e. both face plates and core consist of hardened boron
steel, 22MnB5. A geometry in the shape of a hat profile is selected, resembling a simplified
beam section of the BIW. In order to evaluate energy absorption capacity, experiments
and numerical simulations are adopted.

For crash applications, the energy should be absorbed in a controlled manner and the
peak force must not exceed a critical value to ensure passenger safety. Therefore, force-
displacement response and the amount of energy absorbed are studied experimentally
and numerically. Strain rate effects are not included in the present work.

In the experiment, the hat profile is subjected to crash loading in the form of a barrier.
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Force and load line displacement are gathered. The experiment is recreated numerically
to ensure the robustness of the numerical model. With a robust numerical representation
of the hat profile, various hole sizes are tested numerically in order to investigate the effect
on the force-displacement response.

The response of the sandwich hat profile, is compared to a reference model based on a
solid sheet with an equivalent weight. To show the benefits of a sandwich structure, an
additional reference model is created, consisting of a perforated sandwich with the same
thickness as the lightweight sandwich but with holes through both core and outer sheets.

2 Geometries and materials

In the current section, the purpose is to introduce the geometries studied in the present
work. This is followed by a presentation of the material data, where the manufacturing
process for joining the layers of the sandwich is presented.

2.1 Geometries

Hat profiles, subjected to crash loading, are studied in the present work. In particular,
three types of hat profiles are used:

• Type A - Hat profile based on a sandwich with a perforated core.

• Type B - Reference hat profile based on a solid sheet with equivalent weight to
Type A.

• Type C - Reference hat profile based on a perforated sandwich with holes through
both core and outer sheets.

Type A consists of a core with a thickness of 1.232 millimeters and face plates with a
thickness of 0.308 millimeters. Further dimensions of the Type A hat profile are presented
in Figure 1. Type B consists of a solid steel sheet, 1.61 millimeters thick, with equivalent
weight and curvature of type A. This is a reference geometry to see how the specific
energy absorption is affected. Type C consists of a perforated steel sheet, with a hole
pattern, thickness and curvature equal to Type A. Type C is used to see how the lack
solid face plates affects the energy absorption.

Three different hole diameters are used for the Type A hat profile: 3 mm, 2 mm, and
1 mm respectively. For each core the hole size is kept constant. A generic illustration
of the hole distribution is presented in Figure 2. In each row and column the holes are
distributed with a distance of 2D, where D is the hole diameter. The next row is given
an offset of D, in the direction of the width, to its two neighboring rows. It should be
mentioned that no holes were placed over the radius of the hat profile, as this would
drastically reduce its capacity to absorb energy.
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Figure 1: Hat profile geometry with dimensions given in millimeters. The geometry is
used for evaluation of the sandwiches in energy absorption applications.

Height

Width
Figure 2: Hole pattern adopted for the core of the sandwich.
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Figure 3: From the rolling process it was found that grains had formed over the bound-
aries between face plates and core in the sandwich. Courtesy of Lars Wikström at
Gestamp Hardtech, Lule̊a.

2.2 Material and manufacturing

The sandwich consists of hardened boron steel, 22MnB5. Manufacturing of the sandwich
is carried out by drilling holes in the core, which are distributed according to Figure 2.
The core and face plates are joined by a hot-rolling process to ensure grain formation
over the interface between face plates and core, see Figure 3. Thus a strong bond exists
between the layers of the sandwich, which is of importance to reduce the possibility of
delamination between face plates and core. After hot-rolling, the geometry of a hat
profile is obtained by hot stamping.

3 Modeling

The present section focuses on the numerical modeling. The multi-physics, explicit solver
LS-DYNA R10 was utilized, to evaluate performance of the hat profiles.

The numerical model consists of three parts: hat-profile, punch, and support. This is
presented in Figure 5. It should be noted that for the hat profile of Type A, three sub-
parts make up the sandwich which consisting of two face plates and a core. A symmetry
condition is applied to reduce the number of finite elements, thus reducing computational
time. Discretization is performed using five under-integrated solid elements (ELFORM
= 1 within LS-DYNA), through the thickness. Hourglass stabilization is added, ensuring
hourglass energy is kept below 10 % of the internal energy. Strain rates are not taken into
account, therefore the punch shown in Figure 5 is given a prescribed constant acceleration
of 6 mm/s2, in order to reduce computational time. Termination time is set to 100 ms,
resulting in a final velocity of 0.6 m/s for the punch. To reproduce the experimental set up
the bottom left nodes of the hat profile are fixed in all translations and rotations. Contacts
are handle by an automatic single surface contact algorithm with pinball segment based
contact triggered. In the contact, static and dynamic friction coefficients are set to 0.3.
Adhesion between face plates and core is handle by allowing the core and face plates to
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Figure 4: Effective stress (von Mises) vs effective plastic strain for hardened boron steel
22MnB5.

Punch

Hat profile Type A

Support

Figure 5: Hat profile of Type A with a perforated core with 3 millimeter holes. The
bottom left flange is fully fixed to represent the experimental setup.

share nodes. This is motivated by the fact that grains form over the boundaries due to
the hot rolling process utilized for joining the core and face plates, see Figure 3.

The punch and support are assumed to be much stiffer than the hat profile. Thus,
it is suitable to approximate the punch and support as rigid bodies in the numerical
model. The mechanical properties of the hat profile are represented by a piece-wise
linear plasticity model, with the quasti-static stress-strain response according to Figure
4.It should me noted that strain rate effects are not taken into account. Density, Young’s
modulus and Poisson’s ratio are 7850 kg/m3, 206 GPa and 0.3 respectively.



4. Results and Discussion 79

Figure 6: Core of the Type A hat profile with 3 millimeter holes.

4 Results and Discussion

In the current section the results from the experiments and the numerical models are
presented and discussed.

4.1 Numerical model

Three different numerical models are created: Type A, Type B and Type C. Type B and
C are reference models used to compare to the response from Type A. Three versions
of perforated cores are created, with holes diameters set to 1, 2 and 3 mm respectively.
For the Type A sandwich with hole diameter of 3 mm, three states of deformation are
presented in Figure 7, with the von Mises stress presented.

The force-displacement response from the three versions of Type A is presented in
Figure 8. No real effect, caused by the difference in hole size, is found. The difference in
weight is insignificant: a diameter of 1 mm results in a weight 211 g, whereas the cores
with hole diameter of 2 and 3 mm both give a weight of 215 g. This is a total difference of
less than 2 %. Thus, the choice of hole diameter should come down to which application
is considered. If the plates are to be joined with some rolling procedure, smaller holes
may be beneficial in order to reduce intrusion of the skins into the holes of the perforated
core.

In Figure 9, the response from Type A is compared to the reference models Type B
and Type C. It is seen that the three types of cores produce similar response curves,
with the only difference being the magnitude of the force and thereby the area under
the curve. Type A absorbs approximately 20 % more than Type B, and 50 % more
than Type C. This indicates that the Type A sandwich has an increased specific energy
absorption capability as compared to a solid sheet of equivalent weight. Additionally,
by comparing the Type A sandwich, to the Type C perforated plate it is clear that it is
the sandwich properties which contributes to the enhanced properties and not only the
increased thickness.
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(a) Start at T=0 ms

(b) Middle at T=86 ms

(c) End of simulation

Figure 7: Type A hat profile during deformation, with the fringe plot of the von Mises
stress.
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Figure 8: A comparison between the Type A hat profile when the hole size of the perfo-
rated core is varied. The response remain quite similar.

Figure 9: Type A with a perforated core with 3 millimeters holes is compared to Type
B and Type C. Type B refers to a hat profile of equivalent weight to Type A. Type C
refers to a hat profile based on a perforated plate with 3 millimeter holes and equivalent
thickness of Type A.
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5 Conclusions

Legislation is forcing the vehicle industry to reduce its greenhouse gas emissions. A
way to partly achieve this, is reducing weight of vehicle components. The present work
suggests a lightweight hardened boron steel sandwich concept, with a perforated core.
The perforated core contains a hole distribution which should be adapted for a given
application.

In the present study a hat profile was selected in order to investigate the potential
of the sandwich concept. Thus no holes were placed over the radius. A total of three
different hole sizes were investigated, which proved to generate similar response.

To quantify the performance of the sandwich (Type A), a comparison was made to
a solid hat profile of equivalent weight (Type B). It was found that Type A possessed
superior energy absorption capacity compared to Type B. Additionally, to confirm that
it was the sandwich structure which contributed to the enhanced response, and not just
the difference in thickness between Type A and Type B, an additional hat profile was
tested (Type C), solely consisting of a perforated core with the equivalent thickness to
Type A. Again, the superior properties of Type A were evident.

Thus, it seems like the Type A sandwich is a promising, lightweight concept for energy
absorption applications.
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Aktay, L., A.F. Johnson, and B.H. Kröplin (2008). Numerical modelling of honeycomb
core crush behaviour. Engineering Fracture Mechanics 75.9, pp. 2616–2630.

Gibson, L. and M. Ashby (1999). Cellular Solids - Structure and Properties - Second
edition. 2nd. Cambridge University Press (2nd edition).
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