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Abstract

Tribology is a multidisciplinary field defined as the science and technology of interacting
surfaces in relative motion, and embraces the study of friction, wear, and lubrication. Tri-
bology is found almost everywhere, some examples are the lubricated interfaces in journal-
and thrust bearings, cam-mechanisms, between gear teeth, and in hydraulic systems. Human
joints, and contact between teeth during chewing are examples of bio-tribological interfaces.
A selection of these are depicted in Figure 1, which also indicate that there are models and
numerical simulation tools available to model some of them. To fully understand the oper-
ation of this type of application one must understand the couplings between the lubricant
fluid dynamics, the structural dynamics of the bearing material, the thermodynamical as-
pects, and the resulting chemical reactions. This makes modelling tribological applications
an extremely delicate task. Because of its multidisciplinary nature, theoretical models are
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Figure 1: Typical tribological interfaces.

typically based on mathematical descriptions in the form of non-linear integrodifferential
systems of equations. Some of these systems of equations are sufficiently well posed to al-
low numerical solutions and sometimes even analytical ones to be carried out, resulting in
accurate predictions on performance, and some of these are described herein.
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Preface

In this compendium, which is a living document that has been updated several times since
2018 when it was first released, we have present models and numerical solution procedures
for both dry and lubricated tribological interfaces. We start by describing the tribological
contact and the classical lubrication regimes. Thereafter, fundamentals of half-space theory,
which is the foundation for the contact mechanics models so frequently utilised in tribology,
is briefly described. Suggestions for associated discretisation, numerical solution procedures
and how to accelerate them by using the fast Fourier transformation technique are presented
there too.

We also elaborate upon the theoretical foundation for modelling the thin film flow, which
is so characteristic for lubricated contacts. In this part of the compendium, a thorough
derivation of the Reynolds equation from the Navier-Stokes momentum equations and the
continuity equation for conservation of mass, is presented along with its analytical solution
for an infinitely wide linear slider bearing. Finite difference schemes for solving the Reynolds
equation are also presented here. The concept of cavitation, homogenisation of surface rough-
ness, the Patir and Cheng method, and how to address mixed lubrication are also elaborated
on.

Modelling and simulation of wear is given a chapter of its own and here we discuss the
application of Archard’s equation and give a derivation of a model for “polishing” type of
wear.

The compilation of the first version of the compendium was conducted by the first author
during his tenure as Professor at the Division of Machine Elements, Department of Engi-
neering Sciences and Mathematics, Lule̊a University of Technology and by the second author
during his tenure as a postdoctoral researcher at the same division.

Although the compilation of this text is the work solely of the authors, the models and
solution procedure presented herein is joint development of mandy good colleagues and co-
authors. Our sincere gratitude is extended towards them all.
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Chapter 1

Introduction

Machines consist of machine elements and their safe and efficient operation relies on care-
fully designed interfaces between these elements. The functional design of interfaces covers
geometry, materials, lubrication and surface topography, and an incorrect design may lead
to both lowered efficiency and shortened service life. A misalignment due to the geometrical
design could lead to large stress concentrations that in turn may lead to severe damage when
mounting, a detrimental wear situation, rapid fatigue during operation, etc. Large stress
concentrations also implicitly imply a temperature rise because of the energy dissipation due
to plastic deformations. The choice of mating materials is also of great importance, e.g.
electrolytic corrosion may drastically reduce service life. Contact fatigue due to low ductility
would not only lower the service life but could lead to third body abrasion due to spalling,
which in turn could end up lowering the service life of other components. A lubricant serves
several crucial objectives; when its main objective is to lower friction, the actions of additives
are of concern. If the interface is subjected to excessive wear, the lubricant’s ability to form a
separating film becomes even more crucial. In this case, the bulk properties of the lubricant
have to be carefully chosen. At some scale, regardless of the surface finish, all real surfaces
are rough and their topography influences the contact condition.

As implied above, the design parameters are mutually dependent, i.e. they affect the
way others influence the operation of the system. For example, a change in geometry could
require another choice of materials that may change the objectives of the lubricant and force
the operation into another lubrication regime.

The influence of the aforementioned design parameters, i.e., geometry, materials, lubri-
cation and surface topography on performance has of course been investigated by many
researchers in the field both experimentally and numerically. However, because of the multi-
disciplinary nature of the field and the complexity of the theoretical models associated with
tribological problems, the progress in the development of efficient, still user friendly software
has not reached as far as in, e.g., computational structural mechanics and computational
fluid dynamics. Moreover, the requirement on the density of the mesh to resolve not only
the geometrical part of the tribological contact but also the surface topography is difficult
to meet. The material herein is meant to provide understanding of established models and
numerical solution procedures that can be used to study behaviour of tribological interfaces.
Hopefully, it also inspires and encourages the reader to contribute to further development
thereof.
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Chapter 2

The Tribological Contact

At start-ups, at stops as well as during operation, most machine elements experiences varying
contact conditions. Take, for example, the (axial) tilting-pad thrust bearing illustrated in
Fig. 2.1. This type of bearing belongs to the class of hydrodynamic fluid film bearings, which

Segment/pad

Collar
Shaft

Figure 2.1: Schematics of a tilting-pad thrust bearing including the shaft connecting e.g. the
turbine to the generator in a hydro-power machine.

are designed for fluid film pressure build-up that separate the rotating and stationary surfaces
so that contact less rotation while carrying the load on the shaft. In fact, it is the relative
motion of the surfaces, as the lubricant is pulled into the converging geometry between the
collar and the pad, that creates the necessary fluid film pressure.

Typically, the collar in a tilting-pad thrust bearing is made of steal while the pads have
a soft (compliant) facing made of Babbitt (metal alloy) or Teflon R© (polytetrafluoroethylene
(PTFE)). This means that the littlest direct contact the collar makes with the shaft while
rotating, will cause severe wear on the facing surface and it is of crucial importance to have a
system that separates the surfaces during initiation of start-up and stop. A common solution
is to implement a system that pressurises the supplied lubricant, generating hydrostatic lift.
Another example is the piston with its reciprocating motion inside the cylinder of a heavy
duty diesel engine, such as the one depicted in Fig. 2.2. In this case, the lubricated ring

3



4 CHAPTER 2. THE TRIBOLOGICAL CONTACT

interfaces are never seen stationary as they are decelerating from full speed at midstroke to
full stop at the dead centres, reversing and then accelerating to reach full speed when back
at midstroke again.

Compression ring

2nd compression ring

Cylinder liner

Oil control ring

Piston

Figure 2.2: Piston with rings inside cylinder liner. Illustration courtesy Markus Söderfjäll.

Therefore, depending on the application and the operating conditions it is common to
characterise the tribological contact by its lubrication regime. The lubricant regimes are often
divided into: Boundary Lubrication (BL), Mixed Lubrication (ML) and Full Film Lubrication
(FL). In the heavy duty diesel engine, the load that the interface between the compression
ring and liner surface see, comes from ring tension and possibly the gas pressure behind the
compression ring. During operation, the contact between ring and the linear varies and it is
understood that it can be in the full film regime at some parts in the mixed at others and
sometimes it may even enter the boundary lubrication regime.

2.1 The boundary lubrication regime

In the boundary lubrication (BL) regime, the lubricant’s hydrodynamic action is negligi-
ble and the load is carried directly by surface asperities or by surface active additives (a
so-called tribofilm). Here, the surface topography is preferably chosen to optimise the fric-
tional behaviour without increasing the rate of wear. To do this, one has to understand
how the chemical processes are affected by the actual contact conditions, in terms of e.g.
heat generation, pressure peaks, the real area of contact, and vice versa too. This com-
pendium lacks a comprehensive BL-model incorporating all these features. It does, however,
present the pure elastic contact mechanics problem, including the analytical Westergaard and
the Hertzian solutions. The linear complementarity problem (LCP) is thoroughly described
and it is shown how the numerically exact Lemke algorithm can be applied for its solution.
Moreover, the nowadays well-known elasto-plastic contact mechanics model [1–3] with the
corresponding numerical approach grounded on a variational formulation, expressed in terms
of total complementary potential energy, with acceleration relying on the fast Fourier trans-
form (FFT) [4–6]. This approach has proved to ensure a stable and effective simulation of
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(rough) contact mechanics and it can help to increase the understanding of how the surface
roughness influences the elastic deflection, the plastic deformation (and plasticity index), the
pressure build up and the real area of contact. An in-depth understanding of this connection
is required to refine the design of interfaces operating under these circumstances.

As the hydrodynamical action of the lubricant increases, the contact mechanical response
becomes less influential in terms of pressure and real contact area, and a transition from the
BL- to the ML- regime may therefore occur.

2.2 The mixed lubrication regime

What characterizes the ML regime is that the load is carried by the lubricant’s hydrodynam-
ical action, which may be influenced by the elastic deflection of the surfaces, the tribofilm,
directly by surface asperities, or a combination thereof.

This means that the objectives of the surface topography are to support the hydrodynamic
action of the lubricant, aid the elastic deflection in rendering a smoother surface, enable
bonding of the surface active additives and optimise friction in the contact spots without
increasing wear.

Modelling mixed lubrication has turned out to be a true challenge and the models available
are built upon assumptions simplifying the physics involved in the transition from the BL-
and the FL- regime. As indicated above, a contact mechanics model may be used to indicate
a possible transition between the BL- and the ML-regimes. Similarly, modelling performed
regarding full-film lubrication has lead to numerical approaches that may be used to increase
the understanding of the transition from the FL- to the ML- regimes. One well-known
example of an ML-model, is the Lule̊a mixed lubrication model [3], in which partitioning
between lubricant carried load and load carried by direct contact, is determined by the
separation. More precisely, when the separation becomes smaller than a chosen measure
of the surface roughness height, the lubricant load is alleviated with the amount that the
corresponding unlubricated interface would carry at that separation.

2.3 The full-film lubrication regime

When the hydrodynamic action of the lubricant fully separates the surfaces and the load
is no longer carried by the contact between the surfaces, the interface enters the full film
lubrication (FL) regime. In the FL regime, traction may be reduced by carefully chosen
topographies. Even though there is no direct contact, the lubricant pressure may lead to
stress concentrations high enough to cause fatigue, likely leading to excessive wear in the
form of spalling in highly loaded situations.

This regime is commonly sub-divided into hydrodynamic lubrication (HL) and elastohy-
drodynamic lubrication (EHL), since the performance is greatly affected by the presence of
elastic deflections, i.e., fluid-structure interaction, at the lubricated interface.
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2.3.1 Hydrodynamic lubrication

Slider bearings are typical examples of applications that, under certain conditions, operate
in the hydrodynamic lubrication (HL) regime where the elastic deformations of the bearing
surfaces are sufficiently small to be neglected. For example, the tilting-pad thrust bearing,
as depicted in Fig. 2.1, exhibits a conformal interface between the pad and the collar and
is designed to for operation in the hydrodynamic lubrication regime. Note that the angle
of inclination of the pads, which is generally only a fraction of a degree, has been greatly
exaggerated in the figure. One problem that arise when modelling conformal interfaces like
this one, comes from the large differences in scales. More precisely, the global scale describing
the geometry, pad - collar interface, is several orders of magnitude larger than the local scale
describing the surface topography/roughness. This situation can be approached by means of
homogenisation. This is also a subject discussed herein, see Section 5.9.

2.3.2 Elastohydrodynamic lubrication

Elastohydrodynamic lubrication is the type of hydrodynamic lubrication where the fluid-
structure interaction (FSI), caused by elastic deformations of the contacting surfaces, plays
a major role. This situation may occur when lubricating interacting non-conformal bodies.
This leads to highly localised (concentrated) contacts, and it is the lubricant’s piezo-viscous
response combined with elastic flattening of surface roughness features facilitate the separa-
tion of the interacting surfaces. An example where EHL is typically found, is at the interface
between the roller and the raceway in a typical roller bearing, as shown in Fig. 2.3, are most
commonly designed to operate in the full-film elastohydrodynamic lubrication regime.

Figure 2.3: Schematics of a typical rolling element bearing-

The apparent contact zone for a rolling bearing is, in general, elliptic in shape. Depending
on the design parameters previously mentioned and the actual running conditions, the shape
of the ellipse will change. In any case, the contact region is small and the concentrated load
implies a severe surface- as well as sub-surface stress condition that may lead to both elastic-
but also plastic deformation. For a bearing in operation, high stresses eventually causes fa-
tigue, which in turn can lead to shortened service life due to, for example, spalling. When the
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contact is starved of lubricant, or when running conditions do not allow for a hydrodynamic
action that fully separates the surfaces, the risk for plastic deformation increases.

If the width of the contact ellipse exceeds the minimum width of the raceway and the
roller, the contact will be then truncated and this leads lead to increased stresses in the
material. In the case of a contact ellipse which is more than 4 times wider than its length in the
rolling direction, the pressure at the centreline in the rolling direction can be approximated
to the pressure corresponding to a line contact, Evans et al. [7]. This motivates describing
the problem with a two-dimensional instead of a three-dimensional domain. Moreover, it has
been shown that the one-dimensional Reynolds equation can give highly accurate estimates
of deformations and stresses inside the interface. Still as with most tribological problems,
this is a very demanding problem that requires advanced mathematical descriptions as well
as highly efficient numerical solution procedures. Homogenisation of roughness, Fast Fourier
Transformation (FFT) and multilevel techniques are examples of such. This usually renders
quite complex methods that often require end users with rather specialised background.
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Chapter 3

Content and Intended Learning
Outcomes

The intended learning outcomes are related to modelling and simulation of tribological pro-
cesses connected to the following topics Lubricated contacts, Dry contacts and Wear. The
content include derivations of models, dimensionless formulation, techniques for discretisa-
tion, numerical solution procedures and it discusses verification and validation.

3.1 Dry contacts

In relation to modelling and simulation of the dry contact by means of half-space theory based
contact mechanics, the usage of the fast Fourier transformation (FFT) technique will be dis-
cussed. It will be shown how it can be used applied in order to accelerate the computation of
derivatives and integral equations, and specifically the deflection of linear elastic bodies. The
associated complementarity problem and the total complementary potential energy problem
will be described, together with two different means of how to numerically solve the contact
mechanics model. More precisely, a numerical exact method that finds the solution to the
corresponding linear complementarity problem (LCP) in a finite number of pivoting steps
will be explained [8] The classical variational approach to solve the problem posed as the
minimisation of the total complementary potential energy by Kalker [9]. is described herein.
The FFT-based solution procedure suggested by Stanley and Kato in [10] is also described
and, in this connection, a simple way of including plastic deformation in accordance with the
a quadratic programming approach presented by Tian and Bhushan [1] is given. It should be
mentioned that this methodology has been described before, namely in the two-part paper
by Sahlin et al. [3,11]. In order to verify and validate the results, both the Hertzian contact,
for the contact between spherically shaped elastic bodies, and Westergaard’s solution, for
harmonic surfaces, are revisited first.

3.2 Lubricated contacts

This part starts with the derivation of the Reynolds equation for the hydrodynamic pressure.
The Reynolds equation is a second order Poisson type of differential equation and both the

9
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Cartesian and the polar form will be presented here. The derivation involves scaling and
dimensional analysis of the Navier-Stokes momentum equations coupled with the continuity
equation for mass preservation. The methodology is generic and can be applied in other areas
as well. The limitations in the derivation are elaboration upon in the same manner as in the
papers by Almqvist et al. [12–14]. The analytical solution to the one-dimensional Reynolds
equation for an infinitely wide bearing is presented. Then it is shown how it can be used to
verify the numerical results obtained with finite difference and finite element based methods
for realistic bearing geometries.

Hydrodynamic cavitation is found in various lubrication situations, and without including
it in the model the bearing’s load carrying capacity can, in many cases, not be predicted. The
Jakobsson, Floberg and Olsson (JFO) boundary conditions [15–18] and the switch-function
based Elrod and Adams model [19] will be discussed and use as a basis for the derivation of
the state-of-the-art model. In particular, this model addresses the change of the differential
equation from elliptic in the fully saturated zones to hyperbolic in the cavitated zones. The
extension of the classical switch-function based algorithm, into a clear and concise LCP-
formulation [20–24] for incompressible- and the constant bulk modulus type of compressible
flows are also included here.

Homogenisation is presented here as a means for effective treatment of the roughness of
the interacting surfaces and the derivations herein are inspired from numerous publications.
For a compilation of these see e.g. [25, 26]. Finally a mixed lubrication model is presented.
However, as mixed lubrication involves direct contact between the surfaces, modelling the
dry contact is presented on beforehand.

3.3 Wear

Wear does under some circumstances allow for modelling. Here, Archard’s equation is em-
ployed, primarily for the modelling of abrasive wear. Archard’s equation is an initial value
problem and it is in combination with the contact mechanics model it can be used to pre-
dict the material loss in tribological contacts. It is also discussed how the time stepping
in subsequent numerical simulation procedure can be adjusted to simulate an adhesive wear
processes. A lot of what is presented in under this topic originates from the work by Furustig1

et al. [27, 28].

1Previously Andersson and also known as The Wear Doctor (Nötningsdoktorn).



Chapter 4

The Dry Contact

In the previous chapter, the lubrication regimes in which the lubricant has more or less
influence were described. Let us, however, start by considering the case in which no lubricant
is present, i.e., the dry contact. When two bodies are pressed against each other they make
contact and become deformed. The deformation may be both elastic and plastic. The
amount and the relation between the two depend on the type of material, the applied load
and the geometry and micro-scale topography, i.e. roughness, of the contacting surfaces.
Engineering surfaces does always exhibit roughness at some scale. Thus, the contact between
two components, such as the shaft and the bronze bush in a plain bearing, occurs at first
only at the peaks of the highest protruding asperities in a complicated pattern. Figure 4.1
depicts a series of such contact morphologies, obtained by means of numerical simulations.

Figure 4.1: Contact morphologies, obtained with the enhanced solver including plastic deformation
presented in Section 4.8, when loading the surface with Hurst exponent 0.8 in [29] against a rigid
plane. First row depict pure elastic contact, second elastoplastic with hardness value of 4 GPa and
third elastoplastic with hardness value of 1 GPa. The contact load increases from left two right.
Red points indicates pure elastic deformation and blue that there is elastoplastic deformation.

11
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Knowing the extent of which the two surfaces are in contact with each other, i.e., how large is
the real area of contact is, as well as how the contact is distributed, i.e. the contact morphol-
ogy, is of importance in many machine elements (operating in boundary and mixed lubrication
regimes). Indeed, the extent and the contact morphology is related to friction, wear, con-
tact resistance, leakage, etc., and under during operation the complex interaction between
the surfaces, a liquid or solid lubricant, wear debris and the environment will ultimately
decide the overall performance. The dry contact is, of course, a considerable simplification
of the complex situations in boundary lubrication. Understanding the dry contact situation
is, however, a prerequisite to study the more complex and realistic cases associated with
boundary lubrication. Moreover, it represents a first approximation that already provides
for very useful information concerning the functioning of these machine elements. Therefore,
this chapter is dedicated to the study of the dry contact.

When studying the contact between two bodies, with rough or smooth surfaces, the
boundary element method (BEM) which is developed from a lower-dimensional model, in
which the contacting bodies are assumed to be half spaces in 3D or half planes in 2D.
With this model, we can obtain an approximate solution, in terms of contact pressure and
deformation, to the 3D contact between two bodies by means of solving a 2D problem (and
the 2D contact by means of solving a 1D problem). Contrary to a finite-element based
method (FEM), the BEM require only the interface between the boundary surfaces of the
contacting bodies to be meshed. This significantly reduce memory usage, and it improves
the computational efficiency at the same time. However, to resolve the surfaces’ roughness,
a large amount of elements is typically required, i.e. 103 − 106/mm, or even more, to obtain
an adequate resolution of the small-scale features. If both roughness and plasticity are taken
into account, this amount of (surface) elements is likely to render lengthy simulations, even
for the dimension-reduced BEM. This means that, even with today’s available computational
power, a full 3D, finite-element based contact mechanics simulation (with a carefully adapted
mesh) becomes too demanding and the more approximative BEM is the only viable option.
But the simplicity of the BEM is not only a limitation, it facilitates post processing and
interpretation of results.

In the following sections, we will present the half-space theory that the mathematical com-
plementarity problem that the BEM is based on, we will describe how to non-dimensionalise
the system of equations and we will give two important examples of analytical solutions.
Then we will describe how the model can be discretised, present the Lemke algorithm, that
can be applied to solve complementarity problems numerically exactly, show how the cal-
culation of the elastic deformation can be accelerated by means of Fourier techniques and
finally we will present the variational-principle based, FFT accelerated BEM, which is the
contact-mechanics backbone in the Lule̊a mixed lubrication model (LMLM) [3,11].

4.1 Half-space theory and fundamentals of the BEM

In this section we will describe the fundamentals of the BEM, which is based on the half-
space theory. Let us then start by defining a half space. Consider the infinite 3D Euclidean
space and cut it in half by a plane. Each of the parts will be a half space. Notice that this
will have one boundary (i.e., the plane) but will be infinite in all other directions. We will
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x2

x3

x1F

r
ρ
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xr

x3

F

r
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Figure 4.2: Illustration of point loading of a half space. Top-left showing the half space in 3D
with the point load located at (0, 0, 0), bottom-right, visualising the xrx3-plane with the rotational
symmetric deformation illustrated by the red continuous line. The distance between (0, 0, 0) and
(x1, x2, x3) is denoted by ρ and r is the distance between (0, 0, 0) and (x1, x2, 0). The elastic
deflection at (x1, x2, 0) is given by ue.

further assume that this half space is homogeneous and elastic, that the contact is friction
free and we will not consider the effect of adhesion. It is important to remember to consider
weather these assumptions are reasonable in a given problem, before applying the dimension
reduced BEM that will be presented here.

In the subsections below, we present the theoretical backbone for BEM and we start
by introducing the relation between a point load and the deformation it causes. Then we
generalise this theory to enable the study of the contact between a rigid and an elastic body
and thereafter to the contact between two elastic bodies.

4.1.1 The relation between load and deformation

Let us consider a situation such as the one depicted in Fig. 4.2, in which an half space is
loaded with a point load at the origin. Let us further assume that the assumptions of linear
elasticity holds and that the contact is frictionless and without adhesion between the surfaces.
Under these conditions, we can use the Boussinesq solution for the elastic deformation ue
evaluated at the location (x1, x2) caused by a point load F applied at the point (x′1, x

′
2) on

the half space, i.e.

ue (x1, x2) =
1− ν2

πE

F√
(x1 − x′1)2 + (x2 − x′2)2

, (4.1)

where E and ν are the elastic modulus and Poisson’s ratio of the body. From (4.1), it is
clear that the deformation is rotational symmetric and inversely proportional to the distance
between the point (x′1, x

′
2), where the point load is applied, and the point (x1, x2), where the
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F1
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ue = ue1 + ue2

xr

Figure 4.3: Illustration of the situation when two differently positioned point loads are applied to
the upper boundary of the elastic half space.

elastic deformation is evaluated. Notice that, as long as we are only interested in the defor-
mations at the surface, the problem has become two-dimensional. For a thorough derivation
of this solution, and an extension to more general cases where friction is included, the reader
is referred to [30]. It can be noticed in (4.1) that the elastic deformation has a singularity at
the point at which load is applied. This clearly non-realistic singularity only arises, however,
from considering equally non-realistic point loads. Indeed, it disappears in the more realistic
case where the load is distributed over a small area.

In order to compute the deformation caused by an arbitrarily shaped pressure distribution,
p, we apply the principle of superposition. We start by adding one more point load to the
situation illustrated in Fig. 4.2. This is situation is depicted in Fig. 4.3, where it is visually
clear that the deformation ue at a given point is just the sum of the deformations caused by
by each of the two loads F1 and F2 independently. Mathematically speaking, this means that

ue = ue1 + ue2 =
1− ν2

πE

F1

r1

+
1− ν2

πE

F2

r2

=
1− ν2

πE

(
F1

r1

+
F2

r2

)
. (4.2)

It is clear that, if there were L point loads Fk at rk from the point where the deformation is
measured, then

ue =
2 (1− ν2)

πE

L∑
k=1

Fk
rk
. (4.3)

Let us assume that the contact pressure p(x1, x2) is distributed over the boundary of the
half space, and let us assume that pij ..= p(x1i, x2j) is constant over the small regions ∆A =
∆x1∆x2. Then, the “point” load Fk, k = ij could be interpreted as resulting from pij∆A
and

ue =
2 (1− ν2)

πE

N∑
i=1

M∑
j=1

pij∆A

rij
. (4.4)

Let us now generalise this situation. By assuming that the pressure at eacch point
(x1i, x2j) is comprised of a series of point loads, each one acting over an infinitesimal area,
i.e. F ′ = p(x′1, x

′
2) dA, where dA = dx1 dx2.
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The deformation at a point (x1, x2) can now be computed by integrating the contribution
from all the point loads at points (x′1, x

′
2), i.e.,

ue (x1, x2) =
1− ν2

πE

∫ ∞
−∞

∫ ∞
−∞

p (x′1, x
′
2)√

(x1 − x′1)2 + (x2 − x′2)2
dx′1dx

′
2. (4.5)

The integrals are evaluated from minus- to plus infinity, but it should be noted that it is
only necessary to consider the domain where the pressure is positive, as long as we neglect
adhesion.

Another important case can be accomplished by considering a load distributed along a
line on surface of a half space. This exemplifies a situation where it can be assumed that
the pressure only varies in one direction and that it the contact is long enough in the other
so that the effect of edges can be neglected. In theory, this could be the contact between an
infinitely long cylinder pressed against a rigid body, as long as the radius of the cylinder is
large enough compared to the width of the contact so that the cylinder can be considered
a half space. This renders a 1D solution, which is of course very advantageous in terms of
computational cost. Indeed, for the 2D contact, the resulting Load-deformation relationship
can be expressed in 1D and it can be obtained by starting from

ue (x) = −2 (1− ν2)P ′

πE
ln |x− x′|+ C = −2 (1− ν2)P ′

πE
ln

∣∣∣∣x− x′x0

∣∣∣∣, (4.6)

where P ′ represents a line load, located at x′, with unit N/m and where C is determined by
choosing a point x0 on the surface as a datum for the displacements, see [30]. We remark
that also in the case of a line loading the deformation depends solely on the distance between
the point x′, where the line load is applied and the location x where it is evaluated. Again,
by superposition, i.e. P ′ = p(x′)dx′, this results in

ue (x) = −2 (1− ν2)

πE

∫ ∞
−∞

p(x′) ln

∣∣∣∣x− x′x0

∣∣∣∣dx′, (4.7)

for an arbitrarily shaped pressure distribution p(x). Note again, that it is only necessary to
consider the domain where the pressure is positive, as long as we neglect adhesion. For the
interested reader, the relation (4.6) is known as the Flamant solution, and for more details
on the derivation of the 1D pressure-deformation relation we refer to [30].

4.1.2 The contact between an elastic body and a rigid flat surface

In the previous section the pressure was regarded as known. I reality, the pressure that causes
the elastic body to deform is a priori unknown and results from contact between the elastic
and the rigid surfaces. The boundary surface an elastic body, considered to be a half space,
can describe the geometry of a smooth sphere, a wavy or even a rough surface, as long as the
conditions for the Boussinesq or Flamant solutions apply. We will now see more specifically
what conditions that must apply to for (4.5) to be used to model the deformation that arise
when a non-flat elastic half space contacts a flat rigid surface. The caveat here is that (4.5)
is a model of the deformation resulting from the application of a given pressure distribution
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on a perfectly flat half space. It turns out that, to use (4.5) to model the deformation that
arise between a non-flat elastic body and a rigid flat surface, there are three assumptions
that must apply to the non-flat elastic body. These are

1. The slopes of the surface features on the elastic body are small enough to be considered
negligible. In practice, this means that the ratio between height and width - of the
surface features with the highest curvature, should at least be O (10−1), but preferably
smaller;

2. The elastic body can be assumed to behave as a half-space. This means that, the (a
priori unkown) real contact region must be much smaller than the nominal contact
region, so that the boundaries of the elastic body do not affect the stresses in the
vicinity of the contact.

Although, the assumptions that the contact is friction- and adhesion free, is not per se a
requirement, the governing equations for the BEM model described in the previous section
would need to be modified to incorporate such effects.

In situations were the aforementioned assumptions apply, we can use (4.5) to compute the
deformation of the non-flat elastic body, given the contact pressure distribution. Since the
pressure distributions is not known a priory, we need to introduce additional (mathematical)
relations to have a well-posed problem. Fortunately, under the considerations at hand, the
contact mechanics problem is a school-book example of a complementarity problem in terms
of the two complimentary variables; the pressure and the gap between the contacting bodies.
More precisely, i) where there is contact, there is pressure and there is no gap between the
contact bodies ii) where there is no contact pressure, there is a gap between the surfaces. Let
h define the (deformed) gap between the two bodies in contact. It can be computed as

h(x) = g(x) + ue(x)− δ, (4.8)

where g(x) ≥ 0 is the initial gap between the bodies (before becoming deformed as the bodies
are brought into contact), ue(x) is the elastic deformation, given by (4.7) in 1D and (4.5) in
2D, and δ ≥ 0 is the rigid body movement of the two bodies. Let us also define Ω as the
domain on which g is defined. We also declare that g = |zu − zl|, where zu is the mathematical
description of the lower boundary of the upper body and and zl the mathematical description
of the upper boundary of the lower body. The area of Ω, i.e. An ..= |A|, is often refereed
to as the nominal contact area. In the context of rough surfaces, An is often considered the
area which, from a macroscopic point of view, appears to be in contact. Think of an elastic
rectangular block with a non-smooth micro-scale topography, which rests on an infinitely
large rigid surface. The area of the contacting face of the block would then be considered
as the nominal contact area. The real contact area, here denoted Ar, is often much smaller.
Think of being able to look into the contact interface at a magnification sufficiently high to
resolve the micro-scale features of the face. This would reveal the real contact morphology,
recall Fig. 4.1), showing exactly where the bodies makes contact. Let us denote this subset
of Ω where there is contact by Ωc. Because of complementarity, it is clear that the gap
must be zero and that the pressure is positive within Ωc. Equally, wherever the gap is
positive, i.e. Ω\Ωc, there is no contact and the pressure must be zero. In contact mechanics,
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these complementarity conditions are known as the Kuhn-Tucker conditions which can be
summarised as follows:

h (x) > 0, p (x) = 0, x ∈ Ω\Ωc, (4.9a)

h (x) = 0, p (x) > 0, x ∈ Ωc, (4.9b)

where Ωc represents the contact regions and x = (x1, x2) in the 3D case (2D problem) and
x = x1 in the 2D case (1D problem). We note that this effectively means that hp = 0
everywhere in Ω, and that an equivalent formulation of (4.9) could be stated as

h(x)p(x) = 0 and h(x) = g(x) + ue(x)− δ, ∀x ∈ Ω. (4.10a)

The complementarity conditions, together with either (4.7) or (4.5) and a specified δ give
a unique solution for the contact mechanics problem. It is often more convenient, however, to
specify the applied load, w, as input instead of the rigid body movement δ. Under stationary
conditions, Newton’s first law models the force equilibrium that balances the applied load
and the integrated force from the contact pressure distribution. Because of the half-space
formulation and the complementarity conditions this load balance equation may be stated as

w =

∫ ∞
−∞

p (x) dx =

∫
Ω

p (x) dx =

∫
Ωc

p (x) dx. (4.11)

4.1.3 The contact between two elastic bodies

Let us generalise the previous case to the contact of two elastic bodies, both of which can
have a certain shape (e.g. a cylinder or a sphere) and/or have a rough surface. As indicated
in Fig. 4.4, both of them would experience the same contact pressure and the deformation
will, therefore, have the same shape. If the material properties are different the magnitude
of the deformation will, however, not be the equal. The total deformation is clearly the
sum of the deformations of the contacting surfaces. Now, the only difference between the
deformation of the individual surfaces, is the material, which will show as a different scaling
factor in front of the integrals in (4.7) and (4.5). By denoting the deformation of the two
surfaces ue1 and ue2 we can, therefore, formulate the total deformation as

ue = ue1 + ue2 =

∫
Ω

K(|x− x′|)p (x′) dx′, (4.12)

where

K(|x− x′|) ..=
1

πE∗


−2 ln

∣∣∣∣x1 − x′1
x0

∣∣∣∣, in 2D,

1√
(x1 − x′1)2 + (x2 − x′2)2

, in 3D,

(4.13)

Note that we have replaced the infinite integration limits to an integral over Ω assuming that
no positive pressure acts outside the domain. The parameter E∗, often referred to as the
reduced elastic modulus, is the defined as

1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

, (4.14)
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(E1, ν1)

ue2

ue1

p

Figure 4.4: The deformation of two contacting bodies, assumed to be elastic half spaces, under the
same pressure distribution.

where νi and Ei, i = 1, 2 denotes the material properties of the two contacting surfaces.
Quite frequently one also find E ′ = 2E∗, representing effective material properties. By
comparing (4.12) to (4.7) and (4.5), we can see that the contact between any two elastic
bodies is equivalent to the contact of an elastic body against a rigid one. We can, therefore,
solve them in the same manner. Notice that this only true as long as the two assumptions
presented in Section 4.1.2 hold.

We close this section by summarising the BEM formulation of the contact mechanics
problem between two elastic bodes under the half-space theory assumptions. It reads,

h (x) > 0, p (x) = 0, x ∈ Ω\Ωc, (4.15a)

h (x) = 0, p (x) > 0, x ∈ Ωc, (4.15b)

h = g + ue − δ, (4.15c)

ue =

∫
Ω

K(|x− x′|)p (x′) dx′, (4.15d)

w =

∫
Ω

p (x) dx (4.15e)

There are three inputs to this system and these are the reduced elastic modulus E∗ and the
initial gap g, which is specified by the shapes of the surfaces of the contacting bodies, and
either the applied w or the rigid body movement δ. When the load is given as input, the
dependent variables obtained upon solution of the system, are the complementary variables,
i.e. the pressure distribution p and the deformed gap h. The deformed gap, does however,
include also the elastic deformation ue and the rigid body movement δ that a priori are
unknown. The pressure distribution p, the deformed gap h and the elastic deformation ue
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are also, a priori, unknown when the rigid body movement δ is given as input. However, in
this case w represents the reaction force caused by the interference that results from choosing
a δ large enough to render a solution different from the trivial one (h > 0 ∧ p = 0).

4.2 Dimensionless formulation of the contact mechan-

ics problem

In the previous section the BEM for the contact mechanics problem between two elastic
bodies was formulated based on the half-space theory. Interpreting this system is not an
easy task and here we introduce a scaling to transform it into dimensionless form. This may
reduce the number of input parameters and thus facilitate numerical analysis and it will
help us understand how the input parameters affect the solution. We start the process by
introducing the following scaling

X1 =
x1

x1r

, X2 =
x2

x2r

, H =
h

hr
, Ue =

ue
hr
, G =

g

hr
, δ̄ =

δ

hr
, P =

p

pr
. (4.16)

Notice that we have scaled all the variables regarding the gap with the same parameter hr.
This is because they all share the same dimension, i.e., the dimension of the gap. Moreover,
all of them can be expected to be of the same order of magnitude. Under the scaling proposed,
the equations needed to solve the 3D contact mechanics problem, i.e., (4.15), become

H (X1, X2) > 0 P (X1, X2) = 0, (X1, X2) ∈ Ωc, (4.17a)

H (X1, X2) = 0 P (X1, X2) > 0, (X1, X2) /∈ Ωc, (4.17b)

H = G+ Ue − δ̄, (4.17c)

Ue (X1, X2) =
x1rpr
hr

1

πE∗

∫
Ω

P (X ′1, X
′
2)√

(X1 −X ′1)2 + (x2r /x1r )2 (X2 −X ′2)2
dX ′1dX

′
2, (4.17d)

w

prx1rx2r

=

∫
Ω

P (X1, X2) dX1dX2 (4.17e)

Now, we can freely chose the scaling parameters. We will, however obtain better results
if we follow two principles, i) to eliminate as many input parameters as possible and ii) to
scale the non-dimensional variables so as to avoid truncation errors. A first obvious choice
concerning the input parameters is to choose xr1 = xr2 = xr. Notice that, in most of the
cases, both these dimensions are of similar size and thus we also preserve the scaling property.
It can sometimes, however, be useful to define different scaling parameters for each direction,
e.g. when studying finite EHL line contacts [31, 32]. We can also identify the two groups of
parameters

xrpr
hr

1

πE∗
, and

w

prx2
r

. (4.18)

that, for a given dimensionless initial gap (G), uniquely determine the solution of the problem,
i.e., the contact pressure P and its distribution and the gap H between the deformed surfaces.
A first option, suitable for arbitrary surface descriptions, is to set both of these parameters



20 CHAPTER 4. THE DRY CONTACT

to 1. We note that there are now two groups and three reference parameters, of which two
belong to the dependent variables p and h and the third scales the independent variable x.
We can thus choose one reference parameter freely. We can, for example, choose xr = L,
where L is the size of the nominal contact area. This leads to

pr =
w

L2
, and

hr
L

=
w

L2πE∗
, (4.19)

which tells us that the scaling for the pressure is around the mean contact pressure and that
the ration hr/L is very small, as expected. In this case, the equations read

H (X1, X2) > 0 P (X1, X2) = 0, (X1, X2) ∈ Ωc, (4.20a)

H (X1, X2) = 0 P (X1, X2) > 0, (X1, X2) /∈ Ωc, (4.20b)

H = G+ Ue − δ̄, (4.20c)

Ue (X1, X2) =

∫
Ω

P (X ′1, X
′
2)√

(X1 −X ′1)2 + (X2 −X ′2)2
dX ′1dX

′
2, (4.20d)

1 =

∫
Ω

P (X1, X2) dX1dX2 (4.20e)

Notice that in the system posed by (4.20), the only input is introduced through the shape of
the initial gap G. Thus, we have extracted important knowledge even before having solved
the set of equations. Let us see, for example, what happens when we keep w constant and
stretch the surface, which would result in an increase of L. We can see that if we double L
while halving E∗, hr remains constant, which indicates that the deformation will also remain
constant. This means that stretching the surface makes its response less stiff. Notice now
that the topography of a rough surface, can be described as the sum of many sinusoidal
waves, some having long wavelengths and some having shorter ones. We have now seen that
the former will flatten easily whereas the latter will require a much larger load.

A very common application of the boundary element method (and one of its few analytical
solutions) is that of the Hertzian contact problem. In two dimensions, this problem is simply
the application of BEM to the contact of smooth spheres. This is reflected in the initial gap,
which is

gH =
x2

1 + x2
2

2Rhr
, (4.21)

where R is the combined radius of the spheres. In this case, we find another relevant group,
namely x2

r/2Rhr. This, of course, motivates choosing another scaling. In particular, the
following is often chosen,

x2
r

2Rhr
=

1

2
,

w

prx2
r

=
2π

3
and

xrpr
hr

1

πE∗
=

2

π2
. (4.22)

This leads to xr = a, where a is the Hertzian contact radius, hr = a2/R and pr = pH , which
is the Hertzian pressures. These are given as

pH =
3w

2πa2
, a3 =

3wR

4E∗
. (4.23)
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The equations then read

H (X1, X2) > 0 P (X1, X2) = 0, (X1, X2) ∈ Ωc, (4.24a)

H (X1, X2) = 0 P (X1, X2) > 0, (X1, X2) /∈ Ωc, (4.24b)

H =
(
X2

1 +X2
2

)
+ Ue − δ̄, (4.24c)

Ue (X1, X2) =
2

π2

∫
Ω

P (X ′1, X
′
2)√

(X1 −X ′1)2 + (X2 −X ′2)2
dX ′1dX

′
2, (4.24d)

2π

3
=

∫
Ω

P (X1, X2) dX1dX2 (4.24e)

Notice that, in this case, there are no input parameters. This means that there is only
one fundamental solution. All contact problems between two spheres can thus be seen as a
scaling of this fundamental solution. This is also the case in the one-dimensional case, not
shown here. Notice that we can also use the non-dimensional parameter groups to infer some
relations about this scaling without actually solving the problem. For example, we see that,
by doubling w, pH is also doubled while a is increased by a factor 21/3. Similar relations can
be found for all parameters.

Let us finish this discussion with a comment on the dimensionless formulation for the
2D contact mechanics problem (1D model), which for the contact between two elastically
deformable surfaces can be stated as

H (X) > 0 P (X) = 0, X ∈ Ωc, (4.25a)

H (X) = 0 P (X) > 0, X /∈ Ωc, (4.25b)

H = G+ Ue − δ̄, (4.25c)

Ue (X) = −xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln

∣∣∣∣X −X ′X0

∣∣∣∣ dX ′, (4.25d)

w

prxr
=

∫
Ω

P (X) dX. (4.25e)

There is, however, as we will see an alternative way of posing the problem and it has to do
with the the datum for the displacement x0 (appearing in the 2D but not in the 3D pressure-
deformation relation). Let us now see how this can done. It is obvious that the dimensionless
representation of (4.7) (for the contact between two elastically deformable surfaces) becomes

Ue (X) = −xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln

∣∣∣∣X −X ′X0

∣∣∣∣ dX ′
= −xrpr

hr

2

πE∗

∫
Ω

P (X ′) ln |X −X ′| dX ′ − xrpr
hr

2

πE∗
lnX0

∫
Ω

P (X ′) dX ′

= −xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln |X −X ′| dX ′ − xrpr
hr

2

πE∗
lnX0

w

prxr
,

= −xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln |X −X ′| dX ′ − 2 lnX0

πE∗hr
w, (4.26)
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Let us now define

U ′e (X) ..= −xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln |X −X ′| dX ′ (4.27)

and

δ̄′ ..=
2 lnX0

πE∗hr
w. (4.28)

We can then write (4.26) as
Ue (X) = U ′e (X)− δ̄′. (4.29)

Moreover, when introducing the non-dimensional deformation into the non-dimensional gap
(4.25c), U ′e can be used to replace Ue and the value of δ̄′ can be merged with δ̄, i.e., δ̄∗ = δ̄− δ̄′.
Finally, we can pose the 2D contact mechanics problem (4.25) in the following, alternative,
way

H (X) > 0 P (X) = 0, X ∈ Ωc, (4.30a)

H (X) = 0 P (X) > 0, X /∈ Ωc, (4.30b)

H = G+ U ′e − δ̄∗, (4.30c)

U ′e (X) =
xrpr
hr

2

πE∗

∫
Ω

P (X ′) ln |X −X ′| dX ′, (4.30d)

w

prxr
=

∫
Ω

P (X) dX. (4.30e)

Note that, since the model is posed with the applied load w as input, it means that δ̄∗ is a
dependent variable which, although related to the interference or rigid body movement, it is
no longer equal to it due to the addition of δ̄′.

4.3 Examples of analytical solutions

In this section, we will give few examples of analytical solution to the contact problem in
the context of the boundary element method. As apparent from the form of the equations
to be solved, finding analytical solutions is no easy task and thus such solutions only exist
for a few particular cases. Here we will first consider the famous theory by Hertz and then
consider surfaces that have the shape of a simple sinusoidal wave, which are a conceptual
model to understand the behaviour of rough surfaces. Other solutions do exist, usually for
two-dimensional contact cases. The solutions are, however, quite complex and would not
give the insights that the simpler cases we present here will give us. Therefore we will not
consider them here.

4.3.1 Hertz theory

The theory proposed by Hertz [33] is of the first successfully ones in the field of contact
mechanics. We will now see that it is, in fact, a particular case of the more general boundary
element method. The theory concerns dry non-conformal contacts of elastic bodies, in which
the contact occurs in a very small area. These include the metal-to-metal contact between
two spheres in 3D and two cylinders in 2D, but can, in fact, be applied to other non-conformal
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w

w

a

A = 1

pH

PH = 1

a) b)

c)

Figure 4.5: Conceptual description of the Hertz problem. In a) a vertical cross section of two
deformable half spaces with spherically-shaped boundary surfaces in 3D or cylindrically-shaped
boundaries in 2D is depicted. Subfigure b) illustrates the cross section of the equivalent contact
situation as of the two half spaces in a), i.e. the one between a rigid flat and a deformable half space
with equivalent material and geometrical properties. It also depicts the corresponding pressure
distribution, with the Hertzian pressure pH and the Hertzian contact radius a. For the sake of
completeness, c) depicts the dimensionless problem with the corresponding hemispherically- or
hemicylindrically shaped pressure distribution.
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contacts as well. A key assumption for this theory is that the contact region is much smaller
than the extent of the bodies themselves. This is also characteristic for non-conformal metal-
to-metal contacts such as the aforementioned ones. Notice, however, that it might not apply
for contacts between compliant materials such as rubber, where large deformations results
in large contact regions. Another assumption is that the local radius of curvature of the
surfaces at the contact region is small compared to the size of the contact. These two
assumptions are equivalent to the ones presented in Section 4.1.2 and thus allow us to apply
the boundary element method to this problem. Moreover, the contact is assumed to be
friction and adhesion free, so that only normal compressive pressures are considered and we
can thus use the formulation presented in Section 4.1. With this in mind, let us describe the
problem. A conceptual description, that will be useful during this discussion is depicted in
Fig. 4.5.

Let us consider the 3D problem with spherically-shaped bodies. Since these are bodies
of revolution it is clear, that the contact region will be circular and we can work with polar-
instead of the Cartesian coordinates. The gap between the original undeformed surfaces, g,
can be described as

g(x1, x2) =
r2

2R
, (4.31)

where x1, x2 are the coordinates of the horizontal plane, r2 = x2
1 + x2

2 and R the equivalent
radius of curvature of the two contacting bodies’ boundary surfaces. As depicted in Fig. 4.5a,
the problem at hand is to compute the contact when two spherically bodies are pressed against
each other with a load w. The first thing to notice is that, as discussed in Section 4.1.3, the
problem is equivalent to that of the contact between an elastic sphere and a rigid perfectly
flat surface. The radius of the equivalent sphere, R, i.e. the equivalent radius, can be found
by requiring the gap between the equivalent sphere and the flat surface to be the same as
the gap between the two spheres. Thus it is easily verified that this equivalent radius should
be defined as

1

R
=

1

R1

+
1

R2

. (4.32)

In this case the deformation is known at the contact region r ∈ Ωc and it can be expressed
as

ue(r) =
a2

R
− r2

2R
, r ∈ Ωc, (4.33)

where a is the Hertzian contact radius. The reader is referred to [34] for the derivation of
this expression, which is given there in Equation (3.41a). This equation comes by requiring
that the deformed gap, between the in-contact surfaces, is zero at the contact region. The
key insight that Hertz had was that the deformation in (4.33) is produced by a pressure of
the form

p(r) = pH

√
1−

(r
a

)2

, (4.34)

where pH is the Hertzian pressure, which is also the maximum contact pressure. In order to
produce exactly the deformation in (4.33), the Hertzian pressure must have the value

pH =
2E∗a

πR
. (4.35)
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The total load, w, that would result in a given contact radius a can then be found by
integrating (4.34) over the contact area, leading to a value of

w =
2

3
pHπa

2. (4.36)

Moreover, since the complementarity conditions states that g + ue − δ = 0 in the contact
zone, we can compute the corresponding Hertzian rigid body movement δH as

δH = g + ue =
r2

2R
+
a2

R
− r2

2R
=
a2

R
. (4.37)

Notice that we here consider the bodies to be originally touching at a single point and δH
measure how much more they approach due to the applied load. Summing up, we can give
the relation between the different parameters in their typical form, i.e.,

a =

(
3wR

4E∗

)1/3

, (4.38a)

pH =

(
3w

2πa2

)
=

(
6wE∗2

π3R2

)1/3

, (4.38b)

δH =
a2

R
=

(
9

16

w2

RE∗2

)1/3

. (4.38c)

Now, recall that we said in Section 4.2 that all Hertzian contact problems collapse to a
single solution when considered in a dimensionless form. Let us see that this is, in fact, the
case. Recall that the gap is scaled by a factor hr = a2/R whereas the other two dimensions are
scaled by xr = a, thus r̄ = r/a. Therefore, the non-dimensional gap, between the undeformed
bodies, becomes

G(r̄) =
r̄2

2
+ δ̄, (4.39)

where input parameters are no longer present. Similarly, by scaling the contact pressure with
pH , we have

P =
√

1− r̄2, (4.40)

which, again, is free from input parameters. Notice that this equation can be written in the
form

P 2 + r̄2 = 1. (4.41)

This means that the general non-dimensional pressure solution for the Hertzian contact
problem is simply as semi-sphere of unitary radius, such as the one depicted in Fig. 4.5c.

Let us now consider briefly the two-dimensional case representing the contact of infinitely
long bodies such as cylinders. In this case, the contact will be on a line, symmetric with
respect to the centre of the contact. The non-dimensional solution becomes, in this case a
semi-circle of unitary radius. This solves the problem completely as any other case can be
found via a scaling. Let us therefore solely give a summary of the most common relations in
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this case

a =

(
4wR

πE∗

)1/2

, (4.42a)

pH =
2w

πa
=

(
wE∗

πR

)1/2

. (4.42b)

Notice that, in this case, w has the units of force per unit length, (N/m). Notice also that,
in this case, the rigid body movement, δH , caused by w cannot be specified. This is because
of a reference point for the deformation cannot be specified, as reflected by the arbitrary
constant left in (4.6).

Finally, let us give a comment for the three dimensional case in which the solids are not
of revolution. Using appropriate axes, the geometry of these bodies can be described as

z =
x1

R′
+
x2

R′′
+ δ. (4.43)

Notice that now two radii, R′ and R′′ must be used to describe the surface. In this case the
contact region will form an ellipse instead of a circumference. The solution to this problem,
however, is not as simple as the case of bodies of revolution, where the cylindrical symmetry
could be exploited. We will therefore not give the solution and simply refer the interested
reader to, e.g., [30].

4.3.2 The Westergaard solution

Another very important although less well known solution is that given by Westergaard [35]
for the 2D contact of surfaces whose profile is characterized by a sinusoidal function. This
solution was the first to provide a clear insight on the contact of rough surfaces. Without
representing a realistic surface topography, the sinusoidal wave is the starting point to un-
derstand how roughness behaves and the solution will teach us how varying amplitude and
frequency in the roughness will affect the contact behaviour. A representation of the problem
and its solution is given in Fig. 4.6. A good description of this problem can also be found
in Johnson’s book [30]. We will follow the latter in this description, instead of the more
nuanced but also more cumbersome presentation of Westergaard. Let us set the stage by
first considering the deformation caused by a sinusoidal pressure, i.e.,

pcos (x) = p∗ cos (2πx/λ) , (4.44)

where p∗ is the amplitude of the pressure wave and λ its wavelength. The deformation
caused by this pressure can be computed using (4.13), although the integration process is by
no means trivial. The result is the following:

uecos (x) =
λ

πE∗
p∗ cos (2πx/λ) (4.45)

Notice that this deformation has the same shape as the original pressure, scaled by a factor
λ/ (πE∗). Notice that this scaling factor also reflects what we found in Section 4.2, i.e., that
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a)

p̄ = 0

b)

p̄ < p∗

c)

p̄ ≥ p∗

λ

a

2∆

2p∗

Figure 4.6: Representation of the problem posed by Westergaard. The original geometry, depicted
in a), consists of an elastic upper body with sinusoidal waviness on its lower boundary, which is in
initial contact with a rigid flat surface. The case when the elastic upper body has been brought
into contact with the rigid flat body, under a load corresponding to the average pressure p̄ < p∗ is
illustrated in b). In this case the fraction real contact area is 2a/λ. The illustration in c) shows the
situation when the elastic upper body has been fully flattened. In this case the contact pressure
distribution is also sinusoidal. This occurs when the average pressure p̄ ≥ p∗.



28 CHAPTER 4. THE DRY CONTACT

a longer wavelength results in a less stiff surface. We can now use this result to say something
about the deformation of a wavy surface. Let us assume that the initial gap between this
surface and a flat one can be written as

gcos (x) = ∆ (1− cos (2πx/λ)) , (4.46)

where ∆ is the amplitude of the wavy surface. By comparing (4.46) with (4.45), we can
clearly see that our surface will be flattened completely if p∗ = πE∗∆/λ. Of course, pressure
must be non-negative, implying that the mean pressure must be greater than p∗ for this to
make sense. Therefore, a surface with the gap described in (4.46) will be completely flattened
if pressed by a mean pressure p̄ > p∗. Moreover, the pressure will have the following form

pcos (x) = p̄+ p∗ cos (2πx/λ) , p∗ =
πE∗∆

λ
, p̄ > p∗. (4.47)

Obviously, whenever p̄ < p∗, the equation profile in (4.47) will include negative contact
pressure, which is not physical. What will happen in reality is that there will be no full
contact. The solution of the equations for BEM in this case can also be found analytically,
albeit the process is even more complicated. The result, provided by Westergaard [35] is that
when the surfaces are pressed with a mean pressure p̄ < p∗, the pressure distribution can be
expressed as

pW (x) =
2p̄ cos (πx/λ)

sin2 ψa

√
sin2 ψa − sin2 ψ, 0 ≤ |x| ≤ a (4.48a)

pW (x) = 0, a ≤ |x| ≤ λ/2 (4.48b)

and the deformation as

ueW (x) =
p̄λ cos (πx/λ)

πE∗ sin2 ψa
cos 2ψ, 0 ≤ |x| ≤ a (4.49a)

ueW (x) =
p̄λ

πE∗ sin2 ψa

[
cos 2ψ + 2 sinψQ− 2 sin2 ψa ln

(
sinψ +Q

sinψa

)]
, a ≤ |x| ≤ λ/2

(4.49b)

where a is the contact width, given by

2a

λ
=

2

π
sin−1

(
p̄

p∗

)2

. (4.50)

and

Q =

√
sin2 ψ − sin2 ψa, ψ =

πx

λ
and ψa =

πa

λ
.

Note that one has to be particularly careful with the sign of Q. A schematic on how this
solution looks like is depicted in Fig. 4.6b.
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x1 x2

x3

Figure 4.7: A bi-sinusoidal surface, as described by (4.51), facing a flat surface.

4.3.3 Flattening of bi-sinusoidal surfaces

Let us finish with the three dimensional version of the previous one. In this case, we consider
an elastic surface described by a bi-sinusoidal function,

z = ∆ sin

(
2π
x1

λ1

)
sin

(
2π
x2

λ2

)
+ δ, (4.51)

facing a flat, rigid surfaces, as depicted in Fig. 4.7. In (4.51), λ1 and λ2 are the wavelengths
in each direction and ∆ is the amplitude. This case is much harder to solve than the previous
two-dimensional case, and there is no analytical solution for the partial contact situation.
Hence, there are only numerical investigations in this case, and the interested reader is
referred to [36] for a detailed analysis of the numerical solution of the partial contact. We
shall here review the solution for the full contact, given by Johnson [34]. Unsurprisingly, the
solution has the same form as for the two-dimensional case. Indeed, if mean pressure p̄ is
sufficiently large to flat completely the surface, the pressure distribution will be

p = p̄+ p∗ sin

(
2π
x1

λ1

)
sin

(
2π
x2

λ2

)
, p∗ =

√
2πE∗

∆√
λ2

1 + λ2
2

. (4.52)

Obviously, this means that p̄ > p∗ is the criteria to know weather the flattening is complete or
not. Notice that p∗ also has the same structure as in the two-dimensional case. This means
that, also in two dimensions, surfaces with longer wave-lengths will be easier to flatten. In
this case, however, we need to consider a combination of the wave-lengths in both directions.
It is easy to see that if λ1 = λ2, then p∗ is now equal to the one we obtained in the two-
dimensional case.

4.4 Discretisation

Except for few very specific cases, such as the examples given in the previous section, the
contact mechanics problem does not permit an analytical solution. Hence, the problem must,
in general, be solved numerically and, to this end, it needs to be discretised. We shall do this
in this section, taking one component at a time.
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Before we can discretise the set of equations to be solved numerically, we need to specify
the computational domain Ω which we will solve the set of equations on. Here we consider
computational domains defined as

Ω ..=


[a1, b1] , in 1D,

[a1, b1]× [a2, b2] , in 2D,
(4.53)

where we need to remember that the 1D domain is related to the 2D contact problem and
the 2D domain to the 3D contact. Since the apparent contact area is not known a priori, it is
not always an easy task to choose the computational domain. One can, however, always use
the nominal contact area as a starting point and then decrease it to better match the region
required to obtain the wanted accuracy of the solution. It is clear, however, that one must
seek a domain such that the pressure is zero at the boundaries (except for periodic domains),
as otherwise one can expect the pressure to be non-zero outside the domain. Based on the
definition of the domain (4.53), we will start to discretise the different parts of the problem,
starting by the domain itself. We will then continue with the gap, the pressure distribution,
the equation for deformation, (4.12), and the load balance equation, (4.11). For simplicity,
we will mainly consider the 1D case, giving the specific formulation for the two-dimensional
case whenever they are different.

4.4.1 Discretisation of the domain

The domain Ω can be simply discretised by setting

xi = a1 + i∆x1, i = 0, . . . , N1 − 1 in 1D, (4.54a)

(x1i, x2j) = (a1 + i∆x1, a2 + j∆x2) ,
i = 0, . . . , N1 − 1
j = 0, . . . , N2 − 1

in 2D, (4.54b)

where ∆xi = Li/(Ni − 1), i = 1, 2, where Li is the length of the domain in the xi-direction
and Ni is the number of points used to discretise the domain in each direction. Further-
more, (a1, a2) defines the South-West corner of the computational domain Ω. Of course, this
discretisation, in which ∆xi is constant, is the simplest possible and more complicated ones
could also be used. For instance, in [37], they employed a grid that became finer at the edge
of the contact. However, since the contact region is not known a priori, this grid needs to
adapt itself as the solution progresses. Therefore, it is much more complex to implement.
Moreover, we will see in Section 4.6 that the uniform grid presented in (4.54) allows for using
FFT techniques, to significantly accelerate the calculations.

4.4.2 Discretisation of the gap

In the model, the gap is a continuous function. In reality, we can only acquire surface height
values at a set of discrete points xi. If we assume that one of the surfaces is perfectly flat,
then this means that we know the gap in the same set of points, i.e. gi ..= g(xi). In the
case with two rough surfaces, we must rely on some sort of interpolation to define height
values of both of the surfaces at the same set of discrete points xi. Assuming either the
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former or the latter, the corresponding deformed gap, will also be given only at these points,
i.e. hi ..= h(xi). One must, therefore, always investigate how dense the grid must be in order
to capture the surfaces’ topographies correctly. For example, reproducing a single period of a
sine wave with the lowest acceptable accuracy, requires a grid with at least eight points. This
might, however, be a too coarse representation to obtain acceptable results if used as input
to the contact mechanics model and it a convergence test always needs to be performed.

x0 x1 x2 xi xN1−1

gi = |zui − zli|

x

z zu
zl

Figure 4.8: Schematics of the discretisation of the initial gap between two rough surfaces. The
continuous descriptions of the upper- and lower surface are depicted in red and blue. The discretised
surfaces are depicted in black. Notice that the same discretisation can be good enough (as for the
upper surface) or rather inaccurate (as for the lower surface), depending on the frequency content
of the surface to be discretised.

4.4.3 Discretisation of the pressure

When deriving (4.5) we described the deformation arising from a series of point loads Fij.
The point loads were, thereafter, assumed to result from the pressure p(x1i, x2j) acting over
a small area ∆A = ∆x1∆x2 and when we defined pij ..= p(x1i, x2j) we arrived at (4.4). In
between two grid points, we do not have information of the pressure and we need to introduce
some kind of assumption to handle this. One such assumption is to consider the pressure as
piece-wise constant over the area ∆A = ∆x1∆x2 centered at the point (xi, xj), i.e.,

pi ..= p(x), x ∈
[
xi −

∆x

2
, xi +

∆x

2

)
, i = 1, ...N1 − 1. (4.55)

This type of central-node pressure discretisation is illustrated in Fig. 4.9 for a 2D contact,
where the discrete piece-wise constant values pi (blue rectangles) and the continuous pressure
profile p(x) (red continuous line) are depicted. Note the light-blue half mesh-size ∆x/2 wide
rectangle to the left of a1 = x0 and the one to the right of b1 = xN1−1. These lay outside
the solution domain ([a1, b1]), and should be excluded when we, e.g., compute the load
contribution from the contact pressure.

4.4.4 Discretisation of the deformation equation

Based on the pressure discretisation presented in the previous section, we are now ready to
formulate discretised equations for the elastic deformation. In the 2D contact (line loading)
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Figure 4.9: Schematics of the discretisation of the contact pressure.

situation, we have seen that due to the parameter x0, in (4.7), an additional constant δ̄′

appeared in (4.26) during the non-dimensionalisation. To remove this complication, we
formulated the non-dimensional equation (4.27) (in which δ̄′ is included in U ′e) which we
will consider here, albeit in dimensions. Now, since the pressure is constant in the intervals
defined in (4.55) and zero outside the domain, the integral in (4.27) (in either non- or in
dimensional form), can be computed by considering one interval at a time and then summing
the results up. This means that an discrete approximation of the deformation can be obtained
as

u′ei
..= u′e (xi) = − 2

πE∗

∫
Ω

p (x) ln |xi − x| dx ≈ −
2

πE∗

N1−1∑
k=0

pk

∫ xk+∆x/2

xk−∆x/2

ln |xi − x| dx.

(4.56)
This expression can be rewritten in more compact notation by denoting the value of the
integral in (4.56) by Cik, i.e.

u′ei = − 2

πE∗

N1−1∑
k=0

Cikpk. (4.57)

For a given pair of points xi and xk, the coefficient Cik can be interpreted as the deformation
at the point xi caused by a constant unitary pressure applied on the interval with length ∆x
centred at xk. By virtue of the Cauchy principal value, it turns out that Cik can be computed
analytically, leading to

Cik =

(
xi − xk +

∆x

2

)(
ln

∣∣∣∣xi − xk +
∆x

2

∣∣∣∣− 1

)
−
(
xi − xk −

∆x

2

)(
ln

∣∣∣∣xi − xk − ∆x

2

∣∣∣∣− 1

)
.

(4.58)

For the 3D contact, the discretisation of the deformation equation (4.12), leads to

uij = − 1

πE∗

N1−1∑
k=0

N2−1∑
l=0

Cijklpkl. (4.59)

by using the same reasoning and assumptions as in the 2D case. The coefficients Cijkl may
be interpreted as the deformation at a point (x1i, x2j) caused by a unitary pressure applied
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on a rectangle of size ∆x1 ×∆x2 centred around the point (x1k, x2l). In [38], Love obtained
a closed form expression for Cij00, i.e., the deformation at (x1i, x2j) caused by a unitary
pressure applied on a rectangle of size ∆x1×∆x2 centred around the point (x1k, x2l) = (0, 0).
The result may be expressed as

πE∗Cij00 = (x2j + ∆x2/2) ln

 (x1i + ∆x1/2) +
√

(x2j + ∆x2/2)2 + (x1i + ∆x1/2)2

(x1i −∆x1/2) +
√

(x2j + ∆x2/2)2 + (x1i −∆x1/2)2


+ (x2j −∆x2/2) ln

(x1i −∆x1/2) +
√

(x2j −∆x2/2)2 + (x1i −∆x1/2)2

(x1i + ∆x1/2) +
√

(x2j −∆x2/2)2 + (x1i + ∆x1/2)2


+ (x1i + ∆x1/2) ln

 (x2j + ∆x2/2) +
√

(x1i + ∆x1/2)2 + (x2j + ∆x2/2)2

(x2j −∆x2/2) +
√

(x1i + ∆x1/2)2 + (x2j −∆x2/2)2


+ (x1i −∆x1/2) ln

(x2j −∆x2/2) +
√

(x1i −∆x1/2)2 + (x2j −∆x2/2)2

(x2j + ∆x2/2) +
√

(x1i −∆x1/2)2 + (x2j + ∆x2/2)2

 .

(4.60)
Notice that Cijkl can be found simply by translation, i.e., by replacing x1i by (x1i − x1k) and
x2j by (x2j − x2l)

To conclude this section, let us discuss the shape of the matrix-vector representation of
(4.58) (in the case of a 2D contact). We notice that u′ei

..= u′e(xi) depends on the distance
between the points xi and xk, |xi − xk|, rather than on both xi and xk, individually. Since
we use a regular grid to discretise our domain, Cik depends on |i− k|, rather than on both i
and k, individually. We can thus define a new coefficient K as

Kr = Cik ∀i, k : |i− k| = r. (4.61)

With this coefficient, we can see more clearly the structure of the matrix-vector representation
of (4.58). As an example, for the case N = 4 it looks like

u′0
u′1
u′2
u′3

 =


K0 K1 K2 K3

K1 K0 K1 K2

K2 K1 K0 K1

K3 K2 K1 K0



p0

p1

p2

p3

 . (4.62)

In this way it can be seen that the matrix has a particular symmetry, in which the value only
depends on the distance from the main diagonal. This type of matrix is called a Toeplitz
matrix. As we shall see in Section 4.6, this type of matrices is closely related to discrete
convolutions. A similar reasoning could be used to describe the symmetries of the matrix for
the two-dimensional case. We will, however, leave out the discussion here, but in Section 4.6
we will show how the relation to the convolution can be utilised when applying a fast Fourier
transformation based technique to accelerate the calculation of the summations (or matrix
multiplications) for the discrete elastic deformation.
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4.4.5 Discretisation of the load-balance equation

The last piece to discretise is the load balance equation (4.11). We start from the central-
node discretsation of the pressure given in Section 4.4.3. The total load can thus be ap-
proximated by simply adding the areas of each rectangle in Fig. 4.9, meaning that we in the
one-dimensional case have

w =

∫
p (x) dx ≈ ∆x

2

N1−1∑
i=0

pi +
∆x

2

N1−1∑
i=1

pi =
∆x

2

N1−1∑
i=0

pi + pi+1. (4.63)

The extension to the two-dimensional case is trivial.
Notice that, by assuming that the pressure varies linearly between grid points, the ap-

proximation of the integral in (4.11) would be following the trapezoidal rule,

w =

∫
p (x) dx ≈

N1−1∑
i=0

∆x
pi − pi+1

2
+ ∆xpi =

∆x

2

N1−1∑
i=0

pi + pi+1, (4.64)

which means that the central-node discretisation is as accurate, i.e. of the first order, as the
trapezoidal rule. If the pressure had, instead, been assumed to be constant between the
nodes xi, i.e., pi ..= p(x), x ∈ [xi, xi+1) , i = 0, ...N1 − 1., then the approximation of the
integral in (4.11) would be of the zeroth order, viz.

w =

∫
p (x) dx ≈ ∆x

N1−1∑
i=0

pi. (4.65)

4.5 Solving the CM problem as a complementarity prob-

lem using Lemke’s algorithm

In the previous section, the contact mechanics problem has been posed in a discrete manner.
We have, however, not yet discussed how solve it. The solution is not trivial since neither the
pressure nor the deformation are known a priory. In this section we thus present a method to
obtain the solution. For this, let us write the full discrete problem in the following manner,

h = Kp+ g − δ, (4.66a)

h · p = 0, (4.66b)

h ≥ 0, p ≥ 0. (4.66c)

This problem is not a discrete version of (4.15), since the rigid body movement δ, included
in the equation for the gap between the bodies is taken as input here and in (4.15) the load
w is taken as input. To have a non-zero solution, g− δ must now be negative at some regions
and the resulting pressure will be such that the bodies are deformed to prevent penetration
in reality. With this clarification, it is clear that (4.66) corresponds to (4.15).

The reason for writing (4.66) in this particular manner is that it has the form of a Linear
Complementarity Problem. These types of problems are very common and therefore several
algorithms to solve them are available. We can therefore make use of them to solve our contact
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Table 4.1: Example of the initialization of Lemke’s algorithm for vectors h and p of length 2 and
K = [2− 1;−11] and g = [−3; 1]

h0 h1 p0 p1 η g
1 0 -2 1 -1 -3
0 1 1 -1 -1 1

mechanics problem. In this section, we will introduce one of them, i.e., Lemke’s algorithm.
Note, however, that one can find other, more efficient algorithms in the literature.

Lemke’s algorithm is a pivoting type algorithm whose main advantage is that it reaches
the exact solution after a finite number of steps. Its disadvantage, however, is that the number
of pivots can be quite large and thus it can be slow. Moreover, we are forced to operate with
the full matrix K, which requires a lot of memory. A description and justification of Lemke’s
algorithm can be found in [39]. We will here only present a short description of it.

To initialize the algorithm, we construct the a table in the form A = [I,−K,−1|g], where
I is the identity matrix and −1 is a column vector with all values equal to −1. An example
of this table is given in Table 4.1. The variables to which the identity matrix correspond to
are termed basic while the other ones are referred to as non-basic. At the initialization stage,
all hi are basic while all pi are non-basic. We have also added an extra dummy variable η to
give us sufficient flexibility. Now, it is clear that when g is positive we can simply set all the
non-basic variables to zero and the problem is solved. If it is not, the key of the algorithm is
to perform a change of base to change the position of the Identity matrix by pivoting until
the resulting g is positive. Note, however, that we must proceed not only until g is positive
but also until the variable η is non-basic at the same time, since it is just a dummy variable.
From the initial state, the algorithm consists of the following steps:

1. Select the pivoting variable: for the first pivoting, the chosen variable is η. After that
complementarity is used to select it. If pi stopped being basic in the previous iteration,
we select hi and vice-versa. This is done to ensure that for all pairs hi and pi one of
them is basic and the other is non-basic.

2. Select the pivoting row : for this we compute the ratios between the values in the
column under the pivoting variable and the column of g. We then select the row with
the smallest, non-negative ratio. This is done to ensure that the column in g remains
positive after the first pivoting.

3. Pivoting : for all rows Rk, do a pivoting by setting Rnew
k = Rold

k aij − Riajk, where j
is the index for the pivoting variable, i is the index of the pivoting row and akj is
the element of the matrix A in the row k and the column j. Notice that both a and
these indexes do not refer to the components of the vectors p and h but to the matrix
A = [I,−K,−1|g].

4. Normalizing : for all rows, divide by the number necessary to ensure that the basic
variables have a one in their columns, to ensure that an identity matrix is present.

5. Test the solution: if the column of g is composed of positive values and η is non-basic,
terminate. Otherwise, go back to point 1.
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With this algorithm, a solution to (4.66) can be found. Then, the total load can be computed
by integrating the pressure following the discretization in Section 4.4.5. Notice that, by
shifting the initial gap g up and down, the load can be decreased and increased.

4.6 Acceleration via FFT

When looking at the algorithm presented in Section 4.5 it is clear that the main burden
comes from pivoting in such a large and full matrix. Although one can use other methods
which might be more efficient in terms of total number of iterations, the burden posed by
the matrix K will still remain. Indeed, computing the deformation using the matrix-vector
multiplication in (4.62) is going to be extremely expensive, as K is of size N2 in one dimension
and N2

1N
2
2 in two-dimensions. Moreover, it is a full matrix, meaning that it has no zeros

that would allow for simplification. It is thus clear that this operation will require a lot
of memory and computational power, especially for three-dimensional contacts. Therefore,
before introducing a more efficient algorithm, as we will do in Section 4.7, we need to find a
manner to compute the deformation in a more efficient way. For this, we can use the fact that
K has a very particular structure, which can be used to significantly lower the requirements
both in terms of memory and in terms of computational time. In this section, we will recognize
the computation of deformation as a convolution, which will allow us to use the Fast Fourier
Transform (FFT) to simplify the computations. To set the stage, however, let us begin
discussing the continuous case, i.e., the continuous convolution. After this, we will discuss
the discrete convolution, which will be more practical in use. A summary of the different
paths that we will consider is given in Fig. 4.10. Throughout this chapter, we will consider
only the 1D problem modelling 2D contacts. However, the 2D Fourier transform is obtained
by simply applying the 1D Fourier Transform in each direction. Therefore, everything we
consider here is directly applicable to the 3D contacts as well. A definition of the Fourier
Transform and some of its properties can be found in the Appendix.

4.6.1 The elastic deformation seen as a convolution

As stated previously, the computation of the deformation can be written as

ue (x) =

∫ ∞
−∞

K(x− x′)p(x)dx′. (4.67)

By comparing it to (A.27), this equation can be identified to be the convolution between the
kernel K and the pressure p. A common way to interpret a convolution is to note that it
becomes larger the more correlated the two functions are. Indeed, we can see that the more
K and p overlap, i.e., the closer the point x is to a peak of p (x), the larger the deformation
is. Having established the deformation as a convolution, we can make use of the Convolution
Theorem, presented in Section A.4. This states that, since ue is computed as the convolution
of K and p, we can write

F {ue} = F {K}F {p} , (4.68)

where F {·} indicates the Fourier transform. To make good use of (4.68), we need to find an
expression for F {K}. Although we could simply try to compute the Fourier transform of
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ue(x) =
∫∞
−∞ k(x− x′)p(x′)dx′

F [k] (ω) = 2
E∗ω

ue = F−1 [F [k]F [p]]

Analytical ap-
proach, Hard to
obtain the result

F [k] (ωi) = 2
E∗ωi

uei = DF−1 [F [k] (ωi)DF [pi]]

DFT-CC method,
large error

discretise

uei =
∑N

k=1 ki,kpk

DF [ki]

uei = DF−1 [DF [ki]DF [pi]]

DFT-DC method,
preferred one

discretise

Figure 4.10: A representation of the different ways in which the Fourier transform and the Discrete
Fourier Transform have been used to speed up the computation of the deformation.

K directly, we can also make use of result we presented in Section 4.3.2. It states that the
deformation caused by a sinusoidal waves is also a sinusoidal wave. More precisely,

p (x) = a sin (ωx) → ue (x) =
2

E∗
a

ω
sin (ωx) , (4.69)

where ω is the angular frequency. By comparing the pressure and the deformation, we can
clearly see that

F {K} (ω) =
2

E∗ω
. (4.70)

With this, we can construct the first method to compute deformation, as represented by
the blue path in Fig. 4.10. In this method, we first start by taking the Fourier transform
of the pressure. Then, this is multiplied by F {K}. Finally, the inverse Fourier transform
can be used to recover the deformation. Of course, this method is not particularly useful
as computing F {p} analytically is not a trivial task. Because of this, the method is of
limited use. We can use it, however, to generalise the results obtained in Section 4.3.2 and
Section 4.3.3 concerning the flattening of sinusoidal surfaces. Consider a one-dimensional
profile, which can be expressed on the following form:

g = ḡ +
n∑
k=1

∆i sin (ωix) , (4.71)

where ḡ is the average initial gap. If we want to completely flatten this profile, we clearly
need a deformation of the form

ue = δ −
n∑
k=1

∆i sin (ωix) . (4.72)
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Following (4.68), we can easily see, that the pressure needed for such purpose is

p = p̄+
n∑
k=1

2∆i

E∗ω
sin (ωix) , (4.73)

which follows from (4.69) and the linearity of the Fourier transform. Moreover, the pressure
needed to completely flatten the profile is that required to ensure that the pressure in (4.73)
is always non-negative, i.e.,

p̄ ≥
n∑
k=1

2∆i

E∗ω
. (4.74)

A similar result can be obtained for bi-sinusoidal surfaces.

4.6.2 The DFT-CC method

As we saw, the continuous convolution can facilitate the computation of deformation in
some cases. Despite that, it is not always easy to obtain analytically the required Fourier
transforms. A reasonable approach, taken, for example, by [40], is thus to perform them
numerically, which leads to the Discrete Fourier Transform - Continuous Convolution (DFT-
CC), depicted in red in Fig. 4.10. In essence, this approach applies the same treatment as we
did to obtain (4.73) to general pressure profiles, which may not fully flatten the surface. For
this, we start by taking the Discrete Fourier transform of the (discrete) pressure distribution
for which we want to compute the deformation, leading to the following expression for the
pressure distribution

pi ..= p(xi) ≈
a0

2
+

N/2∑
n=1

an cos (ωnxi) +

N/2∑
n=1

bn sin (ωnxi) , (4.75)

where ωn is a discretisation of the continuous frequency ω, i.e.,

ωn = n∆ω, ∆ω =
2π

L
, n = 0, ..., N, (4.76)

where L is the length of the domain. The continuous convolution method presented in
the previous section can now be applied to (4.75). Note that this method is equivalent to
computing the deformation as

ue = DF−1

{
2

E∗ωn
DF {p}

}
, (4.77)

where ωn should be interpreted as a series presented in (4.76) and DF {·} and DF−1 {·}
stand for the Discrete Fourier Transform and its inverse.

This method is nowadays out of use, since it introduces a larger error in the computation
of ue. This error comes from the representation of the pressure in (4.75). Indeed, the method
will only give accurate results as long as (4.75) is a good approximation to the pressure. This
means that the frequency components of p must be well represented in intervals of size ∆ω
and that frequencies above ωN/2 are not contributing significantly. We can now ask ourselves
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whether this is a common situation. By realizing that (4.75) has the same form as (4.73),
we can see that it corresponds to the complete flatting of a surface and the method would
then be accurate in such a case. In other cases, however, the DFT-CC method can cause
large errors. As indicated by Liu and Wang [41], the error is caused by aliasing. Indeed, the
pressure distribution corresponding to a partial contact will have a sharp knee at the edge
of the contact (see e.g. Fig. 4.5 and Fig. 4.6). Because of this, its Fourier transform will
be composed of infinitely many frequency components, which do not decay rapidly. These
components will then merge with the ones below ωN/2 thus causing the error.

A way to increase the accuracy of the DFT-CC method is to reduce the effect of aliasing.
For this, two options are available. The first one is to have a finer discretisation, which
increases the amount of frequencies considered. The other is to increase L, which reduces
∆ω and, again, increases the number of frequencies considered as long as ∆x is kept constant.
As depicted in Fig. 4.11, the convergence of this approaches is, however, quite poor, and thus
a large extension is required to obtain the accuracy called for. This does, of course, does
not go well with the objective we posed when the Fourier methods were introduced, i.e., to
reduce computational time and memory needed. Therefore, the DFT-CC method is hardly
used nowadays.
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(a) The deformation for a Hertzian pressure distri-
bution, obtained with the standard, matrix-vector
multiplication, method (STD), and with the DFT-
CC method for four different extended domains.
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Figure 4.11: The elastic deformation in a 2D Herzian contact, computed by means of the Discrete
Fourier Transform - Continuous convolution method (DFT-CC) and the numerically exact standard,
matrix-vector multiplication, method (STD).
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4.6.3 DFT - Discrete Circular Convolution method: Periodic sur-
faces

As we have seen in the previous section, the DFT-CC method is not very accurate. As
discussed, aliasing is the responsible for this inaccuracy. Ultimately, the problem can be
tracked to the mixing between the use of the Discrete Fourier Transform (DFT) to describe
the pressure and the Continuous convolution theorem to analyse the deformation caused
by this pressure. To avoid this issue, one should therefore consider directly the discrete
version of the problem. The resulting method is known as the DFT-Discrete Convolution
method. Remember that the discrete equation for the deformation in 2D, which was derived
in Section 4.4.4, according to (4.57), is

uei
..= ue(xi) = − 2

πE∗

N−1∑
j=0

Ki,jpj = − 2

πE∗

N−1∑
j=0

K|i−j|pj, i = 0, 1, ..., N − 1. (4.78)

Now, this equation is not directly a convolution, although it is fairly close. As described in
Section A.5, a circular discrete convolution is defined for periodic functions and has the form

gi = h ∗ f =
N−1∑
i=0

h〈i−j〉Nfj i = 0, 1, ..., N − 1, (4.79)

where 〈i− j〉N is the N modulus of i − j so that the negative indices are defined through
the periodicity of the function, i.e. h〈−1〉N = h〈N−1〉N = hN−1, h〈−2〉N = h〈N−2〉N = hN−2, etc.
The difference between the operations involved with the circular convolution and the ones in
the elastic deflection is shown in Fig. 4.12.

An important difference is, of course, that the functions in (4.79) are periodic whereas
those in (4.78) are not. The study of the deformation of periodic surfaces is, however, relevant
for the study of roughness. Let us therefore modify (4.78) to account for that. For this, we
define the deformation as

uei = − 2

πE∗

N−1∑
k=0

C〈i−j〉Npj, i = 0, 1, ..., N − 1, (4.80)

where the coefficients C〈i−j〉N are defined as

C =
[
K0, K1, ..., KN/2−1, KN/2, KN/2−1, .., K1

]
. (4.81)

A graphical interpretation of the meaning of this coefficients can be found in Fig. 4.13.
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g0

f0 f1 f2 f3

h0 h3 h2 h1

ue0

f0 f1 f2 f3

C0C1 C1 C2 C3 C2

g1

f0 f1 f2 f3

h1 h0 h3 h2

ue1

f0 f1 f2 f3

C1C2 C0 C1 C2 C3

Figure 4.12: Representation of the operations that are performed during convolution, (4.79), (left),
and to compute the deformation (4.78) (right). To compute, e.g., g0, one needs to multiply the values
of f with the values of h below and then add the results. The arrows indicate the change in h or C
to advance one index in g and ue, respectively. Note that two additional nodes have been added to
illustrate the calculation of the elastic deformation.
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Figure 4.13: Representation of the computation of uei. The calculation procedure is to multiply
the each pressure pj by C〈i−j〉N , which corresponds to the value of Kn on the row below, and then
add the results together. The arrows indicate the change in C to advance one index i → i + 1 in
uei.

Note that the only thing we have done is to compute the distance allowing for periodicity,
which is nicely captured by our repeated and mirrored coefficients in (4.81). For example,
the point N − 1 is actually at a distance 1 from the point 0 and thus the last coefficient in
(4.81) is K1. This new deformation equation is in the form of a circular convolution and
both the pressure and the kernel K are now considered periodic. Therefore, we can apply
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the discrete convolution theorem to write

DF {ue} = DF {K}DF {p} . (4.82)

As shown in Section A.5, this relation is exact, i.e., it will give the same solution for ue as
(4.80). This means that the only error will come from the discretisation itself, as shown in
Fig. 4.14 for a slightly different case.

Without having to worry about errors introduced by the model, we can take full advantage
of the better performance of this method as compared to the matrix-vector multiplication.
Memory-wise we gain a lot since the kernel K is represented only as a vector of size N , instead
of a matrix of size N2 (for the 2D contact). In computational terms, the cost to compute
the deformation using the DFT-DC method comes from the DFT. Thankfully, there is an
algorithm, called Fast Fourier transform (FFT) which has a complexity N logN . This is
much quicker than the complexity of the matrix-vector multiplication, which is of order N2.
Notice that the complexity must be understood as the rate at which the time increases as a
function of N . The time for the DFT-DC is then proportional to N logN while the one for
the matrix-vector multiplication is N2. This means that for sufficiently large N , the DFT-DC
method will always by much faster.

Before finishing, let us make it clear that the method as presented here is only valid to
compute the deformation caused by a periodic pressure distribution. Therefore, the surfaces
studied must be periodic as well. One might argue that there is no such thing as a periodic
surface, which is true. However, if we want to study the effect of surface roughness, it is not
a bad approximation to assume that the roughness is periodic. This approximation will work
fine as long as the wavelength of the roughness is much smaller than the overall contact size.
This situation is encountered in conformal contacts, which are found in many applications,
e.g., journal bearings. Notice that this approximation is also made in the Westergaard
solution, discussed in Section 4.3.2.

4.6.4 DFT - Discrete Linear Convolution method: Non-periodic
surfaces

As we discussed in the previous section, the DFT-DC method is very advantageous in terms
of memory and computational time. We therefore want to be able to use it for all contact
problems, including the non-conformal contacts (e.g. the Hertzian contact problem) in which
the assumption of periodicity cannot be made. As discussed in Section A.5, it is possible to
transform linear convolutions of non-periodic functions into circular convolutions of periodic
functions by extending the domain. The same can be done for (4.78). In order to see how
to do it, let us consider the computation of ue0, ue1 and ueN/2−1 in Fig. 4.13. We notice that
the coefficients of the pressures p0 to pN/2 are correct in our non-periodic computation. By
correct we here mean that the index of the coefficient K they are multiplied with, matches
with |i− k|. It can easily be seen that this holds for all uei with i < N/2. The problem arises
when considering pressure points with index larger than N/2. For those points, the distance
is too short. This would not be a problem, however, if all those pressures would be zero. In
that case, the computation in Fig. 4.13 would be equal to the desired one. Following this
thoughts, one can come up with the following strategy, presented, e.g., in [4],
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1. Start with a discrete pressure vector pN and a vector of coefficients KN , both of size N

2. Create a vector of coefficients of size 2N as C2N = [K0, K1, ..., KN−1, 0, KN−1, .., K1]

3. Create another pressure vector p2N , of size 2N , via zero-padding, i.e., p2N
i = pNi for

i = N/2 + 1, ..., N/2 +N and p2N
i = 0 for i ≤ N/2 ∧ i ≥ N/2 +N + 1

4. Compute the deformation ue
2N = DF−1

{
DF

{
C2N

}
DF

{
p2N
}}

.

5. The vector ue
2N is now too long, but we only need to keep the initial values, i.e.,

uei = ue
2N
i for i = 0, 1, ..., N − 1.

It is easy to see that this zero-padding procedure leads to a convolution which is exactly
equal to (4.62). Therefore, we keep all the benefits of the DFT-DC method, even for non-
periodic signals. The price to pay is that the domain needs to be doubled. With this
doubling, however, we obtain an exact results and thus no further extension of the domain is
ever needed. Figure 4.14 depicts the deformation computed with the non-periodic DFT-DC
method caused by a Hertzian pressure. We would like to highlight here that the DFT-DC
method is numerically exact to the vector-multiplication method.

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x/a

p/
p H

N = 23

N = 25

N = 28

(a) Dimensionless Hertzian pressure distributions
for three different discretisations, i.e., N = 23,
N = 25 and N = 28.
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Figure 4.14: Hertzian pressure distributions (a) and corresponding elastic deformations (b), ob-
tained with the DFT-DC method, for three different discretisations, i.e., N = 23, N = 25 and
N = 28.

4.7 A variational-principle based elastic CM solver

Let us now see a more efficient way to solve the contact mechanics problem, as compared to
Lemke’s algorithm (see Section 4.5), which exploits the acceleration via FFT we described
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σ

U∗e
σ

ε

Figure 4.15: Left: The constitutive Strain-Stress relation in linear elasticity. The area under
y = σ(ε) represents Internal elastic energy caused by compression or tension per unit volume
Ue. Right: The complementary contitutive Stress-Strain relation with the complementary elastic
energy U∗e per unit volume being the area under y = ε(σ).

in Section 4.6. By this, we reduce both the computational burden caused by the matrix-
vector multiplication but also save memory, as the full matrix need not be stored. The
method presented here is based on a variational principle, which is an approach to mechanics
in which we seek the solution through the minimisation of a functional representing some
form of energy. A typical example is to find the state that minimise the total energy is
to identify the equilibrium state of the same. The concept presented here is based on the
complementary energy and it is also related to the principle of virtual work. One way of
interpreting complementary energy is that it can be seen as work conducted by a force
moving an object a certain distance, while “normal energy” can be seen as work occurring by
moving an object a given distance under a certain resistance. An attempt to visualise this,
in terms of energy per unit volume Ue, is made in Fig. 4.15. The intention is to show that
it is more convenient to express problem in terms of complementary energy because, at the
contact locations we assume that the pressure p has caused the actual deformation u, which
at the contact points (by complementarity) is equal to the initial gap g between the surfaces.
The virtual work is the energy required to impose a displacement u∗ on the boundary of the
deformable body, which renders exactly the same deformed state as the state resulting from
applying the pressure p.

In the context of contact mechanics, the total complementary energy can be expressed as
the different between the internal elastic energy U∗e and the corresponding virtual work U∗v ,
i.e.

V ∗ = U∗e − U∗v . (4.83)

The internal elastic energy is given by

U∗e = Ue =
1

2

x

Ω

pue dΩ, (4.84)

and the virtual work by

U∗v = Uv = −
x

Ω

p(δ − g) dΩ, (4.85)
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Thus, the complementary energy can be formulated as

V ∗ =
1

2

x

Ω

pue dΩ +
x

Ω

p(g − δ) dΩ, (4.86)

see [1]. We note that since

w =
x

Ω

p dΩ,

we can write (4.86) as

V ∗ =
1

2

x

Ω

pue dΩ +
x

Ω

pg dΩ− δw. (4.87)

Dressed in contact mechanics terminology, finding p that minimise the functional V ∗, in this
variational-principle based method, is equivalent of finding the contact configuration which
minimises the total complementary potential energy. For more details on the variational-
based approach, the reader is referred to the work by Kalker, in particular [9].

To find the numerical solution to the contact mechanics problem, we must discretise
(4.87). Using the discretisation presented in Section 4.4 and expressing the deformation as a
function of pressure through (4.62), we can write

V ∗ ≈ 1

2
pTKp+ pTg − δw, (4.88)

where p and g are vectors, δ the rigid body displacement (mutual approach) and K is the
matrix in (4.62). From the discrete formulation of the variational principle it is clear that it is
a quadratic problem, which can be solved with various types of readily available algorithms.
In the following we will present one of these, which simply consists on following the gradient of
V ∗ towards the minimum, see [10]. In the field of optimisation, this approach is also known as
the gradient decent method, which is the numerical correspondence to the analytical method
of steepest decent. Since δw is independent of p the gradient of V ∗ with respect to p is simply

∇V ∗ = Kp+ g = ue + g. (4.89)

Notice that we do not need to know the value of V ∗ but only its gradient. We do however,
need to compute ue, and this can be done through the fast DFT-DC technique presented in
Section 4.6.4. A simple algorithm ought to start with a given pressure distribution, e.g., a
constant one, then the deformation can be computed. Thereafter, an initial value for ∇V ∗
and used to update pressure according to

pnew = pold − r∇V ∗ = pold − r (ue + g) , (4.90)

until convergence is reached. The minus sign is due to that we are minimising V ∗. The
relaxation factor r > 0 can be defined in different ways, e.g. as in the conjugate gradient
method [42] or it may simply be specified as a constant which can be increased or reduced if
the rate of convergence is too high or too slow. Note that, while updating the pressure, we
have another constraint, i.e., the total load w is also specified, thus we need to take it into
account as well. To this end, after every update of the pressure according to (4.90), it needs
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to be modified to comply with the load balance constraint. This can be done by shifting the
pressure up or down a certain value α. An overview of the algorithm resulting from these
considerations is given in Fig. 4.16.

Define the gap between the surfaces: g = |zu − zl|

Initial guess: pold = w
L1L2

Calc: pnew = pold − r∇V ∗
(
pold
)
, where ∇V ∗

(
pold
)

= ue
(
pold
)

+ g

Force balance: find α so that
∫

Ωc
pnew + α dx = w,

Ωc = {x| pnew ≥ 0}

Truncate pressure: pnew = pnew + α,
pnew ≤ 0→ 0

Check if x ∈ Ωc lie within a plane?
|h(x ∈ Ωc)| < ε:

Done!
YES

pold ← pnew
NO

Figure 4.16: Flow chart of the solution procedure for solving the contact mechanics problem using
the variational principle.

Let us conclude with a comment on the constraints imposed by the Kuhn-Tucker comple-
mentary conditions, (4.15a) and (4.15b). We have not mention them so far in the context of
this solver. These are, however, implicitly enforced by the minimisation of the complemen-
tary energy. Indeed, at its minimum, ∇V ∗ is zero. Note, however, that this means that, for
the points in contact, ue = −g and thus h = 0. We therefore only need to be careful to avoid
negative pressures at each step of the iteration procedure.

4.8 Enhanced CM solver including plastic deformation

It is clear that introducing plastic deformation in the context of the boundary element method
is not going to be easy. This is because we used very early the linear behaviour of elasticity
and the resulting principle of superposition. Remember that we did that to describe the
deformation of a given pressure distribution, given in (4.5), as the sum of the deformation
caused by many point loads, given in (4.1). Plasticity is, however, not linear and thus does
not allow for such convenient treatment. In this section we will, however, describe a simple
method to include plastic deformation, which provides for a good first approximation to the
effect of plasticity.
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The idea behind the approach presented here, which is the contact-mechanics backbone
in the Lule̊a mixed lubrication model (LMLM) [3, 11], is that when the contact pressure
at a given point exceeds a certain value, this point is allowed to flow freely towards the
contact plane without any further increase in the pressure. This maximum allowed value
for the pressure is defined as the hardness of the (surface-near) material in the softer of the
contacting bodies, H. An approximative estimate of the hardness is given by

H = 2.8σY , (4.91)

where σY is the yield limit of the material [30]. A system defining the contact mechanics
that includes plastic deformation, via the hardness may, therefore, be formulated as

h (x) > 0, p (x) = 0, x ∈ Ωc, (4.92a)

h (x) = 0, 0 < p (x) ≤ H, x /∈ Ωc, (4.92b)

h = ue + (g − up)− δ, (4.92c)

ue =

∫
Ω

K(|x− x′|)p (x′, x′) dx′, (4.92d)

w =

∫
Ω

p (x) dx. (4.92e)

In the paper by Tiwari et al. [43] they performed indentation experiments on sandblasted
aluminium surfaces to explore the plastic deformation of asperities and modelled the contact
mechanics using the aforementioned enhanced CM solver taking into account the plastic flow.
It was concluded that the numerical predictions quantitatively describe the plastic deforma-
tion that the aluminium surfaces undergo. Moreover, in most cases, the long-wavelength
roughness governs fluid leakage observed in metallic seals, they drew the conclusion that it
would be possible to estimate the leakage using the elastoplastic contact mechanics model
described herein.

The system of equations presented above, can be discretised in the same manner as in the
elastic case. Moreover, by introducing two modifications to it, the variational-principle based
method, presented in Section 4.7, can be applied also in this case. Firstly, when updating
the pressure, this must be truncated to ensure 0 ≤ p ≤ H, and secondly, the points where
p = H, i.e. x ∈ Ωp, which experience plastic deformation up will cause ue + g − δ 6= 0 and
thus ∇V ∗ 6= 0 even if they are in contact. These points must, therefore, excluded from the
convergence criterion |h(x ∈ Ωc)| < ε, with ε specifying the tolerance. The solution procedure
can then be executed in the same manner as in the elastic case. The main difference being
that the force balance criterion in this case includes the contribution of the yielding points.
Indeed, for x ∈ Ωp, the convergence criterion will not be fulfilled. For it to be fulfilled, up
at these points must be the solution to (4.92c) when h = 0. This is also how up should be
calculated, i.e.

up(x) = g(x) + ue(x)− δ, x ∈ Ωp (4.93)

A flow chart of the solution procedure is depicted in Fig. 4.17.
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Define the gap between the surfaces: g = |zu − zl|

Initial guess: pold = w
L1L2

, wp = 0, Ωp
..= ∅

Calc: pnew = pold − r∇V ∗
(
pold
)
, where ∇V ∗

(
pold
)

= ue
(
pold
)

+ g

Force balance: find α so that
∫

Ωc
pnew + α dx = w − wp,

Ωc = {x| 0 ≤ pnew < H}

Truncate pressure: pnew = pnew + α,
Ωp = {x| pnew ≥ H}

pnew ≤ 0→ 0 and pnew ≥ H → H

Check if x ∈ Ωc lie within a plane?
|h(x ∈ Ωc)| < ε:

Done!
YES

pold ← pnew
NO

Compute: wp = H|Ωp|

Figure 4.17: Flow chart of the solution procedure for the enhanced contact mechanics. Note that
|Ωp| denotes the area of the plastically deformed region.



50 CHAPTER 4. THE DRY CONTACT



Chapter 5

The Lubricated Contact

In his celebrated paper [44], Reynolds presented an analysis of hydrodynamic flows in thin
gaps. Examples of such are the gap between the rolling element and the raceway in a bearing,
between the contacting surfaces in a seal, between the eye and the contact lens, in our joints
and when a water film is generated between a car’s tyre and the road surface. Fig. 5.25
illustrates the typical schematics of a flow domain in lubrication, where h0 � l0 and h0 � b0.

z

y

x

h0

l0 b0

ul

uu

Ω

ω

�
���

hu

�
���

hl

Figure 5.1: Schematic illustration of a thin gap - not to scale, between the two impermeable surfaces
hu and hl, moving relatively to each other with the velocities uu and ul, respectively.

The parameter h0 is a reference measure of the gap between the surfaces hu and hl and l0 and
b0 are reference measures for the size in the x- and y-directions, respectively. These relevant
lengths, l0 and b0 are often chosen as the macroscopic dimensions of the machine elements.
For instance, if studying a journal bearing, l0 would be the journal circumference (= 2πR)
and b0 could be its width. Notice, however, similarly as we saw in Chapter 4, this condition
also requires that the surface has small slopes. Otherwise one would be forced to choose l0
and b0 as the relevant wavelengths of the roughness, which would be close to h0. Again, a
factor 1:10, which is commonly encountered is sufficient. Where the thin film approximation
holds, i.e., where h0 � l0 and h0 � b0, Reynolds’ dimension reduced model for the flow in
the thin gap between the impermeable surfaces, can normally be applied instead of the full
set of the Navier-Stokes equations.

As we will soon see, the model resulting from applying the thin film approximation to the
Navier-Stokes equations provides for a two-dimensional partial differential equation for the
fluid pressure. The 3D velocity field can then easily obtained from its solution. In turn, this
gives a clear computational advantage, as only two dimensions, instead of three, are to be
considered and meshed. It is the main reason behind that the Reynolds equation is widely
used and frequently found in the literature. In the majority of the available publications
concerning lubrication, some of which are listed in the review article [45], the Reynolds
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equation is presented as

∂(ρh)

∂t
=

∂

∂x

(
ρh3

12µ

∂p

∂x
− (uu + ul)

2
ρh

)
+

∂

∂y

(
ρh3

12µ

∂p

∂y
− (vu + vl)

2
ρh

)
, (5.1)

where h = hu − hl is the (thin) gap between the surfaces, p is the fluid pressure and ρ and µ
are the density and the viscosity of the fluid. Moreover, the velocities of the upper and the
lower surfaces are uu = (uu, vu, wu) and ul = (ul, vl, wl), respectively.

Common examples of this use of Reynolds equation can be found in the field of hydrody-
namic lubrication of thrust- and journal bearings, elastohydrodynamic lubrication of rolling
element bearings, gears and cams, and leakage in seals, where (5.1) is often used together
with semi-empirical expressions for density- and viscosity-pressure relationships. One must,
however, take precausion before applying (5.1) to study the lubrication performance of the
aforementioned devices. The reason for this, comes from the the fact that the 2D partial
differential equation for the fluid pressure, p, that Reynolds derived is based on the assump-
tion that the fluid film is very thin, but also that the fluid was an oil, which he regarded
as incompressible and also as “nearly iso-viscous”, to use his own wording. Moreover, he
assumed that the flow was free from eddies and that the forces arising from weight and in-
ertia were altogether small compared with the stresses arising from viscosity. The interested
reader is referred to [46] for a mathematically rigorous approach to derive the time dependent
Reynolds equation under these conditions. Notice that, although (5.1) often is a very good
approximation, using (5.1) with density and viscosity modelled as temperature and pres-
sure dependent, would violate the aforementioned assumptions. It is, therefore, important
to understand its ambit and the limits of its applicability. In order to do so, one needs to
understand how the dimension-reduced Reynolds equation can be derived from the (more
general) Navier-Stokes equations.

In the following section, the theoretical foundation behind the fluid model that can be
seen as the coalescence of the works by Navier [47], Poisson [48] and Stokes [49], will be
discussed. On this basis the systems of equations, which is commonly referred to as the
compressible Navier-Stokes, in combination with an equation for the conservation of mass,
will be given. In the section following thereafter, simplistic scaling and rather straight-
forward analysis will be applied to obtain a reduced form of the Navier-Stokes equations.
More precisely, the reduced equations for the classical lubrication approximation, leading to
the well-known Reynolds equation for incompressible and iso-viscous fluids will be presented.
By incorporating the Stokes viscosity hypothesis (5.4), the same approach will also be applied
without, a priori, assuming that the fluid is incompressible and, thereafter it will be used to
obtain a thin film approximation for incompressible and piezo-viscous fluids. In both of the
two latter cases, what further simplifications required to obtain dimension-reduced models
from the thin film approximations of the corresponding Navier-Stokes equations, will also be
discussed. Altogether this comprise an investigation of when the use of Reynolds equation is
justified.
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5.1 The Navier-Stokes and more general, implicit, con-

stitutive relations

The derivation of the Reynolds equation given herein, is an elaborate presentation of the
scaling and asymptotic analysis of the equations governing flow in thin gaps. This is quite
commonly referred to as the thin film approximation, and the (self-contained) presenta-
tion originates primarily from the papers [12–14]. We will begin the by introducing the
Navier-Stokes constitutive relation, and then build up what is commonly referred to as the
Navier-Stokes equations for compressible flow, in combination with the continuity equation
describing conservation of mass.

The model developed presented by Navier [47] was based molecular methods, and it
contained only one material parameter. In 1831, Poisson presented the model including
the two material parameters1, which is currently being used [48]. This is referred to as
the Navier-Stokes constitutive relation, and the parameters µ and λ are known as the first
and second coefficients of viscosity. The former, denoted by µ, is related to viscous effects
associated with shear, commonly referred to as the shear viscosity. The latter, denoted by
λ, is known as volume, or dilatational viscosity. It is related to viscous effects associated
with compression and volume change, and although it may exhibit large values under certain
conditions [50–53], it is within hydrodynamics conventionally taken as −2µ/3. This was
already done by Reynolds [54], when he presented the derivation of the dimension-reduced
approximation of Navier-Stokes equations. Since then, the Reynolds equation has always
been the first choice of model, and it is still frequently being used to field of lubrication.

The Navier-Stokes constitutive relation is based on the assumption that the Cauchy stress
tensor σ depends on the density ρ, temperature T and the gradient of the velocity, viz.

∇v =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 ,
i.e.

σ = f(ρ, T,∇v). (5.2)

On requiring that the Cauchy stress be linear in ∇v and that it meets frame-indifference
and isotropy one obtains the classical compressible Navier-Stokes fluid model, that allows
the material moduli to depend arbitrarily on the density and temperature, namely

σ = −p(ρ, T )I + λ(ρ, T )(∇ · v)I + 2µ(ρ, T )D(v), (5.3)

where p is the thermodynamic pressure, and λ and µ are the two viscosities that appear in
Poisson’s development of the model and D(v) is the symmetric part of the velocity gradient.
Note that, the thermodynamic pressure is a constitutive specification.

The study that Stokes presented 1945, see [49], provides a derivation of the constitutive
relation derived by Poisson from a phenomenological point of view. Also, in his paper in
1845, Stokes suggested, a relation between the dilatational and the shear viscosity, which is

1Closely analogous to the Lamé coefficients used in classical elasticity theory.
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referred to as Stokes’ hypothesis. This relationship states that the bulk viscosity κ is zero,
viz.

κ = 3µ+ 2λ = 0. (5.4)

There exist results that justify that it is feasible for studies involving hydrodynamics of ideal
gases and for monatomic liquids, see e.g. [55–57]. Stokes himself did, however, have doubts
about this viscosity relation [58–60]. Stokes’ hypothesis (5.4), can be better understood by
taking the trace of the Cauchy stress (5.3), i.e.,

tr (σ) = −3p+ (3λ+ 2µ)∇ · v, (5.5)

from which it is clear that it leads to definition of the mechanical pressure as “the negative
mean value of the normal stress”, i.e.

p = −1

3
tr (σ), (5.6)

regardless if the flow is incompressible (∇ · v) or not. In this context it should be noted
that, “pressure”, is likely one of the most misused of scientific terminologies. For a detailed
discussion, the reader is referred to [61].

By this we tried to have made it clear that the whole point with the Stokes viscosity
hypothesis is not to present a physically justifiable relation. It is to enable further analysis
based on measurable fluid properties. A physically more reasonable way forward, would be
to assume that either i) the fluid is incompressible, i.e. that the density does not vary with
pressure (ρ is constant), or ii) that the flow is incompressible, meaning that it is divergence
free2. Mathematically, both these assumptions means that ∇ · v = 0. In turn, the definition
of the mechanical pressure, as “the negative mean value of the normal stress”, holds, and
this enable further analysis.

The way that the assumption of the dependence of viscosity and density on the mechanical
pressure can be justified, is to go beyond the class of the Navier-Stokes fluid model or even the
more general Stokesian fluid model and consider the fluid as a sub-class of implicit algebraic
constitutive equations introduced by Rajagopal [62]. If instead of (5.2), one where to start
with the following implicit constitutive assumption:

f(ρ, T,σ,∇v) = 0, (5.7)

then one would have implicit constitutive expressions wherein the material moduli can depend
on the density, temperature and the mutually independent invariants of the stress σ, the
symmetric part of the velocity gradient ∇v, and the mixed invariants of σ and D(v), see
Rajagopal [62,63] for a detailed discussion of such representations.

Let us adopt invertible constitutive relationships between the density and the pressure,
and the viscosity and the pressure of the type

ρ = ρafρ(p) and µ = µafµ(p) (5.8)

2Note that if the fluid is incompressible, which means that it has constant density, then the flow is
isochoric, but the converse is not true.
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where p is given by (5.6), as a consequence of Stokes viscosity hypothesis. In this case, it is
possible to deduce an explicit fluid model from the implicit model defined in (5.7), i.e.

σ =− pI− 2

3
µ (p) (∇ · v)I + 2µ (p) D(v) = (5.9)

− f−1
ρ (ρ/ρa)I−

2

3
µafµ(f−1

ρ (ρ/ρa))(∇ · v)I + 2µafµ(f−1
ρ (ρ/ρa))D(v).

Note that, it is only within the context of the starting point (5.7) that one can rationally
obtain a model, such as (5.9), wherein the density and the viscosity depends on the mechanical
pressure in an incompressible fluid, thereby giving a proper basis for assumptions of the kind
made by Dowson and Higginson [64] and Barus [65] and their successors.

Let us now consider isothermal flow of an compressible fluid, which, when the Stokes
relation is invoked, can be modelled by the constitutive relation (5.9). Indeed, inserting the
constitutive relation (5.9) into the Cauchy equation (balance of linear momentum), viz.

D (ρv)

Dt
= ρg +∇ · σ in Ω, (5.10)

leads to the generalised compressible Navier-Stokes equation

D (ρv)

Dt
= ρg −∇p− 2

3
∇ · (µ(p)∇ · vI) + 2∇ · (µ(p)D(v)) in Ω, (5.11)

where the density ρ is related to the pressure as in (5.8), ρg accounts for body forces present,
µ is the dynamic viscosity,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
and D(v) =

1

2

(
∇v + (∇v)T

)
. (5.12)

Since there are four unknowns in (5.11) it needs to be considered together with the
conservation of mass, which for a compressible fluid is given by

∂ (ρv)

∂t
+∇ · (ρv) = 0, (5.13)

In component form, the continuity equation and generalised Navier-Stokes equation (5.11)
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reads

∂ (ρu)

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
+
∂ (ρw)

∂z
= 0, (5.14a)

∂ (ρu)

∂t
+ u

∂ (ρu)

∂x
+ v

∂ (ρu)

∂y
+ w

∂ (ρu)

∂z
= ρgx −

∂p

∂x
+ (5.14b)

− 2

3

∂

∂x

(
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

))
+

+ 2
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂z

(
µ

(
∂u

∂z
+
∂w

∂x

))
,

∂ (ρv)

∂t
+ u

∂ (ρv)

∂x
+ v

∂ (ρv)

∂y
+ w

∂ (ρv)

∂z
= ρgx −

∂p

∂y
+ (5.14c)

− 2

3

∂

∂x

(
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z
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+

+
∂

∂x

(
µ

(
∂u

∂y
+
∂v

∂x

))
+ 2

∂

∂y

(
µ
∂v
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)
+

∂

∂z

(
µ

(
∂v

∂z
+
∂w

∂y
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,

∂ (ρw)

∂t
+ u

∂ (ρw)

∂x
+ v

∂ (ρw)

∂y
+ w

∂ (ρw)

∂z
= ρgz −

∂p
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+ (5.14d)

− 2
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+
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∂
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µ

(
∂v
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+
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+ 2

∂
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(
µ
∂w

∂z

)
.

This system of equations is defined on the 3D domain Ω3 confined between the surfaces hu
and hl, with Ω = {(x, y) : 0 < x < l0 ∧ 0 < y < b0} being its projection onto the xy-
plane, see Fig. 5.25. The fluid pressure p and the fluid velocity u = (u, v, w) are the primary
dependent variables and the time t and the spatial coordinates x, y and z are the independent
variables. The acceleration g = (gx, gy, gz) due to body forces, is input data. The density ρ
and viscosity µ are fluid properties which may or may not depend on the pressure or other
variables. The precise constitutive relations between ρ and µ and the other variables must
be considered before the asymptotic analysis is carried out. These consititutive relations are
typically semi-empricial expressions that are representative within a given parameter range.
Other, important, input data to this problem are related to the domain Ω3. That is, the
topography of the surfaces given by hu and hl, the velocity of the surfaces uu and ul, the
spatial size l0 and b0 and boundary conditions for pressure and/or velocity at the xz- and
yz- faces at x = 0 ∧ l0 and y = 0 ∧ b0.

The specific form of the Navier-Stokes equations presented in (5.11), is based on the
Stokes’ hypothesis (5.4) that the bulk viscosity (κ) is zero. We highlight that, although a fluid
(in general) exhibits both compressibility and nonlinear viscosity- pressure and temperature
dependence, the analysis presented herein is restricted to iso-thermal conditions.
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In the following we will use the fact that fluid film is very thin relative to the other
dimensions, in order to derive simplified forms of the system (5.11) and (5.14a). More
precisely, this will be done by scaling and dimensional analysis.

5.1.1 Scaling of the Navier-Stokes equations

We will now cast the system into non-dimensional form, by introducing a set of reference
parameters, similar to what was used in [66]. More precisely,

X = x/l0, Y = y/b0, Z = z/h0, T = t /t0 ,

ū = u/u0, v̄ = v/v0, w̄ = w /w0 ,

µ̄ = µ/µ0, ρ̄ = ρ/ρ0, p̄ = p /p0 .

(5.15)

By means of (5.15) the non-dimensional formulation of (5.14a) becomes

ρ0

t0

∂ρ̄

∂T
+
ρ0u0

l0

∂(ρ̄ū)

∂X
+
ρ0v0

b0

∂(ρ̄v̄)

∂Y
+
ρ0w0

h0

∂(ρ̄w̄)

∂Z
= 0, (5.16)

where ρ0 appears in all of the terms and can be omitted.
Let us stop here to clarify our purpose for performing this scaling, which is differs from the

purpose we had when we applied the scaling to the contact mechanics problem in Chapter 4.
Here, our objective is to derive a simplified system obeying the thin film approximation,
which can be used to simulate the flow in narrow interfaces, such as the ones typically found
in tribological contacts. A key aspect is therefore to ascertain that the scaling parameters
are of the same order of magnitude as the scaled variables. For example, p0 should be similar
to the mean or maximum value of p. To assure this, we require that the non-dimensional
variables, e.g. p̄, are of O(1). This will enable an order of magnitude analysis, comparing
the size of all the different terms in the equations. Let us now turn the attention to the
non-dimensional formulation of the continuity equation (5.16). In particular, in the last term
in ∂(ρ̄w̄)/∂Z is of O(1) which implies that the whole term is of order ρ0w0/h0, provided
that we have chosen representative values for ρ0, w0 and h0. If this is the case, then we can
directly compare this term with the others by considering only the factors composed of the
scaling parameters. From this comparison, we can clearly see if there are terms which are
much smaller than the others, and thus if we can safely neglect them and take a step in the
direction towards obtaining a simplified system. An obvious difficulty is, indeed, to find the
right scaling parameters. For some variables, this might be easy. For example, h0 should be
similar to the mean separation between the surfaces. Other parameters, mainly those related
to dependant variables such as the pressure or the density, it is not to obvious which value
should be taken. As we shall soon see, other arguments, more complex than the one we used
to define h0, can be used.

Coming back to (5.16), the current objective is to analyse the asymptotic behaviour of
(5.11) and (5.16) as h0/l0 goes to zero. To this end, we will introduce the notation

ε = h0/l0. (5.17)
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In terms of ε, (5.16) becomes

ε
l0
t0u0

∂ρ̄ε
∂T

+ ε
∂(ρ̄εūε)

∂X
+ ε

v0l0
b0u0

∂(ρ̄εv̄ε)

∂Y
+
w0

u0

∂(ρ̄εw̄ε)

∂Z
= 0, (5.18)

where the subscript ε indicate dependent variables’ parameterisation in ε. At this point, it
is realised that (5.18) have little if any meaning if not at least the three last terms are of
the same order. In case not, ρ̄εw̄ε would not depend on z, which is unreasonable for most
types of flow situations, e.g. for an incompressible fluid confined in a (narrow) converging
gap. This is the motivation for the scaling w0 = εu0 and without loss of generality we also
chose

v0 = u0, b0 = l0, t0 = l0 /u0 . (5.19)

In this scaling, the continuity equation (5.18) become

∂ρ̄ε
∂T

+
∂(ρ̄εūε)

∂X
+
∂(ρ̄εv̄ε)

∂Y
+
∂(ρ̄εw̄ε)

∂Z
= 0, (5.20)

and further we can simplify, (5.14b)-(5.14d) to

ε2ρ0u
2
0

l0
ρ̄ε

(
∂ūε
∂T

+ ūε
∂ūε
∂X

+ v̄ε
∂ūε
∂Y

+ w̄ε
∂ūε
∂Z

)
= ε2ρ0ρ̄εgx − ε2p0

l0

∂p̄ε
∂X

+

−ε2 2µ0u0

3l20

∂

∂X

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+ ε2 2µ0u0

l20

∂

∂X

(
µ̄ε
∂ūε
∂X

)
+

+ε2µ0u0

l20

∂

∂Y

(
µ̄ε

(
∂ūε
∂Y

+
∂v̄ε
∂X

))
+
µ0u0

l20

∂

∂Z

(
µ̄ε

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

))
,

(5.21)

ε2ρ0u
2
0

l0
ρ̄ε

(
∂v̄ε
∂T

+ ūε
∂v̄ε
∂X

+ v̄ε
∂v̄ε
∂Y

+ w̄ε
∂v̄ε
∂Z

)
= ε2ρ0ρ̄εgy − ε2p0

l0

∂p̄ε
∂Y

+

−ε2 2µ0u0

3l20

∂

∂Y

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+ ε2µ0u0

l20

∂

∂X

(
µ̄ε

(
∂ūε
∂Y

+
∂v̄ε
∂X

))
+

+ε2 2µ0u0

l20

∂

∂Y

(
µ̄ε
∂v̄ε
∂Y

)
+
µ0u0

l20

∂

∂Z

(
µ̄ε

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

))
(5.22)

and

ε2ρ0u
2
0

l0
ρ̄ε

(
∂w̄ε
∂T

+ ūε
∂w̄ε
∂X

+ v̄ε
∂w̄ε
∂Y

+ w̄ε
∂w̄ε
∂Z

)
= ερ0ρ̄εgz −

p0

l0

∂p̄ε
∂Z

+

−2µ0u0

3l20

∂

∂Z

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+
µ0u0

l20

∂

∂X

(
µ̄ε

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

))
+

+
µ0u0

l20

∂

∂Y

(
µ̄ε

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

))
+

2µ0u0

l20

∂

∂Z

(
µ̄ε
∂w̄ε
∂Z

)
.

(5.23)
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Finally, multiplication of (5.21) - (5.23) with

l20
µ0u0

leads to

ε2ρ0u0l0
µ0

ρ̄ε

(
∂ūε
∂T

+ ūε
∂ūε
∂X

+ v̄ε
∂ūε
∂Y

+ w̄ε
∂ūε
∂Z

)
= ε2 ρ0l

2
0

µ0u0

ρ̄εgx − ε2 p0l0
µ0u0

∂p̄ε
∂X

+

−ε2 2

3

∂

∂X

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+

+2ε2 ∂

∂X

(
µ̄ε
∂ūε
∂X

)
+ ε2 ∂

∂Y

(
µ̄ε

(
∂ūε
∂Y

+
∂v̄ε
∂X

))
+

∂

∂Z

(
µ̄ε

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

))
,

(5.24)

ε2ρ0u0l0
µ0

ρ̄ε

(
∂v̄ε
∂T

+ ūε
∂v̄ε
∂X

+ v̄ε
∂v̄ε
∂Y

+ w̄ε
∂v̄ε
∂Z

)
= ε2 ρ0l

2
0

µ0u0

ρ̄εgy − ε2 p0l0
µ0u0

∂p̄ε
∂Y

+

−2

3
ε2 ∂

∂X

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+

+ε2 ∂

∂X

(
µ̄ε

(
∂ūε
∂Y

+
∂v̄ε
∂X

))
+ 2ε2 ∂

∂Y

(
µ̄ε
∂v̄ε
∂Y

)
+

∂

∂Z

(
µ̄ε

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

))
,

(5.25)

and

ε2ρ0u0l0
µ0

ρ̄ε

(
∂w̄ε
∂T

+ ūε
∂w̄ε
∂X

+ v̄ε
∂w̄ε
∂Y

+ w̄ε
∂w̄ε
∂Z

)
= ε

ρ0l
2
0

µ0u0

ρ̄εgz −
p0l0
µ0u0

∂p̄ε
∂Z

+

−2

3

∂

∂Z

(
µ̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

))
+

+
∂

∂X

(
µ̄ε

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

))
+

∂

∂Y

(
µ̄ε

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

))
+ 2

∂

∂Z

(
µ̄ε
∂w̄ε
∂Z

)
.

(5.26)

We note the Reynolds number defined as

R :=
ρ0u0l0
µ0

, (5.27)

appears in the left hand sides of (5.24)-(5.26).
The importance of incorporating a specific constitutive relationship µ(p), before carrying

out the asymptotic analysis, rather than after, was highlighted in [13, 14, 67–69]. A similar
consideration can be made for the case of compressible fluids, see [12], where it was shown
that the asymptotic analysis for a particular choice of constitutive relationships ρ(p) does not
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necessarily render a dimension-reduced, Reynolds type of equation. In all of the aforemen-
tioned articles [12–14, 67–69], it has also been made abundantly clear that it is not possible
to define ρ0 and µ0 prior to knowing the exact formulations of the constitutive relationships
ρ(p) and µ(p), if they depend on the pressure. For example, the derivation of a model for
a gas lubricated system, need to incorporate the well-known linear constitutive relation be-
tween density and pressure for an ideal gas, i.e., ρ = kp, where k is a constant, before the
asymptotic analysis is carried out.

In the following sections, we will incorporate different constitutive density–pressure rela-
tions and perform the asymptotic analysis thereafter. We will start with the original case
studied by Reynolds, i.e., considering an incompressible and iso-viscous fluid. Then, we will
follow the analysis in [12] and incorporate a formulation of the density-pressure relationship,
that can be used to consider a large class of compressible fluids. The objective here is to
clearly show how the precise relation enters the set of scaled equations, and why it is not
always so that the asymptotic analysis renders a dimension-reduced system. We will then
reduced system for two cases where it is possible, i.e., the ideal gas model and fluid for which
density increases with pressure following a power law. We will show, in particular, that
different compressibility relations (e.g., the ideal gas model) can render a different reduced
system as ve goes to zero as compared to the incompressible and iso-viscous case.

5.1.2 Iso-viscous and incompressible fluids

We hereby with incompressible mean that the density is constant, thus the flow is isochoric,
and without loss of generality we denote ρ = ρa. Similarly, by iso-viscous we consider the
viscosity as being constant and we define µ = µa. In this case, the density and viscosity are
no longer dependent variables and we should choose the corresponding reference parameters
as ρ0 = ρa and µ0 = µa. This means that ρ̄ε = 1 and µ̄ε = 1, and that the continuity equation
(5.20) reduces to

∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

= 0. (5.28)

Further, by using (5.28) it follows that (5.24)-(5.26) become

ε2ρau0l0
µa

(
∂ūε
∂T

+ ūε
∂ūε
∂X

+ v̄ε
∂ūε
∂Y

+ w̄ε
∂ūε
∂Z

)
= ε2 ρal

2
0

µau0

gx − ε2 p0l0
µau0

∂p̄ε
∂X

+

+2ε2∂
2ūε
∂X2

+ ε2 ∂

∂Y

(
∂ūε
∂Y

+
∂v̄ε
∂X

)
+

∂

∂Z

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

)
,

(5.29)

ε2ρau0l0
µa

(
∂v̄ε
∂T

+ ūε
∂v̄ε
∂X

+ v̄ε
∂v̄ε
∂Y

+ w̄ε
∂v̄ε
∂Z

)
= ε2 ρal

2
0

µau0

gy − ε2 p0l0
µau0

∂p̄ε
∂Y

+

+ε2 ∂

∂X

(
∂ūε
∂Y

+
∂v̄ε
∂X

)
+ 2ε2∂

2v̄ε
∂Y 2

+
∂

∂Z

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

)
,

(5.30)

and
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ε2ρau0l0
µa

(
∂w̄ε
∂T

+ ūε
∂w̄ε
∂X

+ v̄ε
∂w̄ε
∂Y

+ w̄ε
∂w̄ε
∂Z

)
= ε

ρal
2
0

µau0

gz −
p0l0
µau0

∂p̄ε
∂Z

+

+
∂

∂X

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

)
+

∂

∂Y

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

)
+ 2

∂2w̄ε
∂Z2

.

(5.31)

In the following we will investigate different ways of obtaining dimension reduced models for
the flow of this particular type of fluid.

Without considering the physics of the flow that a reduced model would reflect, one could
just neglect the terms of order ε and higher in (5.29)-(5.31). This leads to the system

∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

= 0, (5.32a)

0 =
∂2ūε
∂Z2

, (5.32b)

0 =
∂2v̄ε
∂Z2

, (5.32c)

∂2ūε
∂X∂Z

+
∂2v̄ε
∂Y ∂Z

+ 2
∂2w̄ε
∂Z2

=
p0l0
µau0

∂p̄ε
∂Z

, (5.32d)

which after using (5.28) reads

∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

= 0, (5.33a)

0 =
∂2ūε
∂Z2

, (5.33b)

0 =
∂2v̄ε
∂Z2

, (5.33c)

∂2w̄ε
∂Z2

=
p0l0
µau0

∂p̄ε
∂Z

. (5.33d)

From (5.33b) and (5.33c) we see that this model implies that ūε and v̄ε varies linearly with
z, as in the case with moving parallel plates, in other words, plain Couette type of flow.
Of course, it is not the case that all thin film flows are Couette flows since this would not
create any pressure built up and lubrication would not work. To obtain a more general case,
we must realize that we do not know a priory the order of magnitude of p0. In order to
model more general flow situations the pressure have to scale with ε. Let us elaborate on
this by assuming that p0 ∝ εq. If q < −2, then what would remain after neglecting terms
of O (ε) and higher, would be ∇p = 0 which implies plain Poiseuille type of flow. This flow
is characteristic of static surfaces and would thus also lead to unrealistic results in general.
On the other hand, if q > −2, then only the first part of the last terms in (5.29) and (5.30)
would remain and that, again, would imply plain Couette type of flow. This motivates the
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scaling p0 = ε−2µau0 /l0 , which leads to that the system (5.29)-(5.31) is reduced to

∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

= 0, (5.34a)

∂p̄ε
∂X

=
∂2ūε
∂Z2

, (5.34b)

∂p̄ε
∂Y

=
∂2v̄ε
∂Z2

, (5.34c)

∂p̄ε
∂Z

= 0, (5.34d)

when terms of order ε and higher are neglected. Note that this is actually the classical set
of lubrication equations as obtained by Reynolds in his original derivation. In dimensions, it
reads

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (5.35a)

∂p

∂x
= µa

∂2u

∂z2
, (5.35b)

∂p

∂y
= µa

∂2v

∂z2
, (5.35c)

∂p

∂z
= 0. (5.35d)

This system can be integrated to lead to the 2D Reynolds equation, as we will see in Sec-
tion 5.2. Note that the fact that p is constant across the film, which is an important ingredient
for the integration, is not an assumption but is obtained in (5.35d) as a result of the asymp-
totic analysis.

Remember that one underlying assumption for arriving at (5.35) is that p scales with
ε−2. Actually, the assumption of incompressibility also played a role as otherwise ρ0 would
have depended on ε as well, through the relation between pressure and density. It is also
important to remember that even though the explicit time dependence has disappeared from
the original set of equations, the dependent variables are still functions of time. For example,
the domain may change with time as in the case with moving surfaces.

5.1.3 Iso-viscous and compressible fluids

Let us now consider the case of compressible fluids, under the assumption that Stokes’ hy-
pothesis (5.4) holds. As we shall see, in this case, the Navier-Stokes equations do not, in
general, permit the application of the same type asymptotic analysis that leads to the system
(5.35) and ultimately, see Section 5.2, to Reynolds equation.

In this section we present a reduced form of the system (5.20), (5.24)-(5.26), governing
the flow of compressible and iso-viscous fluids. That is, a class fluids exhibiting different
constitutive equations for the density-pressure relationship and with constant viscosity. We
start by considering a general density-pressure relationship and then we apply the same type
of asymptotic analysis, that was carried out in Section 5.1.2 for the incompressible and iso-
viscous case. To further reduce the model, we need to explicitly specify a constitutive model



5.1. CONSTITUTIVE RELATIONS 63

for the compressibility. By doing so, we will show how to obtain resulting reduced systems
for the particular case of ideal gas flow, where the density is proportional to pressure, as well
as for another class of models in which the density can be formulated as a power law in terms
of pressure.

An arbitrary density-pressure relationship

In Section 5.1.2 we learned that, in order to obtain a reduced system resembling the physics
of a lubricated conjunction in a relevant way, it was necessary to introduce an ε-dependence
of the pressure scaling parameter p0. Note that the Reynolds number R contains scaling
parameters for the density ρ and the viscosity µ. In the incompressible and iso-viscous
case, both these are constants and the Reynolds number does not scale with ε. Under
the assumption of compressible flow the density is a dependent variable. In this case, the
constitutive equation will, as we will see, determine the ε-dependence of the density.

The compressibility for a large class of fluids may be described based on a density-pressure
relationship on the form

ρ = ρafρ(p), (5.36)

where fρ(p) is a positive and strictly increasing function and ρa is the density at the ambient
pressure pa. In non-dimensional form this relationship can be stated as

ρ̄ =
ρa
ρ0

F (p̄), (5.37)

where F (p̄) = fρ(p0p̄). For instance, an ideal gas satisfies (5.36) with the function

fρ(p) =
M

ρaRT
p, (5.38)

where M is the molar mass in kg/mol, T is the temperature in K and R = 8.314 J/(mol K)
is the universal gas constant. Another example is a fluid obeying the constant bulk-modulus
type of compressibility, for which

fρ(p) = e(p−pa)/β, (5.39)

where β is the so-called bulk-modulus of the lubricant. We note that,

∇ρ = ρaf
′(p)∇p, ∂ρ

∂t
= ρaf

′(p)
∂p

∂t

and in non-dimensional form we have

∇ρ̄ =
ρa
ρ0

F ′(p̄)∇p̄, ∂ρ̄

∂T
=
ρa
ρ0

F ′(p̄)
∂p̄

∂T
.

Under the assumption that the fluid is iso-viscous and that its density-pressure relationship
is given by (5.36), the dimensionless continuity equation (5.20) reads

F ′(p̄ε)
∂p̄ε
∂T

+ F (p̄ε)

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

)
+ F ′(p̄ε)

(
ūε
∂p̄ε
∂X

+ v̄ε
∂p̄ε
∂Y

+ w̄ε
∂p̄ε
∂Z

)
= 0, (5.40)
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where F ′(p̄ε) = dF (p̄ε)/dp̄ε. Moreover, the momentum equations, i.e., (5.24)-(5.26) read

ε2ρau0l0
µa

F (p̄ε)

(
∂ūε
∂T

+ ūε
∂ūε
∂X

+ v̄ε
∂ūε
∂Y

+ w̄ε
∂ūε
∂Z

)
= ε2 ρal

2
0

u0µa
F (p̄ε)gx−

ε2 p0l0
u0µa

∂p̄ε
∂X
− ε2 2

3

∂

∂X

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

)
+

2ε2∂
2ūε
∂X2

+ ε2 ∂

∂Y

(
∂ūε
∂Y

+
∂v̄ε
∂X

)
+

∂

∂Z

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

)
,

(5.41)

ε2ρau0l0
µa

F (p̄ε)

(
∂v̄ε
∂T

+ ūε
∂v̄ε
∂X

+ v̄ε
∂v̄ε
∂Y

+ w̄ε
∂v̄ε
∂Z

)
= ε2 ρal

2
0

u0µa
F (p̄ε)gy−

ε2 p0l0
u0µa

∂p̄ε
∂Y
− 2

3
ε2 ∂

∂Y

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

)
+

ε2 ∂

∂X

(
∂ūε
∂Y

+
∂v̄ε
∂X

)
+ 2ε2∂

2v̄ε
∂Y 2

+
∂

∂Z

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

)
(5.42)

and

ε2ρau0l0
µa

F (p̄ε)

(
∂w̄ε
∂T

+ ūε
∂w̄ε
∂X

+ v̄ε
∂w̄ε
∂Y

+ w̄ε
∂w̄ε
∂Z

)
= ε

ρal0
u0µa

F (p̄ε)gz−

p0l0
u0µa

∂p̄ε
∂Z
− 2

3

∂

∂Z

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

)
+

∂

∂X

(
∂ūε
∂Z

+ ε2∂w̄ε
∂X

)
+

∂

∂Y

(
∂v̄ε
∂Z

+ ε2∂w̄ε
∂Y

)
+ 2

∂2w̄ε
∂Z2

.

(5.43)

By comparing the incompressible and iso-viscous set of equations (5.28)-(5.31) with the
compressible and iso-viscous set of equations (5.40)-(5.43) we clearly see that the asymptotic
behaviour is different, if not f ≡ 1. We further stress that we cannot proceed with the
analysis without assuming a specific form of F (p).

Ideal gas flow

For the flow of an ideal gas, the constitutive density-pressure compressibility relationship is
governed by the ideal gas law, viz.

ρ =
M

RT
p, (5.44)

We also recall that from (5.37) this means that

F (p̄ε) =
p0

ρa

M

RT
p̄ε.
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Under these assumptions the continuity equation, i.e. (5.40), becomes

∂p̄ε
∂T

+ p̄ε

(
∂ūε
∂X

+
∂v̄ε
∂Y

+
∂w̄ε
∂Z

)
+ ūε

∂p̄ε
∂X

+ v̄ε
∂p̄ε
∂Y

+ w̄ε
∂p̄ε
∂Z

= 0. (5.45)

Moreover, (5.41)-(5.43) becomes

ε2u0l0p0
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(5.46)
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and
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(5.48)

If we neglect all the terms of order ε and higher, then it will only be possible to capture
the Couette flow situation (with the remaining system), and this does not change if we only
neglect ε2 and higher. Once again, we arrive at the conclusion that the scaling parameter p0

must be a function of ε, for it to be possible to capture the typical flow situations encountered
in lubrication, with the reduced model.

In view of (5.46)-(5.47) it is realised that, if the pressure is not scaled proportionally to
ε−2, then the only remaining type of flow the reduced model would be able to capture is again
of the Couette type. As before, we use the scaling p0 = ε−2µ0u0 /l0 , which after neglecting
terms of order ε2 and higher, reduce (5.46)-(5.48) to
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, (5.49)
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and

∂p̄ε
∂Z

= 0 (5.51)

As in the analysis in Section 5.1.2, for incompressible and iso-viscous fluids, the z-dependence
of the pressure solution vanishes as ε goes to zero, although the full resulting system is not
as simplistic. The most important difference is that the present system is not dimension-
reduced. Summing up, we have derived the following lubrication approximation for an ideal
gas, i.e.,
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= 0. (5.52a)
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= 0, (5.52d)

or in dimensions
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∂p

∂z
= 0. (5.53d)

Although, this particular thin film approximation for iso-viscous flow of an ideal gas present
a reduced form of the compressible Navier-Stokes system of equations, further assumptions
and approximations are required in order to obtain a dimension-reduced result, similar to
the thin film approximation (5.35), governing iso-viscous flow of an incompressible fluid.

Power-law type of compressibility

Consider the class of iso-viscous fluids exhibiting power-law type of compressibility, i.e.

ρ = ρa

(
p

pa

)1−α/2

, (5.54)
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where pa is the pressure for which ρ = ρa. Then, from the general formulation of the density–
pressure constitutive relationship (5.36) we have that

fρ(p) =

(
p

pa

)1−α/2

, (5.55)

and from the corresponding dimensionless formulation (5.37) we have

F (p̄ε) =

(
p0p̄ε
pa

)1−α/2

. (5.56)

This means that a modified Reynolds number, which quantifies the effect of inertia, can be
expressed as

Rα
ε

..= ε2ρau0l0
µa

(
p0p̄ε
pa

)1−α/2

. (5.57)

This shows that the effect of inertia will depend on the pressure and that there are three
different types of characteristic behaviour, for α = 0, α > 0 or α < 0. We note that, the
case α = 0 corresponds to the ideal gas type of compressibility which leads to the thin film
approximation (5.53). Following the same analysis as done above, it can be seen that when
α > 0 it is possible to obtain a dimension reduced system. Indeed, for the system (5.41)-
(5.43) to govern a general type of lubrication flow situation, after neglecting terms of order
ε and higher, we must have that p0 ∝ ε−2. From (5.57) it is then clear that if p0 ∝ ε−2, then
Rα
ε ∝ εα and as long as α > 0 the terms governing inertia may be neglected for small ε. This

will, therefore, lead to the Reynolds equation (5.1). An α < 0 means that

Rα
ε

..= ε2ρau0l0
µa

(
p0p̄ε
pa

)1+|α|/2

, (5.58)

which seem to make it impossible to choose p0 such that a meaning full thin film approxima-
tion is obtained, and we leave further investigations outside this work.

5.2 The Reynolds equation

In the following sections we will present derivations of Reynolds type of equations, which
represent a dimension-reduced form of the Navier-Stokes system of equations (5.11) for certain
choices of constitutive relationships ρ(p) and µ(p). In Section 5.2.1 we will consider the flow
of an incompressible and iso-viscous fluid, which leads to classical Reynolds equation, in
which the pressure p is the dependent variable. In Section 5.2.2, the case of an viscous and
compressible fluid will be considered. In particular, the Reynolds equation in the form as it
is commonly found in the literature will be presented, even though it cannot rationally be
obtained through dimensional analysis.

5.2.1 Iso-visous and incompressible fluids

The derivation of the classical Reynolds equation for iso-viscous and incompressible fluid
starts from the reduced form of the three-dimensional Navier-Stokes system of equations
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(5.35), repeated and re-numbered as (5.59), viz.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (5.59a)

∂p

∂x
= µa

∂2u

∂z2
, (5.59b)

∂p

∂y
= µa

∂2v

∂z2
, (5.59c)

∂p

∂z
= 0, (5.59d)

for the readers convenience. First we note that (5.59d) implies that p does not depend on z,
hence we may integrate (5.59b) and (5.59c) twice with respect to z. This leads to

u(x, y, z, t) =
1

2µa

∂p

∂x
z2 + A11(x, y, t)z + A12(x, y, t), (5.60a)

v(x, y, z, t) =
1

2µa

∂p

∂y
z2 + A21(x, y, t)z + A22(x, y, t), (5.60b)

where, the functions Aij may be found via boundary conditions on the surfaces. Indeed, let
us consider the case when it can be assumed that the fluid stick to the surfaces, i.e. no-slip
boundary conditions. This means that the velocity boundary condition at the lower surface
is

Ul =

 u(x, y, hl(x, y, t), t)
v(x, y, hl(x, y, t), t)
w(x, y, hl(x, y, t), t)

 =

 ul(x, y, t)
vl(x, y, t)
∂hl
∂t

(x, y, t)

 , (5.61)

and at the upper surface it is

Uu =

 u(x, y, hu(x, y, t), t)
v(x, y, hu(x, y, t), t)
w(x, y, hu(x, y, t), t)

 =

 uu(x, y, t)
vu(x, y, t)
∂hu
∂t

(x, y, t)

 , (5.62)

where ul, vl, uu and vu are explicitly given by the problem the model is applied to. Regarding
the boundary conditions for w, these depend indirectly on the changes in the gap geometry
due to the movement ul, vl, uu and vu of the surfaces. However, they may also be related
to an enforced squeeze motion. One example of where there’s a combination of these two
actions can be found in the piston ring - cylinder liner lubrication situation. More precisely,
as the piston moves between the dead centres it gives the ring a unidirectional sinusoidal
motion to the piston ring and w changes mainly due to the geometry change induced by the
sliding motion. However as the ring comes to a stop and then changes direction, at one of
the dead centres in the cylinder, the ring tension and possible also the gas pressure forces
the ring vertically against the cylinder. In a hydraulic cylinder, the fluid is squeezed between
the piston head and the bottom of the cylinder and the boundary condition for w would be
an explicit specification of the speed of the pistion would be given as input to the model.
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The derivation of the Reynolds equation now proceeds by addressing the boundary con-
dition at the lower surface (5.61), which together with (5.60) gives
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and for the upper surface we obtain
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It is straight forward to find Aij by solving the system (5.63)-(5.64). Inserting the result into
(5.60) gives
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Before we proceed with the final step of the derivation we will also derive an expression for
the z-component of the velocity w. This is done by making use of the continuity equation
(5.35a), stating that
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(5.66)

Thus, by integrating (5.66) w.r.t. z gives
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(5.67)

where, the z-independent integration constant, C is to be determined by the boundary con-
ditions for w. If we use the boundary condition for w at the lower surface, which is given by
(5.61) we find that

C =
∂hl
∂t
.
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Hence
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Notice that, even if it might not at first seems so, the boundary condition for w at the upper
surface, which is given by (5.62), is actually just another way of presenting the Reynolds
equation (5.71) derived below.

The final step in the derivation of the classical Reynolds equation, is to integrate the
continuity equation (5.35a) from z = hl to z = hu, i.e.∫ hu

hl

(
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+
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)
dz = 0. (5.69)

It follows from straight forward calculations that∫ hu
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dz = w(x, y, hu, t)− w(x, y, hl, t) =

∂h

∂t
, (5.70c)

where h = hu − hl. Indeed, we have obtained the well-known Reynolds equation for an
incompressible and iso-viscous fluid;
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In matrix form (5.71) become

∂h

∂t
= ∇x ·

(
h3

12µa
∇xp−

us
2
h

)
, (5.72)

where
us
2

=
1

2

[
uu + ul
vu + vl

]
. (5.73)

For the sake of completeness, the polar form of (5.72) will be presented. The polar form
can be used to simulate the film formation and pressure build-up in e.g. titling pad thrust
bearings such as the one depicted in Fig. 2.1. Indeed,

∂h

∂t
= ∇x ·

(
h3

12µa

[
1/x2 0

0 x2

]
∇xp−

ω

2

[
x2

0

]
h

)
, (5.74)

where x1 is the angular coordinate, x2 the radial coordinate and ω is the angular speed of
the rotating surface.
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Figure 5.2: A schematic illustration a tilted pad thrust bearing model, such as the one in Fig. 2.1,
including the polar coordinate system (x1, x2). In (a), the film thickness, when the opposing (as-
sumedly perfectly flat) collar rotates in the counter clock wise direction, with angular velocity ω.
In (b), the solution to the classical Reynolds equation (5.218) in polar coordinates, obtained using
Dirichlet boundary conditions. The colour maps represents height levels from low = blue to high
= yellow.

A schematic illustration of the film thickness and the corresponding dimensionless pressure
distribution over the segments of a tilted pad thrust bearing is visualised in Fig. 5.2 (a) and
(b), respectively. In the colour height maps, blue corresponds to low and yellow to high values
of the film thickness and the pressure, respectively. In this case, θp = 45◦, Ri/Ro = 0.5, and
the dimensionless film thickness distribution, shown in Fig. 5.2a, is given by

1 +
1

3

sin(θp − x1)

sin(θp)
. (5.75)

The film thickness models the gap between the upper- and the lower surface. In this case, the
upper surface represents the assumedly perfectly flat rotating collar, while the lower surface
represents the inclined stationary surface of the bearing segment. The angular speed of the
collar, which rotates in the counter clock wise direction is ω. The dimensionless pressure
solution, shown in Fig. 5.2b, for one segment is obtained by solving the non-dimensional,
polar-coordinate form of the Reynolds (5.74), assuming that each of the six segments are
identical. An FDM scheme applicable to discretise and numerically solve the problem, is
presented in Section 5.7.2.

The Reynolds equation represents continuity of flow and below it will be formulated in
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terms of the flow q. For incompressible flow we have

q(x, y) =

[
qx(x, y)
qy(x, y)

]
=

us
2
h− h3

12µa
∇xp (5.76)

in Cartesian coordinates. Obviously, q represents volumetric flow, in units of m3/s. This
means that the Reynolds equation (5.72) can be written as

∂h

∂t
+∇x · q = 0. (5.77)

5.2.2 Piezo-viscous and compressible fluids

In the literature, there are two common ways of deriving the Reynolds equation. One ap-
proach starts from the momentum equations directly, and neither the density–pressure nor
the viscosity–pressure relationship is considered during the dimensional analysis. In the sec-
ond approach, it is assumed that the effect of inertia may be neglected even though the
characteristic density and viscosity are related to the pressure. Both these approaches leads
to the same expression for the velocity field as in (5.65). After this, mass-conservation is
considered. More precisely, the continuity equation (5.14a) is integrated with respect to z
(across the fluid film, from hl to hu) viz.

0 =

∫ hu

hl

(
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z

)
dz, (5.78)

where it is assumed that density is independent of z, i.e. ρ = ρ(x, y). This leads to a Reynolds
equation including a density, necessarily not being constant. Indeed, in this way, a Reynolds’
type of equation (5.1) can be derived, implying that both the density and the viscosity do
not need to be constants and thus may depend on the pressure. In matrix form, it can be
written as

∂ (ρh)

∂t
= ∇x ·

(
ρh3

12µ
∇xp−

us
2
ρh

)
. (5.79)

The Cartesian expression for the mass flow q, with units kg/s, is in this case

q(x, y) =

[
qx(x, y)
qy(x, y)

]
=

us
2
ρ(p)h− ρ(p)h3

12µa
∇xp. (5.80)

This means that the Reynolds equation (5.79) can be written as

∂ (ρ(p)h)

∂t
+∇x · q = 0. (5.81)

Both the aforementioned approaches builds on the fact that the characteristic density is
not related to the pressure. Strictly speaking, this is inconsistent and, although it is of minor
influence in many situations, it will have a major impact in some other cases, as will be dis-
cussed in Section 5.6. In addition, one finds various derivations where the viscosity-pressure
relation is also disregarded during the asymptotic analysis of the momentum equations, which
also leads to a similar inconsistency.
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Note that in his original derivation [44], Reynolds considers the viscosity to be “nearly
constant”. He also assumes that “the forces arising from weight and inertia are altogether
small compared with the stresses arising from viscosity”. Under these assumptions, which
are correct for an incompressible and iso-viscous fluid, all the terms involving the density
in the momentum equations may be omitted as a consequence of that the gap height is
small compared to lateral size of the lubricated conjunction, i.e., h0 � l0 and h0 � b0 as
in Fig. 5.25, and he arrives at (5.71). As we have seen previously, however, not all types of
compressibility models lead to a reduced system that can be integrated to obtain a dimension-
reduced Reynolds type of equation such as (5.79). We have seen, indeed, that this is only
the case of sub-linear density-pressure relations. In the case of other models, such as the one
modelling an ideal gas, the asymptotic analysis leads to a system that cannot be integrated
and additional assumptions needs to be incorporated to obtain a Reynolds type of equation.
In Section 5.6, we will present a detailed analysis that shows precisely why this is and also
which additional assumptions that are required to obtain a Reynolds equation in the form of
(5.79). It will also be shown that, as long as these additional assumptions holds, for instance
if the velocity is not too high, it provides a good approximation to the original compressible
Navier-Stokes system of equations (5.14).

Although we have not discussed it in detail here, a similar caution must be had with
piezo-viscous fluids, i.e., those in which viscosity varies with pressure. Explicit examples
with pressure-dependent viscosity can be found in [13, 67–69], where they employ Barus’
viscosity-pressure relationship (5.112) to elucidate upon the inconsistency in applying the
Reynolds equation to elastohydrodynamically lubricated applications. In [14], it was shown,
for the first time, that it is rationally possible to obtain a dimension-reduced model for all
kinds of incompressible fluids, with constitutive viscosity–pressure relations. More precisely,
they adopt the general formulation

µ(p) = µar(αp), (5.82)

where r is a strictly positive smooth increasing function such that r(0) = 1, α ≥ 0 is a
viscosity-pressure coefficient and µa is the viscosity corresponding to p = 0. The class (5.82)
includes most commonly used viscosity-pressure relations, e.g. the Barus viscosity-pressure
relation (5.112), Roelands viscosity-pressure relation [70] and the case with constant viscosity
(α = 0).

We conclude this section with a final remark. In the case with stationary surfaces, the
non-linear equation (5.1) was studied in [71], for arbitrary density-pressure relationships (in
fact piezo-viscosity was also considered). In particular, they obtained a transformation that
maps (5.1) into a linear equation which can readily be solved numerically. This means that
the solution to (5.1) can be easily obtained by inverse transformation.

5.2.3 Load carrying capacity and friction force

In the context of Tribology, there are two quantities of relevance that can be obtained from
the result of Reynolds equation. These are the load the load carrying capacity (LCC) and
the friction force/torque. In this section, expressions for these will be given. The LCC for
a bearing is straight-forwardly computed from the fluid pressure distribution (given that
consideration to hydrodynamic cavitation, to be considered in Section 5.8, has been taken).
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Given that the pressurised domain is Ω, the load carrying capacity equals normal force Fp
supported by the fluid film and reads

Fp =

∫
Ω

p(x) dx. (5.83)

The friction force is due to the resistance against the motion of the surfaces dragging the
fluid into the lubricated conjunction. In this context, it is important to remember two things,
i.e., i) that the coefficient of friction is computed as the quotient between the normal force
and the corresponding perpendicular force due to friction, and ii) the surface are, in general,
not perfectly flat.

For a Newtonian fluid, the constitutive relationship between shear stresses τzx and τzy,
and the shear strain rate reads

τ =

[
τzx
τzy

]
= µ


∂u

∂z
+
∂w

∂x
∂v

∂z
+
∂w

∂y

 = µ
∂u

∂z
+ µ∇w. (5.84)

Even though we can equate the partial derivatives of w, which is given by (5.68), the thin
film approximation dictates that wx << uz and wy << vz and we may therefore approximate
τzx and τzy as

τ =

[
τzx
τzy

]
≈ µ

∂u

∂z
, (5.85)

where the strain rates uz and vz can be obtained by first solving the corresponding Reynolds
equation for the fluid pressure, and then equating the pressure gradient. After that the shear
stress components has been computed, then the horizontal force induced by the shear stresses
at either the upper- or the lower surface, can be obtained as

Fτ = −



∫
Ω

µ
∂u

∂z
+ p

∂hl
∂x

dx, z = hl

∫
Ω

µ
∂u

∂z
+ p

∂hu
∂x

dx, z = hu

. (5.86)

Now, if an iso-viscous fluid is considered, and if we make the change of variables z′ = z−hl,
then, by using the notation h = hu − hl, we can present a closed form expression of (5.86),
in terms of the pressure gradient. That is,

Fτ = −



∫
Ω

µa
∂

∂z′

(
z′(z′ − h)

2µa
∇p+ (uu − ul)

z′

h
+ ul

)
dx, z′ = 0

∫
Ω

µa
∂

∂z′

(
z′(z′ − h)

2µa
∇p+ (uu − ul)

z′

h
+ ul

)
+ p

∂h

∂x
dx, z′ = h

=

= −



∫
Ω

(
z′ − h

2

)
∇p+ µa

uu − ul
h

dx, z′ = 0

∫
Ω

(
z′ − h

2

)
∇p+ µa

uu − ul
h

+ p
∂h

∂x
dx, z′ = h

=
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= −



∫
Ω

−h
2
∇p+ µa

uu − ul
h

dx, z′ = 0

∫
Ω

h

2
∇p+ µa

uu − ul
h

+ p
∂h

∂x
dx, z′ = h

Evaluated at the lower surface (z′ = 0) we have

Fτ (z
′ = 0) =

∫
Ω

h

2
∇p− µa

uu − ul
h

dx (5.87)

and evaluated at the upper surface (z′ = h) we have

Fτ (z
′ = h) =

∫
Ω

−h
2
∇p− µa

uu − ul
h

− p∂h
∂x
dx. (5.88)

The coefficient of friction is computed as the quotient between the normal force and the
corresponding perpendicular force due to friction. This requires consideration of the surface
topography when evaluating the friction force. For instance, for a tilted pad bearing of
the type depicted in Fig. 5.2, where the rotating horizontal upper surface is assumed to be
perfectly flat, the coefficient of friction can be directly obtained by from (5.88).

For a rotating device the frictional resistance is related to torque Tf . The expression
(5.89) is the friction torque in polar coordinates, 0 ≤ ϕ ≤ 2π and Ri ≤ r ≤ Ro, evaluated
at the counter clockwise rotating upper surface, assuming that it has angular velocity ω and
that the lower surface is stationary,

Tf = −
∫

Ω

r

(
h(ϕ, r)

2r

∂p

∂ϕ
+

µωr

h(ϕ, r)

)
rdϕ dr, (5.89)

where r2 = x2
1 + x2

2 and ϕ = tan−1(x2/x1) is the translation between the angular- and the
radial directions in polar coordinates and the principal directions x1 and x2 in Cartesian
coordinates. We note that the velocity vector ul of the lower surface would be 0 and that
the uu of the upper surface in Cartesian coordinates would be

uu =

[
uu

vu

]
= rω

[
− sinϕ

cosϕ

]
. (5.90)

By using the fact that
∂p

∂ϕ
=

∂p

∂x1

∂x1

∂ϕ
+

∂p

∂x2

∂x2

∂ϕ
,

and solving

∂

∂ϕ
(x2/x1) = 1 + tan2 ϕ,

∂

∂ϕ

(
x2

1 + x2
2

)
= 0
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for ∂x1/∂ϕ and ∂x2/∂ϕ, i.e.,

∂x1

∂ϕ
= −x2

1 + (x2/x1)2

1− x2/x1

, (5.91)

∂x2

∂ϕ
= x1

1 + (x2/x1)2

1− x2/x1

,

meaning that (5.89) may be formulated as

Tf = −
∫

Ω

h(x)

2

(
−x2

1 + (x2/x1)2

1− x2/x1

∂p

∂x1

+ x1
1 + (x2/x1)2

1− x2/x1

∂p

∂x2

)
+
µω (x2

1 + x2
2)

h(x)
dx, (5.92)

5.2.4 Force balance and rigid body separation

In the real application, it is often the load that is applied fapp on a given system, e.g. a
bearing. It is therefore convenient to treat is as the input instead of a given rigid body
separation, h00. In general, the thin gap between two surfaces can be expressed as

h(x, y) = h00 + h1(x, y), (5.93)

where h1 contains the shape of the surfaces and h00 controls the average separation by shifting
the shape up and down. In a case where the load is applied, the two surfaces will get closer
or further away depending on the magnitude of the load applied. This calls, therefore, for an
additional condition, i.e. a force equilibrium equation balancing the applied load fapp and the
load carried by the fluid film fp. Quite generally, this is exactly Newton’s first law, applied
in z-direction, viz.

fapp(t)−
∫
p(x, y) dx dy = m

d2h0

dt2
, (5.94)

where fapp, in the left hand side, is posed as force in (N) in the 3D case, and as force per
length unit (N/m) in the 2D case, and where m and d2h0 /dt2 , in the right hand side, is
the systems mass of inertia and the acceleration of the surfaces towards or away each other,
respectively. In the stationary case, this equation reads

fapp −
∫
p(x, y) dx dy = 0. (5.95)

In this case, there is no explicit appearance of h00. This parameter will, however, influence
the pressure distribution. Therefore (5.95) will still determine the static separation between
the surfaces through h00.

5.3 Solutions to some variants of the 1D Reynolds equa-

tion

In few cases, it is possible to obtain an explicit expression for the fluid pressure solution to
the Reynolds equation. Here we will consider such cases, which admits an analytical solution
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for linear- and a parabolic slider bearings. Schematics of the linear- and the parabolic slider
bearings are depicted in Fig. 5.3.

h(x) = hL −
hL − hT

l
x

ul

(a) Linear slider

h(x) = h0 +
x2

2R

ul

(b) Parabolic slider

Figure 5.3: Infinitely wide slider bearings.

We will, therefore assume that the bearing is infinitely long in the y-direction (perpendicular
to the paper in Fig. 5.3). This means that there are no edges over which side leakage may
occur and, because of this, there is no dependency on y and the problem can be considered
as two-dimensional. More precisely, a model bearing with a stationary upper surface is and
the lower is moving with the speed ul, i.e., u(x, h) = 0 and u(x, 0) = ul.

The mathematical description of the geometry of the linear slider bearing is given by the
film thickness function h, which in this case reads

h(x) = hL −
hL − hT

l
x, (5.96)

where hL and hT are the leading and trailing edge gap heights and l the length of the bearing.
We will introduce the inclination parameter k, which is used to describe hL as a scaling of
hT , i.e., hL = (1 + k)hT . In terms of hT and k (5.96) becomes

h(x) = hT

(
1 + k − k

l
x

)
, (5.97)

For the parabolic slider the film thickness is given by

h(x) = h0 +
x2

2R
, (5.98)

The three different cases we will consider are for i) iso-viscous and incompressible fluids,
ii) piezo-viscous and incompressible fluids and iii) iso-viscous and constant bulk-modulus
compressible fluids. Note that, case i) is the classical Reynolds equation.
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5.3.1 Iso-viscous and incompressible fluid

We will now compute the pressure distribution in the bearing, in the case of an iso-viscous
and incompressible fluid. To this end, we adopt the one-dimensional stationary form of the
classical Reynolds equation (5.71), for the slider in Fig. 5.3, can be written as

d

dx

(
h3

12µa

dp

dx

)
=
ul
2

dh

dx
, (5.99)

Note that if pL = pT = pa, where pa is some ambient pressure is adopted as boundary
conditions for the Reynolds equation, then the solution to (5.99) can be found by solving it
with homogeneous Dirichlet boundary conditions pL = pT = 0 and then just adding pa to the
resulting solution. In the following we will solve (5.99) for pL = pT = 0. Obviously, (5.99)
can be integrated once, without making any other assumption on the geometry except that
h = h(x) is a continuous function. Indeed,

h3

12µa

dp

dx
=
ul
2
h+ C∗, (5.100)

where C∗ is a constant of integration that we later on will use the boundary conditions (5.102)
to determine. Since the film thickness in reality is a strictly positive quantity, i.e., h > 0, we
can divide with both sides of (5.100) with

h3

12µa

to obtain
dp

dx
=

6µaul
h2

+
C

h3
. (5.101)

At this stage it is realised that consideration to the actual geometrical description need to
be made.

We will first consider the linear slider bearing illustrated in Fig. 5.3a. Moreover, let us
assume it is defined on 0 < x < l, and that the pressure boundary conditions, i.e.

p(0) = pT and p(l) = pL. (5.102)

Since (5.96) is linear in x it can be integrated using the following rule

∫
1

(a+ bx)n
dx =


1

b
ln (a+ bx) , n = 1,

− 1

b(n− 1)

1

(a+ bx)n−1 , n > 1,

(5.103)

for constants a and b such that a + bx > 0. Using (5.103) and choosing a = hT (1 + k) and
b = −hTk /l

p(x) =
6µaull

khT

1

h(x)
+

l

2khT

C

h(x)2
+D. (5.104)
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From the boundary conditions, i.e. pL = pT = 0, it follows that

C = −12hTµaul
1 + k

2 + k
and D = −6µaull

kh2
T

1

2 + k
. (5.105)

In turn this means that (5.104) becomes

p(x) =
6µaull

khT

1

h(x)
− 6µaull

k

1 + k

2 + k

1

h(x)2
− 6µaull

kh2
T

1

2 + k
=

=
6µaull

h2
T

1

k

 1

1 + k − kx
l

− 1 + k

2 + k

1(
1 + k − kx

l

)2 −
1

2 + k


 , (5.106)

which is the explicit presentation of the pressure solution to the 1D Reynolds equation for
incompressible and iso-viscous flow that we set out to deduce. This way of expressing the
solution divides it into the pressure scaling factor

6µaull

h2
T

, (5.107)

also known as the bearing number, and

1

k

 1

1 + k − kx
l

− 1 + k

2 + k

1(
1 + k − kx

l

)2 −
1

2 + k

 , (5.108)

being a rational expression describing the shape of the pressure distribution. Since x/l
is dimensionless we note that (5.108) is only dependent on the inclination parameter k.
Figure 5.4 depicts the bearing geometry, according to (5.108), for the value k = 1.2 of the
inclination parameter and Fig. 5.5 depicts the corresponding pressure distribution.
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Figure 5.4: The bearing geometry according to (5.97), for the inclination parameter k = 1.2.
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Figure 5.5: The shape of the pressure distribution according to (5.108), for the inclination param-
eter k = 1.2.

We will now consider the solution that can be obtained from the Reynolds equation
for incompressible and iso-viscous flow (5.99), based on that the bearing geometry can be
modelled by the film thickness function for the parabolic slider bearing, given in 5.98. Indeed,
solving (5.99), with h (5.98) gives (after integrating twice with respect to x)

p(x)

6µU
=

(
1

2
− 3

8

h∗

h0

)√
D

2h3
0

tan−1

(
x√
Dh0

)
+

+

(
1

2h0

− 3h∗

8h2
0

)
Dx

x2 +Dh0

+
h∗

4h0

D2x

(x2 +Dh0)2 + C, (5.109)

where C, needs to be determined by the boundary condition p(9a) = 0. Thus

C = − [I1(9a)− h∗I2(9a)] = . . . = I1(a)− h∗I2(a).

Inserted into (5.109) we have

p(x)

6µU
= I1(x)− h∗I2(x) + I1(a)− h∗I2(a) =

=

√
D

h3
0

(
1

2
− 3

8

h∗

h0

)(
tan−1

(
x√
Dh0

)
+ tan−1

(
a√
Dh0

))
+

+
1

h0

(
1

2
− 3h∗

8h0

)(
Dx

x2 +Dh0

+
Da

a2 +Dh0

)
+

h∗

4h0

(
D2x

(x2 +Dh0)2 +
D2a

(a2 +Dh0)2

)
. (5.110)

We notice that for h∗ = 4/3 we have

p(x)

6µU
=

1

3

√
h3

0

D

(
D2x

(x2 +Dh0)2 +
D2a

(a2 +Dh0)2

)
. (5.111)
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It is clear that p(0)→ 0, as a→∞ and, moreover we see that P (a)→ 0 as a→∞ and we
have obtained a perfectly anti-symmetrical pressure distribution.

5.3.2 Piezo-viscous and incompressible fluid

Let us consider the thin-film flow of a piezo-viscous and incompressible fluid, governed by
the widely used constitutive relationship between the pressure and the viscosity, known as
Barus’ Law3, see e.g. the authoritative articles [76–79] and books [80–83] i.e.

µ(p) = µae
α(p−pa), (5.112)

In this specific case, the transformation

r(x) = 1/µ(p(x)) = e−α(p−pa)/µa, (5.113)

can be used to linearise the Reynolds type of equation (5.1). Indeed, for the infinitely wide
linear slider bearing lubricated with an incompressible fluid obeying Barus’ viscosity-pressure
relationship (5.112) we have

d

dx

(
h3

12α

dr

dx

)
= −ul

2

dh

dx
, 0 ≤ x ≤ l. (5.114)

Note the negative sign in front of the term in the right-hand-side.
If we assume that the pressure at the boundaries of the bearing is zero, then the boundary

conditions for (5.114) becomes
r(0) = r(l) = 1/µa, (5.115)

and we can as easily as before obtain the closed form expression for r and subsequently also
obtain the corresponding pressure distribution. Indeed,

r(x) =
6αull

h2
T

1

k

− 1

1 + k − kx
l

+
1 + k

2 + k

1(
1 + k − kx

l

)2 +
1

2 + k


+

1

µa
. (5.116)

By inverting (5.113) we finally get the pressure distribution, i.e.

p(x) = pa −
1

α
ln (µar(x)) (5.117)

3In the original work [65], Barus studied the rheology of marine glue, and he reported absolute viscosity
values obtained by applying pressures as high as 200 MPa in order to force charges of marine glue through
steel tubes. Based on the study, Barus found, that his data was best described by the linear relationship
µ(p) = µ0 (1 + bp). However, he also remarked that the viscosities he measured might be lower than in reality,
due to slippage. Therefore, he presented an exponential relation log (µ(p)) = a′ + b′p, i.e. µ(p) = ea

′+b′p,
even though it did not agree with his data. Later, successors like Hyde [72], Bridgman [73] and Hersey [74],
found, that the data they obtained from high-pressure measurements were in good agreement with (5.112), for
various liquids over a quite large range of pressures. It is important that scientific findings are appropriately
referred to [75] and we are thankful that one of the reviewers pointed out that Barus’ measurements, in his
original work [65], indicated a linear viscosity-pressure relation.
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It is of crucial importance to notice that the viscosity µ is always positive and, since r = 1/µ
it must also be positive. It does, however, turn out that the expression for r in (5.116) can
attain negative values. From (5.117) it is clear that a singularity in the pressure develops
as r → 0, and the maximum pressure tends to infinity. It can be seen that the position Xs,
where the singularity appears, is determined solely by k and we have

Xs =
1 + k

2 + k
. (5.118)

By inserting this value into (5.116) we obtain the corresponding minimum value of r as

rmin =
1

µa
− 6αulLx

h2
min

k

4 (1 + k) (2 + k)
. (5.119)

Inserting this expression in (5.117) then yields the maximum pressure, i.e.

pmax = pa −
1

α
ln

(
1− 6αulLxµa

h2
min

k

4 (1 + k) (2 + k)

)
. (5.120)

Let us, for instance, fix all parameters except hmin, then the singularity appears as

hmin →

√
3αulLxµak

2 (1 + k) (2 + k)
. (5.121)

This could be interpreted as follows. For a given geometry (linear slider), a given ambient
viscosity (µa) and pressure-viscosity coefficient (α), a given sliding speed (ul), then the bear-
ing can only carry a load that is smaller than the load causing the minimum film thickness
hmin in (5.121) . This is, of course, difficult to motivate in reality and the issue actually
arose as we adopted the Barus law to model the viscosity-pressure dependence, combined
with Newtonian fluid rheology. Running in to this singularity could be avoided if we did not
consider the pressure-viscosity coefficient α as constant. For instance, if α was allowed vary
with pressure, temperature, shear rate and/or other variables it. Hypothetically speaking, if
we assume iso-thermal and Newtonian flow, the results presented above suggest that α must
vary with the pressure.

5.3.3 Iso-viscous and constant bulk-modulus compressible fluid

By stating that a fluid exhibits constant bulk-modulus compressibility, one means that its
density is related to the pressure via (5.39), i.e.

ρ(p) = ρae
(p−pa)/β. (5.122)

In this case, the transformation

θ(x) = ρ(p(x))/ρa = e(p−pa)/β, (5.123)

can be used to linearise the Reynolds type of equation (5.1). Indeed, for the infinitely wide
linear slider bearing lubricated with an iso-viscous and constant bulk-modulus compressible
fluid we have

d

dx

(
βh3

12µa

dθ

dx

)
=
ul
2

d (θh)

dx
, 0 ≤ x ≤ l. (5.124)
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Integrating once with respect to x gives

dθ

dx
− 6ulµaθ

βh2
=

12µa
βh3

C, (5.125)

where C is a constant of integration. By the product rule we have

d

dx

(
θe

∫ x
0

6ulµa

βh2(x′)
dx′
)

=
12µa
βh3

Ce
∫ x
0

6ulµa

βh2(x′)
dx′

(5.126)

and integrating one more time with respect to x gives

θ(x) =
12µaC

β
e
−

∫ x
0

6ulµa

βh2(x′)
dx′
∫ x

0

e

6ulµa
β

∫ x′
0

1

h2(x′′)
dx′′


h3(x′)

dx′ +De
−

∫ x
0

6ulµa

βh2(x′)
dx′
. (5.127)

Application of the boundary conditions θ(0) = θ(l) = 1 finally yields an explicit solution to
(5.125), i.e.

θ(x) =


(
e
∫ 1
0

6ulµa

βh2(x′)
dx′ − 1

)∫ x
0
e

6ulµa
β

∫ x′
0

1

h2(x′′)
dx′′


h3(x′)

dx′

∫ 1

0
e

6ulµa
β

∫ x′
0

1

h2(x′′)
dx′′


h3(x′)

dx′

+ 1


e
−

∫ x
0

6ulµa

βh2(x′)
dx′
. (5.128)

5.3.4 The velocity field for the 2D linear slider bearing

Having an explicit expression for the fluid pressure means that we can obtain an explicit ex-
pression for the velocity field from the two-dimensional representations of (5.65) and (5.59a).
Adapted to the 2D slider bearing problem at hand, these can be formulated as

u(x, z) =
z(z − h(x))

2µa

dp

dx
− ul

z

h(x)
+ ul, (5.129)

and
∂u

∂x
+
∂w

∂z
= 0, (5.130)

where 0 ≤ z ≤ h(x) defines the gap height at position x. To proceed we need explicit
expressions for dp /dx and we will at the same time derive one for d2p /dx2 . To do this we
start from (5.106), i.e.,

dp

dx
=

d

dx

(
6µaull

khT

1

h(x)
− 6µaull

k

1 + k

2 + k

1

h(x)2
− 6µaull

kh2
T

1

2 + k

)
=

= 6µaul

(
1

h2(x)
− 2hT

1 + k

2 + k

1

h(x)3

)
=
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=
6µaul
h2
T

 1(
1 + k − kx

l

)2 − 2
1 + k

2 + k

1(
1 + k − kx

l

)3

 (5.131)

d2p

dx2
=

6µaull

h2
T

2

k

1(
1 + k − kx

l

)3 −
6

k

1 + k

2 + k

1(
1 + k − kx

l

)4

 (5.132)

By inserting (5.131) into (5.129) we get

u(x, z) = ul

(
3z(z − h(x))

h2(x)

(
1− 2

1 + k

2 + k

hT
h(x)

)
− z

h(x)
+ 1

)
, (5.133)

after some algebraic operations. The velocity fields for the 2D slider with inclination param-
eters k = 1.2 and 3 are depicted in Fig. 5.6.
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(a) k = 1.2.
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Figure 5.6: The velocity field u/ul according to (5.133), for two different values of the inclination
parameter k.

A few things to be noted here are i) It is quite clear that the velocity at the lower surface
(moving in the x-direction) is ul and that the upper surface is stationary (u(x, h) = 0), ii)
There is a vortex at the leading edge side, where fluid is flowing out from the conjunction,
i.e. u < 0 there, and iii) the velocity at the trailing edge side exceed ul, which is specified as
5 m/s. All of this is directly coupled to continuity of flow and for this problem the expression
(5.76) for volume flow reads

q(x) = ul
h

2
− h3

12µa

dp

dx
. (5.134)

To obtain w from (5.130), we will first find the partial derivative ∂u/∂x and to do this we
restart from (5.133). This means that

∂u

∂x
=

∂

∂x

(
ul

(
3z(z − h(x))

h2(x)

(
1− 2

1 + k

2 + k

hT
h(x)

)
− z

h(x)
+ 1

))
=
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= ul
∂

∂x

(
3z2

h2(x)
− 1 + k

2 + k

6z2hT
h3(x)

+
3z

h(x)
+

1 + k

2 + k

6zhT
h2(x)

− z

h(x)
+ 1

)
=

= ul
khT
l

(
2z

h2(x)
− 2

(
3z2 − 6zhT

1 + k

2 + k

)
1

h3(x)
− 18z2 1 + k

2 + k

hT
h4(x)

)
=

= ul
khT
l

1

h2(x)

(
2z − 2

(
3z2 − 6zhT

1 + k

2 + k

)
1

h(x)
− 18

1 + k

2 + k

z2hT
h2(x)

)
.

It is now possible to obtain an explicit expression for w, by integrating (5.130) once with
respect to z. That is,

w(x, z) = −ul
khT
l

z2

h2(x)

(
2− 2

(
z − 3hT

1 + k

2 + k

)
1

h(x)
− 6

1 + k

2 + k

zhT
h2(x)

)
+ Cw(x).

For impermeable surfaces the boundary conditions w(x, 0) = 0 and w(x, h(x)) = 0 must hold.
For the former to hold Cw ≡ 0. Thus

w(x, z) = −ul
khT
l

z2

h2(x)

(
2− 2

(
z − 3hT

1 + k

2 + k

)
1

h(x)
− 6

1 + k

2 + k

zhT
h2(x)

)
, (5.135)

from which we also see that the boundary condition at the upper surface, i.e. w(x, h(x)) = 0,
holds. This vertical velocity component is depicted in Fig. 5.7, for the inclination parameters
k = 1.2 and 3.
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Figure 5.7: The velocity field w/ (ulhT /l ) according to (5.135), for two different values of the
inclination parameter k.

Note here that the velocity w in the z-direction, in dimensions, is significantly smaller (hT/l)
than than the velocity u in the x-direction.
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5.3.5 LCC for the 2D linear slider bearing

The LCC for the 2D slider bearing in Fig. 5.3, lubricated with an iso-viscous and incom-
pressible fluid, the LCC can be presented as an explicit expression, i.e.

fp =

∫ l

0

p(x) dx =

=
6µaull

h2
T

∫ l

0

1

k

1

1 + k − kx
l

− 1

k

1 + k

2 + k

1(
1 + k − kx

l

)2 −
1

2 + k
dx =

=
6µaull

h2
T

− l

k2
ln
(

1 + k − kx
l

)∣∣∣∣l
0

− l
k

1 + k

2 + k

1

1 + k − kx
l

∣∣∣∣∣∣
l

0

− x

2 + k

∣∣∣∣l
0

 =

=
6µaull

2

h2
T

(
1

k2
ln (1 + k)− 1

k

2

2 + k

)
. (5.136)

Figure 5.8 depicts the dimensionless load carrying capacity, i.e., fp/ (6µaull
2 /h2

T ) as a func-
tion of the inclination parameter k. From this graph it is clear that there is an optimum
bearing design, which occurs for k ≈ 1.2.
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Figure 5.8: Dimensionless load carrying capacity fp/
(
6µaull

2
/
h2
T

)
as a function of the inclination

parameter k.

5.3.6 Friction force for the 2D linear slider bearing

For the 2D slider bearing, the lower surface is moving with velocity ul and the upper surface is
stationary. This means that we should evaluate the friction force as the force, perpendicular
to the normal force, required to keep the lower surface in motion with velocity ul. As discussed
in Section 5.2.3, this corresponds to the integral of the shear stresses exerted by fluid on the
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lower surface (z = 0) and in this particular case, where the lower surface is horizontal, the
friction force can be obtained directly from (5.87) as

ff (0) =

∫ l

0

h(x)

2

dp

dx
+
µaul
h(x)

dx. (5.137)

Note that ff is force per length unit, i.e., it has the unit N/m. Inserting the explicit expression
for dp /dx given by (5.131) means that

ff (0) =

=

∫ l

0

hT

(
1 + k − kx

l

)
2

6µaul
h2
T

 1(
1 + k − kx

l

)2 − 2
1 + k

2 + k

1(
1 + k − kx

l

)3


 dx+

+
µaul
hT

∫ l

0

1

1 + k − kx
l

dx =

= ff (0)press + ff (0)shear,

where

ff (0)press =
3µaul
hT

∫ l

0

1(
1 + k − kx

l

)dx− 6µaU

hT

1 + k

2 + k

∫ l

0

1(
1 + k − kx

l

)2dx (5.138)

and

ff (0)shear =
µaul
hT

∫ l

0

1

1 + k − kx
l

dx. (5.139)

We note here that the first term in the expression for ff (0)press and the ff (0)shear expression
are of the same type, although the former originates from the pressure driven flow and the
latter from the shear driven flow. The pressure driven contribution is often omitted when
estimating friction in lubricated contacts, from this expression it is not so clear that this will
give a good estimate, although “experience” tells us so.

Proceeding with the derivation of the friction force from (5.138) and (5.139) we get

ff (0)press =
µaull

khT

−3 ln
(

1 + k − kx
l

)∣∣∣l
0
− 6

1 + k

2 + k

1

1 + k − kx
l

∣∣∣∣∣∣
l

0

 =

=
µaull

hT

(
3

k
ln (1 + k)− 6

2 + k

)
. (5.140)

and

ff (0)shear =
µaull

khT

(
− ln

(
1 + k − kx

l

)∣∣∣l
0

)
=
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=
µaull

hT

(
1

k
ln (1 + k)

)
. (5.141)

Thus,

ff (0) = ff (0)press + ff (0)shear =
µaull

hT

(
4

k
ln (1 + k)− 6

2 + k

)
. (5.142)

In the same manner as we obtained the friction force, from (5.88) we can obtain a closed
form expression for the resulting force (per unit length) caused by the lubricant shear stresses
acting at the upper surface, which for the linear slider bearing yields

fτ (h) =

∫ l

0

−h(x)

2

dp

dx
− µaul
h(x)

− pdh
dx
dx. (5.143)

We partition the contribution into three parts, the first one related to the pressure gradient,
the other one related to the shear caused by the moving surface, and the third one, which in
this case with dh /dx = khT /l is, related to the load carrying capacity, i.e.,

fτ (h) = fτ (h)press + fτ (h)shear + fτ (h)lcc = −ff (0)press + ff (0)shear −
khT
l
fp.

That is,

fτ (h)press =
µaull

hT

(
−3

k
ln (1 + k) +

6

2 + k

)
, (5.144)

fτ (h)shear =
µaull

hT

(
1

k
ln (1 + k)

)
, (5.145)

and (since dh /dx = khT /l and by (5.136))

fτ (h)lcc =
6µaull

2

h2
T

khT
l

(
− 1

k2
ln (1 + k) +

1

k

2

2 + k

)
=

=
6µaull

hT

(
1

k
ln (1 + k)− 2

2 + k

)
, (5.146)

thus

fτ (h) =
µaull

hT

(
4

k
ln (1 + k)− 6

2 + k

)
= ff (0). (5.147)

The inclination is very small and although its x- and z-components would be evaluated as

(fτ (h))x =
µaull

hT

(
2

k
ln (1 + k)− 6

2 + k

)
cos

(
khT
l

)
(5.148)

and

(fτ (h))z =
µaull

hT

(
2

k
ln (1 + k)− 6

2 + k

)
sin

(
khT
l

)
, (5.149)

respectively, this is an almost horizontal force. Notice that hT/l is a measure of ε as defined in
(5.17), meaning that this is in good alignment with the thin film approximation. In Fig. 5.9,
the dimensionless friction force fτ/ (µaull /hT ) is depicted as a function of the inclination
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parameter k. In the left side of the figure, the blue line corresponds to the friction force
acting on the lower surface, according to (5.142) (or equivalently, the total shear force acting
on the upper surface, according to (5.142)). In the figure’s right side, the magnitude of the
different components of shear force are depicted. The blue line represents the magnitude
of the part related to the load carrying capacity given by (5.146). The red line is for the
magnitude pressure driven contribution evaluated at the lower surface according to (5.140),
and the shear driven contribution, according to (5.141), is given by the black line.
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(a) Dimensionless friction force evaluated at the lower
surface according to (5.142) (blue).
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(b) Dimensionless shear force partitioned into its
load carrying capacity related contribution (5.146)
(blue), the pressure driven part at the lower surface
according to (5.140) (red), and the shear driven part
according to (5.141) (black).

Figure 5.9: Dimensionless shear force as a function of the inclination parameter k.

5.4 Dimensionless formulation

Let us now consider the dimensionless formulation of Reynolds equation. In this case we are
not after the relative importance of each term to simplify the equation as in our scaling of the
Navier-Stokes equations. Instead, we will use the scaling to learn some general concepts about
Reynolds equation. Our goal is therefore to reduce the number of inputs that determine the
solution. We will also try to ensure that, in the resulting equation, all terms are of similar
size. This is beneficial whenever numerical solutions are considered.

In the following subsection we will apply a scaling to transform i) the system consisting of
the time-dependent representation of the 1D Reynolds equation for incompressible and iso-
viscous fluid flow coupled with the force balance equation and ii) apply a scaling to transform
the stationary 1D Reynolds equation that we have already found the analytical solution for
in Section 5.3.
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5.4.1 Time dependent Reynolds’ equation and force balance

The system consisting of the time-dependent representation of the 1D Reynolds equation
for incompressible and iso-viscous fluid flow coupled with the force balance equation can be
formulated as

∂

∂x

(
h3

12µa

∂p

∂x

)
=
uu + ul

2

∂h

∂x
+
∂h

∂t
, (5.150a)

fapp(t)−
∫ l

0

p(x, t) dx = m
d2h0

dt2
. (5.150b)

Next we will transform this system into dimensionless form. This is accomplished by scaling
the independent and dependent variables of the determining system, which in this case are
x, t, h and p. We remark that µa, ul, uu, m - being the system’s mass of inertia (unit kg/m),
and fapp are input parameters to this problem and thus need not be scaled. The length L of
the domain Ω is also an input parameter. The film thickness, h, is in this case

h(x, t) = h00(t) + h0(x) + hu(x− uut)− hl(x− ult), (5.151)

where h00 is the rigid body separation and thus a dependent parameter itself (see Section 5.2.4
for more details about this).

The most general form of scaling for the problem at hand reads

X = x/xr, T = t/tr, H = h/hr and P = p/pr, (5.152)

where xr, tr, hr and pr are reference parameters, which will be determined in the following.
First it is observed that the length of the domain l is given as an input parameter and we
should therefore use this as the reference parameter for x, i.e., xr = l.

By inserting (5.152) into (5.150) we have

h3
rpr
l2

∂

∂X

(
H3

12µa

∂P

∂X

)
=
uu + ul

2

hr
l

∂H

∂X
+
hr
tr

∂H

∂T
, (5.153a)

fapp(T )− lpr
∫ 1

0

P (X,T ) dX = m
hr
t2r

d2H0

dT 2
, (5.153b)

or

∂

∂X

(
H3 ∂P

∂X

)
=

6 (uu + ul)µal

prh2
r

(
∂H

∂X
+

2l

uu + ul

1

tr

∂H

∂T

)
, (5.154a)

fapp(T )

lpr
−
∫ 1

0

P (X,T ) dX =
mhr
lprt2r

d2H0

dT 2
. (5.154b)

Although the reference parameters can be chosen arbitrarily, the preferred choice should be
made to i) minimise the number of input parameters in the resulting dimensionless deter-
mining system and ii) to scale the terms so that they will be of similar order of magnitude.
The latter is particularly relevant whenever numerical computations are involved. Thus,
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the procedure is to first identify the dimensionless groups and then find the set of refer-
ence parameters that minimise the number of these groups. From (5.154), the following
dimensionless groups are identified

6 (uu + ul)µal

prh2
r

, (5.155a)

2l

uu + ul

1

tr
, (5.155b)

fapp(T )

lpr
, (5.155c)

mhr
lprt2r

. (5.155d)

There are four groups and we have four reference parameters. Thus it appears like it is
possible to choose the reference parameters so that the system explicit dependence on input
parameters is totally removed. This is not possible, however, because we have already chosen
xr = l in order to remove the inputs from the specification of the domain. Let us now choose
the other reference parameters. Since it is desirable for all terms in each equation to be of
the same order of magnitude, it is best to choose tr so that,

tr =
2l

uu + ul
. (5.156)

Expressed in other words, the characteristic time is the time it takes for a feature moving
with the mean speed of the surfaces to travel the length l. This particular choice equalise
the orders of the spatial- and the time derivatives and the system (5.154) becomes

∂

∂X

(
H3 ∂P

∂X

)
=

6 (uu + ul)µal

prh2
r

(
∂H

∂X
+
∂H

∂T

)
, (5.157a)

fapp(T )

lpr
−
∫ 1

0

P (X,T ) dX =
mhr (uu + ul)

2

4l3pr

d2H0

dT 2
. (5.157b)

At this stage we note that there are three groups but only two parameters left and we realise
that it will not be possible to remove the influence of all input parameters in the dimensionless
system in the end. No matter if we choose pr as a function of hr or vice versa, as long as
we scale so that all terms in (5.157a) and the left-hand side in (5.157b) will be of the same
order of magnitude. We thus choose the following set of reference parameters,

xr = l, tr =
2l

ul
, pr =

fapp(T )

l
, hr =

√
6 (uu + ul)µal2

fapp(T )
, (5.158)

which will reduce (5.153b) to

∂

∂X

(
H3 ∂P

∂X

)
=
∂H

∂X
+
∂H

∂T
, (5.159a)

1−
∫ 1

0

P (X,T ) dX = M
d2H0

dT 2
, (5.159b)
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where M is a representation of dimensionless mass, defined by

M = m

/(
4f

3/2
app (T )l

(uu + ul)
5/2 (6µa)1/2

)
. (5.160)

We note that if M � 1, i.e., if the mass (per meter) is small enough or the mass reference
parameter in the denominator of (5.160) is large enough, then (5.159) reduces to an input
parameter free system of equations, which after having been solved once, through scaling,
gives all possible solutions having the same dimensionless gap H. Note that this is also the
case for systems operating in stationary conditions for which dH0/dT = 0.

5.4.2 Stationary 1D Reynolds’ equation

Let us now have a look at the case we studied in Section 5.3. In this case the system operates
at stationary conditions which means that ∂H/∂T = 0 and ∂2H00/∂t

2 = 0. Therefore,
the system (5.159) becomes parameter free. The only parameters relevant for the problem
can thus only come from the definition of H. We will indeed see that only the inclination
parameter k appears in the dimensionless solution. Note that the reference parameter pr is
consistent with using the scaling factor (5.107) as a reference pressure to transform the fluid
pressure (5.106) into dimensionless form. More precisely, from (5.158) we obtain

pr =
6 (uu + ul)µal

h2
r

. (5.161)

However, when we are considering the stationary linear slider problem without applying force
balance (as in Section 5.3), then hr should be chosen in relation to the input parameter hT ,
which is known and will ensure that hr is of order 1. With this choice of reference parameters
(5.161) reduces to the bearing number (5.107), viz.

pr =
6ulµal

h2
T

. (5.162)

Applying this as a scaling for the pressure, it is clear that the only input parameter that
influence the dimensionless pressure distribution P = P (X) is the inclination parameter k
and we have i.e.,

P (X) =
1

k

(
1

1 + k − kX
− 1 + k

2 + k

1

(1 + k − kX)2 −
1

2 + k

)
. (5.163)

Moreover, the dimensionless expression for the film thickness, described in (5.97), becomes

H(X) = 1 + k − kX. (5.164)

In fact, if the scaling

X = x/l, H = h/hT and P = p

/(
6µaull

h2
T

)
, (5.165)
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is used to transform (5.99) one obtain

d

dX

(
H3dP

dX

)
=
dH

dX
, 0 ≤ X ≤ 1, (5.166)

with boundary conditions
P (0) = 0 and P (1) = 0.

Observe that (5.166) has no explicit dependence on the input parameters (l, µa, hT and k).
We will now continue to derive dimensionless expression for the velocity u in the x-

direction and w in the y-direction. That is, by introducing the scaling U = u/ul as well as
defining Z = z/hT , we get

U(X,Z) =
3Z(Z −H(X))

H2(X)

(
1− 2

1 + k

2 + k

1

H(X)

)
− Z

H(X)
+ 1, (5.167)

as the dimensionless representation of (5.133). In alignment with the scaling that we deduced
for the continuity equation in Section 5.1.1, the dimensionless form of W should be defined
as W = w/ (ulhT /l ) and thus we get

W (X,Z) = −k Z2

H2(X)

(
2− 2

(
Z − 3

1 + k

2 + k

)
1

H(X)
− 6

1 + k

2 + k

Z

H2(X)

)
, (5.168)

as the dimensionless representation of (5.135). Next, we consider the dimensionless load
carrying capacity Fp = fp/fr, with fp defined by (5.136). Note that with hT considered an
input parameter, fp is a priori unknown for this problem. However, by choosing

fr =
6µaull

2

h2
T

, (5.169)

we have that

Fp =

∫ 1

0

P (X) dX =
1

k2
ln (1 + k)− 1

k

2

2 + k
. (5.170)

The dimensionless expression for the friction force at the lower- and the upper surface can
be obtained by introducing the reference parameter

ff r =
µaull

hT
. (5.171)

Then, from (5.142) we have

Ff (0) = Ff (0)press + Ff (0)shear =
4

k
ln (1 + k)− 6

2 + k
. (5.172)

Although the inclination is very small, the shear force on the inclined upper surface has x-
and z-components. The total dimensionless shear force friction force acting on this surface
and its components (friction in the x-direction and the load carrying part in the z-direction)
can be obtained from the expressions (5.147)-(5.149), i.e.

Fτ (h) =
2

k
ln (1 + k) +

6

2 + k
, (5.173)
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Ff (h) = (Fτ (h))x =

(
2

k
ln (1 + k) +

6

2 + k

)
cos

(
khT
l

)
(5.174)

and

(Fτ (h))z =

(
2

k
ln (1 + k) +

6

2 + k

)
sin

(
khT
l

)
. (5.175)

5.5 On the unicity of the film thickness

In the preprint [84], Elgadari and Mohamed show that it is possible to obtain the same
pressure solution, to the 1D Reynolds equation (5.166), for infinitely many different choices
of film thickness functions, as long as they are constructed in a specific way. In the following,
you will find a self-contained derivation of the same. Indeed, the non-dimensional Reynolds
equation in 1D (5.166) can be written as

d

dX

(
H −H3 dP

dX

)
= 0. (5.176)

Integrating it once w.r.t. X yields

H −H3 dP

dX
= H∗,

where H∗ is an integration constant. Let us now assume that there exist two film thickness
functions H1 6= H2, that both gives the same solution P to (5.176). This implies that

H1 −H3
1

dP

dX
= H2 −H3

2

dP

dX
,

thus

H1 −H2 −
(
H3

1 −H3
2

) dP
dX

= 0

or

1−
(
H2

1 +H1H2 +H2
2

) dP
dX

= 0,

since H3
1 −H3

2 = (H1 −H2) (H2
1 +H1H2 +H2

2 ). Now, wherever dP/dX 6= 0, we have

H2
1 +H1H2 +H2

2 =

(
dP

dX

)−1

,

(
H2 +

H1

2

)2

− 1

4
H2

1 =

(
dP

dX

)−1

−H2
1 ,(

H2 +
H1

2

)2

=

(
dP

dX

)−1

− 3

4
H2

1 . (5.177)

Since we are interested in real solutions only, we must have(
dP

dX

)−1

≥ 3

4
H2

1 ≥ 0,
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or

0 ≤ H2
1

dP

dX
≤ 4

3
. (5.178)

When this inequality holds, we can solve (5.177) for H2 to get

H2 = H1

−1

2
+

√(
H2

1

dP

dX

)−1

− 3

4

 . (5.179)

Since H2 ≥ 0, it is, however, required that

− 1

2
+

√(
H2

1

dP

dX

)−1

− 3

4
≥ 0,

which means that

0 ≤ H2
1

dP

dX
≤ 1. (5.180)

This impose further restrictions and, therefore, it overrules (5.178). With (5.180) fulfilled,
we can conclude that there exists a film thickness function H2, not everywhere equal to H1,
that yields the same solution P to (5.176). Moreover, given that H1 yields the solution P
with dP/dX, then

H2 = H1

−
1

2
+

√(
H2

1

dP

dX

)−1

− 3

4
, 0 ≤ H2

1

dP

dX
≤ 1,

1, otherwise.

(5.181)

Let us consider the film thickness (5.164), viz.

H1(X) = 1 + k − kX.

Thus, from (5.163) we have

H2
1

dP

dX
= 1− 1 + k

2 + k

2

1 + k − kX
.

For this specific bearing, the criterion (5.180) can be used to find the part of the solution
domain where H2 is different from H1, i.e.

X ≤ 1 + k

2 + k
,

and from (5.181) we obtain H2 as a different film thickness function describing another
geometry of a bearing which renders exactly the same pressure distribution, thus moment
and force balance. Let us exemplify this by taking k = 1.2, which yields the pressure solution
depicted in Fig. 5.5, and (approximately) the maximum load carrying according to Fig. 5.8.
In Fig. 5.10 the linear slider (5.164) is depicted with the continuous blue line and H2 obtained
from (5.181) with the dashed red line.
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Figure 5.10: The bearing geometry according to (5.164), for the inclination parameter k = 1.2
(continuous blue) and the solution H2 to equation (5.181) (dashed red).

Since H1 and H2 yield the same pressure solution to (5.176) we can combine them both in
the following way

HG = G(X)H1(X) + (1−G(X))H2(X), (5.182)

where

G(X) =

{
1, D ⊆ [0, 1],

0, elsewhere,
(5.183)

and still have the same solution. Notice that the set D may be arbitrarily chosen. To
elucidate on this fact, the film thickness HG based on H1 with k = 4, for three different sets
D specified as

D1 = 0 ≤ X ≤ 0.20 , D2 = 0.3 ≤ X ≤ 0.50 , D3 = 0.6 ≤ X ≤ 0.80 , (5.184)

are depicted together with the corresponding pressure solution in Fig. 5.11.
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Figure 5.11: Three different film thicknesses (a) that gives the same pressure solution (b).

5.6 On the applicability of the Reynolds equation

For incompressible and iso-viscous flow due to motion in the x-direction, the correspond-
ing Reynolds equation can be applied to study the flows in narrow gaps operating under
conditions such that

Rx :=
ρ0u0l0
µ0

(
h0

l0

)2

� 1, (5.185)

where Rx is referred to as the modified Reynolds number. We note that, as seen in (5.28) to
(5.31), most terms only require that ε2 = (h0/l0)2 to be small but that the terms regarding
inertia require Rx to be small. We further note that since it is the square of ε that appears,
it is often not required for ε = h0/l0 to be extremely small for Reynolds equation to be a
valid approximation. Indeed, ε ≈ 0.1 can, in some cases, be small enough to motivate the
use of Reynolds equation. Note that the directionality, indicated through the subscript x,
comes from the problem’s motion and length. Similarly we have modified Reynolds’ numbers
in the y- and the z-directions, i.e.

Ry :=
ρ0v0b0

µ0

(
h0

b0

)2

, (5.186)

and

Rz :=
ρ0v0h0

µ0

. (5.187)

Obviously, there are other circumstances that may affect the applicability. For example,
hydrodynamic cavitation, that will be thoroughly explained in Section 5.8, may occur in
various lubricated interfaces and it require coupling the Reynolds equation with another
physical model that describes it.
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The applicability of Reynolds equation for the case of compressible fluids is not as clear
as in the case of incompressible ones. In this case, it does not only depend on how thin the
film is but also on the type of compressibility at hand. In the reminder of this section, we
will focus on the case of ideal gases. Recall that we arrived at the reduced system (5.53) for
this type of gases. To investigate the validity of Reynolds equation, numerical simulations
predicting the velocity field and pressure build-up for an infinitely wide linear slider 2D model
bearing, of the same type as the one depicted in Fig. 5.3, was performed. The inclination
parameter k was chosen so that optimal load carry capacity is obtained. For a fluid modelled
as an ideal gas k ≈ 5.6, which means that the leading edge gap is ≈ 6.6 times the height
of the trailing edge gap. Recall that, in Section 5.3.5 it was shown that for this type of
bearing lubricated with an incompressible and iso-viscous model fluid, the optimum occurs
for k ≈ 1.2, i.e., when the leading edge gap is ≈ 2.2 times height of the trailing edge gap.

Table 5.1 lists the properties of air necessary to analyse the hydrodynamic lubrication of
air flow by means of (5.53).

Table 5.1: Air properties

Parameter Value Unit Description
Ta 298.15 K Ambient temperature
pa 101325 Pa Ambient pressure
ρa = ρ(Ta, pa) 1.177 kg/m3 Ambient density
M 29 · 10−3 kg/mol3 Molar mass
µa = µ(Ta, pa) 18.46 · 10−6 Pas Ambient viscosity
R 8.314462175 kg/(mol K) Universal gas constant

Indeed, at room temperature the value of M /(RT ) ≈ 10−5. This means that speeds of a few
hundreds of m/s, are required for the left hand sides of (5.52b) and (5.52c) to be as influential
as the terms in the right hand sides. To see why this is the case, notice in (5.53b) and (5.53c)
that the terms on the left hand side are of order (Mu0)/(RT ) whereas those on the right hand
side are of order 1. This is, of course, only occurring in a small number of applications. One
example of a high speed application is a hard disk drive, where the read and write head may
be flying over the disk spinning at 10000 rpm at a 5 cm radius. In this particular case, the
speed is ≈ 50 m/s and (Mu2

0) /(RT ) ≈ 3% meaning that (gx, gy, gz) = (0, 0, g), where g is the
gravitation acceleration. This means that (Mgx) /(RT ) = (Mgy) /(RT ) = 0. This implies
that the compressibility plays a marginal role and that an incompressible solution could serve
as a good approximation. There are, however, applications where the relative speed is even
higher, e.g., high-speed dental drills. According to [85], there are high-speed dental drills
with as large shaft diameter as 3/16” spinning at 500000 rpm, which implies a relative speed
of ≈ 125 m/s. Lubricated with air this means that (Mu2

0) /(RT ) ≈ 18%. There are also
examples of foil bearing applications and of bearings found in turbo machinery [86] where
the speed is high enough for the left hand sides of (5.52b) and (5.52c) to be as influential as
the terms in the right hand sides.

In the following we will present the outcome of the numerical analysis of the infinitely
wide 2D linear slider model bearing. Figure 5.12a, depicts the velocity in the x-direction
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u = u(x, z), obtained with CFD, in this 2D case. Note that the colour range has been
truncated at 125 m/s while the maximum velocity is ≈ 346 m/s.
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Figure 5.12: The CFD velocity in the x-direction u = u(x, z) (a) and The CFD pressure p = p(x)
(b). Sliding speed 125 m/s, hT = 10 µm, hL = 6.6hT , l = 0.1 m/s, and other data given in Table 5.1.

In Fig. 5.12b, the CFD-pressure solution showing that it is not varying in the z-direction in
this particular case, i.e., p = p(x). This is also consistent with our results (5.53d). Figure 5.13,
depicts pressure solution, for both incompressible ρ = ρa and compressible flow ρ = ρafρ(p),
with fρ(p) for an ideal gas given by (5.38), to the corresponding Reynolds equation (5.79)
p = pUREY , for air at room temperature, for U = 5, 50 and 125 m/s.
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Figure 5.13: Pressure solutions, for U = 5 (red), 50 (green) and 125 m/s (blue), to the incompress-
ible Reynolds equation (5.71) with µa according to Table 5.1 (dashed line) and to the compressible
Reynolds equation (5.79) (solid line) for air at room temperature.

Finally, Fig. 5.14 present the relative difference between the CFD-pressure solution and the
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solution to (5.79), defined as
|pUREY − pUCFD|

max(pUREY )
, (5.188)

for each of the three sliding speeds U = 5, 50 and 125 m/s.
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Figure 5.14: Relative difference, for U = 5, 50 and 125 m/s, between the CFD-pressure solution
and the solution to the compressible Reynolds equation (5.79) for air at room temperature. The
difference between the solutions for U = 5 m/s is so small that the red solid line, at the scale of the
figure, appears to coincide with the x-axis.

From this numerical example it is clear that the classical Reynolds equation predicts the
pressure build-up and thus load carrying capacity quite accurately, as long as the sliding
speeds are moderate. The difference between the solutions for U = 5 m/s is even so small
that the red solid line, at the scale of the figure, appears to coincide with the x-axis. But it
also shows that, if high accuracy is desired in a high velocity case, one is forced to resort to
the more consistent (and complex) system (5.53).

5.7 The finite difference method for Reynolds’ type of

PDE:s

In general, solving Reynolds equation analytically is a complicated task. It is possible in some
simple 2D geometries such as the one presented in Section 5.3 but not generally. For 3D cases,
one can forget about obtaining an analytical solution altogether. Therefore, numerical tools
are used to solve Reynolds equation in general. In this section we will therefore present one
such tool. In particular, we will introduce the method of finite differences and apply it to
Reynolds equation.

The Reynolds equation is a special case of the Poisson second order order differential
equation, i.e.

da
∂u

∂t
+∇x · (−c∇xu− αu+ γ) + β · ∇u+ au = f, (5.189)
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where

da = da(t, x), c =

[
c11(t, x) c12(t, x)
c21(t, x) c22(t, x)

]
, α =

[
α11(t, x)
α21(t, x)

]
,

γ =

[
γ11(t, x)
γ21(t, x)

]
, β =

[
β11(t, x)
β21(t, x)

]
, a = a(t, x) and f = f(t, x) (5.190)

in 2D and

da
∂u

∂t
+

∂

∂x

(
−c∂u

∂x
− αu+ γ

)
+ β

∂u

∂x
+ au = f, (5.191)

where

da = da(t, x), c = c(t, x), α = α(t, x),

γ = γ(t, x), β = β(t, x), a = a(t, x), and f = f(t, x)
(5.192)

in 1D. Note that the we will only consider the situation when c12 = c21. We will start by a
derivation of a second order finite difference scheme, with uniform element size ∆x and time
step ∆t, for the 1D case. The spatially discretised finite difference scheme will be realised
by linearisation of the coefficient functions (5.189) to (5.192) at a point xi. In particular, we
need to discretise derivatives of the form

∂u

∂x
,

∂

∂x

(
c
∂u

∂x

)
and

∂u

∂t
.

The element size is defined by the length l of the domain [a, b] and the number of elements.
If we use N + 2 points to discretise this domain (N interior points plus a and b), the element
size becomes

∆x ..=
l

N + 1
. (5.193)

Note that N elements are described through N + 1 points. To allow for a compact notation
for the subsequent steps of the derivation we introduce the notation

uki
..= u(tk, xi), xi = a+ i∆x. (5.194)

Time is denoted by tk here, but at this time it is not restricted to a particular set of discrete
times. The foundation for the discretisation of the 1D Poisson equation (5.191) is depicted
in Fig. 5.15.
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Figure 5.15: Schematics of a discretised domain in 1D.

In the figure, also the midpoints xi±1/2 are shown. These will be used to derive a second
order finite difference scheme defined on the interval Ii = [xi−1, xi+1], for the second order
derivative. Based on these definitions it is now possible to define the classical finite differences
for the first derivative term ∂u/∂x. They are based on the Taylor series expansions at x+∆x,
x+ ∆x/2, x−∆x/2 and x−∆x, i.e.,

f(x+ ∆x) = f(x) +
∆x

1!
f ′(x) +

∆x2

2!
f ′′(x) +

∆x3

3!
f ′′′(x) +

∆x4

4!
f (4)(x) + . . . , (5.195a)

f(x+
∆x

2
) = f(x) +

∆x

211!
f ′(x) +

∆x2

222!
f ′′(x) +

∆x3

233!
f ′′′(x) +

∆x4

244!
f (4)(x) + . . . , (5.195b)

f(x− ∆x

2
) = f(x)− ∆x

211!
f ′(x) +

∆x2

222!
f ′′(x)− ∆x3

233!
f ′′′(x) +

∆x4

244!
f (4)(x) + . . . , (5.195c)

f(x−∆x) = f(x)− ∆x

1!
f ′(x) +

∆x2

2!
f ′′(x)− ∆x3

3!
f ′′′(x) +

∆x4

4!
f (4)(x) + . . . (5.195d)

From (5.195d) get the so called upwind difference scheme directly, i.e.,

∆xf ′(x) = f(x)− f(x−∆x) +O
(
∆x2

)
, (5.196)

or

f ′(x) =
f(x)− f(x−∆x)

∆x
+O (∆x) . (5.197)

Thus, up to first order accuracy the x-derivative of the dependent variable u, at the point
x = xi, can be approximated as

∂u

∂x

∣∣∣∣
xi

≈ ui − ui−1

∆x
. (5.198)

This is often referred to as an upwind scheme and is particularly suited for hyperbolic equa-
tions with initial value or a boundary condition upstream the point itself. By first order
accuracy, it is meant that the correction terms are of order ∆x1. In practice, this means that
one can expect the error to reduce by a factor 21 upon halving ∆x. In general, an nth order
approximation will have corrections of order ∆xn and the error will reduce by a factor 2n
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upon halving ∆x. The difference between (5.195a) and (5.195d) gives the central difference
scheme for the first derivative of f , i.e.,

2∆xf ′(x) = f(x+ ∆x)− f(x−∆x) + 2
∆x3

3!
f ′′′(x) + 2

∆x5

5!
f (5)(x) + . . . , (5.199)

which for a function u leads to a finite difference scheme of second order accuracy that reads

∂u

∂x

∣∣∣∣
xi

≈ ui+1 − ui−1

2∆x
, (5.200)

There are two ways two derive a finite difference scheme for the second order derivative of
a function which is of second order accuracy, the most obvious being to add (5.195a) and
(5.195d), i.e.,

∆x2f ′′(x) = f(x+ ∆x) + f(x−∆x)− 2f(x) + 2
∆x4

4!
f (4)(x) + . . . , (5.201)

which restated as a second order accurate finite difference scheme for the function u reads

∂2u

∂x2

∣∣∣∣
xi

≈ ui+1 − 2ui + ui−1

∆x2
, (5.202)

For the second term in the 2D and the 1D Poisson equations, (5.189) and (5.191), an approach
based on the points xi±1/2

..= x ± ∆x/2, must be used to obtain a finite difference scheme
of second order accuracy. For simplicity we consider the 1D case. Indeed, (5.200) is used to
obtain

∂

∂x

(
c(t, x)

∂u

∂x

)∣∣∣∣
xi

≈

1

∆x

(
ci+1/2

∂u

∂x

∣∣∣∣
xi+1/2

− ci−1/2
∂u

∂x

∣∣∣∣
xi−1/2

)
≈

=
1

∆x

(
ci+1/2

ui+1 − ui
∆x

− ci−1/2
ui − ui−1

∆x

)
=

=
ci+1/2ui+1 − (ci+1/2 + ci−1/2)ui + ci−1/2ui−1

(∆x)2
, (5.203)

which is a second order accurate finite difference scheme for the second term in the Poisson
equation. What remains to be deduced, is the values of the function c at the points xi±1/2 =
x ± ∆x/2. If an explicit mathematical expression defines c, ci±1/2 can be determined by
evaluation directly at the points. Assuming it is not, it can, for example, be determined by
averaging based on its neighbouring values at xi−1, xi and xi+1. The most common method
is, perhaps, to use the arithmetic average, i.e.

ci±1/2 =
ci + ci±1

2
. (5.204)

Note that in the Reynolds equation, c and γ depend on the film thickness h, which is a
function of x.
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The two most typical finite differences of the time derivative are the forward- and back-
ward Euler methods. Let us start by formulating (5.189) as

∂u

∂t
= F (t, x, u). (5.205)

The forward Euler is an explicit scheme which is obtained by approximating the time deriva-
tive with an upwind scheme similar to (5.198), viz.

uk − uk−1

∆t
= F (tk, x, u

k−1). (5.206)

This is an initial value problem and starting from the initial value u0 = u(t0, x) the solution
at time tk is given by

uk = uk−1 + ∆tF (tk, x, u
k−1). (5.207)

With the backward Euler method the solution uk is obtained by solving

uk+1 − uk

∆t
= F (tk+1, x, u

k+1). (5.208)

This is an implicit method and it differs from the explicit forward Euler method in that it uses
F (tk+1, x, uk+1) instead of F (tk, x, uk). It is seen that the (new) approximation uk+1 appears
in both sides of the equation, and one have to solve an algebraic equation to obtain its value.
Thus, the solution procedure must be chosen so that it aligns with the characteristics of the
problem. For a non-stiff problem, fixed-point iteration can be used. More precisely,[

uk+1
]0

= uk,
[
uk+1

]i+1
= uk + ∆tF (tk+1, x,

[
uk+1

]i
). (5.209)

where i is iterated with hope that some specified error measure εi reduces to some specified
tolerance τε. The error measure is commonly chosen as

εi =
|
[
uk+1

]i+1 −
[
uk
]i |

max
(

[uk]i
) (5.210)

If it converges, i.e., εi ≤ τε, for lets say i = Nτ then
[
uk+1

]Nτ
is used as the approximation

to find uk+2 and so on. The Newton–Raphson (or some kind modification of it) can also be
used to solve the algebraic equation. With this we have the tools required to develop finite
difference schemes for all sorts of differential equations, specifically different variants of the
Reynolds equation.

5.7.1 An FDM for the stationary 1D Reynolds equation

In this section we present a second order finite difference scheme for (5.99), i.e., the linear
stationary 1D Reynolds equation, describing incompressible and iso-viscous flow, viz.

d

dx

(
h3

12µa

dp

dx

)
=
ul
2

dh

dx
, 0 ≤ x ≤ l,
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with (pressure) boundary conditions

p(0) = pT and p(l) = pL.

By comparing this form of Reynolds equation with (5.191) we can identify coefficients. Indeed

α = 0, c = − h3

12µa
, β = 0, γ = −ulh

2
, f = 0.

Thus, a second order accurate scheme for (5.99) can be formulated as

ci+1/2pi+1 − (ci+1/2 + ci−1/2)pi + ci−1/2pi−1

(∆x)2
=
γi+1 − γi−1

2∆x
, (5.211)

where ci±1/2 are given by (5.204). The FDM-scheme in (5.211) may be written in a more
compact form as

ewi pi−1 − eci∆xpi + eeipi+1 = Fi, (5.212)

where

ewi =
ci−1/2

∆x
, eci = −

ci+1/2 + ci−1/2

∆x
, eei =

ci+1/2

∆x
and Fi =

γi+1 − γi−1

2

and p0 = pT and pN+1 = pL. Let us list a few of the equations of the algebraic system that
often is referred to as the determining system which we will solve. Since i marks the internal
nodes only, i = 1 . . . N this system becomes,

i = 1 : ew1 p0 +ec1p1 +ee1p2 = F1,

i = 2 : ew2 p1 +ec2p2 +ee2p3 = F2,

...

ewi pi−1 +ecipi +eeipi+1 = Fi,

...

i = N : ewNpN−1 +ecNpN +eeNpN+1 = FN ,

(5.213)

or
i = 1 : ec1p1 +ee1p2 = F1 − ew1 pL,

i = 2 : ew2 p1 +ec2p2 +ee2p3 = F2,

...

ewi pi−1 +ecipi +eeipi+1 = Fi,

...

i = N : ewNpN−1 +ecNpN = FN − eeNpT ,

(5.214)
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where the terms including the boundary conditions, which are known, have been moved to
the right-hand side. The determining system is often presented in matrix-vector form, which
in this case reads



ec1 ee1
ew2 ec2 ee2

. . .

ewi eci eei
. . .

ewN ecN





p1

p2
...
pi
...
pN


=



F1 − ew1 pL
F2
...
Fi
...

FN − eeNpT


(5.215)

An even more compact notation for this tri-diagonal system reads

Ap = b (5.216)

and its solution

p = A−1b, (5.217)

can be readily obtained with various methods.

5.7.2 An FDM for the stationary 2D Reynolds equation

In this section we address the 3D thin film flow situation and present a second order finite
difference scheme for the stationary form of (5.74), i.e., the linear stationary 2D Reynolds
equation, describing incompressible and iso-viscous flow in polar coordinates, viz.

∇x ·
(

h3

12µa

[
1/x2 0

0 x2

]
∇xp−

ω

2

[
x2

0

]
h

)
= 0, on Ω (5.218)

where Ω is the circle sector defined by Ω = {(x1, x2) : 0 < x1 < θp, Ri < x2 < Ro}. We will
also discuss the implications of two applicable variants of boundary conditions, i.e. Dirichlet
in both directions and a combination of Dirichlet- and periodic boundary conditions.

In the 2D case, the grid is enumerated in two directions and when posing the determining
system, as we did in the 1D case obtaining (5.214), we first need to decide how we order the
elements. In Fig. 5.16
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Figure 5.16: Schematics of a discretised domain in 2D. Blue squares marks the boundary nodes,
where the solution is known, and the red circles marks the internal nodes, where the solution is
unknown.

we find a discretised solution grid, where blue squares marks the boundary nodes, where
the solution is known and the red circles marks the internal nodes, where the solution is
unknown. We also have a so called five-point formula, centred at the node (i, j). We will
here use alphabetic order, starting by increasing i from 1 to N , and then each N + 1 time
increase j by . If we assume that the value of the pressure is prescribed on the boundaries
i = 0 ∧ N + 1 and j = 0 ∧M + 1, i.e. Dirichlet boundary conditions, then the solution pij
can be formulate as a column vector (here denoted) p, structured as in (5.225), viz.

p =
[
{p11, p21, . . . , pN1} {p12, p22, . . . , pN2} · · · {p1M , p2M , . . . , pNM}

]T
.

We remark here thatN andM will determine the positions of the diagonals in the determining
matrix A and that it in some cases can be wise to change the order. For example, in the case
when N is significantly larger than M the bandwidth can be reduced by ordering the other
way around. Let us proceed. We will use the formulae in (5.200) and (5.203) with both i
and j to obtain an FDM scheme for the 2D stationary Reynolds equation (5.218) with two
different variants of boundary conditions. By comparing (5.218) with (5.189) we can identify
coefficients. Indeed

α = 0, c = − h3

12µa

[
1/x2 0

0 x2

]
, β = 0, γ = −ω

2

[
x2

0

]
h, f = 0.
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Therefore, the discrete equation becomes

c11
i+1/2,jpi+1,j − (c11

i+1/2,j + c11
i−1/2,j)pi,j + c11

i−1/2,jpi−1,j

(∆x1)2
+

c22
i,j+1/2pi,j+1 − (c22

i,j+1/2 + c22
i,j−1/2)pi,j + c22

i,j−1/2pi,j−1

(∆x2)2
=

γ11
i+1,j − γ11

i−1,j

2∆x1

, (5.219)

where ci±1/2,j and ci,j±1/2 can be obtained from (5.204). In a compacted notation, the five-
point FDM scheme (5.219) can be formulated as

esijpi,j−1 + ewijpi−1,j + ecijpij + eeijpi+1,j + enijpi,j+1 = Fij, (5.220)

where

ewij =
c11
i−1/2,j

(∆x1)2
, ecij = −

c11
i+1/2,j + c11

i−1/2,j

(∆x1)2
−
c22
i,j+1/2 + c22

i,j−1/2

(∆x2)2
, eeij =

c11
i+1/2,j

(∆x1)2

esij =
c22
i,j−1/2

(∆x2)2
, enij =

c22
i,j+1/2

(∆x2)2
,

Fij =
γ11
i+1,j − γ11

i−1,j

2∆x1

We note that if the matrix c would have had non-zero off-diagonal terms, this would have
rendered 4 more diagonals, i.e. sub- and super-diagonals to es and en, being multipliers for
pi±1,j and pi,j±1. Like we did in the 1D case before, we will now just list the most essential
equations of the algebraic system for the solution pij, commonly referred to as the determining
system.

In this case, due to size requirements we will separate it into a left- and a right-hand side
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part. The left-hand side then reads


es11p1,0 + ew11p0,1 + ec11p1,1 + ee11p2,1 + en11p1,2

es21p2,0 + ew21p1,1 + ec21p2,1 + ee21p3,1 + en21p2,2
...

esN1pN,0 + ewN1pN−1,1 + ecN1pN,1 + eeN1pN+1,1 + enN1pN,2




es12p1,1 + ew12p0,2 + ec12p1,2 + ee12p2,2 + en12p1,3

es22p2,1 + ew22p1,2 + ec22p2,2 + ee22p3,2 + en22p2,3
...

esN2pN,1 + ewN2pN−1,2 + ecN2pN,2 + eeN2pN+1,2 + enN2pN,3


...

es1Mp1,M−1 + ew1Mp0,M + ec1Mp1,M + ee1MpN+1,M + en1Mp1,M+1

es2Mp2,M−1 + ew2Mp1,M + ec2Mp2,M + ee2MpN+1,M + en2Mp2,M+1
...

esNMpN,M−1 + ewNMpN−1,M + ecNMpN,M + eeNMpN+1,M + enNMpN,M+1





(5.221)

and the right-hand side becomes[
{F11, F21, . . . , FN1} {F12, F22, . . . , FN2} · · · {F1M , F2M , . . . , FNM}

]T
. (5.222)

It is now time to address the boundary conditions and we will devote one subsection for each
of the cases.

Dirichlet boundary conditions

For a typical tilting-pad bearing, such as the one illustrated in 2.1, each segment is sur-
rounded by lubricant supplied at a given pressure pa. If it is assumed that the segments
behave identically, the numerical analysis may be focussed on a single element reducing the
computational burden by a factor equalling the number of pads. This means that the pres-
sure distribution on each individual segment assuming Dirichlet boundary conditions is the
pressure solution depicted in 5.2.

p(0, x2) = p(θp, x2) = p(x1, Ri) = p(x1, Ro) = pa. (5.223)

Looking at the system above, this means that p0,j = pN+1,j = pi,0 = pi,M+1 = pa for
i = 1 . . . N and j = 1 . . .M are known and should be moved to the right-hand side. This
makes it possible to formulate the determining system in matrix form - in which the subscript
D indicate that Dirichlet boundary conditions are considered, as

ADpD = bD, (5.224)

where AD is an (NM) × (NM) five-diagonal matrix and where pD and bD are (NM) × 1
vectors structured in the same way, i.e.[

{f11, f21, . . . , fN1} {f12, f22, . . . , fN2} · · · {f1M , f2M , . . . , fNM}
]T
, (5.225)



110 CHAPTER 5. THE LUBRICATED CONTACT

x1

x2

x

y

Ri Leading edge Ro

T
ra

il
in

g
ed

ge

ω

Figure 5.17: Illustration of a polar coordinate system (x1, x2) applied to model one of the segments
of a tilting-pad thrust bearing with 6 identical segments.

where the M sets, one for each j listing the equations i = 1 . . . N , have been grouped together
with curly braces { }. The matrix AD consist of the coefficients e∗ij for the solution pij.

When carrying out the implementation of the FDM solution it is convenient to represent
the coefficients e∗ij and Fij on matrix form. To this end, one can use the following template

g =


g0M g10 . . . gN,0 gN+1,0

g01 g11 . . . gN,1 gN+1,1
...

...
. . .

...
...

g0M g1M . . . gN,M gN+1,M

g0,M+1 g1,M+1 . . . gN,M+1 gN+1,M+1

 (5.226)

where we have also coloured the components corresponding to the Dirichlet boundary con-
ditions in blue. Note that the corner coefficients will not be used for the five-point scheme,
but if the matrix c would have had non-zero off-diagonal terms c12 = c21, they would have.

For the readers convenience, we will give the explicit description of the determining system
so as to easily obtain AD and bD. We start with the left-hand side of the determining system,
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which if colouring the components corresponding to the boundary conditions in blue reads


es11pa + ew11pa + ec11p1,1 + ee11p2,1 + en11p1,2

es21pa + ew21p1,1 + ec21p2,1 + ee21p3,1 + en21p2,2
...

esN1pa + ewN1pN−1,1 + ecN1pN,1 + eeN1pa + enN1pN,2



es12p1,1 + ew12pa + ec12p1,2 + ee12p2,2 + en12p1,3

es22p2,1 + ew22p1,2 + ec22p2,2 + ee22p3,2 + en22p2,3
...

esN2pN,1 + ewN2pN−1,2 + ecN2pN,2 + eeN2pa + enN2pN,3


...

es1Mp1,M−1 + ew1Mpa + ec1Mp1,M + ee1Mp2,M + en1Mpa
es2Mp2,M−1 + ew2Mp1,M + ec2Mp2,M + ee2Mp3,M + en2Mpa

...
esNMpN,M−1 + ewNMpN−1,M + ecNMpN,M + eeNMpa + enNMpa





. (5.227)

This means that

AD =



ec11 ee11 en11

ew21 ec21 ee21 en21
. . . . . .

ewN1 ecN1 enN1

es12 ec12 ee12 en12

es22 ew22 ec22 ee22 en22

. . . . . . . . .

enN,M−1

ec1M ee1M
ew2M ec2M ee2M

. . . . . .

esNM ewNM ecNM



. (5.228)

This five-diagonal matrix can be seen as a block matrix consisting of sub-, main- and super-
diagonal blocks

es1j
es2j

. . .

esNj

 ,

ec1j ee1j
ew2j ec2j ee2j

. . .

ewNj ecNj

 ,

en1j

en2j
. . .

enNj

 . (5.229)



112 CHAPTER 5. THE LUBRICATED CONTACT

After moving over the known components from (5.227) to the right-hand side we get

bD =





F11

F21
...

FN1

−

es11

es21
...
esN1

 pa −

ew11

0
...
eeN1

 pa




F12

F22
...

FN2

−

ew12

0
...
eeN2

 pa


...

F1M

F2M
...

FNM

−

en1M
en2M

...
enNM

 pa −

ew1M

0
...

eeNM

 pa




. (5.230)

Mixed periodic and Dirichlet boundary conditions

Let us now consider the situation when the cylindrically shaped bearing exhibits a symmetry
in the circumferential direction, so that the solution domain can be divided into a number
of (periodically repeating) identical sections. The spiral groove thrust bearing, with film
thickness map as schematically illustrated in 5.18,
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Figure 5.18: A model of the film thickness of a spiral groove bearing with a θper = 72◦ period,
repeating the same section five times. The colours indicating the (dimensionless) height of the
plateau (h̄ = 1), grooves (h̄ = 3) and the central recess area (h̄ = 5).

is a typical example this type of configuration. For this type of application, it is appropriate to
pose Dirichlet boundary conditions in the radial direction and periodic boundary conditions
in the circumferential direction, i.e.

p(0, x2) = p(θper, x2), p(x1, Ri) = ps, and p(x1, Ro) = pa, (5.231)

where θper angle of periodicity. In discretised notation, the periodic boundary conditions
becomes p0,j = pN+1,j for j = 0 . . .M + 1. The numerical solution is defined in the ‘periodic
window’ i = 0 . . . N , and we denote the vector representation as

pper =
[
{p01, p11, . . . , pN,1} {p02, p12, . . . , pN,2} · · · {p0M , p1M , . . . , pN,M}

]T
. (5.232)

Note that the periodicity in general means that the solution is the same for any two points
on the same radius, which are separated in the circumferential direction with the angle of
periodicity θper, i.e., p(x1, x2) = p(x1 +θper, x2). In discretised form this yields pij = pi+N+1,j,
and specifically, this means that p−1,j = pN,j, which will be utilised when generating the
determining matrix for this problem.

The Dirichlet conditions can be expressed as pi,0 = ps and pi,M+1 = pa for i = 1 . . . N ,
and as described above these are known and should be moved to the right-hand side.
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We recall that

ewij =
c11
i−1/2,j

(∆x1)2
, ecij = −

c11
i+1/2,j + c11

i−1/2,j

(∆x1)2
−
c22
i,j+1/2 + c22

i,j−1/2

(∆x2)2
, eeij =

c11
i+1/2,j

(∆x1)2

esij =
c22
i,j−1/2

(∆x2)2
, enij =

c22
i,j+1/2

(∆x2)2
,

Fij =
γ11
i+1,j − γ11

i−1,j

2∆x1

where

c11 = −x2
h3

12µa
, c22 = − 1

x2

h3

12µa
, γ11 = −x2

ωh

2
.

For the periodic problem it is required that e∗ij and Fij are extended to enable a formulation
of the five-point FDM scheme for the periodic window. We can generate extended forms e∗per
and Fper by inserting the penultimate column before the first one in the previously defined
matrix (5.226), i.e.

gper =


gN,0 g0M g10 . . . gN,0 gN+1,0

gN,1 g01 g11 . . . gN,1 gN+1,1
...

...
...

. . .
...

...
gN,M g0M g1M . . . gN,M gN+1,M

gN,M+1 g0,M+1 g1,M+1 . . . gN,M+1 gN+1,M+1

 . (5.233)

Here we have also coloured the components of pper corresponding to the periodic and Dirichlet
boundary conditions in red and blue, respectively.

By using the same colouring scheme, the left-hand side in the determining system becomes


es01ps + ew01pN,1 + ec01p0,1 + ee01p1,1 + en01p0,2

es11ps + ew11p0,1 + ec11p1,1 + ee11p2,1 + en11p1,2
...

esN,1ps + ewN,1pN−1,1 + ecN,1pN,1 + eeN,1p0,1 + enN,1pN−1,2




es02p0,1 + ew02pN,2 + ec02p0,2 + ee02p1,2 + en02p0,3

es12p1,1 + ew12p0,2 + ec12p1,2 + ee12p2,2 + en12p1,3
...

esN2pN,1 + ewN2pN−1,2 + ecN2pN,2 + eeN2p0,2 + enN2pN,3


...

es0Mp0,M−1 + ew0MpN,M + ec0Mp0,M + ee0Mp1,M + en0Mpa
es1Mp1,M−1 + ew1Mp0,M + ec1Mp1,M + ee1Mp2,M + en1Mpa

...
esNMpN,M−1 + ewNMpN−1,M + ecNMpN,M + eeNMp0,M + enNMpa





. (5.234)
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Thus, moving the known components to the right-hand side gives

bper =





F01

F11
...

FN1

−

es01

es11
...
esN1

 ps



F02

F12
...

FN2


...


F0M

F1M
...

FNM

−

en0M
en1M

...
enNM

 pa




. (5.235)

This makes it possible to write the determining system on the form

Aperpper = bper. (5.236)

We note that the pressure solution consists of (N + 1) ×M unknowns and that, for each
j = 1 . . .M , the column in Aper corresponding to N × j + 1 has the element eeN,j at row
N × j and that the column N × j has the element ew0,j at row N × j + 1. If we express the
sub-, main- and super-diagonal blocks, for the determining matrix for this mixed boundary
condition situation, they read


es0j

es1j
. . .

esN,j

 ,

ec0j ee0j . . . ew0j
ew1j ec1j ee1j

...
. . .

eeN,j ewN,j ecN,j

 ,

en0j

en1j
. . .

enN,j

 . (5.237)

5.8 Modelling mass-conserving hydrodynamic cavita-

tion

Hydrodynamic cavitation is found in various lubrication situations. For example, at the
divergent section between the shaft and the bushing in a plain journal bearing, where the
fluid film is subjected to a tensile stress situation. The fluid cannot withstand these stresses
and thus the fluid film ruptures. In this situation, Reynolds equation will fail to capture
this phenomenon. Instead, it will wrongly predict negative (tensile) pressures. An early
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approach to avoid this issue was simply to ignore the negative pressures. This, however, does
not preserve mass continuity and thus also leads to inaccurate results. The first attempts to
model mass-conserving hydrodynamic cavitation was presented by three authors Jacobson,
Floberg and Olsson [15–18]. They described the so called rupture and reformation boundary
conditions and showed how they could be incorporated in the Reynolds equation leading to
a mathematical model of hydrodynamic cavitation.

Elrod and Adams [19] developed a cavitation algorithm using a single equation throughout
the lubrication region without the need for explicit equations to locate the cavitation bound-
aries, and used a switch function to terminate the pressure gradient in the region of cavitation.
In [87] Elrod prented a variant of the cavitation algorithm proposed in [19], in which he used
a different constitutive relationship between pressure and density. Vijayaraghavan and Keith
introduced a more rigorous derivation and presented their contribution to cavitation mod-
elling in [88,89]. As in [19] their algorithm was derived based on the constant bulk modulus
type of compressibility. For real lubricants the bulk modulus varies with pressure. The im-
portance of using more realistic models for the compressibility was investigated further in the
paper [90] by Sahlin et al. However, treating the bulk modulus as a constant could produce
good results in a narrow pressure range. Examples of other work addressing the difficulties
associated with cavitation modelling are [91–93].

5.8.1 JFO theory

Jakobsson and Floberg [15] developed a mass preserving cavitation theory. They assumed a
constant pressure in the cavitation region, i.e. the pressure gradient is zero. They also derived
a set of conditions to locate the cavitation boundaries. Later, Floberg and Olsson [16–18]
extended the theory of cavitation and implemented it in the numerical solution procedures
for numerous bearing types. The JFO-theory is based on the complementary assumption
that the fluid is either fully saturated, i.e. θ = 1 and the fluid pressure is larger than the
cavitation pressure p > pc, or cavitated, i.e. θ < 1 and the pressure equals the cavitation
pressure p = pc. They formulated this mathematically as a boundary condition for the
location xc of the cavitation inception or rupture, i.e.

p(xc) = pc and
∂p

∂n

∣∣∣∣
x=xc

(5.238)

and as a condition for preservation of mass flow at the point xr of where the fluid film reforms

h3

12µa

∂p

∂n

∣∣∣∣
x=xr

=
Vn
2

(1− θ)
∣∣∣∣
x=xr

. (5.239)

Though the JFO-rupture and reformation conditions can be applied to various lubrication
problems, such as the ones for journal bearings, piston ring - cylinder liner conjunctions
and rolling element bearings, it is difficult to handle situations where rupture and cavitation
occurs many times inside the interface, as would be the case with e.g. a textured bearing sur-
face. This lead successors to develop “universal” cavitation algorithms, as will be presented
below.
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5.8.2 Elrod’s and Adams’ universal cavitation algorithm

It is not so easy to describe the universal cavitation algorithm developed by Elrod and Adams.
One reason is that their work starts in [19], with a paper in which they employ a constant
bulk modulus type of constitutive relationship between density and pressure, i.e.,

p = pc + βg(θ) ln θ, (5.240)

where θ is the saturation or the dimensionless density given by

θ(x) =
ρ(p(x))

ρc
,

and where ρc = ρ(pc) and g(θ) is a so called switch function

g(θ) =

{
1, p > pc,
0, p = pc.

(5.241)

The expression (5.240) comes from

ρ = ρae
−(p−pa)/β

with pa = pc. By means of precisely this constitutive relationship between p and θ, Elrod
and Adams presented a “universal differential equation” originating from (5.79), which reads

∂ (θh)

∂t
= ∇x ·

(
βh3

12µa
g(θ)∇xθ −

us
2
θh

)
. (5.242)

Elrod then continues the development in [87] but there another constitutive relationship
between density and pressure is adopted, i.e. (5.243). Elrod describes his model like this:
“Within the cavitated zone, the liquid everywhere possesses the density, ρc, but the actual
mass content is ρcθh per unit area. Here 1− θ, then, is the same as the void fraction. Within
the complete film, due to variation in pressure, the fluid density also varies. By reason of
slight compression, the film mass content exceeds the content that would exist if the pressure
were pc. In other words, θ = ρ/ρc and the corresponding film pressure is:

p = pc + βg(θ) (θ − 1) , (5.243)

where β =O (109) in SI units for a typical lubricating oil. It is realised, of course, that θ will
be very nearly unity in the full-film zone, but when equation (5.243) constitutes an analytical
convenience, it will be used.” In a more condensed form this means that the fluid behaves
more or less as incompressible in the full-film zones and that it expands as a homogeneous
blend in the cavitated zones.

Based on (5.243), the corresponding Reynolds equation (5.79) would become

∂ (θh)

∂t
= ∇x ·

(
βθh3

12µa
∇x (g(θ)(θ − 1))− us

2
θh

)
. (5.244)
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The finite difference scheme presented in [87] implies that it would originate from

∂ (θh)

∂t
= ∇x ·

(
βh3

12µa
∇x (g(θ)(θ − 1))− us

2
θh

)
, (5.245)

which differs from (5.244) as it reflects a flow situation where the fluid behaves like an incom-
pressible liquid in the full-film zones and as a homogeneous compressible gas-liquid mixture
in the cavitated zones. This is, also, to some extent consistent with Elrod’s description of
his model, reprinted above. However, they found, and so did successors, that obtaining a
converged numerical solution to this equation can be quite challenging if not even impossible
sometimes.

In the following sections, the inconsistency of the introduction of the constitutive ex-
pression in (5.243) and the controversy that Reynolds equation, (5.79), actually reduces to
(5.244) when adopting the constitutive relation given by (5.240) will be elaborated upon.

5.8.3 Vijayaraghavan’s and Keith Jr’s cavitation model

As Elrod and Adams did in [19], Vijayaraghavan and Keith Jr. [88,89] also used the constant
bulk modulus type of compressibility as a starting point in their derivation of a cavitation
model. They, however, presented a more rigorous derivation, which finally lead to a cavitation
algorithm similar to the one presented by Elrod in [87]. More precisely, they use the density-
pressure relation defined in (5.39) and reach again

∂ (θh)

∂t
= ∇x ·

(
βh3

12µa
g(θ)∇xθ −

us
2
θh

)
.

While studying this equation they conclude

g(θ)∇x · (θ) = g(θ)∇x · (θ − 1) (5.246)

and since
∇x · (g(θ)(θ − 1)) = g(θ)∇x · (θ − 1) + (θ − 1)∇x · (g(θ)) , (5.247)

we have
g(θ)∇x · (θ − 1) = ∇x · (g(θ)(θ − 1))− (θ − 1)∇x · (g(θ)) . (5.248)

However, in the full-film zones θ = 1 and in the cavitated ones g(θ) = 0 thus the last term
in (5.248) vanishes everywhere except at the point of rupture and we have

g(θ)∇x · (θ) = ∇x · (g(θ)(θ − 1)) (5.249)

so that (5.242) remarkably reduces to (5.245), which is the continuous interpretation of the
cavitation algorithm that Elrod proposed in [19]. Moreover, they introduce the concept of
type differencing from transonic flow computations to obtain a finite difference stencil for the
shear flow term that effectively considers that the governing equation goes from elliptic to
hyperbolic when flow goes from fully flooded to cavitated. That is,

∂(θh)

∂x
=

∂

∂x

(
θh− (1− g(θ))

∂(θh)

∂x

∆x

2

)
, (5.250)
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where ∆x is the element size in the x-direction. When discretised this leads to the finite
difference scheme

∂(θh)

∂x

∣∣∣∣
xi

=
(θh)|xi − (θh)|xi−1

∆x
+O (∆x) , (5.251)

for the shear flow term within the cavitated zone, while it becomes

∂(θh)

∂x

∣∣∣∣
xi

=
(θh)|xi+1

− (θh)|xi−1

2∆x
+O

(
(∆x)2

)
, (5.252)

in the full-film zone. In comparison, the scheme presented in [87], yields

∂(θh)

∂x

∣∣∣∣
xi

=
h|xi − h|xi−1

∆x
+O (∆x) , (5.253)

which clearly represents shear flow for an incompressible fluid. The scheme (5.251) is of first
order, while (5.252) is of second order. In [89], Vijayaraghavan and Keith present the remedy
for this by extending the type differencing scheme to

∂E

∂x
=

∂

∂x

(
E − (1− g(θ))

(
∂2E

∂x2

(∆x)2

2
− ∂3E

∂x3

(∆x)3

8

))
, (5.254)

where E = θh. This leads to the second order finite difference scheme

∂E

∂x

∣∣∣∣
xi

=
1

2∆x

(
gi+1/2Ei+1 − (2− gi+1/2 − gi−1/2)Ei − (2− gi−1/2)Ei−1

)
+

=
1

2∆x

(
(1− gi+1/2)Ei − (2− gi+1/2 − gi−1/2)Ei−1 + (1− gi−1/2)Ei−2

)
+

O
(
(∆x)2

)
. (5.255)

The pressure driven flow can then be discretised with a standard second order accurate
finite difference scheme. This method leads to a much more robust solution than previous
approaches, but the example in Fig. 6 in [88] shows that their implementation of this switch-
function based algorithm induce an artificial source term. This is evident due to the fact
that the pressure developing over the second parabolic constriction is larger than that of the
first parabolic constriction. The numerical exact solution to this problem is presented in ??
in the Section 5.8.5.

5.8.4 Arbitrary compressibility switch function based cavitation
algorithm

In the paper by Sahlin et al. [90], they adopt the expression (5.36), viz.

ρ = ρafρ(p),

as the constitutive relationship for the fluid compressibility. We recall, from above, that f
is a strictly increasing function, f(pa) = 1 and ρa is the density at the ambient pressure pa.
This means that

∇ρ = ρaf
′(p)∇p, (5.256)
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can be inverted to express the pressure gradient as,

∇p =
1

f ′(p)
∇θ, (5.257)

where θ(x) = ρ(p(x))/ρa. This means that (5.79) including the switch function g(θ) (5.241)
can be posed as

∂ (θh)

∂t
= ∇x ·

(
h3

12f ′(p)µa
g(θ)∇xθ −

us
2
θh

)
. (5.258)

In [90] they analyse the resulting predictions based on both the constant bulk modulus type
of compressibility (5.39) and another kind of density-pressure relationship, the well-known
relation,

ρ = ρa
C1 + C2(p− pa)
C1 + p− pa

, (5.259)

deduced by Dowson and Higginson and presented in [64], together with the constants C1 =
0.59 GPa and C2 = 1.34 that the found to be best fit to mineral oil density-pressure data
they had access to. Sahlin et al. [90] fitted the constants to another set of mineral oil
density-pressure data for pressures up to 1 GPa, and found a close fit for C1 = 2.22 GPa and
C2 = 1.66.

5.8.5 The linear complementarity problem formulation

In 2005, Bayada [94] presented a continuous complementarity formulation of Elrod’s cavi-
tation algorithm [87]. Later, Giacopini et al. [20] presented the same formulation together
with the discretised linear complementarity problem formulation of the same cavitation al-
gorithm on the basis that the fluid in the fully flooded regions behaves if as incompressible.
Independent of each other Bertocchi et al. [23] and Almqvist et al. [21, 24] developed this
further.

The work [21] is built upon that the pressure solution given by the Reynolds equation
(expressed in its most fundamental form):

∇ · q = 0, (5.260)

may well be below pc. It proceeds by stating that in the full film zones, the density can be
expressed as ρ = ρce

(p−pc)/β. In the cavitation zones the density, or the saturation, is an
unknown, here denoted by δ, hence

ρ (p) = ρc

{
e(p−pc)/β , p > pc
δ , p = pc

. (5.261)

The unknown saturation function δ satisfies 0 ≤ δ ≤ 1. Since ∇p = 0 in the region where
p = pc we have that

q = ρc


e(p−pc)/βh

2
U − e(p−pc)/βh3

12µ
∇p , p > pc

δh

2
U , p = pc

, (5.262)
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which is a nonlinear expression in p. By introducing the following change of variables

u = e(p−pc)/β − 1, u ≥ 0, (5.263)

we get that

q = ρc


uh

2
U +

h

2
U − βh3

12µ
∇u , u > 0

δh

2
U , u = 0

. (5.264)

A key point in the derivation of the cavitation model they present in [21] is that they rewrite
(5.264) by introducing a new unknown variable η, which is complementary to u in the whole
domain, i.e., uη = 0. They define the variable η as

η = 1− δ =

{
0 , u > 0
1− δ , u = 0

. (5.265)

This means that, if u > 0 then η = 0 and if u = 0 then 0 ≤ η ≤ 1. The expression for the
mass flow (5.264) can now be rewritten as:

q = ρc


hu

2
U +

h

2
U − βh3

12µ
∇u , u > 0

h

2
U − ηh

2
U , u = 0

,

or alternatively

q = ρc

(
hu

2
U +

h

2
U − βh3

12µ
∇u− ηh

2
U

)
, u ≥ 0. (5.266)

With this expression for the mass flow the continuity equation, becomes

∇ · q = ρc∇ ·
(
hu

2
U +

h

2
U − βh3

12µ
∇u− ηh

2
U

)
= 0,

and summing up, they expresses their mass preserving cavitation model as

∇ ·
(
βh3

12µ
∇u− hu

2
U

)
= ∇ ·

(
h

2
U

)
−∇ ·

(
ηh

2
U

)
, (5.267)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.

The beauty of the formulation presented above, is that it permits a subsequent numerical
LCP analysis by means of readily available methods, such as Lemke’s algorithm, presented
in Section 4.5. Having the solution (u, η) the fluid pressure p and the saturation δ can be
obtained from (5.263) and (5.265). It should also be noted that MATLAB code for the
numerical solution of this cavitation algorithm has been made available at MATLAB file
central [95]. This model was later generalised in to include elastic deformation as well as the
situation where the distance between the surfaces varies with time in [24].

By varying the bulk modulus, the compressibility of the lubricant is varied. A low value
of the bulk modulus corresponds to a highly compressible lubricant, while a high value
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corresponds to a nearly incompressible lubricant. In fact, in the limit β → ∞, (5.267)
becomes

∇ ·
(
h3

12µ
∇p
)

= ∇ ·
(
h

2
U

)
−∇ ·

(
ηh

2
U

)
, (5.268)

p ≥ 0, 0 ≤ η ≤ 1, pη = 0.

which is the same cavitation algorithm as in [20]. Remark that, the system (5.268) can also
be obtained by starting from the assumption ρ = ρc and thereafter following the procedure
presented above.

Analytical solution to the 1D problem

The analytical solution to the cavitation algorithm (5.267) can be obtained for some simple
cases. One of these is the two-dimensional pocket slider bearing, defined as

h (x) =


h0 0 ≤ x ≤ a
h1 a < x < b
h0 b ≤ x ≤ l

, with h1 > h0, (5.269)

with graphical representation is presented in Fig. 5.19.

0 a b l

0

h0

h1

z

Figure 5.19: Schematic illustration of the modelled pocket bearing.

The analytical solution to this pocket bearing, for an the incompressible case (5.268) can be
found in [96], see also [97]. For 2D pocket bearing geometry, the continuity equation becomes
one-dimensional and reads:

dq

dx
= ρc

d

dx

(
hu

2
U +

h

2
U − βh3

12µ

du

dx
− ηh

2
U

)
= 0.
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Together with the boundary conditions p (0) = pin and p (l) = pout, for the inlet and outlet
respectively, the cavitation model can be formulated as

d

dx

(
βh3

12µ

du

dx
− U

2
hu

)
=
U

2

dh

dx
− U

2

d

dx
(ηh) , (5.270)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.

It is assumed that the fluid cavitates inside the pocket between the point of rupture at x = a
and the point of reformation at x = z, where a ≤ z ≤ b. This means that the bearing can be
subdivided into three liquid phase zones; 0 ≤ x ≤ a and z ≤ x ≤ b and b ≤ x ≤ l and one
gas phase zone a ≤ x ≤ z, where u = 0 and 0 ≤ η ≤ 1. In each of the liquid phase zones,
η = 0 and u is given by

d

dx

(
βh3

12µ

du

dx
− U

2
hu

)
=
U

2

dh

dx
.

Summing up, for each of the zones the solution explicitly reads

u = C1 + C2 exp

(
6µU

βh2
0

x

)
, η = 0, 0 ≤ x ≤ a, (5.271)

u = 0, η = C, a ≤ x ≤ z, (5.272)

u = C3 + C4 exp

(
6µU

βh2
1

x

)
, η = 0, z ≤ x ≤ b, (5.273)

u = C5 + C6 exp

(
6µU

βh2
0

x

)
, η = 0, b ≤ x ≤ l. (5.274)

The boundary conditions u (0) = e(pin−pc)/β − 1 and u (a) = 0, can be used to determine the
constants C1 and C2, i.e.

C1 = −1− exp ((pin − pc) /β)

1− exp

(
−6µUa

βh2
0

) , (5.275)

C2 = −C1 exp

(
−6µUa

βh2
0

)
. (5.276)

Knowing the solution u it can be used to equate the mass flow q according to

q =
ρcUh0

2

1− 1− exp ((pin − pc) /β)

1− exp

(
−6µUa

βh2
0

)
 . (5.277)

The mass flow is preserved throughout the whole domain. According to equation (5.266),
the mass flow in a < x < z is given by

q =
ρcUh0

2
(1− C) , (5.278)
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and the constant C can be determined. More precisely,

C =
1− exp ((pin − pc) /β)

1− exp

(
−6µUa

βh2
0

) ( = −C1) .

The remaining constants Ci, i = 3, . . . , 6 and z, can be found by using the conditions that
both u and the mass flow are continuous at x = z and x = b and the boundary condition
u (l) = e(pout−pc)/β − 1. Summing up:

C3 =
h0

h1

(1− C)− 1, (5.279)

C5 = −C, (5.280)

C6 =
exp ((pout − pc) /β)− 1− C5

exp

(
6µUl

βh2
0

) , (5.281)

C4 =

−C3 + C5 + C6 exp

(
6µUb

βh2
0

)
exp

(
6µUb

βh2
1

) , (5.282)

and (if it exists) the point of reformation reads

z =
βh2

1

6µU
ln

(
−C3

C4

)
− a. (5.283)

Note that C3 in (5.279) is the correct value. In [21] it was not correct but an errata with the
expression in (5.279) was published shortly after.

Numerical solution procedures

In the following subsections, we will discuss how to discretise the cavitation model (5.267)
such that the discretised problem is on the form of a standard linear complementary problem
(LCP). Notice that once written as a LCP, the problem can be solved using various methods.
For example Lemke’s algorithm, which was presented in Section 4.5.

Although a two-dimensional formulation is straight forward, a one-dimensional version is
presented here in order not to complicate the notation unnecessarily. Two different types
of differencing schemes are discussed. In the first type, central and upwind differencing is
combined, while the second type is based on central differences only.

Combined central and upwind differencing

Let us recall the one-dimensional form of (5.267):

d

dx

(
a
du

dx
+ bu

)
=
dF

dx
− d

dx
(ηF ) , (5.284)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.
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where

a =
βh3

12µ
, b = −U

2
h, F =

U

2
h. (5.285)

The problem is discretised again using finite differences by dividing the domain 0 < x < l
into a uniform grid with N + 2 points, thus having elements of size ∆x = l/(N + 1). Note
that, by interpreting u as pressure and choosing coefficients as

a =
h3

12µ
, b = 0, F =

U

2
, (5.286)

the model obtained corresponds to the one presented in [20], where the lubricant is assumed
to be incompressible in the full film regions. The following notation is adopted xi = il/N,
where i = 0, . . . , N + 2 and

ui := u (xi) .

The problem at hand is elliptic in the full film domain, where η = 0. A central difference
scheme is therefore used to approximate the derivatives in (5.284). Following the scheme
presented in Section 5.7 and using the notation

ai±1/2 =
ai±1 + ai

2
,

and the approximation

du

dx

∣∣∣∣
i+1/2

≈ ui+1 − ui
∆x

and
du

dx

∣∣∣∣
i−1/2

≈ ui − ui−1

∆x
,

we obtain

d

dx

(
a
du

dx
+ bu

)
≈
ai+1/2

du

dx

∣∣∣∣
i+1/2

− ai−1/2
du

dx

∣∣∣∣
i−1/2

∆x
+

(bu)i+1 − (bu)i−1

2∆x

≈

(
ai+1 + ai

2

)(
ui+1 − ui

∆x

)
−
(
ai−1 + ai

2

)(
ui − ui−1

∆x

)
∆x

+
bi+1ui+1 − bi−1ui−1

2∆x

=
1

2∆x2
[(ai + ai−1)ui−1 − (ai−1 + 2ai + ai+1)ui + (ai + ai+1)ui+1] +

+
bi+1ui+1 − bi−1ui−1

2∆x
,

for the left hand side. The first term in the right hand side becomes

dF

dx
≈ Fi+1 − Fi−1

2∆x
.

In the cavitated regions, where u = 0, we observe that the equation is hyperbolic in η and
an upwind difference scheme is employed accordingly, i.e.,

d

dx
(ηF ) ≈ ηiFi − ηi−1Fi−1

∆x
.
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Let us introduce the following notation

ewi =
ai−1 + ai

2∆x2
− bi−1

2∆x
,

eci = −ai−1 + 2ai + ai+1

2∆x2
,

eei =
ai + ai+1

2∆x2
+
bi+1

2∆x
,

zi =
Fi+1 − Fi−1

2∆x
,

gci = − Fi
∆x

,

gwi =
Fi−1

∆x
.

Using this notation, we define the following matrices and vectors:

A =



ec1 ee1 0 0 0 · · ·
ew2 ec2 ee2 0 0 · · ·
0 ew3 ec3 ee3 0 · · ·
...

...
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

ewN−2 ecN−2 eeN−2

0 ewN−1 eeN−1


, (5.287)

f =



z1 − ew1 u0 − gw1 η0

z2

z3

zN−2

zN−1 − eeN−1uN − gcN−1ηN


, (5.288)

where the values of η on the boundaries are computed from the complementarity conditions
u0η0 = 0 and uNηN = 0, and

B =



gc1 0 0 0 0 · · ·
gw2 gc2 0 0 0 · · ·
0 gw3 gc3 0 0 · · ·
...

...
. . . . . .

. . . . . .
. . . . . .

gwN gcN−2 0
0 gwN−1 gcN−1


. (5.289)
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The discretised form of (5.270) can now be written as

Au = f +Bη, ui, ηi ≥ 0, uiηi = 0. (5.290)

Solving this system for u gives

u = q +Mη, ui, ηi ≥ 0, uiηi = 0, (5.291)

where q = A−1f and M = A−1B.
The linear complementarity problem (5.291) can readily be solved by employing standard

numerical methods. One which is frequently used is Lemke’s pivoting algorithm, see [39] and
Section 4.5. One advantage, is that Lemke’s pivoting algorithm finds the solution in a finite
number of steps. Hence, the solution obtained is numerically exact. The method chosen
for the present work is a vectorized matlab version of a pivoting algorithm solving linear
complementarity problems [95].

Note that in the Lemke algorithm it not explicitly stated that ηi ≤ 1. However, by
using the same ideas as in [94], it can be proved that any solution to (5.267), with Dirichlet
boundary conditions, without the condition η ≤ 1 still satisfies 0 ≤ η ≤ 1. This implies
that the numerical solution found with the Lemke algorithm automatically satisfies ηi ≤ 1.
This agrees with the physical interpretation that the saturation (1− η) must be positive and
cannot be larger 1.

Elliptic formulation and central differencing

In the previous subsection, central differences were used above in the full film region and
upwind differences in the cavitated regions. However, it is possible to use central differences
throughout the whole domain by introducing a small perturbation, which makes the problem
(5.270) elliptic also in η and not only in u. Indeed,

d

dx

(
a
duε

dx
+ buε

)
=
dF

dx
− d

dx

(
ε
dηε

dx
+ ηεF

)
, (5.292)

uε ≥ 0, 0 ≤ ηε ≤ 1, uεηε = 0.

where ε > 0 is a small parameter. discretised by central differences, in the same manner as
described above, this can be written as

Auε = f + (εD +B) ηε, uεi , η
ε
i ≥ 0, uεiη

ε
i = 0. (5.293)

In order to get the standard form for linear complementarity problems we can rewrite this as

uε = qε +M εηε, uεi , η
ε
i ≥ 0, uεiη

ε
i = 0,

where
qε = A−1f and M ε = A−1 (εD +B) .

For small values of ε, uε and ηε in (5.292) are good approximations of u and η in (5.284).
In practice, relatively small means small in comparison to (∆x)2. The idea of adding an
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extra term is inspired from regularity theory for partial differential equations, which in this
context is known as artificial viscosity, see e.g. [98].

To illustrate the accuracy of the Elliptic formulation and central differencing numerical
formulation, we will revisit the double parabolic slider example, originally presented by Vi-
jayargahavan and Keith [88], exhibiting an erroneous solution including a numerical source,
and compare it with the numerically exact solution LCP-formulation based solution pre-
sented by Almqvist et al. [21]. Indeed, the geometry of the slider, the pressure solution
obtained with Combined central and upwind differencing and the pressure solutions obtained
with the Elliptic formulation and central differencing method are depicted in Fig. 5.20. The
corresponding input parameters may be found in Table 5.2. Note that, with β = 69 MPa,
the supply pressure pin becomes approximately 6.9 kPa.

Table 5.2: Input parameters for the double parabolic slider problem.

l hmax hmin U µ β pc = pout pin
7.62 cm 50.8 µm 25.4 µm 4.57 m/s 0.0139 Pa s 69 MPa 0 Pa β ln 1.0001

0 0.2 0.4 0.6 0.8 1
0
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(a) Double parabolic slider geometry.
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p
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P
a]

pε, ε/(∆x)2 = 10

pε, ε/(∆x)2 = 1

pε, ε/(∆x)2 = 0.1
p0

(b) Corresponding pressure solution

Figure 5.20: The double parabolic slider example showing pressure solutions pε obtained by means
of the Elliptic formulation and central differencing scheme, for three different values of ε, and the
pressure solution p0 obtained by means of the Combined central and upwind differencing scheme.

The LCC was estimated to be approximately 52.8 kN/m and relative difference in terms of
LCC between the solution pε, with ε/(∆x)2 = 0.1 and p0 was calculated to be approximately
0.15%.

1D numerical vs. analytical solution

In this example, the numerical simulation procedure described above is verified against the
analytical solution for the pocket bearing problem earlier in this section. The selected set
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Table 5.3: Input parameters for the pocket bearing problem.

a b l h0 h1 pc U µ pin = pout
2 mm 5 mm 20 mm 1 µm 10 µm 0 Pa 1 m/s 0.01 Pa s 100 kPa

of input parameters are presented in Table 5.3. and Fig. 5.21 depicts the corresponding
analytical and the numerical pressure solutions, obtained for β = 5× 108 and N = 512.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

x [mm]

p
[M

P
a]

Analytical
Numerical

Figure 5.21: The analytical and the numerical pressure solutions, for the pocket bearing with
β = 5 · 108 and N = 512 and the rest of the input parameters given in Table 5.3.

The relative error, defined as

N∑
i=0

∣∣∣panalytical
i − pnumerical

i

∣∣∣/ N∑
i=0

panalytical
i ,

was 6%, 2.5% and 1% (and the computational times were 3 ms, 22 ms and 106 ms on a
standard laptop) for N = 128, N = 256 and N = 512 respectively. The numerical deficiencies
are concentrated to the point of reformation at x = a+ z ≈ 4.096 mm, and to the back end
of the pocket with the discontinuity in h.

It may be worth noticing that even with a minimum film thickness of 1 µm, the maximum
pressure is just over 4 times higher than the supply pressure and that the LCC of the
bearing is 4.75 kN/m, while the double parabolic slider with a minimum film thickness of
1 µm would generate more than 600 times the LCC of the pocket bearing. Moreover, with
pc = pin = pout = 0 both the pocket bearing and the double parabolic would generate 0 N/m
LCC, according to the cavitation algorithm based on the LCP formulation.

2D numerical solutions with and without cavitation

In Fig. 5.22 depicts dimensionless pressure distributions, for to the inward pumping spiral
groove geometry depicted in Fig. 5.18, with θper = 72◦. In (a) the solution obtained with
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the LCP-based solution procedure is presented and in (b) the FDM-based solution to the
standard Reynolds equation (5.218). Mixed periodic and Dirichlet boundary conditions are
applied in both cases and the same colour map for the pressure levels is used to enable
straight forward comparison. The supply pressure is specified as atmospheric.

−5.56 0 5 8.72

p̄/10−3

ω

θper

x

y

(a)

ω

θper

x

y

(b)

Figure 5.22: Dimensionless pressure distributions, for to the inward pumping spiral groove geome-
try depicted in Fig. 5.18, with θper = 72◦, obtained with the LCP-based solution procedure (a) and
the FDM-based solution to the classical Reynolds equation (5.218) in polar coordinates (b), using
Mixed periodic and Dirichlet boundary conditions.

The FDM-based solution to the classical Reynolds equation (5.218), in polar coordinates
does, obviously, exhibit negative values, but it is also seen that the positive pressure over
the (inward pumping) spiral remains high further toward the outer radius than what it does
in the pressure solution obtained by means of the mass-conserving LCP-based method. The
dimensionless LCC was found to be approximately 1.3 × 10−3 when calculated based on
the LCP pressure distribution and 1.0 × 10−3 based on the FDM solution to the classical
Reynolds equation, when including the negative pressure values, and 1.2× 10−3, when they
are excluded.

The results from the numerical simulations of the inward pumping spiral groove bearing
show that, if negative pressures are excluded then the predicted LCC differs less than 7%,
i.e., a not that alarmingly large difference. This is not always the case. For instance, the
pressure solution to the classical Reynolds equation (5.218) for a plain thrust washer, with
supply pressure equalling the pressure at the outer radius give nil LCC.
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y

Figure 5.23: A model of the film thickness of plain thrust washer with a θper = 72◦ period, repeating
the same section five times. The yellow patches indicate plateaux, where h̄ = 1, and the blue the
groove, where h̄ = 2.

5.8.6 The FEM and cavitation modelling

It turns out that neither the switch-function nor the LCP-based cavitation models are well
suited for implementation in an FEM-based framework. It is, however, possible to establish
mass-conserving cavitation models in other ways. In the following, a method that assumes
the fluid to be incompressible in its liquid phase, comparable to the LCP-based model pre-
sented in [20], will be described. Söderfjäll demonstrated that it is a mass-conserving method
in [99], albeit not conveyed typographically entirely correct. The method was then utilised
in numerical investigations of texture’s effect in the piston ring - cylinder liner contact op-
erating under mixed lubrication conditions [100]. Even more recently it was used to model
inter-asperity cavitation in a two-scale EHL model, based on the Heterogenous Multiscale
Method [101]. It should be mentioned that these examples were implemented in COMSOL
Multiphysicsr. This model assumes that both the lubricant viscosity and density depend on
the pressure in the following way

ρ = ρ0
f(p) + αc

1 + αc
and µ = µ0

f(p) + αc
1 + αc

, (5.294)

where, the dimensionsless auxiliary parameter αc, should be made as small as possible and
where the function f is specified as

f(p) =


0, p− pc < −βc

1− 2

(
p− pc
βc

)3

− 3

(
p− pc
βc

)2

, −βc ≤ p− pc ≤ 0

1, p− pc > 0

. (5.295)
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The parameter βc is also an auxiliary parameter, with dimensions of pressure, that controls
the magnitude of the negative pressures. If compared to the LCP solution, which if solved
with the Lemke algorithm will find the numerically exakt solution with a finite number of
pivoting operation, the smaller the βc the closer the match becomes. For example, in [101],
pc was set to zero and they chose αc = 0.01 and βc = 0.2 MPa.
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Figure 5.24: Dimensionless pressure distributions, for to the plain trust washer geometry depicted
in Fig. 5.23, with θper = 72◦, obtained with COMSOL Multiphysicsr 6.0. In (a) the solution
obtained with FEM-based cavitation solution procedure and in (b) the FEM-based solution to the
classical Reynolds equation (5.218), using Mixed periodic and Dirichlet boundary conditions.

To highlight upon the effectiveness of this type of cavitation algorithm, the results for a
plain thrust washer with five plateau areas separated by five grooves (θper = 72◦), will be
presented in the following. The geometry for this thrust washer is presented in Fig. 5.23,
and Fig. 5.24 depicts pressure distributions obtained with COMSOL Multiphysicsr 6.0. In
(a), the solution obtained with FEM-based cavitation solution procedure (5.295) is shown,
and in (b), the FEM-based solution to the classical Reynolds equation (5.218), using Mixed
periodic and Dirichlet boundary conditions is depicted. The pressure at the boundary of the
hole in the middle, the pressure at the outer radius were both set to zero, and in this case,
pc = 0, βc = 5× 10−4 and αc = 1× 10−10, which resulted in pressure with negative values as
small as −2.5× 10−4. The solution depicted in Fig. 5.24a, is, however, showing the corrected
pressure, where all the negative values has been set to zero. Regarding the colour maps for
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the pressure levels, it should be noticed that they are different, due to the large difference in
min and max values for the two solutions. In this case, the dimensionless LCC was found to
be approximately 3.0×10−4 for the FEM-based cavitation solution, and 0 for the FEM-based
solution to the classical Reynolds equation, when including the negative pressure values, and
1.4× 10−3, when they are excluded. Here it is clear that a cavitation algorithm is absolutely
necessary for obtaining a reasonably realistic prediction of the pressure and, subsequently
the LCC, friction torque, mass flow, etc.

5.9 Homogenisation of the Reynolds equation

Up until this point, we have the considered the surfaces’ microscopical topography as perfectly
smooth. Obviously, this is an idealised situation since surfaces always deviates from being
smooth at some scale. Dependent on various factors the effect of the surface micro structure;
surface roughness, may sometimes be small enough to be negligible and sometimes so large
that neglecting it leads to completely wrong conclusions. Figure 5.25 depicts the geometry
of a step bearing, including periodic roughness patterns on both the upper stationary and
the lower moving surface. Although resolving these specific roughness patterns would not
require a too dense mesh, it is realised that it would just be to decrease the wavelengths and
at some point the computation would be too memory extensive and/or time consuming to be
feasible. This suggests that we need to employ an alternative strategy to proceed forward.

One such alternative is to use a two-scale approach. In a two-scale approach the model
is considered as being composed by two distinct scales. This fact is then used to separate
the problem into two different but interconnected problems, i.e. one for the macro- and one
for the micro scale. Roughly speaking, the solution is obtained by solving the micro-scale
problem first, then compute the coupling variables, which appear in the macro-scale problem
and then obtain the solution. In lubrication, the geometry of the application, should be
considered as macro-scale features and the surface roughness as micro-scale features. Since
the macro-scale can be considered is smooth, a coarse discretisation can be used in this scale
avoiding lengthy computation times. To incorporate the effect of roughness, the equation
is modified by introducing so-called ‘flow factors’. These are computed by solving a similar
flow problem at the local scale. In this scale, the domains are very small and thus can be
resolved in the detail required by the roughness. The translation of these loose concepts to
mathematical terms is known as homogenisation, which is the topic of this section.

Homogenisation is a type of averaging which has been found applicable for two-scale
problems with highly varying coefficients. There are many papers reporting the success-
ful application of Homogenisation in the field of lubrication, where the fluid flow may be
governed by the Reynolds equation [46, 102–109]. This has lead to highly effective numer-
ical tools where the effects caused by the surface roughness are embedded in the derived
homogenised equations. Moreover, the equations are unambiguously determined and their
nature allow for straight-forward parallelisation. These tools enables studies of rough surface
hydrodynamically lubricated problems such as the one arising in the bearing configuration
visualized in Fig. 2.1. This means that the theoretical model concerns different types of the
non-stationary Reynolds equation in two dimensions.

The key ingredient when homogenising the effect of surface roughness in the Reynolds



134 CHAPTER 5. THE LUBRICATED CONTACT

equation is the two-scale description of the gap between the surfaces. This is done via
a mathematical description of the film thickness that include the surface roughness and
appears in the Reynolds equation. More precisely, it is assumed that the film thickness can
be modelled by means of the following auxiliary function

h(x, t, y, τ) = h0(x, t) + hu(y − uuτ)− hl(y − ulτ), (5.296)

where h0, hu and hl are (mathematically) smooth functions, expressed in the independent
global-scale variables x and t, and the local-scale variables y and τ . We note here that global
scale and local scale are often used, in homogenisation, instead of macro scale and micro
scale, respectively. In (5.296), the expression uu = [uu, vu]

T defines the velocity of the upper
surface and ul = [ul, vl]

T defines the velocity of the lower surface. Note that the velocities
may depend on position, x. The global scale is modelled by the function h0, which describes
the geometry of the problem, and the local scale is modelled via the y- and τ - periodic
functions hu and hl that describes the surface roughness of the upper and the lower surfaces,
respectively. Indeed, the functions hu and hl are assumed to be periodic in their second
argument and the cell of periodicity is denoted by Y for both hu and hl. It is also assumed
that ul, uu, vl and vu are such that h is periodic in τ and the cell of periodicity, in τ , is
denoted by Z. By means of this auxiliary function, a simplified physical description of the
gap hε between the surfaces can be achieved. That is

hε(x, t) = h(x, t, x/ε, t/ε), ε > 0. (5.297)

In this expression for the film thickness, which according to (5.296) reads

hl (x− ult)

h0(x, t) + hu (x)

ul
x1

x2

x3

Figure 5.25: A step-shaped bearing including periodic surface roughness patterns depicted at a
given time t. The lower surface is moving in the x1-direction with speed ul and the upper surface
is stationary.

hε(x, t) = h0(x, t) + hu(x/ε− uut/ε)− hl(x/ε− ult/ε), (5.298)

ε is a (small) parameter which moderates the wavelength of the surface roughness. As
mentioned above (5.297) admits a velocity field that varies with position x (encountered in
e.g. a rotating application). Moreover, since hl and hu are functions of x, this also allows
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for different roughness descriptions on different positions. An illustration of a bearing with
step-shaped geometry (global scale) and idealised periodic surface roughness (local scale) at
a given time t, is presented in Fig. 5.25. The lower surface is moving in the x1-direction with
speed ul, i.e. ul = [ul, 0]T , and the upper surface is stationary.

In terms of the small wavelength parameter ε, the Reynolds equation for hydrodynamic
flow of iso-viscous and compressible fluids (5.79) may be stated as

∂

∂t
(hε(x, t)cε(x, t)) = ∇x ·

(
h3
ε(x, t)Aε(x, t)∇xpε − hε(x, t)Bε(x, t)

)
, x ∈ Ω (5.299)

where

cε(x, t) = ρ(pε), Aε(x, t) =
ρ(pε)

12µa
, Bε(x, t) =

us
2
ρ(pε). (5.300)

and Ω = {(x1, x2)|0 < x1 < L1 ∧ 0 < x2 < L2}. Due to roughness, hε and the coefficients cε,
Aε and Bε are rapidly oscillating functions, which require high spatial and time resolution
for a mesh independent subsequent numerical analysis.

The main idea in homogenisation is to prove that there exist a solution p0, solving a
so-called homogenised equation that does not involve rapidly oscillating coefficient functions,
such that

pε → p0, as ε→ 0.

This means that for small values of epsilon - which is the case for realistic surfaces, p0 is a
good approximation of pε.

In the subsections below, the homogenisation procedure, referred to as ‘the formal method
of multiple-scale expansion’, will be applied to derive some particular examples of homogenised
Reynold’s type of equations that can be solved to obtain the homogenised pressure distri-
bution p0. Indeed, the formal method of multiple-scale expansion will be applied to three
different variants of the Reynolds equation. More precisely, stationary forms governing iso-
viscous flow of incompressible fluids, as well as compressible fluids governed by constant bulk
modulus and ideal gas type of density-pressure relationships, will be presented.

5.9.1 Iso-viscous and incompressible flow

Notice that, the stationary form of the Reynolds equation (5.299) for iso-viscous and incom-
pressible flow, in both Cartesian and polar coordinates, admits the following generalisation

∇ ·
(
h3(x)A(x)∇u(x)

)
− λ∇ · (h(x)B(x)) = 0, (5.301)

where u is the dependent variable, h is the film thickness, λ = 6µa, and A and B are known
functions of x = (x1, x2). In a Cartesian coordinate formulation, A = I and B = us, where
us = ul + uu, represent the sum of the velocities with which the surfaces of the lower and
the upper body (can be in both directions) moves. In polar coordinates, interpreting x1 as
the angular coordinate x2 as the radial coordinate, for the fluid film formation in a rotating
device (with one stator and one rotating collar) - as discussed in [108], they are the matrix
and the vector given by

A(x1, x2) =

[
1/x2 0

0 x2

]
, B(x1, x2) = x2ωe1 =

[
x2ω

0

]
, (5.302)
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where ω is the angular velocity of the rotating surface. The problem with this formulation
is it not possible to parametrise the local problems in a effective way, as it leaves the global
coordinate x2 a parameter to be considered when solving the local problems. This problem
and a plausible solution is discussed in [108]. The remedy turns out to be, to consider
the Cartesian formulation (instead for the one in polar coordinates) of the problem and then
adopting the strategy described in [108]. The Cartesian formulation is also a specific example
of where the flow takes place in both directions. More precisely, when using the Cartesian
coordinate representation of the Reynolds equation (A = I) to model a device in which one
surface is stationary and the other rotates in the counter clockwise direction, then B reads

B(x) = b1(x)e1 + b2(x)e2 = −x2ωe1 + x1ωe2 = ω

[
−x2

x1

]
. (5.303)

For the upcoming homogenisation process, we will restrict the analysis to the Cartesian
coordinate formulation and we will consider the following auxiliary equation

∇ ·
(
h3(x, y)∇u(x, y)

)
− λ∇ · (h(x, y)B(x)) = 0, (5.304)

where, again, u is the dependent variable, h is the film thickness, and

B(x) = b1(x)e1 + b2(x)e2 = b1(x)

[
1
0

]
+ b2(x)

[
0
1

]
..= b1(x) + b2(x), (5.305)

where b1 and b2 are well-defined functions. The variables x = (x1, x2)T and y = (y1, y2)T

refer to the global and local domains, respectively, and it holds that y = x/ε. The size of the
micro-scale domain, also referred to as the cell of periodicity, Y , is given by Y = {(y1, y2)|0 <
y1 < l1 ∧ 0 < y2 < l2}.

Now assume that A(x, y) and B(x, y) are periodic in y, and also assume that the following
expansion holds:

u(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + ..., (5.306)

where ui are periodic in y. Note that (5.306) is a perturbation series of u(x, y) in terms
of ε, which is the so called “small parameter”. Expressed in this terminology, the solution
u(x, y) to the problem including surface roughness is a perturbation of the solution to smooth
problem u0. The perturbation series (5.306) should be interpreted as an approximation to
the solution u, which is given by adding small corrections εiui to u0.

In homogenisation (5.306) constitutes the basis for the formal method of multiple-scale
expansion, as used in e.g. [102–104,106,108,109], which can be thought of as an engineering
approach to strict two-scale convergence, see e.g. [105,110]. Now since y = x/ε,

∇ −→ ∇x + ε−1∇y, (5.307)

where ∇x denotes the gradient with respect to the global-scale variables x, and ∇y the
gradient with respect to the local-scale variables y. By inserting (5.306) and (5.307) into
(5.304) we get(

∇x + ε−1∇y

)
·
(
h3(x, y)

(
∇x + ε−1∇y

) (
u0 + εu1 + ε2u2 + ...

))
−λ
(
∇x + ε−1∇y

)
· (h(x, y)B(x)) = 0.

(5.308)
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In the following we will consider the asymptotic behaviour of (5.308) as ε goes to zero
and we realise that the reasonable result when expanding (5.308) require that the coefficients
for ε−2, ε−1 and ε0 are equivalent to zero independently of each other. Indeed, as ε → 0
the coefficients of higher orders of ε, i.e., εk with k ≥ 1, will not influence the result and we
obtain following set of determining equations

ε−2 : 0 =∇y ·
(
h3∇yu0

)
, (5.309a)

ε−1 : 0 =∇y ·
(
h3 (∇yu1 +∇xu0)− λhB

)
+∇x ·

(
h3∇yu0

)
, (5.309b)

ε0 : 0 =∇y ·
(
h3 (∇yu2 +∇xu1)

)
+∇x ·

(
h3 (∇yu1 +∇xu0)− λhB

)
(5.309c)

where the dependency to x and y has been dropped for the readers convenience.
According to a standard result in uniqueness and existence theory for partial differential

equations, see, e.g. [111], we obtain from (5.309a), that u0 = u0(x). By using this fact, the
second term in the right-hand-side of (5.309b) expands as

∇y ·
(
h3∇xu0

)
= ∇y ·

(
h3e1

) ∂u0

∂x1

+∇y ·
(
h3e2

) ∂u0

∂x2

, (5.310)

which allows us to rewrite (5.309b) as

∇y ·
(
h3∇yu1

)
= ∇y ·

((
λhb1 − h3∂u0

∂x1

)
e1 +

(
λhb2 − h3∂u0

∂x2

)
e2

)
, (5.311)

from which it is realised that the solution (u1) must be on the form

u1 = λb1ψ1 + λb2ψ2 + χ1
∂u0

∂x1

+ χ2
∂u0

∂x2

(5.312)

where ψi and χi solves the following local problems

0 =∇y ·
(
h3∇yψ1

)
−∇y · (he1) in Y, (5.313a)

0 =∇y ·
(
h3∇yψ2

)
−∇y · (he2) in Y, (5.313b)

0 =∇y ·
(
h3∇yχ1

)
+∇y ·

(
h3e1

)
in Y, (5.313c)

0 =∇y ·
(
h3∇yχ2

)
+∇y ·

(
h3e2

)
in Y, (5.313d)

This type of formulation was used in [108] to study an axial thrust bearing in Cartesian
coordinates. Even though the expression

u1(x, y) = λχ0 + χ1
∂u0

∂x1

+ χ2
∂u0

∂x2

(5.314)

where χ0 solves the local problem

0 = ∇y ·
(
h3∇yψ1

)
−∇y · (hB) in Y,
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is the most prevalent and frequently used one, it may not be the most pertinent choice. This
is made clear in [108] which also present a strong argument for applying (5.312) instead. The
reason being, because it makes it possible to remove the dependence of the global coordinate
x2 in the local problems, when the Cartesian coordinate representation of the Reynolds
equation, is used to model the thin film flow in a rotating device.

Let us now consider (5.309c), together with u0 = u0(x) and u1 defined as in (5.312), in
order to complete the homogenisation process of (5.301). We start by rewriting (5.309c) as

∇x ·
(
h3∇xu0 + h3∇yu1 − λhB

)
= ∇y ·

(
h3∇xu1 + h3∇yu2

)
(5.315)

and, due to periodicity, we realise that,

∇x ·
(

1

|Y |

∫
Y

h3 dy∇xu0 +
1

|Y |

∫
Y

h3∇yu1 dy −
1

|Y |

∫
Y

λhB dy

)
= 0, (5.316)

where |Y | = l1l2 defines the area of the local domain. By making use of (5.312) we can
proceed to get

∇x ·
(

1

|Y |

∫
Y

h3 dy∇xu0 +
1

|Y |

∫
Y

h3∇y

(
λb1ψ1 + λb2ψ2 + χ1

∂u0

∂x1

+ χ2
∂u0

∂x2

)
dy

)

−∇x ·
(

1

|Y |

∫
Y

λhb1e1 + λhb2e2 dy

)
= 0,

which can be restated as

∇x ·
(

1

|Y |

∫
Y

h3 dy∇xu0

)
+∇x ·

(
1

|Y |

∫
Y

h3∇y

(
χ1
∂u0

∂x1

+ χ2
∂u0

∂x2

)
dy

)
(5.317)

−∇x ·
(
λb1

|Y |

∫
Y

(
he1 − h3∇yψ1

)
dy

)
−∇x ·

(
λb2

|Y |

∫
Y

(
he2 − h3∇yψ2

)
dy

)
= 0.

Further expanded we have

∇x ·

 1

|Y |

∫
Y

h3

1 +
∂χ1

∂y1

∂χ2

∂y1

∂χ1

∂y2

1 +
∂χ2

∂y2

 dy∇xu0

 (5.318)

− λ∇x ·

 b1

|Y |

∫
Y

h− h
3∂ψ1

∂y1

−h3∂ψ1

∂y2

 dy +
b2

|Y |

∫
Y

 −h
3∂ψ2

∂y1

h− h3∂ψ2

∂y2

 dy
 = 0,

and this the homogenised form of (5.304) which we set out to derive. Let us just rewrite this
on a form more similar to (5.304), i.e.,

∇x ·
(
h3

0(x)A0(x)∇xu0

)
− λ∇x · (h0(x)B0(x)) = 0, (5.319)
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where A0 is a 2× 2 matrix and B0 is a 2× 1 vector, i.e.,

A0(x) =

[
a0

11(x) a0
12(x)

a0
21(x) a0

22(x)

]
(5.320)

and

B0(x) = b0
1(x) + b0

2(x) =

[
b0

11(x)

b0
12(x)

]
+

[
b0

21(x)

b0
22(x)

]
. (5.321)

The coefficient functions of A0 reads

a0
11(x) =

1

h3
0(x) |Y |

∫
Y

h3(x, y)

(
1 +

∂χ1

∂y1

)
dy, (5.322a)

a0
12(x) =

1

h3
0(x) |Y |

∫
Y

h3(x, y)
∂χ1

∂y2

dy, (5.322b)

a0
21(x) =

1

h3
0(x) |Y |

∫
Y

h3(x, y)
∂χ2

∂y1

dy, (5.322c)

a0
22(x) =

1

h3
0(x) |Y |

∫
Y

h3(x, y)

(
1 +

∂χ2

∂y2

)
dy, (5.322d)

and the coefficient functions of B0 reads

b0
11(x) =

b1(x)

h0(x) |Y |

∫
Y

h− h3(x, y)
∂ψ1

∂y1

dy, (5.323a)

b0
12(x) = − b1(x)

h0(x) |Y |

∫
Y

h3(x, y)
∂ψ1

∂y2

dy, (5.323b)

b0
21(x) = − b2(x)

h0(x) |Y |

∫
Y

h3(x, y)
∂ψ2

∂y1

dy, (5.323c)

b0
22(x) =

b2(x)

h0(x) |Y |

∫
Y

h− h3(x, y)
∂ψ2

∂y2

dy. (5.323d)

Remark. Notice that, in [108], Almqvist considered a rotating device, with the lower surface
rotating with speed ω in the counter clockwise direction and with the upper stationary. The
velocity vector was, therefore, defined as

V l = ω

[
x2

−x1

]
. (5.324)

The right-hand-side vector B0, corresponding to B0 here, was there defined as

B0(x) =

[
x1β11(x) + x2β12(x)

−x1β21(x)− x2β22(x)

]
, (5.325)
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with coefficient functions

β11(x) =
1

|Y |

∫
Y

h3(x, y)
∂ψ1

∂y2

dy, (5.326a)

β12(x) =
1

|Y |

∫
Y

h− h3(x, y)
∂ψ1

∂y1

dy, (5.326b)

β21(x) =
1

|Y |

∫
Y

h− h3(x, y)
∂ψ2

∂y2

dy, (5.326c)

β22(x) =
1

|Y |

∫
Y

h3(x, y)
∂ψ2

∂y1

dy. (5.326d)

This means that, the relation between the present coefficient functions b0
ij and βij can be

expressed as

b0
11(x) =

b1(x)

h0(x)
β12, b0

12(x) = − b1(x)

h0(x)
β22, (5.327)

b0
21(x) = − b2(x)

h0(x)
β11, b0

22(x) =
b2(x)

h0(x)
β21. (5.328)

We note that, the relations above (in general) can be formulated in vector form as

h0(x)B0(x) = h0(x)

[
b0

11(x)

b0
12(x)

]
+ h0(x)

[
b0

21(x)

b0
22(x)

]
=

[
−b2(x)β11(x) + b1(x)β12(x)

b2(x)β21(x)− b1(x)β22(x)

]
= B0(x).

5.9.2 Iso-viscous and constant bulk-modulus type of compressible
flow

Recall that an iso-viscous fluid with constant bulk modulus is characterized by a constant
viscosity and a density of the form

ρ = ρae
p−pa/β. (5.329)

This particular pressure-density relationship can be seen as transformation that can be used
to transform the, in general, non-linear Reynolds equation for iso-viscous and compressible
flow to a linear form in which density- is the dependent variable. Indeed, the stationary form
of the Reynolds equation (5.299), can in this case be written as

∇ ·
(
h3
εβ

12µa
∇ρε

)
= ∇

(
hε

us
2
ρε

)
. (5.330)

More generally, (5.330) can be written as

∇ ·
(
h3
ε(x)∇uε(x)

)
− γ∇ · (hε(x)Bε(x)uε(x)) = 0, (5.331)

where γ = 6µa/β (and B = us), which permits the following auxiliary form

∇ ·
(
h3(x, y)∇u(x, y)

)
− γ∇ · (h(x, y)B(x, y)u(x, y)) = 0, (5.332)
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where, again, u is the dependent variable (representing the fluid density), h the film thickness
and B is periodic in y, and on the form (5.305). It is further assumed that the expansion
(5.306) holds also in this case. In this terminology (5.332) becomes(

∇x + ε−1∇y

)
·
(
h3(x, y)

(
∇x + ε−1∇y

) (
u0 + εu1 + ε2u2 + ...

))
−γ
(
∇x + ε−1∇y

)
·
(
h(x, y)B(x, y)

(
u0 + εu1 + ε2u2 + ...

))
= 0.

(5.333)

Following the procedure introduced in the previous section for incompressible and iso-viscous
flow, this leads to the following set of determining equations

ε−2 : 0 =∇y ·
(
h3∇yu0

)
, (5.334a)

ε−1 : 0 =∇y ·
(
h3 (∇yu1 +∇xu0)− γhBu0

)
+∇x ·

(
h3∇yu0

)
, (5.334b)

ε0 : 0 =∇y ·
(
h3 (∇yu2 +∇xu1)− γhBu1

)
+ (5.334c)

∇x ·
(
h3 (∇yu1 +∇xu0)− γhBu0

)
Precisely as in the previous case, (5.334a) implies that u0 = u0(x) and we can, therefore,
simplify (5.334b) to

∇y ·
(
h3∇yu1

)
= ∇y ·

((
γhb1u0 − h3∂u0

∂x1

)
e1 +

(
γhb2u0 − h3∂u0

∂x2

)
e2

)
. (5.335)

Similar to what was deduced from (5.311) in the case of incompressible flow, (5.335) for
constant bulk modulus type of compressible flow, it is realised that the solution (u1) must
be on the form

u1 = γb1ψ1u0 + γb2ψ2u0 + χ1
∂u0

∂x1

+ χ2
∂u0

∂x2

(5.336)

where ψi and χi are the solutions to the same set of local problems (5.313), as in the case of
iso-viscous and incompressible flow. Therefore, by following the same procedure as before,
we obtain the homogenised equation

∇x ·
(
h3

0(x)A0(x)∇xu0

)
− γ∇x · (h0(x)B0(x)u0) = 0, (5.337)

and remarkably, the coefficient functions of A0 and B0 are the same as in the case of iso-
viscous and incompressible flow, thus given (5.322a)-(5.323d).

5.9.3 Ideal gas flow

An ideal gas is assumed to have a constant viscosity and a density of the form ρ = κp.
The Cartesian form of the Reynolds equation for this type of compressible fluid admits the
following generalisation

∇ ·
(
h3(x)u(x)∇u(x)

)
− λ∇ · (h(x)B(x)u(x)) = 0, (5.338)
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where u is the dependent variable, either representing fluid pressure or fluid density. Notice
that this equation is not linear as the two previous cases, for incompressible and for constant
bulk-modulus type of compressibility. Anyway, for the subsequent homogenisation process
we now consider the following auxiliary equation

∇ ·
(
h3(x, y)u(x, y)∇u(x, y)

)
− λ∇ · (h(x, y)B(x)u(x, y)) = 0 (5.339)

and that the expansion (5.306) holds. Following the procedure introduced in Section 5.9.1 for
incompressible and iso-viscous flow, this leads to the following set of determining equations

ε−2 : 0 =∇y ·
(
h3u0∇yu0

)
, (5.340a)

ε−1 : 0 =∇y ·
(
h3 (u0∇yu1 + u1∇yu0 + u0∇xu0)− λhBu0

)
+∇x ·

(
h3u0∇yu0

)
, (5.340b)

ε0 : 0 =∇y ·
(
h3 (u0∇yu2 + u2∇yu0 + u1∇yu1 + u0∇xu1 + u1∇xu0)− λhBu1

)
(5.340c)

+∇x ·
(
h3 (u0∇yu1 + u1∇yu0 + u0∇xu0)− λhBu0

)
Once again, from (5.340a) we have that u0 = u0(x) and since we have u0 > 0 (note that
u0 = 0 would imply a zero density) (5.340b) becomes identical to (5.311) with solution
(5.314). Thus we have the same (periodic) local problems (5.313) as for the two previous
cases. Finally, from (5.340c) we obtain the homogenised equation for the ideal gas flow case

∇x ·
(
h3

0(x)A0(x)u0∇xu0

)
− λ∇x · (h0(x)B0(x)u0) = 0, (5.341)

We remark that coefficient functions of A0 and B0 are the same as the ones for iso-viscous
and incompressible case, as well as the one for the iso-viscous and constant bulk modulus
compressible case, thus given (5.322a)-(5.323d).

5.9.4 Approximative generalisations

If the density’s- and viscosity’s dependence on pressure to be governed by the global scale
pressure p0, and if we assume that fluid-structure interaction (FSI) is governed only by p0 we
can achieve a homogenised results describing an approximative generalisation of this more
complex (non-linear) situation. Moreover, we will assume that the problem is time dependent.
Let us, therefore, consider a generalised version of (5.299), i.e.

∂

∂t
(hε(x, t, p0(x, t))c(x, t)) =

∇x ·
(
h3
ε(x, t, p0(x, t))A(x, t)∇xpε − hε(x, t, p0(x, t))B(x, t)

)
, x ∈ Ω

(5.342)

where

c(x, t) = ρ(p0(x, t)), A(x, t) =
ρ(p0(x, t))

12µ(p0(x, t))
, B(x, t) =

us
2
ρ(p0(x, t)). (5.343)
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and Ω = {(x1, x2)|0 < x1 < L1 ∧ 0 < x2 < L2}. This means that inserting the expansion

p(x, y, t, τ) = p0(x, t) + εp1(x, y, t, τ) + ε2p2(x, y, t, τ) + . . . (5.344)

into (5.342) leads to(
∇x + ε−1∇y

)
·
(
ρ(p0)h3(p0)

12µ(p0)

(
∇x + ε−1∇y

) (
p0 + εp1 + ε2p2 + ...

))

−
(
∇x + ε−1∇y

)
·
(
h(p0)ρ(p0)

us
2

)
=

(
∂

∂t
+ ε−1 ∂

∂τ

)
(h(p0)ρ(p0)) ,

(5.345)

where us = [ul + uu, vl + vu]
T represents dimensionless velocity. Notice that, since we have

already assumed p0 = p0(x, t), the equation for ε−2 is removed from the system and only
simplified forms of the equations for ε−1 and ε0 remain, i.e.

ε−1 :
∂h

∂τ
=∇y ·

(
h3

12µ
(∇yp1 +∇xp0)− hus

2

)
(5.346a)

ε0 :
∂h

∂t
=∇y ·

(
h3

12µ
(∇yp2 +∇xp1)

)
(5.346b)

+∇x ·
(
h3

12µ
(∇yp1 +∇xp0)− hus

2

)
,

where, since ρ = ρ(x, t) = ρ(x, t, p0(x, t)), the compressibility is no longer an influencing
factor. This means that the second term in the right-hand-side of (5.346a) expands as

∇y ·
(
h3

12µ
∇xp0

)
= ∇y ·

(
h3

12µ
e1

)
∂p0

∂x1

+∇y ·
(
h3

12µ
e2

)
∂p0

∂x2

, (5.347)

which allows us to rewrite (5.346a) as

∇y ·
(
h3(p0)

12µ(p0)
∇yp1

)
=
∂h(p0)

∂τ
+

∇y ·
((

ul + uu
2

h(p0)− h3(p0)

12µ(p0)

∂p0

∂x1

)
e1 +

(
vl + vu

2
h(p0)− h3(p0)

12µ(p0)

∂p0

∂x2

)
e2

)
,

(5.348)

from which it is realised that if the solution (p1) is presented in this specific form:

p1 = 6µ(p0) (ul + uu)ψ1 + 6µ(p0) (vl + vu)ψ2 + χ1
∂p0

∂x1

+ χ2
∂p0

∂x2

, (5.349)

then ψi = ψi(x, t, y, τ, p0) and χi = χi(x, t, y, τ, p0) solves the local problems

∂h

∂τ
= ∇y ·

(
h3∇yψ1

)
−∇y · (he1) in Y, (5.350a)

0 = ∇y ·
(
h3∇yψ2

)
−∇y · (he2) in Y, (5.350b)

0 = ∇y ·
(
h3∇yχ1

)
+∇y ·

(
h3e1

)
in Y, (5.350c)

0 = ∇y ·
(
h3∇yχ2

)
+∇y ·

(
h3e2

)
in Y (5.350d)
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that except for the time- (thus τ -) and p0 dependence are on the same form as (5.313), which
was deduced for the iso-viscous and incompressible problem (and later for the constant bulk-
modulus case and for ideal gases). Note that, if these are solved to generate flow factors, such
as we describe it in 5.9.7, then the local-scale contact mechanics problem (5.402) first have
to be solved for a range of loads, F , to obtain the corresponding set of g00, then for a range
of global-scale separations, α, and then repeat this for a range of global-scale pressure values,
p0, which in turn means that we have to compute viscosity, µ(p0), from a given constitutive
pressure-viscosity relationship and global-scale deformation ue(p0) by means of (4.5), or (4.7)
for a line contact problem.

5.9.5 Homogenised load carrying capacity, friction and flow

In the subsections of this section we will derive the expressions, including the corresponding
correction factors. for the homogenised load carrying capacity, friction and flow.

Homogenised load carrying capacity

In alignment with the notation in 5.2.3, the load carrying capacity in terms of pε is given as

Fpε
..=

∫
Ω

pε(x) dx =

∫
Ω

p(x, x/ε) dx. (5.351)

The homogenised load carrying capacity is obtained directly from the formal definition of
two-scale convergence, i.e.∫

Ω

(
1

|Y |

∫
Y

f(x, x/ε) dy

)
dx −→

∫
Ω

(
1

|Y |

∫
Y

f(x, y) dy

)
dx as ε −→ 0, (5.352)

where f(x, y) is periodic in y. Since p(x, y) is periodic in y, the homogenised load carrying
capacity can be expressed as

Fp0
..=

∫
Ω

p0(x) dx =

∫
Ω

(
1

|Y |

∫
Y

p(x, y) dy

)
dx. (5.353)

Hence, by (5.352), we have
Fpε −→ Fp0 , as ε −→ 0, (5.354)

which suggests that Fp0 provides a suitable approximation of Fpε for small values of ε.

Homogenised friction

According to (5.87) and (5.88), the hydrodynamic friction Ffε , for a bearing operating under
linearly directed motion, is a vector, which evaluated at the lower surface (z = 0) yields

Ffε(z = 0) = −
∫

Ω

[
τ εx1(z = 0)

τ εx2(z = 0)

]
dx = −

∫
Ω

−
hε
2

∂pε
∂x1

+
µa(uu − ul)

hε

−hε
2

∂pε
∂x2

+
µa(vu − vl)

hε

 dx (5.355)
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and evaluated at the upper surface (z = hε) yields

Ffε(z = hε) = −
∫

Ω

[
τ εx1(z = h)

τ εx2(z = h)

]
dx = −

∫
Ω


hε
2

∂pε
∂x1

+
µa(uu − ul)

hε
hε
2

∂pε
∂x2

+
µa(vu − vl)

hε

 dx. (5.356)

In order to obtain the homogenised correspondences Ff0(z = 0) and Ff0(z = h0) we will
have to use the formal two-scale convergence definition (5.352) of ∇xpε, which according to
(5.306) expands as

∇xpε(x) =
(
∇x + ε−1∇y

)
p(x, x/ε) (5.357)

=
(
∇x + ε−1∇y

) (
p0(x) + ε−1p1(x, xε) + ε−2p2(x, xε) + . . .

)
= ∇xp0(x) +∇yp1(x, x/ε) + ε (. . .) .

This means that∫
Ω

(
1

|Y |

∫
Y

∇pε(x) dy

)
dx −→

∫
Ω

(
1

|Y |

∫
Y

∇xp0(x) +∇yp1(x, y) dy

)
dx (5.358)

and by using (5.312), thereby also assuming iso-viscous and incompressible flow, we have∫
Ω

(
1

|Y |

∫
Y

∇xp0(x) +∇yp1(x, y) dy

)
dx

=

∫
Ω

(
1

|Y |

∫
Y

∇xp0(x) +∇y

(
λb1ψ1p0 + λb2ψ2p0 + χ1

∂p0

∂x1

+ χ2
∂p0

∂x2

)
dy

)
dx

=

∫
Ω

 1

|Y |

∫
Y


λ
∂

∂y1

(b1ψ1 + b2ψ2) +

(
1 +

∂χ1

∂y1

)
∂p0

∂x1

+
∂χ2

∂y1

∂p0

∂x2

λ
∂

∂y2

(b1ψ1 + b2ψ2) +
∂χ1

∂y2

∂p0

∂x1

+

(
1 +

∂χ2

∂y2

)
∂p0

∂x2

 dy
 dx. (5.359)

Thus, the x1-component of the homogenised friction force Ff0 can be expressed as

Ff0(z = 0) · e1 = −
∫

Ω

τ 0
x1

(z = 0) dx (5.360)

= −
∫

Ω

(
1

|Y |

∫
Y

−h
2

((
1 +

∂χ1

∂y1

)
∂p0

∂x1

+
∂χ2

∂y1

∂p0

∂x2

)
dy

)
dx

−
∫

Ω

(
1

|Y |

∫
Y

−6µa (ul + uu) b1
h

2

∂ψ1

∂y1

− 6µa (ul + uu) b2
h

2

∂ψ2

∂y1

+
µa(uu − ul)

h
dy

)
dx

= −
∫

Ω

−c0
11

h0

2

∂p0

∂x1

− c0
21

h0

2

∂p0

∂x2

dx

−
∫

Ω

−6µa (ul + uu)

h0

(
d0

11 + d0
21

)
+
µa(uu − ul)

h0

e0
0dx
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= −
∫

Ω

−c0
11

h0

2

∂p0

∂x1

− c0
21

h0

2

∂p0

∂x2

dx

−
∫

Ω

+
µa(uu − ul)

h0

(
e0

1 − 6
ul + uu
uu − ul

(
d0

11 + d0
21

))
dx

Following the same nomenclature, the x2-component of the homogenised friction force Ff0

becomes

Ff0(z = 0) · e2 = −
∫

Ω

τ 0
x2

(z = 0) dx (5.361)

= −
∫

Ω

−c0
12

h0

2

∂p0

∂x1

− c0
22

h0

2

∂p0

∂x2

dx

−
∫

Ω

+
µa(vu − vl)

h0

(
e0 − 6

vl + vu
vu − vl

(
d0

12 + d0
22

))
dx.

Thus,

Ff0(z = 0) = −
∫

Ω

[
τ 0
x1

(z = 0)

τ 0
x2

(z = 0)

]
dx (5.362)

= −
∫

Ω

−h0

2

[
c0

11 c0
12

c0
21 c0

22

]
∂p0

∂x1

∂p0

∂x2

+


µa(uu − ul)

h0

(
e0 − 6

ul + uu
uu − ul

(
d0

11 + d0
21

))
µa(vu − vl)

h0

(
e0 − 6

vl + vu
vu − vl

(
d0

12 + d0
22

))
 dx (5.363)

and

Ff0(z = h0) = −
∫

Ω

[
τ 0
x1

(z = h0)

τ 0
x2

(z = h0)

]
dx (5.364)

= −
∫

Ω

h0

2

[
c0

11 c0
12

c0
21 c0

22

]
∂p0

∂x1

∂p0

∂x2

+


µa(uu − ul)

h0

(
e0 − 6

ul + uu
uu − ul

(
d0

11 + d0
21

))
µa(vu − vl)

h0

(
e0 − 6

vl + vu
vu − vl

(
d0

12 + d0
22

))
 dx (5.365)

where

c0
11(x) =

2

h0(x) |Y |

∫
Y

h

2

(
1 +

∂χ1

∂y1

)
dy, (5.366a)

c0
12(x) =

2

h0(x) |Y |

∫
Y

h

2

∂χ2

∂y1

dy, (5.366b)

c0
21(x) =

2

h0(x) |Y |

∫
Y

h

2

∂χ1

∂y2

dy, (5.366c)

c0
22(x) =

2

h0(x) |Y |

∫
Y

h

2

(
1 +

∂χ2

∂y2

)
dy, (5.366d)
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d0
11(x) =

b1h0

|Y |

∫
Y

h

2

∂ψ1

∂y1

dy, (5.367a)

d0
12(x) =

b2h0

|Y |

∫
Y

h

2

∂ψ2

∂y1

dy, (5.367b)

d0
21(x) =

b1h0

|Y |

∫
Y

h

2

∂ψ1

∂y2

dy, (5.367c)

d0
22(x) =

b2h0

|Y |

∫
Y

h

2

∂ψ2

∂y2

dy, (5.367d)

and

e0(x) =
h0(x)

|Y |

∫
Y

1

h
dy, (5.368a)

For a rotating device the frictional resistance is related to torque Tf . In Section 5.2.3,
the expression for the friction torque in polar coordinates, 0 ≤ φ ≤ 2π and Ri ≤ r ≤ Ro,
evaluated at the counter clockwise rotating upper surface (z = h), assuming that it has
angular velocity ω and that the lower surface (z = 0) is stationary was presented in (5.89).
Indeed,

Tfε = −
∫ Ro

Ri

∫ 2π

0

r

(
hε(ϕ, r)

2r

∂pε
∂ϕ

+
µωr

hε(ϕ, r)

)
rdϕ dr, (5.369)

where r2 = x2
1 + x2

2 and ϕ = tan−1(x2/x1) is the translation between the angular- and the
radial directions in polar coordinates and the principal directions x1 and x2 in Cartesian
coordinates. In Cartesian coordinates, the corresponding expression becomes

Tfε(z = hε) = −
∫

Ω

r
(
τ εx1(z = hε) cosϕ− τ εx2(z = hε) sinϕ

)
dx1dx2, (5.370)

where [
τ εx1(z = hε)

τ εx2(z = hε)

]
=


hε
2

∂pε
∂x1

+
µax2ω

hε
hε
2

∂pε
∂x2

+
µa(−x1)ω

hε

 . (5.371)

Thus, in terms of the correction factors (5.366a)-(5.368a), the homogenised friction torque
Tf0(z = h0) can be expressed as

Tf0(z = h0) = (5.372)

−
∫

Ω

x2

((
c0

11

h0

2

∂p0

∂x1

+ c0
12

h0

2

∂p0

∂x2

+
µax2ω

h0

(
e0 − 6

(
d0

11 + d0
12

)))
cosϕ

−
(
c0

21

h0

2

∂p0

∂x1

+ c0
22

h0

2

∂p0

∂x2

+
µa(−x1)ω

h0

(
e0 − 6

(
d0

21 + d0
22

)))
sinϕ

)
dx1dx2

= −
∫

Ω

x2

((
h0

2

[
c0

11 c0
12

c0
21 c0

22

]
∇p+

(
µa
h0

e0I− 6

[
d0

11 d0
12

d0
21 d0

22

])[
x2ω

(−x1)ω

])
·
[

cosϕ
− sinϕ

])
dx1dx2.
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Homogenised flow

Based on the Cartesian representation of the Reynolds equation (5.71), the deterministic
volume flow in the x1-direction over the ‘West’ boundary x1 = 0 ∧ 0 ≤ x2 ≤ L2 reads

QWε
x1

= e1 ·
∫ L2

0

λhε(0, x2)Bε(0, x2)−
(
h3
ε(0, x2)Aε(0, x2)∇pε

)
dx2. (5.373)

By means of (5.358) it can then be shown that the corresponding homogenised volume flow
becomes

QW0
x1

= e1 ·
∫ L2

0

λh0(0, x2)B0(0, x2)−
(
h3

0(0, x2)A0(0, x2)∇p0

)
dx2. (5.374)

Following the same terminology, the deterministic- and homogenised volume flow in the x1-
direction over the ‘East’ boundary x1 = L1 ∧ 0 ≤ x2 ≤ L2 read

QEε
x1

= e1 ·
∫ L2

0

λhε(L1, x2)Bε(L1, x2)−
(
h3
ε(L1, x2)Aε(L1, x2)∇pε

)
dx2, (5.375)

and

QE0
x1

= e1 ·
∫ L2

0

λh0(L1, x2)B0(L1, x2)−
(
h3

0(L1, x2)A0(L1, x2)∇p0

)
dx2, (5.376)

respectively. In addition, the deterministic- and homogenised volume flow in the x2-direction
over the ‘South’ boundary x2 = 0 ∧ 0 ≤ x1 ≤ L1 and the ‘North’ boundary x2 = L2 ∧ 0 ≤
x1 ≤ L1 read

QSε
x2

= e2 ·
∫ L1

0

λhε(x1, 0)Bε(x1, 0)−
(
h3
ε(x1, 0)Aε(x1, 0)∇pε

)
dx1, (5.377)

QS0
x2

= e2 ·
∫ L1

0

λh0(x1, 0)B0(x1, 0)−
(
h3

0(x1, 0)A0(x1, 0)∇p0

)
dx1, (5.378)

QNε
x2

= e2 ·
∫ L1

0

λhε(x1, L1)Bε(x1, L1)−
(
h3
ε(x1, L1)Aε(x1, L1)∇pε

)
dx1, (5.379)

and

QN0
x2

= e2 ·
∫ L1

0

λh0(x1, L1)B0(x1, L1)−
(
h3

0(x1, L1)A0(x1, L1)∇p0

)
dx1, (5.380)

respectively.

5.9.6 Patir and Cheng flow-factors and Homogenised coefficients

The method proposed by Patir and Cheng in [112, 113] considers a representative part of
the surface roughness and model the complete surface as its periodic extension. Moreover, it
considers the same type of approximative generalisation as we went through in Section 5.9.4.
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In the following, we will present a comparison between the averaging technique proposed by
Patir and Cheng and homogenisation technique presented in the previous sections. To not
unnecessarily complicate the comparison, we will consider a Cartesian representation of the
stationary form of (5.342) and without the conventional FSI, including elastic deflection of
the interacting surfaces. That is,

∇x ·
(
ρ(p0)h3

ε(x)

12µ(p0)
∇xpε

)
= ∇x ·

(us
2
ρ(p0)hε(x)e1

)
, x ∈ Ω, (5.381)

where the sliding takes place in the x1-direction only, is adopted as the governing equation.
Note that the x1-direction has been chosen so that it is aligned with the direction of motion.

Now, retaining as much as possible of the already introduced notation, the stationary
form of the averaged Reynolds equation presented in [112,113] is restated as

∇ ·
(
ρ(ppc)h3

0(x)

12µ(ppc)

[
φ1(x) 0

0 φ2(x)

]
∇ppc

)
(5.382)

= ∇ ·
(
us
2
ρ(ppc)h0(x)

((
1

h0(x) |Y |

∫
Y

h(x, y) dy

)
+ φ0(x)

)
e1

)
in Ω,

where the flow factors φi are given by

φ0(x) = − 1

h0(x) |Y |

∫
Y

h3(x, y)
∂v0

∂y1

dy, (5.383)

φ1(x) =
l1

h3
0(x) |Y |

∫
Y

h3(x, y)
∂v1

∂y1

dy, (5.384)

and

φ2(x) =
l2

h3
0(x) |Y |

∫
Y

h3(x, y)
∂v2

∂y2

dy. (5.385)

The Patir and Cheng local problems, i.e. the so-called micro bearing problems, determining
vi read

∇y ·
(
h3∇yv0

)
=

∂h

∂y1

in Y, (5.386a)

v0 (x, 0, y2) = v0 (x, l1, y2) = 0,
∂v0

∂y2

∣∣∣∣
(x,y1,0)

=
∂v0

∂y2

∣∣∣∣
(x,y1,l2)

= 0,

∇y ·
(
h3∇yv1

)
= 0 in Y, (5.386b)

v1 (x, 0, y2) = 0, v1 (x, l1, y2) = 1,
∂v1

∂y2

∣∣∣∣
(x,y1,0)

=
∂v1

∂y2

∣∣∣∣
(x,y1,l2)

= 0,

∇y ·
(
h3∇yv2

)
= 0 in Y (5.386c)

∂v2

∂y1

∣∣∣∣
(x,0,y2)

=
∂v2

∂y1

∣∣∣∣
(x,l1,y2)

= 0, v2 (x, y1, 0) = 0, v2 (x, y1, l2) = 1.

In [112] and [113] these local solutions vi are interpreted as local pressures.
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To facilitate a comparison between Patir and Cheng flow factors and homogenised coef-
ficients the results presented above are reformulated in the following, see also [114]. Indeed,
another way of formulating (5.382) is

∇ ·
(
ρ(ppc)h3

0(x)

12µ(ppc)
Apc(x)∇ppc

)
= ∇ ·

(us
2
ρ(ppc)h0(x)Bpc(x)

)
, (5.387)

where

Apc(x) =

[
apc11(x) apc12(x)

apc12(x) apc22(x)

]
,

apc11 (x) =
l1

h3
0(x) |Y |

∫
Y

h3(x, y)
∂v1

∂y1

dy, (5.388a)

apc12 (x) = apc21 (x) = 0, (5.388b)

apc22 (x) =
l2

h3
0(x) |Y |

∫
Y

h3(x, y)
∂v2

∂y2

dy, (5.388c)

and

Bpc = bpc1 (x) + bpc2 (x) =

[
b0

11(x)

b0
12(x)

]
+

[
b0

21(x)

b0
22(x)

]
, (5.389)

bpc11(x) =
1

h0(x) |Y |

∫
Y

h(x, y)− h3(x, y)
∂v0

∂y1

dy, (5.390a)

bpc12(x) = 0, (5.390b)

bpc21(x) = bpc22(x) = 0, (5.390c)

and where the functions vi solve the local problems defined in (5.386).

An alternative way of presenting the homogenisation results in Section 5.9.1 is obtained
by introducing new dependent variables Ψi;

Ψi (y) =
yi + χi (y)

li
, i = 1, 2, (5.391)

for which the local problems (5.313c) and (5.313d), for χ1 and χ2 become

∇y ·
(
h3∇yΨ1

)
= 0 in Y, (5.392a)

Ψ1 (x, 0, y2) + 1 = Ψ1 (x, l1, y2) , Ψ1 (x, y1, 0) = Ψ1 (x, y1, l2) ,

∇y ·
(
h3∇yΨ2

)
= 0 in Y, (5.392b)

Ψ2 (x, 0, y2) = Ψ2 (x, l1, y2) , Ψ2 (x, y1, 0) + 1 = Ψ2 (x, y1, l2) .

Hence in terms of the two new dependent variables Ψ1 and Ψ2, the homogenised coefficients
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defined in (5.322a)-(5.322d) become

a0
11(x) =

l1
h3

0(x) |Y |

∫
Y

h3(x, y)
∂Ψ1

∂y1

dy, (5.393a)

a0
12(x) =

l2
h3

0(x) |Y |

∫
Y

h3(x, y)
∂Ψ2

∂y1

dy, (5.393b)

a0
21(x) =

l1
h3

0(x) |Y |

∫
Y

h3(x, y)
∂Ψ1

∂y2

dy, (5.393c)

a0
22(x) =

l2
h3

0(x) |Y |

∫
Y

h3(x, y)
∂Ψ2

∂y2

dy. (5.393d)

To fully equalise the Patir and Cheng results with the homogenised, we need to compare also
the right-hand-side coefficients Bpc and B0. Indeed, for the Cartesian representation of the
stationary form of (5.342) with sliding in x1-direction only, the coefficients b0

ij in (5.321) can
be written as

b0
11(x) =

1

h0(x) |Y |

∫
Y

h(x, y)− h3(x, y)
∂ψ1

∂y1

dy, (5.394a)

b0
12(x) = − 1

h0(x) |Y |

∫
Y

h3(x, y)
∂ψ1

∂y2

dy, (5.394b)

b0
21(x) = b0

22(x) = 0. (5.394c)

The equations (5.393) and (5.394), presents the homogenised results on the same form as
the Patir and Cheng results, and the two methods can now be more easily compared. It is
clear that the methods share quite a few features, and that the main differences are

i) the boundary conditions for the local problems, which in the Patir and Cheng method
are combined Dirichlet and Neumann (symmetry) boundary conditions and for the
homogenised they are periodic with a constant shift and pure periodic;

ii) the off-diagonal terms of Apc and the y2-direction coefficient of Bpc are identical to zero
while they are not for the homogenised model.

The homogenisation method gives the correct flow-factors for any kind of topography that
can be modelled within the Reynolds roughness assumption. The Patir and Cheng method
will give the same result as homogenisation iff the surface topographies are symmetric in
both the x- and y-directions. This is since, i) the Neumann (symmetry) conditions are iden-
tical to periodic boundary conditions for symmetric topographies, and ii) the homogenised
coefficients a0

ij and b0
ij become zero for symmetric topographies. In turn, this means that the

Patir and Cheng flow factors can be obtained directly from the homogenised coefficients as

apc11(x) = a0
11(x), (5.395a)

apc22(x) = a0
22(x), (5.395b)

bpc11(x) = b0
11(x). (5.395c)
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We note that φ1 ≡ apc11(x) and φ2 ≡ apc22(x) and that (5.395c) means that φpc0 (x) can be
obtained from b0

11(x) in the following way

φpc0 (x) = b0
11(x)− 1

h0(x) |Y |

∫
Y

h(x, y) dy.

Following the discussion above, the similarities and differences between the Patir and
Cheng method and homogenisation, are illustrated the figures 5.26-5.31. In Fig. 5.26, the
χ1(y) of the local problem in (5.313c) in the homogenisation method, for the bi-sinusoidal
surface defined as

0.1 + 0.5 (1 + sin(2πx) sin(2πy)) , (5.397)

is depicted.
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Figure 5.26: The solution χ1(y) of the local problem in (5.313c) in the homogenisation method.

Figure 5.27 depicts the solution of the local problem (5.386b) in the Patir and Cheng method,
and the solution Ψ1(y) of the local problem in (5.392a) in the homogenisation method, for
the bi-sinusoidal surface defined in (5.397).
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(a) The solution v1(y) of the local problem in
(5.386b) in the Patir and Cheng method.
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(b) The solution Ψ1(y) of the local problem
in (5.392a) in the homogenisation method.

Figure 5.27: The solutions v1(y) of the local problem in (5.386b) in the Patir and Cheng method
(a), and Ψ1(y) of the local problem in (5.392a) in the homogenisation method (b), obtained for the
bi-sinusoidal surface roughness patch defined in (5.397), with height data in Fig. 5.28 (and 5.29).

The flow field, corresponding to the solution v1(y) of the local problem in (5.386b) in the
Patir and Cheng method. is depicted in Fig. 5.28. This highlights the effect of the Neumann
(symmetry) boundary conditions, which effectively impose a no flow situation over the upper-
and lower boundaries.
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Figure 5.28: The flow field computed from the solution v1(y) of the local problem in (5.386b) in the
Patir and Cheng method. The contour map depicts the film thickness for the bi-sinusoidal surface
roughness patch defined in (5.397). Arrows visualize fluid velocity.

The flow field corresponding to v1(y) should be compared to the solution Ψ1(y) of the local
problem in (5.392a) in the homogenisation method, shown in Fig. 5.27b. This flow field
(Ψ1(y) in Fig. 5.29), illustrates how the periodic boundary conditions allows for flow around
the protrusions of the bi-sinusoidal texture as well as to take place over the upper and lower
boundaries.
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Figure 5.29: The flow field computed from the solution Ψ1(y) of the local problem in (5.392a)
in the homogenisation method. The contour map depicts the film thickness for the bi-sinusoidal
surface roughness patch defined in (5.397). Arrows visualize fluid velocity.

Figures 5.31 and 5.31 shows what the result becomes when replacing the nonsymmetric
bi-sinusoidal surface with a symmetric bi-cosinusoidal one. More precisely,

0.1 + 0.5 (1 + cos(2πx) cos(2πy)) . (5.398)
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In this case, due to the horizontal symmetry, solving (5.392a) with periodic boundary con-
ditions or (5.386b) with Neumann boundary conditions gives identical results.
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(a) The solution χ1(y) of the local problem in
(5.313c) in the homogenisation method.
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(b) The solution Ψ1(y) of the local problem
in (5.392a) in the homogenisation method.

Figure 5.30: The solution χ1(y) of the local problem in (5.313c) in the homogenisation method
(a), and the solution Ψ1(y), of the local problem in (5.392a) in the homogenisation method, or
equivalently to the solution v1(y), of the local problem in (5.386b) in the Patir and Cheng method
(b), obtained for the symmetric bi-cosinusoidal surface roughness patch defined in (5.398), with
height data in Fig. 5.31.

The flow field corresponding to the solution Ψ1(y), of the local problem in (5.392a) in the
homogenisation method, or equivalently to the solution v1(y), of the local problem in (5.386b)
in the Patir and Cheng method, is depicted in Figure 5.31.
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Figure 5.31: The flow field computed from the solution Ψ1(y) of the local problem in (5.392a)
in the homogenisation method. The contour map depicts the film thickness for the symmetric
bi-cosinusoidal surface roughness patch defined in (5.398). Arrows visualize fluid velocity.
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5.9.7 Homogenised flow factors for mixed lubrication conditions

In the previous sections the expressions for coefficient functions aij and bij in the homogenised
matrix A0 and vector B0 were derived. Indeed, the explicit expressions (being the same for
each of the three types of fluids considered) are given by (5.322a)-(5.323d). It is also clear
that they are functions of the global coordinates (x1, x2) and this is also what couples the
local- and the global scale. Obviously, computing the coefficients for each node (x1i, x2j),
in the discretised global domain require solving the set (5.313) of the local problems for all
(i, j) belonging to the grid. Although this procedure could be used it is impractical for (at
least) the following reasons, i) it renders an unnecessarily large set of data, ii) the values of
the coefficient functions are computed only for the points (x1i, x2j). Thus if they are not
‘tabulated’ together with the values of the discretised film thickness function h equated at
exactly the same points (x1i, x2j), it would not be possible to used them together with another
representation of the global scale geometry. However, precisely as Patir and Cheng [112] did,
it is possible to render a more versatile set of coefficient functions, nowadays known flow
factors by means of a simplistic parametrisation. The flow factors presented in [112], were
obtained based on random surfaces generated with the routine Patir presented in [115]. The
surfaces exhibit Gaussian height distribution, quantified by the root-means-square (RMS)
roughness value and the routine also provide for specifying the aspect ratio (or lay) of the
topography. In connection to this, Pérez-Ràfols and Almqvist [116], developed a routine that
can be used to generate self-affine fractal surfaces with given height distribution and power
spectrum.

Let us now describe a procedure that can be applied in order to accomplish the same type
of parametrisation as in [112]. We start by noting that on the local scale, h0 is a parameter
representing the average interfacial separation at the global scale. We will use α to denote
the parametrisation and let hα replace h in (5.296). More precisely, for full film conditions
we define hα as

hα(y, τ) = α + hr(y, τ), α > h̄r (5.399)

where,
hr ..= (hu − hl)− min

∀(y,τ)
(hu − hl) . (5.400)

to ensure that hr ≥ 0 and h̄r is the arithmetic mean of hr.
For mixed lubrication conditions α ≤ h̄r and the shape of the gap depend on the contact

mechanics between the two rough surfaces being pressed together and before we proceed,
we will very briefly explain how h (in (5.296)) is connected to the contact mechanics model.
Indeed, let

hd = hr + u− g00 (5.401)

describe the (local scale) gap that between the deformed surfaces hu and hl, that results
due to the application of normal force F pressing them together. Note that u = u(pd),
where pd is the contact pressure, is the (local scale) displacement of hr and g00 is the rigid
body displacement. Then we can formulate the corresponding (local scale contact mechanics)
complementarity problem

hd = 0, pd > 0, (5.402a)

hd > 0, pd = 0, (5.402b)
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subject to the force balance constraint

F −
∫
Y

pddy = 0. (5.403)

Solving (5.402)-(5.403) for a given load F returns the dependent variables pd, u and g00.
Recall that (5.401) describes the relation between hd, u, and g00. Moreover, by solving
(5.402)-(5.403) for a whole range of loads gives us the input required to solve the local
problems (5.313) for a range of α-values. To this end, we supplement the α-parametrised
film thickness equation defined for full film conditions with an expression valid for mixed
lubrication conditions. This is accomplished by forcing h to take exactly the values of hd
that was computed while solving the complementarity problem (5.402) for the specified range
of loads Fk. This means that h for mixed lubrication conditions reads

hα(y, τ) = α + hr(y, τ) + u(y, τ) + ε, α = −g00 (5.404)

where ε is a (small) auxiliary parameter that makes sure that hα > 0. Note now that there
are two different specifications of the local scale film thickness, i.e. i) the expression (5.399),
for full film conditions and ii) the expression (5.404), for mixed lubrication conditions, which
require solving the contact mechanics problem for a range of loads.

We will now summarise the procedure described above, to obtain a widely applicable set
of coefficient functions aij and bi. That is,

1. Specify a range of separations α > h̄r and a range of loads F .

2. Solve the complimentarity contact mechanics problem (5.402) for the specified range
of loads F .

3. Solve the local problems (5.313) for the auxiliary film thickness descriptions (5.399)
and (5.404) for the specified α-values (including the values of g00 obtained from the
contact mechanics model).

4. Compute the coefficient functions aij and bi for all the local problems obtained in the
previous steps.

5.10 Modelling mixed lubrication

A mixed lubrication model can be established by by a combination of a model governing the
hydrodynamic contribution and a model that accounts for contact mechanics. One of the
first examples of such a model was presented by Patir and Cheng in [112,113]. They derived
an averaged form of the Reynolds equation, in which the surface roughness was accounted for
by means of what we know today as “flow factors”. Then, in order to simulate partial contact
they include the effect of surface roughness by comparing the average interfacial separation

h̄ with the combined variance, σ =
√
Rq1

2 +Rq2
2, of any two digitised surface roughness

height descriptions, which full fill the assumptions for Reynolds equation to be valid on the
local scale. Since the effect of roughness diminishes for large values of h̄/σ they focus their
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analysis to situations where h̄/σ < 3 and their work has been formed the starting point for
a large number of similar contributions.

The model that Patir and Cheng presented in [112, 113] did not include a contact me-
chanics model to account for local deformation of the contacting surfaces. This can e.g. be
achieved by incorporating an asperity based contact model, which was also done by Rohde
et al. in [117]. More precisely, they combined the averaged Reynolds equation that Patir and
Cheng derived, with the model by Greenwood and Tripp [118] and considered cavitation by
means of the half-Sommerfeld boundary condition. Bolander et al. [119] took this concept
further by replacing the half-Sommerfeld condition with cavitation algorithm proposed by
Elrod and Adams [19].

A mixed lubrication model based on the homogenised Reynolds equation was later pre-
sented by Sahlin et al. [3, 11]. Indeed, this model combines half-space theory based contact
mechanics of rough surfaces with the homogenised Reynolds equation in which the flow factors
has been obtained in the way described in Section 5.9.7. In addition, to make the method-
ology even more versatile one can always generalise by transforming hα into dimensionless
form, i.e.

Hα = hα/href , (5.405)

where href is an appropriate reference parameter. The local problems (5.313c) and (5.313d)
are invariant under this transformation, meaning that the solutions χ1 and χ2 will be the same
for any choice of href . The local problem (5.313a) is, however, not invariant and becomes

0 = ∇y ·
(
Ãα∇yχ̃0

)
−∇y · B̃α in Y, (5.406)

where Ãα and B̃α indicates that they are transformed and where χ̃0 = h2
refχ0. Moreover the

subscript also indicates that they are parametrised in α. This means that the homogenised
matrix A0 and vector B0 transforms and their transformed correspondences should be com-
puted from

Ãα0 =
x

Y

[
ãα11 ãα12

ãα21 ãα22

]
(ei +∇yχi) dy (5.407a)

B̃α
0 =

x

Y

B̃αe1 + Ãα∇yχ̃0dy (5.407b)

(5.407c)

Before the homogenised solution u0 can be obtained the α-parametrised homogenised matrix
Ãα0 and vector B̃α

0 must be mapped onto Ω. This is achieved by interpolating Ã
h0(x1,x2)
0 and

B̃
h0(x1,x2)
0 for each point (x1, x2) in the global scale grid point. Thus

∇x ·
(
Ã0(x)∇xũ0

)
−∇x · B̃0(x) = 0, (5.408)

where ũ0 = h2
refu0.

This closes the last section of this chapter and the authors thanks the readers for the
attention.



Chapter 6

Modelling Wear in Lubrication

In mixed and boundary lubrication, there is contact and relative sliding between the surfaces.
Because of this interaction between the surfaces, wear will occur. Wear is often defined as
the loss of material due to sliding, although there is no agreed clear definition and sometimes
plastic deformation is included. What is clear, however, is that wear will result in a change
of the topography of the contacting bodies, involving features of contact size down to nano-
scale. In turn, this will change the way in which a given machine element operates. It is thus
important to understand why, when and how wear occurs, as well as to (if possible) be able
to reduce it. Wear is a school-book example of a multiphysics problem involving tribology,
material science, chemistry, etc. Some aspects that are of importance are the temperature
increase, fluid-solid interaction, growth and break down of oxide layers, strain hardening and
adhesion [120], which makes it very difficult to isolate the effect of an individual parameter.
Because of this multifaceted nature, acquiring the knowledge needed to come up with suitable
solutions require extensive studies on the topic. Moreover, reducing wear involves the capacity
of predicting it, which is a very complex task requiring a lot of understanding, a great deal
of intuition, and mathematical skills as well. This complexity has often led to a descriptive
and qualitative analysis of wear [120], in which the behaviour of a given experiment will be
classified according to a certain mechanism. Many such mechanisms can also be found in the
literature, and among these the abrasive-, adhesive- and corrosion types of wear are the ones
most frequently encountered. The multifaceted nature of wear and the multitude of physics
involved have lead to a variety of different empirical laws, which depend on a multitude of
parameters [121].

The intent with this compendium is not to analyse a lot of different existing types of
wear and the proposed ways to model them. In this chapter, we will instead (only) focus on
adhesive- and abrasive wear, both which can modelled by means of Archard’s wear equation.
We will start with Section 6.1, where we present a derivation of the form applicable to model
adhesive wear for a single asperity contact, then elaborate on how to generalise it so that it
can be applied to model adhesive wear between two rough surfaces. A similar presentation
applicable to abrasive wear will, thereafter, be presented Section 6.2. In Section 6.3, we close
this chapter by presenting a model for wear of rough surfaces, based on Archard’s equation,
jointly with a discussion on its applicability.

159
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6.1 Archard’s model for adhesive wear

In adhesive wear, the attractive forces between the surfaces are large enough so that particles
can be detached from one or both surfaces. One of the first theories to explain the phenomena
of adhesive wear was proposed by Archard [122] and has since been commonly used to model
this type of wear. There are several ways to reach the expression Archard arrived to and
thus the presentation here might not follow exactly that proposed by Archard. It is, however,
equivalent.

“

“Soft material

Moving asperity, t = 0

Adhered
material

2a

≈ a

Hard material
W

ear

particle

Soft material

Moving asperity, t = 0
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Figure 6.1: Schematics of the adhesive wear situation as modelled by Archard.

Let us start with considering the contact between two elasto-plastic bodies illustrated in
Fig 6.1. By assuming that the tips of the colliding asperities are more or less spherical, the
contact will be close to Hertzian. Thus, the domain of contact δΩc, between a pair of colliding
asperities, will be approximately circular. By defining the radius of the contact region as a,
the nominal (as there may be smaller features than the asperity itself on the surface) contact
area δA will be proportional to a2, i.e. δA ∝ a2. Note that we use δ to refer to quantities
of an asperity. In this kind of sliding contact situations, there is a probability that adhesive
wear occurs, if the two surfaces bond together stronger than the substrate does with itself.
In the theory suggested here, it is assumed that the depth of a wear particle breaking loose
after sliding one full contact length, i.e. 2a, will be of same order as the contact radius a.
This implies that its volume is comparable to the one for a hemisphere, i.e.

δV ∝ a3. (6.1)

Recall that for a pure Hertzian contact between two spherically shaped elastic bodies, the
maximum shear stress occurs at approximately the depth 0.78a beneath the surface [30].
Moreover, the shape of the stress distribution itself, in some sense suggests that an approxi-
mately hemispherical particle may result under the prevailing circumstances.

Archard assumed that wear occur in an asperity, which is fully yielding plastically. This
implies that the contact pressure p(x) = H for x ∈ δΩc. In other words, for wear to occur the
contact pressure should have everywhere saturated to its maximum value, i.e. the hardness H
of the asperity. Note that this, implicitly, means that the wearing asperity is located on the
body with the softer material of the two. To connect this to the previous reasoning about the
wear volume we will impose force equilibrium to the problem. More precisely, we will employ
Newton’s first law for the system at hand, and since “force equals nominal stress over nominal
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contact area”, the infinitesimal load δW carried by the (yielding) asperity must equal the
hardness times the infinitesimal contact area. Formulated mathematically this reads

δW = HδA ∝ Ha2. (6.2)

By combining (6.1) with (6.2), we can write the wear volume of an asperity as

δV ∝ a
δW

H
. (6.3)

Let us now, consider the contact between rough surfaces with a large number of randomly
distributed asperities. We shall assume that at a given time, a given number of colliding
asperities with contact areas of the size δA ∝ a2, are yielding under the saturated contact
pressure p(x) = H for x ∈ Ωc. Note that domain of contact, Ωc, equals the union of all the
asperity contact domains δΩc. For anyone of the pairs of colliding asperities, which are at
full yielding at t = 0, as depicted by the left-side illustration in Fig. 6.1, it follows that the
surfaces move relative to each other, the contact area between them decreases. If we assume
that each sliding asperity contact will cause a wear particle, and if no new contact forms
during sliding the full contact length 2a, then the wear volume of the surfaces per sliding
length 2a, will be the sum of volumes resulting from all the colliding asperities at a given
time. That is,

∆V |2a ∝ a
∑ δW

H
= a

W

H
, (6.4)

where W is the total load applied on the surface, and from now on, quantities related to the
rough surfaces will be denoted by ∆.

When two interacting rough surfaces are sliding against each other it is, however, rather
likely that new contacts forms before the previous are fully lost. If we let K denote the
probability for the formation of a wear particle as the surfaces slides the distance ∆s, then
the wear volume of the surfaces (caused by sliding the distance ∆s) can be expressed as

∆V ∝ K∆s
W

H
. (6.5)

To find out the constant of proportionality, one needs to assume a certain shape of the
wear particles created as well as of the contact area. In particular, if it is assumed that the
contacts are perfectly circular and that the wear particles are hemispherical, it turns out that
K = 1/3. This is not, however, in good agreement with available experimental observations.

Estimating the probability that an asperity contact will lead to wear, K, is by no means
a simple task. Therefore, one usually rewrites the proportionality (6.5) as an equality, i.e,

∆V = kadhesion∆s
W

H
, (6.6)

where kadhesion is referred to as the wear rate and is usually determined experimentally. Notice
that kadhesion is not only related to the probability (K), it does also encompass deviations due
assumptions and approximations adopted during the derivation of the present wear model for
adhesive wear. For instance, results showing that Hertzian theory is not always suitable when
modelling contact mechanics of rough surfaces are readily available. See e.g. [2,34,118], which
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shows at low loads, the contact area is proportional to the load even for elastic contacts. This
is an example on a deviations from Hertzian contact mechanics that is governed by kadhesion,
which also clearly shows that it is a system property. The system also comprise materials
and the macroscopic shape of the bodies in contact, machining marks, the topography of
the surface roughness, type of lubrication and the lubrication regime the contact operates in,
ambient conditions, etc. It is all of this, in combination, which determines how the surfaces
wear, and if modelled as it was adhesive wear it would be governed by kadhesion.

Finally, let us assume that the wear behaviour is not changing during the sliding pro-
cess, then the wear volume ∆V can be regarded as independent of the sliding distance ∆s.
Therefore, the total wear volume is

V =
∑

kadhesion
W

H
∆s = kadhesions

W

H
. (6.7)

6.2 Archard’s model for abrasive wear

Abrasive wear is the most common type of wear. It can be either; 2-body - where hard pro-
truding surface features, i.e. asperities on one surface or; 3-body - where wear debris/particles
damages its counter surface through “ploughing”. It turns out that it is possible to derive

Hard material

Moving asperity, t = 0

2a

h

θ

Soft material

Wear volume

∆s

Hard material

t = ∆s/v

Figure 6.2: Schematics of the abrasive wear situation as modelled by Archard.

a wear model for abrasive wear, on the same form as for adhesive wear, i.e. (6.7), but based
on a different set of assumptions and approximation. As in Section 6.1, the derivation starts
by considering the wear caused by a single asperity. As illustrated by schematic wear situ-
ation depicted in Fig. 6.2, the situation now is quite different. The figure depicts a tip of
an asperity, behaving as rigid indenter, that at t = 0 has penetrated into the material of
the opposing body and then has been ploughing a scar of length ∆s in it due to the relative
motion. This scar defines the wear volume, also known as the wear scar, which we now will
derive an expression for. Notice that the length of the scar is defined to be of the order ∆ as
it is a small distance, but not it is not directly related to the size of the asperity.

Assume that the asperity is approximately conically shaped and that the indentation
results from primarily plastic deformation. Then the load δW carried by the rigid asperity
can be related to the hardness H of the opposing material and the radius of the approximately
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circular cross section. Indeed, precisely as it was done for in the case of adhesive wear in
(6.2), the relation comes from imposing force balance, i.e.

δW ∝ Ha2 (6.8)

This implies that the wear volume, defined in the illustration depicted in Fig. 6.2, caused as
the asperity moves the distance ∆s, can be expressed as

δV ∝ a2 tan θ∆s = ∆s tan θ
δW

H
. (6.9)

Let us now consider two rough surfaces, with a large number of randomly distributed as-
perities, moving the distance ∆s relative to each other. It is realised that volumes δV (of
the wear scars caused by the ploughing asperities), is not a deterministic but a stochastic
property. Thus, the resulting wear volume can be expressed via

∆V =
∑

δV ∝ ∆s tan θ
W

H
. (6.10)

The assumptions and approximations employed have, again, resulted in a proportionality.
To this end, a wear-rate parameter, this time denoted kabrasive, is introduced to encompass
system related propertiesd and the wear volume due to the surfaces moving the distance ∆s
relative to each other can be expressed as

∆V = kabrasive∆s
W

H
. (6.11)

Nota bene, as in the case of adhesive wear, the interpretation of kabrasive is far from trivial
as it includes the combination of different effects related to roughness, material properties,
etc. Therefore, it needs to be obtained by experimental analysis. Again, assuming that the
wear behaviour remains the same during sliding we obtain the same type of Archard type of
equation for abrasive wear conditions, as we did for adhesive wear in (6.7). Indeed,

V = kabrasives
W

H
. (6.12)

6.3 A wear model for rough surfaces

As touched upon in the beginning of this chapter, there are many causes for wear when two
contacting rough surfaces moves relative to one another, some of which can be modelled and
simulated. Indeed, different types of wear can and should be modelled by different means.
Unfortunately, a particular wear model will only lead to accurate prediction for a limited
type of wear conditions. This is also the case for the model we introduce here, which is also
not the only one available. Therefore, although it has shown, e.g. by Furustig1 et al. [27,28],
that it gives accurate predictions of wear in some situations, one must always ascertain that
this is the case when applying it to the wear situation at hand. With this said, let us now
describe the model.

1Previously Andersson and also known as The Wear Doctor (Nötningsdoktorn).
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The model is based on Archard’s equation and it utilises the enhanced variational principle
based contact mechanics solver, including plastic deformation that we presented in Chapter 4.
In the modelling strategy adopted here, a variant of the Archard equation is derived and
applied locally, i.e. to compute the wear depth for each element (i, j) of the discretised
solution domain. More precisely, the form of the Archard equation that will be derived here,
is described in terms of wear depth caused by the contacting surfaces moving a small distance
while carrying the load that the element is subjected to.

Let us start this derivation by applying the same type of Archard’s equation, that we
derived for adhesive- (6.7) and abrasive wear (6.12) to each element of the solution domain.
An element-wise application means that we consider the wear volume ∆V ij, caused by the
contacting surfaces moving a distance ∆s under the load wij, which the element is subjected
to, i.e.

∆V ij = k∆swij, (6.13)

where we have included 1/H into k for simplicity. In this equation, ∆V is the dependent
variable, w may be considered as an independent variable, while k is a direct input and
∆s is derived from the inputs v and ∆t. The local load wij is determined by the pressure
distribution obtained by solving the contact mechanics problem presented in Chapter 4, i.e.

wij = pij∆Aij, (6.14)

where ∆Aij = ∆x1∆x2 is the area of the element. Now, since this wear volume corresponds
to material loss over rectangular elements, it can be expressed in terms of wear depth ∆hij.
Indeed

∆V ij = ∆hij∆Aij, (6.15)

Combining (6.14) and (6.15) with the element-wise applied Archard’s equation,(6.13), we
have derived an equation for the wear depth, viz.

∆hij = k∆spij, (6.16)

Since the plastic deformation is part of the solution to the contact mechanics problem (4.92)
it may also be incorporated in the wear model, which then become

∆hij = k∆spij + upij. (6.17)

If the time step ∆t is sufficiently small to consider p as a constant, while the surfaces moves
the distance ∆s relatively to one another, this equation can be applied to numerically simulate
the wear.

An overview of the solution procedure adopted here is depicted in Fig. 6.3, which is also
briefly described in the following. Starting at time t = 0, the relative position between the
two surfaces is known. With the surfaces in this position, the pressure distribution and the
plastic deformation can be obtained by solving the contact mechanics model in accordance
with the numerical solution procedure presented in Fig. 4.17. Then, (6.17) can be used to
compute the wear depth at each point. By removing ∆hij from the topography of the surface
with lower hardness, we have obtained a quantitative estimation of the wear process so far.
The relative position of the surfaces is shifted a distance ∆s. Time is now ∆t and with the
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hu

hl

Initial surface to-
pographies and rela-
tive position

pRun enhanced CM
solver to compute p &
up, see Fig. 4.17

∆h+ upCompute wear depth
using (6.17)

hl − (∆h+ up)Remove material from
the softer surface

∆sUpdate relative posi-
tion by ∆s

Figure 6.3: Flow chart of the solution procedure used for wear prediction.

new relative position between the two surfaces the procedure can be repeated for a certain
time or distance has been reached. Finally, given the wear depth ∆h, the total wear volume
can be computed directly from (6.15), i.e.

V =
∑
ij

∆V ij =
∑
ij

∆hij∆Aij = ∆A
∑
ij

∆hij, (6.18)

if the mesh is uniform, thus ∆Aij = ∆A, everywhere. Let us finish by discussing limitations
of this model. Predicting the wear volume via (6.18) requires an estimate of the wear rate
k, which can only be obtained experimentally. It is realised that, if we have to carry out an
experiment in order to obtain k, we would already have an estimate of the wear volume. In
turn this would make the numerical simulation of it redundant, at least for exactly the case
that was simulated by means of the experiment. However, by having estimated the wear
rate, we could make use of the model to “cheaply” estimate the sensitivity with respect to
various conditions and parameters. Another advantage with the model, even with out having
calibrated k by means of a wear experiment, the contact mechanics simulation would give us
a qualitative view on the distribution of the wear. This can, in itself, be extremely important.
For example, if the model is applied to an certain interface in a machine component, knowing
where the wear will occur can be very helpful for understanding whether it will critically affect
the performance of the component or not. This may, in turn, inspire a change in design to
mitigate the impact of wear on the performance. It can also serve to optimise the tolerance
in production so that the desired quality is retained also after a given amount of wear. The
model can be applied to study wear over a wide range of length scales, from contact geometry
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down to individual asperities. Thus it may be used to provide insight on the evolution of
wear in a large range of application including seals, bearings, gears, etc.

A second limitation concerns the type of wear that can be modelled. In 6.1, we presented
a derivation of the Archard’s equation for adhesive wear. The derivation lead to the equation
(6.7), for the wear volume of a rough surface, including many things in the wear rate param-
eter. In particular, it includes the probability for the formation of a wear particle K as the
surfaces slides the distance ∆s. This means that the wear volume should be regarded is in
an average sense, suggesting that the model applies well to an interface between two rough
surfaces as the roughness is a random process. When applying the model for rough surfaces,
based on (6.17), which we just have described, then the time step needs to be sufficiently
small for the pressure not to vary notably. This is contradictory, since it cannot be reconciled
with the assumption of a large particle being removed at a time, suggesting a limited capacity
of predicting wear under adhesive conditions. In fact, it can easily be seen that in the case
of a rough surfaces sliding against a harder, smoother one, (6.16) will lead, in general, to
the smoothing of the softer surface [27]. Thus, it is clear that the model is more suitable
for modelling wear of“polishing” type, which normally belongs to the category of abrasive
wear.
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des corps solides élastiques et des fuides. Journal de l’Ecole Polytechnique, 13(1–174),
1831.

[49] G. G. Stokes. On the theories of the internal friction of fluids in motion, and of the
equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc., 8:287–305, 1845.

[50] L. N. Liebermann. The Second Viscosity of Liquids. Physical Review, 75(9):1415–1422,
May 1949.



BIBLIOGRAPHY 171

[51] Louis Rosenhead. Introduction - The second coefficient of viscosity: a brief
review of fundamentals. Proceedings of the Royal Society of London. Se-
ries A. Mathematical and Physical Sciences, 226(1164):1–6, 1954. eprint:
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1954.0224.

[52] Rick E. Graves and Brian M. Argrow. Bulk Viscosity: Past to Present. Journal of
Thermophysics and Heat Transfer, 13(3):337–342, July 1999.

[53] Frederike Jaeger, Omar K. Matar, and Erich A. Müller. Bulk viscosity of molecular
fluids. The Journal of Chemical Physics, 148(17):174504, May 2018.

[54] O. Reynolds. On the theory of lubrication and its application to Mr. Beauchamps
Tower’s experiments, including an experimental determination of the viscosity of olive
oil. Proc. R. Soc. Lond., 40(242-245):191–203, 1886.

[55] Martin Greenspan. Attenuation of Sound in Rarefied Helium. Physical Review,
75(1):197–198, January 1949.

[56] Martin Greenspan. Propagation of Sound in Rarefied Helium. The Journal of the
Acoustical Society of America, 22(5):568–571, September 1950.

[57] Jordan J. Markham, Robert T. Beyer, and R. B. Lindsay. Absorption of Sound in
Fluids. Reviews of Modern Physics, 23:353–411, October 1951.

[58] G. G. Stokes. On the effect of the internal friction of fluids on the motion pendulums.
Trans. Cambridge Philos. Soc., 9:8–106, 1851.

[59] K. R. Rajagopal. A new development and interpretation of the Navier–Stokes fluid
which reveals why the “Stokes assumption” is inapt. Int. J. Non-Linear Mech., 50:141–
151, 2013.

[60] G. Buresti. A note on Stokes’ hypothesis. Acta Mech., 226:3555–3559, 2015.

[61] K. R. Rajagopal. Remarks on the notion of “pressure”. Int. J. Non-Linear Mech.,
71:165–172, 2015.

[62] K. R. Rajagopal. On implicit constitutive theories. Appl. Math., 48(4):279–319, 2003.

[63] K. R. Rajagopal. On implicit constitutive theories for fluids. J. Fluid Mech., 550:243–
249, 2006.

[64] D. Dowson and G. R. Higginson. Elasto-hydrodynamic lubrication: The fundamentals
of roller or gear lubrication. Pergamon Press, Oxford, 1966.

[65] C. Barus. Isothermals, isopiestics and isometrics relative to viscosity. American Journal
of Science, Series 3 Vol. 45(266):87–96, 1893.

[66] B. J. Hamrock. Fundamentals of Fluid Film Lubrication. McGraw-Hill, Inc, New York,
1994.



172 BIBLIOGRAPHY

[67] K. R. Rajagopal and A. Z. Szeri. On an inconsistency in the derivation of the equations
of elastohydrodynamic lubrication. Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences, 459(2039):2771–2786, 2003.
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Appendix A

Fourier Techniques

In Section 4.6 we saw that the Fourier transform can be used to accelerate the computations
of the elastic deformation caused by a certain pressure distribution. Let us therefore give here
a brief reminder of several related concepts such as the Fourier series, the Fourier transform
and the Discrete Fourier transform.

A.1 The Fourier series

A Fourier series is a way to represent periodic functions as a summation of infinitely many
sinusoidal waves. In particular, if f(x) is periodic with period (0, L], then we can write

f(x) =
a0

2
+
∞∑
n=1

an cos (ωnx) + bn sin (ωnx) , ωn =
2πn

L
. (A.1)

which is valid as long as f(x) is bounded and piecewise differentiable. Let us now see how
to compute the coefficients. For this, we shall use the following results∫ L

0

cos

(
2πn

L

)
cos

(
2πm

L

)
=
L

2
δm,n, (A.2a)∫ L

0

sin

(
2πn

L

)
sin

(
2πm

L

)
=
L

2
δm,n, (A.2b)∫ L

0

cos

(
2πn

L

)
sin

(
2πm

L

)
= 0, (A.2c)

where δm,n is one if m = n and zero otherwise. These results can be shown by realizing that
the following relations hold

2 cos

(
2πn

L

)
cos

(
2πm

L

)
= cos

(
2π(m+ n)

L

)
+ cos

(
2π(m− n)

L

)
, (A.3a)

2 sin
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2πn

L

)
sin

(
2πm

L

)
= cos

(
2π(n−m)

L

)
− cos

(
2π(m+ n)
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)
, (A.3b)

2 sin

(
2πn

L

)
cos

(
2πm

L

)
= sin

(
2π(n−m)

L

)
− sin

(
2π(m+ n)

L

)
, (A.3c)
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and that the integral of a sine or cosine along one period is zero. It thus becomes clear
that the integrals become zero unless m = n. We can now use these results to extract the
coefficients from (A.1). To do this, we multiply f(x) by a cosine and integrate, i.e.,∫ L

0

f(x) cos

(
2πn

L

)
=

∫ L

0

a0

2
cos

(
2πn

L

)
+

∞∑
m=1

∫ L

0

an cos

(
2πn

L

)
cos

(
2πm

L

)
+
∞∑
m=1

∫ L

0

bn cos

(
2πn

L

)
sin

(
2πm

L

)
. (A.4)

From (A.2), we can see that most of this equations are actually zero, leaving∫ L

0

f(x) cos

(
2πn

L

)
=
L

2
an. (A.5)

Therefore, the coefficients can be computed as

an =
2

L

∫ L

0

f(x) cos

(
2πn

L

)
, (A.6a)

bn =
2

L

∫ L

0

f(x) sin

(
2πn

L

)
, (A.6b)

where the bn are obtained in a similar manner, changing only the cosine by the sine function.
Note that this equation holds even for a0, which is simply twice the mean of the function
over a period.

An alternative, yet equivalent representation makes use of the complex numbers. In
particular, we can write

f(x) =
∞∑
−∞

Ane
iωnx, (A.7)

where An is a complex number computed as

An =
1

L

∫ L

0

f(x)e−iωnxdx. (A.8)

By exploiting the relation
eiθ = cos θ + i sin θ, (A.9)

we can see that

An =
1

2


an + ibn n > 0
a0 n = 0

an − ibn n < 0
. (A.10)

Notice that the 1/2 is related to the introduction of negative values of n in the latter formu-
lation. With this representation it is a bit easier to interpret the coefficients. The modulus
of An, |An| =

√
a2
n + b2

n is the amplitude of the sinusoidal function with frequency ωn. It
therefore tells you how much of that frequency is there in the function f . The phase in An,
∠An = tan−1(bn/an) indicates the relative position of the peaks of each frequency. Note that
it is only the relative phase that matters.
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A.2 The Fourier transform

Up until now, we have considered periodic functions, in an interval (0, L]. Let us now
consider how can a similar analysis be applied to non-periodic functions. The result will be
the Fourier transform, which is similar but not equal to the Fourier series representation of a
periodic function. Notice that considering a non-periodic function can be seen as enlarging
the periodicity interval to (−∞,∞). We notice that, by doing so, frequencies ωn are no
longer discrete but become continuous. To see why, notice that

ωn+1 − ωn =
2π

L
, (A.11)

which tends to zero as L goes to infinity. Clearly, this continuous representation of ω means
that the summation in (A.1), or (A.7) will become an integral. It should thus be no surprise
that the Fourier transform is

F {f} (ω) =

∫ ∞
−∞

f(x)e−iωxdx, (A.12)

and its inverse is

F−1 {f} (x) =
1

2π

∫ ∞
−∞

f(x)eixωdω, (A.13)

Notice that the latter is the equivalent to (A.1) and (A.7) wearas the former is equivalent to
(A.6) and (A.8).

The relevance of Fourier transform lays in some of its properties, which make it useful
in many context, including equations including partial differentials and integrals. Without
going into detail, let us comment few of these properties. The first one is linearity, i.e.,

F {af + bg} = aF {f}+ bF {g} , (A.14)

which can be deduced from the linearity properties of integrals. It is also interesting to see
what does Fourier transform to operations such as derivation and integration. If we define
f ′ and F as the derivative and the primitive of f , respectively, we have

F {f ′} = iωF {f} (A.15)

and

F {F} =
1

iω
F {f} . (A.16)

To see why (A.15) holds, one just needs to integrate by parts in the definition of Fourier
transform (A.12), i.e.,

F {f ′} =

∫ ∞
−∞

f ′(x)e−iωxdx = −
∫ ∞
−∞

f(x)(−iω)e−iωxdx = iωF {f} . (A.17)

The correctness of (A.16) then follows from the fact that F ′ = f .
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A.3 The discrete Fourier transform

Up until now, we have presented both the Fourier series representation of a function and
the Fourier transform. Both of this, however, operate in a continuous space. In most cases,
however, we will be dealing with discrete functions. Let us thus define a discrete function,
periodic in the domain (0, L], as

fn ..= f(xn), xn = n
L

N
, n = 0, 1, ..., N − 1, (A.18)

where N is the number of points used to discretise the domain. In the context of Fourier anal-
ysis, the relevant transformation for this discrete function is the Discrete Fourier Transform
(DFT). To define it, let us start, again from the Fourier series representation of a periodic
function. Assume that the discrete function we consider is also periodic, with period (0, L].
Then, we can construct a representation of f as the sum of sinusoids as

fn =
1

N

N−1∑
k=0

Fke
i 2π
N
kn = DF−1 {Fk} . (A.19)

Now, let us compare this equation with (A.7) to identify the differences. The first clear one
is that the exponent of the exponential part has changed. Notice, however, that the new
exponent is simply the discrete version of the previous one, in the sense of (A.18). The
interpretation of Fk is then equal (up to a constant) to the interpretation of An, i.e., it is
closely related to the amplitude of the sinusoidal waves used to describe f . Another relevant
difference is that the summation is now done only from 0 to N − 1 instead of from −∞ to
∞. This is because with N points, we cannot resolve frequencies higher than ωN/2. Note
that (A.19) is known as the Inverse Discrete Fourier Transform (IDFT). the operation used
to compute the coefficients Fk is then the Discrete Fourier Transform (DFT), which has the
form

Fk = DF {fn} =
N−1∑
n=0

fne
−i 2π

N
kn. (A.20)

The derivation of this equation can be done following the same steps as for the coefficients
of the Fourier series.

The Discrete Fourier Transform also has some of the properties we saw for the Continuous
Fourier Transform. For example, the DFT is also a linear operation, i.e.,

DF {afn + bgn} = aDF {fn}+ bDF {gn} , (A.21)

which derives from the linearity of the sum operator. In some sense, we can also define the
derivative and integration of this discrete functions as

DF {f ′n} = iωnDF {fn} , (A.22a)

DF {Fn} =
1

iωn
DF {fn} , (A.22b)

where ωn = 2π
L
n. Now, of course, the derivative and integration only makes sense in the

context of continuous functions, so what do we mean by f ′n and Fn? Consider first the
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continuous function f to be an interpolation passing through the points in fn. To interpolate,
the DFT is used, i.e.,

f(x) =
1

N

N−1∑
k=0

Fke
ik2πx, (A.23)

which is the continuous form of (A.18). It is this function which we integrate and derivative
and then sample in order to obtain f ′n and Fn. Note that this interpolation is the best fit
one can make in the sense of least square error.

We have started the discussion about the Discrete Fourier Transform considering periodic
discrete functions. Let us now show that this assumption is, in fact, a requirement. For this,
consider the discrete function Fk = DF−1 {fn} at points k′ = k + aN , where a is an integer.
From (A.19) one then has

Fk+aN =
N−1∑
n=0

fne
−i 2π

N
(k+aN)n =

N−1∑
n=0

fne
−i 2π

N
kne−i2πan = Fk, (A.24)

where we have used that for any integer m

ei2πm = 1. (A.25)

In a similar manner, we can see that

fn+aN =
N−1∑
k=0

Fke
i 2π
N

(n+aN)k =
N−1∑
k=0

Fke
i 2π
N
knei2πak = fn. (A.26)

It is thus clear that the DFT only makes sense in the context of periodic functions.

Let us now discuss in more detail the effect of a specific difference between the Discrete
Fourier Transform and the Fourier series, i.e., the truncation of the summation. As we have
seen, the DFT of a function is periodic, with period N and thus expanding the summation
will not provide new information. It is clear, however, that this limits the frequencies that
can be considered. This, of course, comes from the discretisation itself. It is impossible to
represent a sinusoid with less than two points. Therefore, frequencies above N/2L are note
captured in the discretised function fn and cannot either be represented in its DFT. Note
that, in reality, capturing them with accuracy will put an even more stringent limit. If the
signal contains frequencies larger than this limit, aliasing will occur. This means that the
contribution of larger frequencies will be wrongly attributed to smaller ones. This will, of
course distort the representation of the function. From this considerations, and noting the
symmetry in the coefficients, we can see that aliasing can be avoided if the signal has a
limited frequency range. If fs is the maximum frequency present, then we will avoid aliasing
if ∆x < 1/2fs or N > 2fsL. Equivalently, one can say that aliasing is avoided if the signal
has no frequencies larger than fs > N/2L. In this case the amplitudes that would be wrongly
attributed to lower frequencies will all be zero and therefore cause no issue. In an equivalent
manner, the inverse DFT will be free of aliasing if the real signal is zero for x > L/2.
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A.4 The continuous convolution theorem

A property of Fourier Transforms, particularly relevant to the contact mechanics problem
presented in Chapter 4, is the convolution theorem. Two versions of this exist, concerning
continuous and discrete convolutions. Let us discus the former in this section and leave the
latter for the next one. Let us then start by defining a continuous convolution. This can be
written as

g (x) = h ∗ f =

∫ ∞
−∞

h (x− x′) f (x′) dx′. (A.27)

There are different interpretations of a convolution, depending on the physical phenomena
it represents. A common way to interpret it is that it measures the overlap or correlation
between h and f when they have been shifted a distance x between each other. Indeed,
if h (x− x′) and f (x′) overlap significantly, both have the same sign most of the time and
g (x) will be large. Another way to interpret it, closer to the contact mechanics problem
considered here, is that it is adding all the contributions of f , scaled by a weight dependant
on the distance from the points at which f is applied and the one at which we measure. More
simply, the convolution can be seen as a mathematical tool with certain properties that one
encounters in some physical problem.

Whatever the interpretation, computing the convolution of two functions is not an easy
task. A simpler path to the solution, however, can be found through Fourier Transform.
Indeed, the Continuous convolution theorem states that

g = h ∗ f ↔ F {g} = F {h}F {f} . (A.28)

To motivate the validity of this relation, one can simply to substitute the definition of Fourier
transform, (A.12), into the right hand side of the second equality in (A.28),

F {h}F {f} =

∫ ∞
−∞

h(y)e−iωydy

∫ ∞
−∞

f(x)e−iωxdx =

∫ ∞
−∞

∫ ∞
−∞

e−iω(x+y)h(y)f(x)dxdy,

(A.29)
which, by introducing the change of variables u = x+ y, becomes∫ ∞

−∞

∫ ∞
−∞

e−iωuh(u− x)f(x)dxdu =

∫ ∞
−∞

e−iωu
[∫ ∞
−∞

h(u− x)f(x)dx

]
du = F {g} . (A.30)

A.5 Discrete convolutions

Let us in this section consider the convolution of discrete samples. In this case, two types of
convolution can be defined, depending on the function at hand.

A.5.1 The discrete circular convolution

Considering first periodic functions, the discrete circular convolution is defined as

gi = h ∗ f =
N−1∑
j=0

h〈i−j〉Nfj i = 0, 1, ..., N − 1. (A.31)



A.5. DISCRETE CONVOLUTIONS 183

Notice that the index i− j can be negative, but 〈i− j〉N , which is the modulus N of i− j,
will reflect periodicity perfectly. Because of this, the discrete circular convolution turns into
a multiplication in the Fourier space. In particular, the discrete convolution theorem states
that

g = h ∗ f ↔ DF {g} = DF {h}DF {f} . (A.32)

Again, we can motivate the validity of this expression by studying the right-hand side of the
second equality,

DF {h}DF {f} =
N−1∑
n=0

hne
−i 2π

N
kn

N−1∑
m=0

fme
−i 2π

N
km =

N−1∑
n=0

N−1∑
m=0

hnfme
−i 2π

N
k(m+n). (A.33)

We can, again, introduce the index change l = m+ n to see that this equals to

N−1∑
m=0

N−1+n∑
l=n

hl−mfme
−i 2π

N
kl =

N−1∑
m=0

N−1∑
l=0

hl−mfme
−i 2π

N
kl =

N−1∑
l=0

[
N−1∑
m=0

hl−mfm

]
e−i

2π
N
kl

= DF {g} . (A.34)

Notice that we have used the periodicity of h to change the integration limits in the second
step.

A.5.2 The discrete linear convolution

The linear convolution is another type of discrete convolution in which non-periodic functions
are involved. This linear convolution can be computed even with functions of different size,
as it assumes that the functions are zero outside the sampled range. For simplicity, however,
let us assume that both f and h have a size N . Then, the linear convolution can be written
as

gn =
N−1∑
i=0

hi−nfi, n = 0, 1, ..., 2N − 2 (A.35)

Notice that now the resulting function is actually longer than the original. As this convolution
applies to non-periodic functions and DFT to periodic functions, the discrete convolution
theorem cannot be applied directly. A common approach that allows using the discrete
convolution theorem is to replace the original functions for equivalent but periodic ones, in
such a manner that the linear convolution becomes a circular convolution. Notice that, as
discussed in Section A.3, there will be no aliasing problems as long as the all values are zero
after L/2. Therefore, we can construct the new functions as

f ′n =

{
fn, n = 0, 1, ..., N − 1
0, n = N, ..., 2N − 1

(A.36a)

h′n =

{
hn, n = 0, 1, ..., N − 1
0, n = N, ..., 2N − 1

(A.36b)

With this new functions, we can now read the convolution in (A.35) as a circular convolution
and thus

DF {g} = DF {h′}DF {f ′} . (A.37)
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