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I 

 

ABSTRACT 

Continuous production covers a significant part of today’s industrial manufacturing. Consumer 

goods purchased on a frequent basis, such as food, drugs, and cosmetics, and capital goods such 

as iron, chemicals, oil, and ore come through continuous processes. Statistical process control 

(SPC) and design of experiments (DoE) play important roles as quality control and product and 

process improvement methods. SPC reduces product and process variation by eliminating 

assignable causes, while DoE shows how products and processes may be improved through 

systematic experimentation and analysis. Special issues emerge when applying these methods to 

continuous process settings, such as the need to simultaneously analyze massive time series of 

autocorrelated and cross-correlated data. Another important characteristic of most continuous 

processes is that they operate under engineering process control (EPC), as in the case of feedback 

controllers. Feedback controllers transform processes into closed-loop systems and thereby 

increase the process and analysis complexity and application of SPC and DoE methods that need 

to be adapted accordingly. For example, the quality characteristics or process variables to be 

monitored in a control chart or the experimental factors in an experiment need to be chosen 

considering the presence of feedback controllers.  

The main objective of this thesis is to suggest adapted strategies for applying experimental 

and monitoring methods (namely, DoE and SPC) to continuous processes under feedback 

control. Specifically, this research aims to [1] identify, explore, and describe the potential 

challenges when applying SPC and DoE to continuous processes; [2] propose and illustrate new 

or adapted SPC and DoE methods to address some of the issues raised by the presence of 

feedback controllers; and [3] suggest potential simulation tools that may be instrumental in SPC 

and DoE methods development.  

The results are summarized in five appended papers. Through a literature review, Paper 

A outlines the SPC and DoE implementation challenges for managers, researchers, and 

practitioners. For example, the problems due to process transitions, the multivariate nature of 

data, serial correlation, and the presence of EPC are discussed. Paper B describes the issues and 

potential strategies in designing and analyzing experiments on processes operating under closed-

loop control. Two simulated examples in the Tennessee Eastman (TE) process simulator show 

the benefits of using DoE methods to improve these industrial processes. Paper C provides 

guidelines on how to use the revised TE process simulator under a decentralized control strategy 

as a testbed for SPC and DoE methods development in continuous processes. Papers D and E 

discuss the concurrent use of SPC in processes under feedback control. Paper D further illustrates 

how step and ramp disturbances manifest themselves in single-input single-output processes 

controlled by variations in the proportional-integral-derivative control and discusses the 

implications for process monitoring. Paper E describes a two-step monitoring procedure for 

multivariate processes and explains the process and controller performance when out-of-control 

process conditions occur. 

Keywords: Continuous process; Statistical process control; Design of experiments; Engineering 

process control; Quality improvement; Simulation tools.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

III 

 

CONTENTS 

ABSTRACT ........................................................................................................... I 

APPENDED PAPERS ........................................................................................... V 

THESIS STRUCTURE ..................................................................................... VII 

PART I: THEORETICAL FOUNDATIONS 

1. INTRODUCTION ....................................................................... 3 

1.1. Statistical process control and Design of experiments for quality control and   

improvement ...................................................................................................3 

1.2. Continuous processes ......................................................................................5 

1.3. The need for engineering process control ........................................................7 

1.4. Monitoring and experimental challenges in processes under feedback control

 ………………………………………………………………………………...9 

1.5. Problem statement, scope, and research objective .......................................... 11 

1.6. Additional SPC and DoE challenges in continuous processes ......................... 12 

1.7. Introduction and authors’ contributions to appended papers .......................... 17 

PART II: EMPIRICAL WORK AND FINDINGS 

2. RESEARCH METHOD .............................................................. 23 

2.1. Research design ............................................................................................. 23 

2.2. Aim I: SPC and DoE challenges for improving continuous processes ............ 26 

2.3. Aim II: applying SPC and DoE to continuous processes under feedback control  

……………………………………………………………………………….28 

2.4. Aim III: a simulator for SPC and DoE methods development ....................... 31 

2.5. Summary of methods used in appended papers .............................................. 32 

3. RESULTS AND DISCUSSION .................................................... 34 

3.1. Aim I: SPC and DoE challenges for improving continuous processes ............ 34 

3.2. Aim II: applying SPC and DoE to continuous processes under feedback control

 ……………………………………………………………………………….38 

3.3. Aim III: the TE simulator for SPC and DoE methods development .............. 45 

3.4. Research limitations ...................................................................................... 48 

3.5. Main contributions ........................................................................................ 49 

PART III: FUTURE RESEARCH 

4. FUTURE RESEARCH DIRECTIONS ......................................... 55 

APPENDIX – Research Process............................................................................ 57 

REFERENCES .................................................................................. 59 

PART IV: APPENDED PAPERS (A-E) 



 
 

 

 

  



 
 

V 

 

APPENDED PAPERS 

This doctoral thesis summarizes and discusses the following five appended papers.  

 

A1  Capaci, F., Vanhatalo, E., Bergquist, B., and Kulahci, M. (2017). Managerial 

Implications for Improving Continuous Production Processes. Conference 

Proceedings, 24th International Annual EurOMA Conference: Inspiring Operations 

Management, July 1-5, 2017, Edinburgh (Scotland). 

 

B2  Capaci, F., Bergquist, B., Kulahci, M., and Vanhatalo, E. (2017). Exploring 

the Use of Design of Experiments in Industrial Processes Operating under 

Closed-Loop Control. Quality and Reliability Engineering International, 33 (7): 

1601-1614. DOI: 10.1002/qre.2128. 

 

C3  Capaci, F., Vanhatalo, E., Kulahci, M., and Bergquist, B. (2019). The 

Revised Tennessee Eastman Process Simulator as Testbed for SPC and DoE 

Methods. Quality Engineering, 31(2): 212-229. DOI: 10.1080/08982112. 

2018.1461905 

 

D Capaci, F., Vanhatalo, E., Palazoglu, A., Bergquist, B., and Kulahci, M. 

(2019). On Monitoring Industrial Processes under Feedback Control. To Be 

Submitted for Publication. 

E4 Capaci, F. (2019). A Two-Step Monitoring Procedure for Knowledge 

Discovery in Industrial Processes under Feedback Control. Submitted for 

Publication.  

                                        

 
1 Paper A was presented by Francesca Capaci on July 4, 2017, at the 24th International Annual EurOMA Conference: 

Inspiring Operations Management in Edinburgh, Scotland. 

 
2 An early version of paper B was presented by Francesca Capaci on September 13, 2016, at the 16th International 
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THESIS STRUCTURE  

This thesis is organized in four parts: theoretical foundations, empirical work and 

findings, future research, and appended papers. Figure I illustrates the chapters 

included in parts I–III. The type and order of the appended papers are given in part 

IV.  

 
Figure I. Structure of thesis showing its four parts; the chapters are in parts I–III, and the papers 

appended are in part IV. The type and order of the appended papers are also shown. 

Chapter 1 (Introduction) provides an introduction and theoretical foundation to the 

research area. The problem statement, research objective, and scope are outlined. The 

chapter also briefly describes the authors’ contributions to the appended papers. 

Chapter 2 (Research Method) summarizes the method chosen for the research. Chapter 

3 (Results) outlines the main results and discusses the main contributions, implications, 

and limitations of the research. Chapter 4 (Future Research Directions) presents new 

ideas and the future research questions that emerged during the research process. 
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PART I: THEORETICAL  
FOUNDATIONS 

 

 

“He who loves practice without theory is  

like the sailor who boards ship without a rudder and  

compass and never knows where he may cast.” 

Leonardo da Vinci 
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1. INTRODUCTION 

This chapter provides an introduction and theoretical foundation to the research area. The 

problem statement, research objective, and scope are outlined. The chapter also briefly describes 

the authors’ contributions to the appended papers.  

 

1.1. Statistical process control and design of experiments for quality control 

and improvement 

tatistical process control (SPC) and design of experiments (DoE) are two well-

established methodologies including statistical and analytical tools to analyze 

quality problems and improve process performance. A manufacturing process 

uses a combination of resources, such as tools, operations, machines, energy, 

information, and people, to transform a set of inputs, mainly raw material, into a 

finished product(s) (see Figure 1.1). Process inputs are upstream controllable process 

variables, such as temperature, pressure, and feed rate, whereas the process and finished 

product(s) can be associated with one or more observable and measurable response 

variables. The response variables can be process or product quality characteristics and 

process variables. Changing the (controllable) inputs may induce a related change in 

response variable(s). Typically, other inputs called noise factors also affect the response 

variable(s), but they are impossible, difficult, or too expensive to change or control; 

that is, they are uncontrollable (Goh, 2002; Montgomery, 2012a). Figure 1.1 

illustrates the general model of a process, highlighting how SPC and DoE interact 

with process inputs and response variables for quality control and improvement.  

SPC allows for process monitoring by means of control charts. In a control 

chart, a process variable or quality characteristic is plotted against time and compared 

with the control limits. One purpose of using control charts is to separate the common 

from assignable causes of variation (Woodall, 2000; Montgomery, 2012b). The 

common causes of variation represent the inherent, embedded variation in a process, 

whereas assignable causes represent the unwanted process variation that usually arises 

from external disturbances (Mohammed et al., 2008; Woodall, 2000).  

A control chart has two distinct phases (see, for example, Bersimis et al., 2007; 

Jones-Farmer et al., 2014). In Phase I, the control chart is used retrospectively on a 

historical dataset to check whether the process can be considered under control; that 

is, whether the process operates with only the common causes of variation (Jones-

Farmer et al., 2014). Once the in-control process condition has been established, the 

control limits for the process variable or quality characteristic of interest can be used 
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for Phase II (Jensen et al., 2006; Vining, 2009). In Phase II, the control chart is used 

prospectively on new collected values to monitor deviations from the in-control 

condition (Wells et al., 2012). Whenever new collected values of the monitored 

variable fall outside the control limits, the control chart issues an out-of-control signal 

(Jensen et al., 2006). In this case, corrective action on the process may be needed to 

uncover and remove the assignable causes and reduce unwanted process variation 

(Jensen et al., 2006; Montgomery, 2012b).  

 

 

Figure 1.1. General model of a process highlighting how SPC and DoE interact with process 

inputs and response variables. Adapted from Montgomery (2012a). 

 

A designed experiment allows for systematically changing the controllable 

process inputs to study their effects on the response variable(s) (Mason et al., 2003; 

Box et al., 2005; Antony et al., 2011; Montgomery, 2012a). Factorial and fractional 

factorial designs are two major types of designed experiments in which the 

experimental factors (that is, all or a subset of controllable process inputs) are varied 

together in such manner that all or a subset of factor-level combinations are tested. 
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DoE mainly uses offline quality improvement tools to find the potential causal 

relationships between the process inputs and response variable(s). Knowledge of the 

crucial process inputs is essential to understand and characterize a process and improve 

its performance by steering it toward a target value and/or reducing the process 

variability (Montgomery, 2012a). When the key factors are identified and the nature 

of relationship between the factors and response variable(s) established, an online 

process control chart for process monitoring can be routinely employed to promptly 

adjust the process whenever unforeseen events drive the process toward out-of-

control situations. 

 

1.2. Continuous processes 

Reid and Sanders (2012) classify production processes into two fundamental 

categories of operations: intermittent and repetitive operations. Depending on the 

product volume and degree of product customization, the intermittent operations can 

be further divided into project and batch processes and repetitive operations can be 

divided into line and continuous processes (ibid.). Figure 1.2 presents the product-

process matrix for production processes, and their main characteristics and 

management challenges. 

 

Figure 1.2. Product-process matrix for production processes, and their main characteristics and 

management challenges. Adapted from Reid and Sanders (2012). 
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New achievements in information and communication technologies are now 

leading to Industry 4.0, the new industrial revolution. Among others, the key 

technologies and features of this ongoing revolution include faster sensing technology, 

Internet of Things (IoT), cloud services, embedded systems, robotics, real-time 

analysis and decision-making, and connectivity (Santos et al., 2017). Industry 4.0 has 

the potential to disrupt the entire traditional approaches to manufacturing processes, 

posing new significant challenges at, among others, the scientific, technological, 

managerial, and organizational levels (Zhou et al., 2015; Santos et al., 2017). Thus, 

researchers are working on refining the product-process matrix (Ariss and Zhang, 

2002; Schroeder and Ahmad, 2002; Bello-Pintado et al., 2019). Wagner et al. (2017) 

argue that the full impact of this revolution on production processes is not clearly 

defined as yet. Nevertheless, the ongoing challenges include implementation of digital 

manufacturing, big data analysis and processing, the management of cooperation 

between different systems, and enhanced knowledge management (Zhou et al., 2015; 

Wagner et al., 2017; Preuveneers and Ilie-Zudor, 2017).  

Continuous and batch productions represent the main process technologies in 

the process industry, which is responsible for about 25% of production worldwide 

and involves industries such as pulp and paper, oil and gas, food and beverage, steel, 

mining, and material (Lager et al., 2013). A common misconception is that “process 

industry” and “continuous processes” are interchangeable terms, although in fact they 

differ in meaning (Abdulmalek et al., 2006). This study uses the definitions of the 

American Production and Inventory Control Society (APICS dictionary, 2019) as 

follows. They define the process industry as 

“a production that adds value by mixing, separating, forming and/or performing 

chemical reactions by either batch or continuous mode,” 

and a continuous process as 

“a production system in which the productive equipment is organized and sequenced 

according to the steps involved to produce the product. The material flow is continuous 

during the production process. The routing of the jobs is fixed and setups are seldom 

changed.” 

Continuous processes differ from other types of manufacturing processes in three main 

features: types of incoming materials, transformation processes, and outgoing materials 

(Lager, 2010). The incoming materials in continuous processes are usually raw 
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materials, often stemming directly from natural resources and showing inherent 

characteristics that may vary substantially (Fransoo and Rutten, 1994; Abdulmalek et 

al., 2006; Kvarnström and Oghazi, 2008). The transformation process includes several 

operational units, such as tanks, reactors, mixing units working in a continuous flow, 

and the relationship between process inputs and response variables that might not be 

immediately clear (Hild et al., 2001; Vanhatalo, 2009; Lee, S. L. et al., 2015). Finally, 

the outgoing materials (often also incoming materials) are non-discrete products; for 

example, liquids, pulp, slurries, gases, and powders that evaporate, expand, contract, 

settle out, absorb moisture, or dry out (Dennis and Meredith, 2000; Frishammar et 

al., 2012; Lyons et al., 2013). The nature of the handled materials makes these 

processes more sensitive to stoppages and interruptions owing to the loss in 

production quality and long lead times for startups (Duchesne et al., 2002; 

Abdulmalek et al., 2006; Lager, 2010; Krajewski et al., 2013).  

 

1.3. The need for engineering process control 

The dimensions and characteristics of continuous processes often make it unavoidable 

to implement engineering process control (EPC) to stabilize the quality characteristics 

and process variables (Lyons et al., 2013; Lee, S. L. et al., 2015; Peterson et al., 2019). 

One of the most common control structures used in industry is feedback control 

(Akram et al., 2012; Saif, 2019). Feedback controllers transform processes from open-

loop into closed-loop systems5, thus increasing the process complexity.  

Figure 1.3 provides a schematic representation of an (a) open-loop and (b) 

closed-loop system. Ogata (2010, p. 7) defines an open-loop system as one 

“where the output (i.e., the response variable) is neither measured nor fed back for 

comparison with the desired target,”  

and a closed-loop system as one 

“that maintains a prescribed relationship between the output (i.e, the response 

variable) and the desired target by comparing them and using the difference as a means 

of control.” 

                                        

 
5 In control theory, a “system” is a combination of components acting together and performing a certain objective 
(Ogata, 2010). In the DoE and SPC literature, a “process” is a system with a set of inputs and outputs (Montgomery, 

2012a; Montgomery, 2012b). In this thesis, the terms “process” and “system” are used interchangeably.  
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In an open-loop system, a fixed operating condition corresponds to the desired target 

of the response variable, and the accuracy of the system depends on calibration (Ogata, 

2010). Conversely, in a closed-loop system, an automatic controller continuously 

compares the controlled (response) variables to a set-point value (i.e, the target value) 

and adjusts the measured deviation, regulating a manipulated variable, that is, a 

(controllable) process input (ibid.). The required adjustments can be determined 

because the causal relationship between the manipulated and controlled variables is 

often already established and known (Dorf and Bishop, 2011; Romagnoli and 

Palazoglu, 2012).  

 

(a) Open-loop system 

 

(b) Closed-loop system 

 

Figure 1.3. Schematic representation of an (a) open-loop and (b) closed-loop system 
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1.4. Monitoring and experimental challenges in processes under feedback 

control 

For decades, management improvement programs such as Total Quality Management 

and Six Sigma have been promoting the use of statistical improvement methods such 

as SPC and DoE to improve process and product quality (Bergquist and Albing, 2006; 

Bergman and Klefsjö, 2010). Although these methods are well established in the 

statistics and quality engineering literature, their application has been found to be 

relatively sparse in industry (Tanco et al., 2010; Bergquist, 2015b; Lundkvist et al., 

2018). The use of SPC and DoE in industrial applications in discrete manufacturing 

production environments faces barriers such as lack of theoretical knowledge, change 

management, practical problems, and lack of resources for internal training (Tanco et 

al., 2009; Žmuk, 2015a; 2015b). In addition to these barriers, the implementation of 

SPC and DoE methods in continuous processes is further complicated by the need to 

promote and adapt the use of such methods to continuous production environments 

(Bergquist, 2015b).  

The need to run continuous processes under feedback control represents one of 

these challenges, as explained in the two following sub-sections.  

 

1.4.1. SPC challenges in processes under feedback control 

Feedback controllers make a process insensitive to disturbances and maintain crucial 

quality characteristics or process variables around their target values or set-points 

(Romagnoli and Palazoglu, 2012). The control action stems from upstream process 

inputs (or manipulated variables) transferring the short-term variability from 

controlled responses to manipulated variables (MacGregor and Harris, 1990; Hild et 

al., 2001; Akram et al., 2012).  

The concurrent use of SPC and EPC has been widely recognized in the 

literature (see, for example, Box and MacGregor, 1976; Faltin and Tucker, 1991; Box 

and Kramer, 1992; Box and Luceño, 1997; Del Castillo, 2002; Del Castillo, 2006; 

Woodall and Del Castillo, 2014). Statistical process control charts should be applied 

to engineering controlled processes to detect and remove assignable causes of variation 

rather than compensating for them. Thus, an overall process improvement can be 

achieved by using the complementary capabilities of SPC and EPC to reduce the 

long-term and short-term process variability (MacGregor, 1992; Tsung, 2001). In line 

with these views, Box and Luceño (1997) suggest SPC for process monitoring and 

EPC for process adjustments.  
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When a process involves EPC, monitoring only the controlled variable may be 

ineffective owing to the controllers’ potential masking of process disturbances (Wang 

and Tsung, 2007; Reynolds Jr and Park, 2010). The SPC literature outlines two 

approaches to monitor processes under EPC. The first recommends monitoring the 

difference between the controlled variable and set-point value, or the control error 

(Montgomery et al., 1994; Keats et al., 1996; Montgomery et al., 2000). The second 

approach is to monitor the manipulated variable (Faltin et al., 1993; Montgomery et 

al., 1994). Sometimes, monitoring the control error or manipulated variable alone 

might be ineffective (Tsung and Tsui, 2003). Therefore, a combined approach of 

jointly monitoring the control error and manipulated variable (or the controlled and 

manipulated variables) using a bivariate control chart has also been proposed (Tsung, 

1999; Tsung et al., 1999; Jiang, 2004; Siddiqui et al., 2015; Du and Zhang, 2016). 

The combined approach increases the chances of the control chart issuing an out-of-

control signal when either the controller fails to compensate for the disturbance 

completely or the manipulated variable deviates from its normal operating condition.  

The combined approach of monitoring the controlled and manipulated 

variables in the same multivariate chart(s) can also be extended to multivariate 

processes (Tsung et al., 1999; Tsung, 2000; John and Singhal, 2019). In multivariate 

processes (with multiple inputs and response variables), several response variables 

usually need to be maintained at their target values and several manipulated variables 

may have to be adjusted. Consequently, the concurrent use of SPC and EPC becomes 

further complicated in multivariate processes (Faltin et al., 1993; Akram et al., 2012). 

The complexity of the problem mainly arises from the need to simultaneously 

monitor a large number of variables and understand the information dispersion among 

process variables due to engineering control (Yoon and MacGregor, 2001; Akram et 

al., 2012). 

 

1.4.2. DoE challenges in processes under feedback control 

Conventional applications of DoE methods implicitly assume open-loop operations. 

In this configuration, the potential effects of changes in process inputs on the response 

variables can be observed directly (Hild et al., 2001; Goh, 2002; Montgomery, 2012a). 

Under closed-loop operations, variables that might be interesting responses are usually 

maintained around desired target values (i.e., set-points). The potential effects of 

changes in process inputs are displaced from response variables to other process 

streams. Thus, the relationships between process inputs and response variables might 

be difficult to understand (Lee, S. L. et al., 2015). Closed-loop operations require a 
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different experimental strategy based on further research to better understand the 

experimental results (Hild et al., 2001; Vanhatalo and Bergquist, 2007; Vanhatalo, 

2009).  

The response surface methodology (RSM) (Box and Wilson, 1951) and 

evolutionary operations (EVOP) (Box, 1957) are sequential in nature and hence 

appealing strategies in experiments involving continuous processes. However, the 

application of RSM and EVOP may have to be adjusted for closed-loop operations 

because, for example, the variables to be optimized might not be immediately clear. 

 

1.5. Problem statement, scope, and research objective 

As with other types of manufacturing processes, one of the major concerns with 

continuous processes is the inherent variation exhibited during production. SPC and 

DoE methods can play important roles in quality control and product and process 

improvement strategies. The conventional SPC and DoE methods and applications 

assume open-loop operations. However, continuous processes often operate under 

EPC as in the case of feedback controllers (Lee, S. L. et al., 2015; Peterson et al., 

2019). The presence of feedback controllers challenges the conventional open-loop 

assumption of SPC and DoE methods.  

Despite the abundant literature on the concurrent use of SPC and EPC, more 

research is needed to develop an integrated framework simultaneously studying 

controller and process performance to better understand the process disturbances in 

out-of-control conditions (Siddiqui et al., 2015). Moreover, how DoE can contribute 

to improving industrial processes operating under feedback control is not clearly 

defined in the literature (Vanhatalo, 2009). How closed-loop operations affect 

experimental procedures, analyses, and results is an open research question. To gain 

access to processes allowing for full-scale SPC and DoE methods development is 

challenging. SPC method development requires datasets with given characteristics, 

such as sampling time, sample size, and occurrence of specific faults, while DoE 

method development in full-scale industrial plants is costly and time-consuming. 

The main objective of this thesis is to suggest adapted strategies for applying 

experimental and monitoring methods (namely, DoE and SPC) to continuous 

processes under feedback control. Specifically, this research aims  

I. to identify, explore, and describe the potential challenges when applying 

SPC and DoE to continuous processes,  
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II. to propose and illustrate new or adapted SPC and DoE methods to address 

some of the issues raised by one of the identified challenges, the presence 

of feedback controllers, and  

III. to suggest potential simulation tools that may be instrumental in SPC and 

DoE methods development.  

This research is framed into the quality engineering field and builds on a framework 

broader than from an exclusive statistical standpoint. The study does not focus on 

theoretical development of the applied SPC and DoE analysis methods per se, but 

instead develops the suggested solutions and methods considering the adapted 

methods and analysis procedures to apply SPC and DoE and improve continuous 

processes under feedback control. Besides academics and researchers in the quality 

engineering field, this study is directed to quality managers, industrial practitioners, 

and engineers interested in quality control and improvement of continuous processes. 

By illustrating the potential SPC and DoE challenges in continuous processes, this 

study can reinforce or broaden the knowledge of SPC and DoE methods development 

needs. Moreover, implementation of the adapted SPC and DoE methods is expected 

to contribute to improving the continuous processes under closed-loop control. 

Finally, the promotion of simulators to test new or adapted SPC and DoE methods is 

expected to provide tools and aids supporting the development of these methods.  

 

1.6. Additional SPC and DoE challenges in continuous processes 

Beyond the challenges due to the presence of feedback controllers, the literature 

highlights those that may arise when applying SPC and DoE methods to continuous 

processes. For a broader perspective of the research field, the following sub-sections 

briefly summarize these challenges. While the issues due to these challenges are not 

the main focus of this research, they have been encountered during the course of the 

studies and overcome using existing solutions in the literature. Thus, the following 

sub-sections also provide theoretical foundations for some of the method chosen for 

the research.  

 

1.6.1. SPC challenges in continuous processes 

This sub-section summarizes the additional challenges that may emerge when 

applying SPC methods to continuous processes.  
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Multivariate nature of process data 

Researchers in different areas are increasingly focusing on issues related to managing 

big data. The accelerated advancement of sensing technology, such as IoT and high-

throughput instruments, and the increasing availability of storage capacity allow for 

taking process measurements at multiple locations and with high sampling frequency 

(Woodall and Montgomery, 2014; Ferrer, 2014; Peterson et al., 2019). The 

uninterrupted flow of continuous processes can produce massive datasets of both 

variables and observations exhibiting varying degrees of autocorrelation and cross-

correlation (Saunders and Eccleston, 1992; Hild et al., 2001; Vanhatalo, 2010; He, Q. 

P. and Wang, 2018). Vining et al. (2016) claim that any process and product 

improvement attempt should consider the complexity of the problem due to the new 

data-rich environment. SPC (and DoE) methods require more application-oriented 

and methodological studies to handle this modern challenge and meet the growing 

industry demand (Vining et al., 2016; Steinberg, 2016; Peterson et al., 2019).  

The earliest SPC research and industrial applications focused mainly on 

univariate control charts, with the product quality characteristics monitored 

individually. In data-rich environments, such as those of continuous processes, the 

univariate monitoring of each process variable in separate control charts is often 

inefficient and misleading (Kourti and MacGregor, 1995; Bersimis et al., 2007; He, 

Q. P. and Wang, 2018). In 1997, MacGregor (cited in Ferrer, 2014) argued that 

monitoring a multivariate process using univariate charts is analogous to using one-

factor-at-a-time experimentation: while the correlation of variables makes it difficult 

to interpret univariate SPC charts, factor interactions make it difficult to interpret the 

results obtained from one-factor-at-a-time experimentation. To overcome this 

problem, researchers have adopted multivariate SPC allowing for the simultaneous 

monitoring of multiple process variables.  

Multivariate monitoring charts based on latent variable techniques, such as 

principal component analysis (PCA) and partial least squares (PLS), have been used in 

industrial applications successfully (see, for example, Kourti et al., 1996; Qin, 2012; 

Ferrer, 2014; Zhang et al., 2014; Silva et al., 2017; Silva et al., 2019). The strength of 

latent variable techniques relies on their dimensionality reduction properties. Through 

the cross-correlation of process variables, these techniques can reduce an original 

dataset to a few linear process variable combinations (or principal components), which 

can be considered the main drivers of the process events (MacGregor and Kourti, 

1995; Yoon and MacGregor, 2001; Kourti, 2005; De Ketelaere et al., 2015; Rato et 

al., 2016). Typically, two control charts are commonly used for process monitoring, 



 
THEORETICAL FOUNDATIONS 

14 

 

a Hotelling T2 control chart on the first retained principal components of the 

PCA/PLS model, and the squared prediction error (SPE or Q) chart on the model 

residuals.  

Autocorrelated data 

Control charts based on PCA are well equipped to handle cross-correlation, but not 

autocorrelation (Vanhatalo and Kulahci, 2015). Autocorrelation is an inherent 

characteristic of continuous processes due to process inertia, continuous flow of 

material, EPC, and high sampling frequencies (Atienza et al., 1998; Noorossana et al., 

2003; Prajapati and Singh, 2012). Autocorrelation in data violates the basic assumption 

of time-independent observations that the SPC methods rely on, affecting both 

univariate and multivariate SPC techniques (Mastrangelo and Forrest, 2002; Woodall 

and Montgomery, 2014). According to Prapajati and Singh (2012), in practice, 

positive autocorrelation is more often encountered than negative autocorrelation, 

leading to deflated control limits in control charts and increased false alarm rates 

(Mastrangelo and Montgomery, 1995; Runger, 1996; Woodall, 2000; Bisgaard and 

Kulahci, 2005; Vanhatalo et al., 2017).  

The literature describes two main solutions to dealing with autocorrelated data 

(Prajapati and Singh, 2012). The first is to use a standard control chart and adjust the 

control limits to achieve the desired false alarm rate (Russell et al., 2000; Vermaat et 

al., 2008; Rato and Reis, 2013b; Vanhatalo and Kulahci, 2015; Vanhatalo et al., 

2017). This approach requires an ad-hoc adjustment to each case, which is 

cumbersome and time-consuming. The second solution requires “filtering out the 

autocorrelation” using a time series model and then applying a control chart to the 

model residuals (Harris and Ross, 1991; Kruger et al., 2004; Pacella and Semeraro, 

2007; Rato and Reis, 2013a; Reis and Gins, 2017). Most of the studies using this 

approach are based on the assumption of a known time series model (Woodall and 

Montgomery, 2014). Furthermore, fitting a time series model for many variables is 

challenging because a large number of parameters must be estimated (Rato and Reis, 

2013a).  

To monitor autocorrelated large-scale processes, Ku et al. (1995) proposed a 

modified version of the PCA framework, known as dynamic PCA (DPCA). The 

DPCA approach suggests applying the usual PCA method to an augmented data 

matrix obtained by appending its time-shifted duplicates to the original dataset. The 

Hotelling T2 and Q charts based on dynamic principal components can then be used 

to monitor the process.  
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1.6.2. DoE challenges in continuous processes 

This sub-section summarizes the additional challenges that may emerge when 

applying DoE methods to continuous processes.  

Large-scale and costly experimentation 

Continuous process plants are usually spread out over a large area and operate around 

the clock. Experimentation in full-scale continuous processes may involve the 

majority of production staff, making coordination and information flows essential 

(Vanhatalo and Bergquist, 2007). Experimental campaigns can continue for a long 

time, jeopardizing the production plans and leading to off-grade products. Time and 

cost are often significant constraints (Kvist and Thyregod, 2005; Bergquist, 2015b).  

Continuous production process characteristics unavoidably affect the 

experimentation strategy. Planning, conducting, and analyzing experiments require 

proper adjustments in continuous process settings (Vanhatalo and Vännman, 2008). 

An experimental campaign should always begin with careful planning because 

planning is critical to successfully solving the experimenters’ problem (Coleman and 

Montgomery, 1993; Box et al., 2005; Freeman et al., 2013). Vanhatalo and Bergquist 

(2007) provide a checklist for planning experiments in continuous process settings, 

where limited number of experimental runs, easy-/hard-to-change factors, 

randomization restrictions, and design preferences are particularly relevant. Time 

restrictions and budget constraints force the analyst to consider experiments with few 

factors and runs. Thus, two-level (fractional) factorial designs are important, but 

replicates of the experiments may not always be possible (Bergquist, 2015a). Analyzing 

unreplicated designs might not always be easy because of the impossibility of 

estimating experimental random variations and lack of degrees of freedom when 

calculating the model unknowns (i.e., the factors’ effects). When split-plot designs are 

needed, for example, to reduce the transition times between runs, the analysis might 

become further complicated (see, for example, Vanhatalo and Vännman, 2008; 

Vanhatalo et al., 2010) 

Time series nature of process data and process dynamics  

Random process disturbances and unforeseen control action seldom let the 

experimental factors remain constant during experimentation in a continuous process 

(Vining et al., 2016). Moreover, high sampling frequencies produce a chronological 

sequence of observations. Thus, both experimental factors and response variables 

should be viewed as time series (Storm et al., 2013; He, Z. et al., 2015). Production 
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steps such as mixing, melting, reflux flows, or product state changes make the process 

dynamic (Lundkvist and Vanhatalo, 2014). In a dynamic process, changed process 

inputs affect the response variables gradually, and the process stabilizes to a new steady 

state (Nembhard and Valverde-Ventura, 2003; Vanhatalo et al., 2010; Bisgaard and 

Khachatryan, 2011; Lundkvist and Vanhatalo, 2014). Vanhatalo et al. (2010) defined 

the time taken for a response to reach a new steady state as transition time, arguing 

that its characterization is crucial when experimenting in continuous processes.  

To correctly estimate the factors’ effects on the response variables, the process 

needs to reach a steady-state condition. That is, the transition times affect the run 

length of the experiments (Vanhatalo and Vännman, 2008; Vanhatalo et al., 2010). 

By knowing the transition times, the experimenter can avoid unnecessary long and 

costly or too short run lengths that yield misleading estimates of the effects. However, 

to determine the transition times in continuous processes is not easy for several 

reasons. Factors’ levels change often affects the response variables in several ways, and 

the transition times may vary for different responses in terms of both length and 

behavior. For example, Vanhatalo et al. (2010) developed a method to estimate the 

transition times in dynamic processes by combining PCA and transfer-function noise 

modeling. However, the method is an offline method that has to determine the 

transition times a priori during the planning phase of the experiment. Methodological 

research on online estimation of transition times in continuous processes can help 

solve the aforementioned experimentation challenges in such production 

environments. 

Autocorrelated and cross-correlated responses 

In continuous processes, high sampling frequency induces a positive correlation in the 

response variables (Hild et al., 2001; Prajapati and Singh, 2012). Ignoring the 

autocorrelation in responses might lead to ineffective or erroneous analysis of the 

experimental results. For example, using the run averages of responses might be a poor 

alternative and can lead to incorrect estimation of the effects. Time series analysis 

could be a useful tool to analyze the experimental results because both the time series 

nature and autocorrelation of data can be taken into account. However, few attempts 

have been made to combine the benefits of DoE and time series analysis. As shown 

in Vanhatalo et al. (2010), the dynamic relationships between process inputs and 

response variables can be modeled using transfer-function noise modeling and 

intervention analysis to improve the efficiency of the results (Bisgaard and Kulahci, 

2011; Vanhatalo et al., 2013; Lundkvist and Vanhatalo, 2014).  
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In continuous processes, the response variables are often related to each other, 

making it difficult to identify the process inputs that can be changed independently 

from one another and used as experimental factors (Hild et al., 2001). A change in 

one experimental factor often affects several response variables because they are simply 

reflections of the same underlying event (Kourti and MacGregor, 1995; Kourti and 

MacGregor, 1996; Kourti, 2005). Moreover, small changes in a factor might lead to 

unacceptable changes in process operating conditions and exorbitant production costs 

of a large volume of off-spec products (Kvist and Thyregod, 2005). A multivariate 

analysis approach using latent variable techniques, such as PCA and PLS, should be 

preferred to a univariate approach. Moreover, in many experimental situations, the 

main interest might be to characterize how a function (a surface or profile) changes 

over time within an experimental design region (see, for example, Storm et al., 2013; 

He, Z. et al., 2015). However, existing methods do not allow for designing and 

analyzing these experimental scenarios, and further research is needed to address these 

challenges (Vining et al., 2016). 

 

1.7. Introduction and authors’ contributions to appended papers  

This section introduces the appended papers and highlights the relationship between 

them and their connection with the research aims. The authors’ contributions to the 

appended papers are also presented.  

Paper A: “Managerial Implications for Improving Continuous Production 

Processes.” Capaci, F., Vanhatalo, E., Bergquist, B., and Kulahci, M. 

(2017). 

Paper A outlines the SPC and DoE implementation challenges described in the 

literature for managers, researchers, and practitioners interested in continuous 

production process improvement. Besides the research gaps and state-of-the-art 

solutions, the paper illustrates the current challenges. This is the first appended paper 

since it introduces the research topic and relates to aim I of the research. 

This paper was conceived by Francesca Capaci when an opportunity arose to submit a 

contribution to the 24th International Annual EurOMA Conference. Francesca Capaci 

carried out the four phases and eight stages of the literature review process including searches 

for data collection, screening steps, and analysis of data. The co-authors provided support 

throughout the emerging analysis steps. Francesca Capaci wrote the paper, with 

contributions from all co-authors.  
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Paper B: “Exploring the Use of Design of Experiments in Industrial 

Processes Operating Under Closed-Loop Control.” Capaci, F., Bergquist, 

B., Kulahci, M., and Vanhatalo, E. (2017). 

Paper B conceptually explores issues of the experimental design and analysis in 

processes operating under closed-loop control, and illustrates how DoE can help 

in improving and optimizing such processes. The Tennessee Eastman (TE) process 

simulator is used to illustrate two experimental scenarios. Paper B relates to aim II 

of the research.  

All the authors jointly developed the idea of exploring the use of DoE in processes 

operating under closed-loop control. Francesca Capaci tried to understand the TE process 

simulator in order to find viable scenarios for conducting the experiments. Francesca Capaci 

planned, simulated, and analyzed the experimental scenarios, while all authors were 

involved in the discussions leading up to the results. Francesca Capaci wrote the paper, 

with contributions from all co-authors.  

Paper C: “The Revised Tennessee Eastman Process Simulator as Testbed 

for SPC and DoE Methods.” Capaci, F., Vanhatalo, E., Kulahci, M., and 

Bergquist, B. (2019). 

Paper C provides guidelines on how to use the revised TE process simulator, run with 

a decentralized control strategy, as testbed for SPC and DoE methods in continuous 

processes. Flowcharts detail the necessary steps to initiate the Matlab/Simulink® 

framework. The paper also explains how to create random variation in the simulator, 

with two examples illustrating two potential applications in the SPC and DoE 

contexts. Paper C mainly relates to aim III of the research.  

The proposal to use the revised TE process as testbed for SPC and DoE methods 

development for continuous processes was jointly developed by all the authors. Francesca 

Capaci located the revised simulator, performed all work required to understand the details 

of the simulator, and developed the idea on how to create random variation in the 

simulator. Francesca Capaci also designed the illustrated examples, and was responsible 

for all simulations and analyses. All the authors were involved in the discussions leading 

up to the results. Francesca Capaci wrote the paper, with contributions from all co-authors.  
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Paper D: “On Monitoring Industrial Processes under Feedback Control.” 

Capaci, F., Vanhatalo, E., Palazoglu A., Bergquist, B., and Kulahci, M., 

(2019). 

Paper D explores the use of SPC in single-input single-output6 processes controlled 

by variations in the proportional-integral-derivative (PID) control scheme, illustrating 

whether and how common disturbances (i.e., mean shifts or trends) manifest 

themselves on the controlled and manipulated variables. The implications of process 

monitoring for these scenarios are discussed. Two simulated examples in 

Matlab/Simulink® illustrate two industrial applications. Paper D relates to aim II of 

the research.  

The proposal to study the signatures of step and ramp disturbances in single-input single-

output processes came from Francesca Capaci while taking a course in “Basics of Control 

Theory.” Francesca Capaci had to understand how step and ramp disturbances are 

handled by variations in the PID control scheme and how they manifest themselves on 

the controlled and manipulated variables. Francesca Capaci also developed the simulators 

used in the two examples, performed the simulations, and analyzed the results. Ahmet 

Palazoglu provided support to properly set up the control scheme in the simulated 

examples. Francesca Capaci wrote the paper, with contributions from all co-authors.  

Paper E: “A Two-Step Monitoring Procedure for Knowledge Discovery in 

Industrial Processes under Feedback Control.” Capaci, F. (2019). 

Paper E explores the use of SPC in multiple-inputs multiple-outputs7 processes under 

feedback control, illustrating a two-step monitoring procedure in which the process 

variables are classified prior to the analysis and then monitored separately by means of 

a multivariate monitoring scheme. The revised TE process simulator under a 

decentralized feedback control strategy is used to apply the two-step monitoring 

procedure. The results of the two simulated scenarios are compared with the approach 

of monitoring the variables simultaneously in the same multivariate chart(s). Paper E 

relates to aim II of the research.  

                                        

 
6 In this thesis, the term “single-input single-output process” refers to a process with one process input and one 

response variable. 
7 In this thesis, the term “multiple-inputs multiple-outputs process” refers to a process with several process inputs 
and several response variables. 
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As the sole author, Francesca Capaci designed the study, carried out the simulations, 

analyzed the data, and wrote the paper. Erik Vanhatalo, Bjarne Bergquist, and Murat 

Kulahci contributed with valuable feedback. 
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“If we knew what it was we were doing, 

 it would not be called research, would it?” 

Albert Einstein 

  



 
 

 

 

 

 



 

23 

 

2. RESEARCH METHOD 
This chapter outlines the research design and describes the tools and methods used for data 

collection and analysis in the research. The chapter provides the relationships between the studies 

and frames them in the research aims. The studies are presented in relation to the research aims 

and do not follow their chronological development (i.e., the order of the appended papers).  

2.1. Research design 

o fulfill the overall research objective, the research was organized around 

three topics, one for each research aim. To reach the research aims, five 

studies were totally conducted, as illustrated in Figure 2.1.  

 

Figure 2.1. Design of research and studies conducted. 

A literature review is summarized in Paper A. This was required to achieve aim I of 

the research objective. The review was motivated by the need for a theoretical 

foundation for the research and to summarize the results of the searches and readings 

in a systematic manner. This is an essential step in the research. A knowledge of the 

existing literature would help, for example, to determine what researchers already 

know about the research topic, summarize the research evidence from high-quality 

studies, identify the research gaps, and generate new ideas to fill those gaps (Tranfield 

et al., 2003; Briner and Denyer, 2012).  
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Aim II of the research objective was defined on the basis of the literature 

review. The review highlighted several challenges faced when applying SPC and DoE 

to continuous processes. Among them, the need for more research to adapt 

experimental and monitoring methods for processes under feedback control emerged. 

This became the focus of aim II of the research objective. Three studies were 

conducted to achieve aim II of the research objective. The first and second studies 

(studies 2 and 3 in Figure 2.1) investigated the use of SPC methods in processes under 

feedback control; this led to the development of Papers D and E. Study 2 focused on 

the application of SPC methods to single-input single-output processes under 

feedback control, while study 3 investigated the use of SPC methods in multiple-

inputs multiple-outputs processes under feedback control. The third study (study 4 in 

Figure 2.1) delved into the problem of adapting DoE methods for processes under 

feedback control, leading to the development of Paper B. 

The research strategy relating to aim II of the research objective was based on 

simulations. The main reason for choosing this approach was that the project did not 

involve industrial collaborators where SPC and DoE methods could be studied. Even 

with access to industrial processes, it would have been difficult to obtain processes 

allowing for full-scale methods developments. To develop and test SPC methods, 

datasets with specific characteristics such as sample size, sampling time, and the 

occurrence of known faults are required. Furthermore, DoE applications in full-scale 

industrial processes may unavoidably jeopardize the production plants and thus affect 

the production goals. This could make it difficult to convince top management to 

adopt large and costly experimental campaigns.  

Finding a realistic simulator for SPC and DoE methods development was a 

priority, and led to the definition of aim III of the research objective. This simulator 

needed to offer a good balance between realistic simulation of a continuous process 

and flexibility necessary for testing new SPC and DoE methods. To achieve aim III, 

the research strategy was to search the literature for available simulators that can mimic 

the features of continuous processes. A literature search highlighted that many 

published studies in chemometrics, an important field of research connected to 

continuous processes, used the TE process as testbed for new methods developed (see, 

for example, Lee et al., 2004; Liu et al., 2015; Rato et al., 2016). Downs and Vogel 

(1993) originally proposed the TE process as a test problem, providing a list of 

potential applications in a wide variety of topics such as plant control, optimization, 

education, and non-linear control. In addition, Reis and Kenett (2017) classified the 

TE simulator as one of the more complex simulators (medium-/large-scale nonlinear 
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dynamic simulator), suggesting its use for advanced applications in high-level statistical 

courses. The TE process simulator can emulate many of the challenges frequently 

found in continuous processes, such as multivariate nature of the data, process 

dynamics, and autocorrelated and cross-correlated responses. The process operating 

conditions can be disturbed activating 21 pre-programmed process disturbances of 

different types, such as step and random variation. Most importantly, the TE process 

simulator has to be run with an implemented control strategy to overcome its open-

loop instability. 

The above-mentioned features and the need to run the TE process simulator 

under a designed control strategy supported an in-depth study of the simulator, since 

it could allow for the development of studies 3, 4, and 5. Numerous control strategies 

were available to control for and stabilize the TE process. Among them, the 

decentralized control strategy proposed by Ricker (1996; 2005) was the most suitable 

for this research, with the following advantages: 

 the set-points of the controlled variables and process inputs (not involved in 

control loops) can be modified as long as they are maintained within the process 

operations constraints, 

 the analyst can specify the characteristics of the simulated data (e.g., length of 

experiment, sampling frequency, types of process disturbances), and 

 the simulator is free to access. 

Building on this knowledge, study 5 of the research aimed to make an in-depth study 

of the TE process simulator and investigate its suitability for SPC and DoE methods 

development in continuous process settings.  

The decentralized TE simulator devised by Ricker (2005) was first used to run 

the experiments for study 4. The analyses made during this study highlighted an 

important limitation of the decentralized TE process simulator, that is, it is almost 

deterministic in nature. Measurements of the decentralized TE process variables were 

affected only by white Gaussian noise, with standard deviation typical of the 

measurement type and thus mimicking a measurement error. Repeated simulations 

with the same starting conditions and setup produced the same results, except for 

measurements errors. The impossibility to simulate replicated experiments did not 

allow for estimating the experimental error and determining whether the observed 

differences in data were really statistically different. Moreover, the value of a model 

containing only measurement noise is limited when running repeated simulations to 

assess the performance of an SPC method.  
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The knowledge gained during study 4 called for revision of the research design. 

Additional research was needed to understand whether the limitations of the 

decentralized TE process simulator of Ricker (2005) could be overcome to make it 

suitable for studies 3 and 5. A literature search led to the release of the decentralized 

TE process simulator, known as the revised TE process model, implemented in 

Matlab/Simulink® (Bathelt et al., 2015a; 2015b). Among other possibilities, the 

revised simulator allowed for scaling the disturbances introduced to the process and 

changing the seed of each simulation. Scaling the random variation disturbances 

allowed for adding variability to the simulation results without overly distorting them. 

Moreover, the seed change of random numbers could force the simulator to generate 

different results for repeated simulations with the same starting conditions. Combining 

these two features, the deterministic nature and limitations of the simulator could be 

overcome, making the revised TE model suitable for testing the SPC and DoE 

methods in continuous process settings. The revised TE process was then used for 

studies 3 and 5.  

 

2.2. Aim I: SPC and DoE challenges for improving continuous processes 

This section highlights the tools and methods used for data collection and analysis in 

study 1 related to aim I of the research objective. 

2.2.1. Study 1: Literature review  

The literature review highlighted the SPC and DoE implementation challenges for 

managers, researchers, and practitioners interested in improving continuous 

production processes. It was conducted in four phases based on the eight review stages 

suggested by Briner and Denyer (2012), as shown in Table 2.1.  

The review stages of the “to plan” phase were outlined using Cooper’s 

literature review taxonomy (Randolph, 2009) as follows: 

 Review stage 1: 

o Focus: to identify methods for SPC and DoE in continuous processes; 

o Goal: to identify and classify central issues related to the identified methods; 

o Perspective: to present the review findings assuming a neutral position (i.e., 

reporting the results). 

 Review stage 2 

o Coverage: a representative sample of publications central or pivotal to 

achieving the goal. 
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 Review stage 3 

o Organization: to be structured around concepts (i.e., around the central 

issues identified by the literature review); 

o Audience: researchers and practitioners in the field, as well as top 

management. 

Table 2.1. Four phases and eight review stages of the literature review process [adapted 

from Briner and Denyer (2012)]. 

Phase Review stage 

To plan 
1. Identify and clarify the question(s) to be addressed 
2. Determine the types of studies that will answer the question(s) 

3. Establish the audience 

To conduct 
4. Search the literature to locate relevant studies 
5. Sift through the studies and include or exclude following predefined criteria 

To analyze 
6. Extract the relevant information from the studies 
7. Classify the findings from the studies 

To remember 8. Synthesize and disseminate the findings from the studies 

 

The other phases shown in Table 2.1 were conducted twice in five review stages, first 

for the SPC field, and then for the DoE field. Review stage 4 of the “to conduct” 

phase was realized in April 2017 using the Scopus database, limiting the search to 

publications in English during the past 30 years. Sequential searches were conducted 

using keywords and combined queries such as “statistical process control” AND 

“continuous process” OR “continuous production” for the SPC literature searches, 

and “design of experiments” AND “continuous process” OR “continuous 

production” for the DoE literature searches. Starting from the search results, the items 

were sequentially screened (review stage 5), excluding all items not related to SPC 

and DoE applications to continuous processes, and those that did not highlight the 

potential challenges in applying SPC and DoE methods to continuous processes. 

Conference articles were excluded if a later journal article by the same authors and 

with the same title was found. In review stages 6 and 7 (the “to analyze” phase in 

Table 2.1), the relevant information from the remaining publications was extracted 

and classified to identify the challenges or development needs of SPC and DoE 

methods in continuous processes. The classification stage was conducted using a 

Microsoft Excel® worksheet. Then, relevant publications not found by searches were 

added to the classified publications. The reference lists of the classified publications 

were also examined to minimize the risk of missing out other important publications. 

This final step provided the pivotal or central publications making up the 
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representative sample which the results of Paper A were based on (review stage 8 of 

the “to remember” phase in Table 2.1). 

 

2.3. Aim II: applying SPC and DoE to continuous processes under feedback 

control 

The following sections explain the tools and methods used for data collection and 

analysis used in studies 2, 3, and 4 related to aim II of the research objective.  

2.3.1. Study 2: monitoring univariate processes under closed-loop control  

Study 2 focused on the use of statistical process control charts in univariate processes 

(single-input single-output processes) controlled by variations in the proportional-

integral-derivative (PID) control scheme. The study explored how commonly 

occurring disturbances (step and ramp) manifest themselves in univariate processes by 

studying their signatures on the controlled and manipulated variables. Moreover, 

monitoring the controlled and manipulated variables separately helps in better 

understanding the process and controller performance in cases of out-of-control 

conditions. Formulas to quantify the steady-state values of controlled and manipulated 

variables were also derived. These formulas were based on mathematical derivations 

applying the principles and theorems used in control theory, such as the superposition 

principle and final value theorem (for further details, see Ogata, 2010; Romagnoli and 

Palazoglu, 2012). Two common textbook industrial applications were used to 

exemplify the theoretical results and illustrate the implications for process monitoring. 

For further information, the reader can refer to Paper D, which also provides all the 

details of the simulators employed for the study. These simulators can be used as 

testbeds for SPC methods in univariate processes under closed-loop control. Hence, 

study 2 relates to aim II and, to a lesser extent, aim III of the research objective.  

The two simulated examples were implemented in Matlab/Simulink®. The 

first example simulates a heat-exchanger controlled by a proportional (P) controller. 

The proportional gain of the controller was tuned using the Ziegler-Nichols 

technique (see, Ogata, 2010; Romagnoli and Palazoglu, 2012). The second example 

simulates a steel rolling mill with a proportional-integral (PI) controller. In this case, 

the proportional and integral gains of the controller were tuned using the internal 

model control rule (see, for example, Romagnoli and Palazoglu, 2012). In both 

examples, the controlled and manipulated variable values were collected twice during 

the continuous process operations. The processes were upset the first time by a step 
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disturbance and the second time by a ramp disturbance. Prior to data analysis, the 

observations collected during the process startup were discarded to allow for a more 

stable estimation of the process parameters in Phase I. 

The simulated data were analyzed using Matlab® scripts and the free R statistics 

software. In the heat-exchanger example, time series plots of the controlled and 

manipulated variables were used to analyze the results. In the steel rolling mill 

example, standardized CUSUM charts applied separately to the controlled and 

manipulated variables were used to analyze the results. Step and ramp disturbances do 

not typically result in large shifts of the process variables in the presence of the PI 

controller. Thus, CUSUM charts were considered a good alternative to detect 

potential out-of-control signals. Of course, other control charts with comparable 

detection abilities, such as the exponentially weighted moving average (EWMA) 

chart, could have been used. However, a different choice of control chart would not 

have changed the final conclusions of the study.  

2.3.2. Study 3: monitoring multivariate processes under closed-loop control 

Study 3 explored the use of control charts in multivariate processes (multiple-inputs 

multiple-outputs processes) under feedback control. The study focused on a two-step 

monitoring procedure for multivariate processes, first [1] classifying the process 

variables into groups as controlled, manipulated, and measured variables, and then [2] 

monitoring each group of variables separately using a multivariate monitoring scheme. 

The two-step monitoring procedure was adopted to better understand the process 

and the controllers’ performance in multivariate processes in case of out-of-control 

signals. From this perspective, study 3 can be considered an extension of study 2. The 

results of study 3 are reported in Paper E. 

The revised TE process under a decentralized feedback control strategy (Bathelt 

et al., 2015b) was used as a testbed for the two step-monitoring procedure, as advised 

in Paper C. Two simulated scenarios were illustrated and discussed. The results were 

also compared with the commonly used approach of monitoring the process variables 

together in the same multivariate control charts. 

 In the first step of the two-step monitoring procedure, the TE process variables 

were classified as controlled, manipulated, and measured variables using a qualitative 

approach. The information for classification was mainly extracted from the work by 

Ricker (1996), who explained the design phases of the TE process decentralized 

control strategy. The knowledge gained during the development of study 5 
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(conducted prior to study 3) also supported the TE process variables classification. The 

support tool for the classification was a Microsoft Excel® sheet.  

 In the second step of the two-step monitoring procedure, the controlled, 

manipulated, and measured variables were monitored separately using a multivariate 

monitoring scheme. The revised TE simulator (Matlab/Simulink®) was run twice to 

collect two datasets, one for each illustrated example. Throughout the simulations, a 

step-change disturbance was introduced into the process to collect the faulty datasets 

(for details, see Paper E). Using a Matlab® script, the phase I samples of the controlled, 

manipulated, and measured variables were produced by removing the observations 

during the transition time on process startup. Steady-state values of the variables 

provide a more stable estimation of the covariance matrices and hence of the in-

control models. The TE process variables exhibit moderate to high autocorrelation 

coefficients. Thus, a multivariate monitoring scheme based on DPCA was applied to 

each group of variables. 

Hotelling T2 and Q charts built on the basis of DPCA models in phase I were 

used to monitor separately the controlled, manipulated, and measured variables in 

phase II. For comparative purposes, the phase I and phase II samples consisting of 

controlled, manipulated, and measured variables were used for monitoring all the 

variables simultaneously. The data analysis was conducted using the free R statistics 

software. 

2.3.3. Study 4: experimentation in processes under closed-loop control 

Study 4 relates to aim II of the research objective. The study explored the 

experimental design and analysis issues to explain to researchers and practitioners how 

DoE can add value to the processes under closed-loop. Two experimental scenarios 

were designed to exemplify the study’s conceptual ideas.  

Design Expert® (version 9) was used to generate the experimental designs and 

analyze the experimental results, and the experiments were simulated using the 

decentralized TE process simulator implemented in Matlab/Simulink® as a testbed 

(Ricker, 1996; 2005).  

The first scenario illustrated an experiment in which the control strategy is 

disturbed by level change of process inputs not involved in control loops. Process 

inputs not involved in control loops can be considered as disturbances in closed-loop 

systems and thus viewed as experimental factors. The TE process has three inputs not 

involved in any control loop that can be used as experimental factors. However, even 

a small factor-levels change can be exaggerated to unacceptable effects that lead to a 
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process shutdown. A 22 randomized factorial design with three replicates was 

generated to estimate the location effects (main effects and interactions) of two inputs 

not involved in control loops on the controlled and associated manipulated variables. 

The second scenario exemplified a screening design using the set-points of controlled 

variables as experimental factors. In this case, a factor-level change will move the process 

from one operating region to another. A two-step sequential experiment estimated the 

set-points’ impact on the process operating cost. A 2𝐼𝐼𝐼
9−5 fully randomized fractional 

factorial design with four additional central points was followed by a full fold-over in 

a new block to explain some aliased effects. The final design was of resolution IV.  

In both experimental scenarios, the analysis of experimental results for analysis 

of variance (ANOVA) was based on the averages of each experimental run. Matlab 

scripts and Microsoft Excel® sheets were used for extracting averages and saving results. 

Vanhatalo et al. (2013) recommend removing apparent dynamic behavior at the 

beginning of each run to avoid the biased estimation of effects. Nevertheless, in the 

first experimental scenario, the initial observations were included in calculating the 

run averages since an effective control action should be able to remove the impact of 

the factors’ level change on the controlled variables. In the second experimental 

scenario, a transition time of 24 hours was removed prior to the calculation of the run 

averages. In this case, the response variables were not involved in control loops and 

the factors’ level changes can take time before reaching its full effect.  

 

2.4. Aim III: a simulator for SPC and DoE methods development 

The following section highlights the tools and methods used for data collection and 

analyses in study 5 related to aim III of the research objective. 

2.4.1. Study 5: the Tennessee Eastman (TE) process simulator 

Study 5 examines how to use the revised TE process simulator (Bathelt et al., 2015b) 

run under a decentralized control strategy as testbed for SPC and DoE methods. 

During the study, the guidelines on the required steps to initialize the revised TE 

process simulator and simulate data for SPC and DoE applications were formulated 

and illustrated by means of flow charts. The flow charts were created using Bizagi 

modeler® based on the business process modeling notation (BPMN) (see, for 

example, Chinosi and Trombetta, 2012; the BPMN archive, 2011). Furthermore, 

two simulated examples were conducted to demonstrate the strategy for creating 

random variability in the simulator and potential SPC and DoE applications. For 
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further details, see Paper C, which mainly relates to aim III and, to a lesser extent, 

aim I of the research objective. The revised TE simulator can in fact simulate most of 

the challenges described in Paper A.  

 The first example demonstrates how closed-loop operations affect the shift-

detection ability of control charts. The revised TE process simulator was used to 

simulate Phase I and Phase II data. The free R statistics software was used to analyze 

the collected data, that is, to build a Hotelling T2 control chart on the controlled and 

manipulated variables. The second example employs a response surface methodology 

approach. The levels change of five controlled variables’ set-points were analyzed 

through sequential experimentation to improve the process operating cost of the TE 

process. While the revised TE simulator, Microsoft Excel®, and Matlab Scripts were 

used to simulate the experiments, Design Expert® (version 10) was used to generate 

the experimental designs and analyze the experimental results. 

The sequential experimentation started with a 2𝑉
5−1

 fully randomized fractional 

factorial design, with four additional center points to screen the set-points of five 

controllers. Then, a central composite design was created by augmenting the 

resolution V fractional factorial design with ten additional axial points run in a new 

block, allowing for estimation of a second-order model. The numerical optimization 

tool in Design Expert® (version 10) was used to search for design space and find the 

settings for the set-points that would produce the lowest predicted cost. Three 

additional runs were simulated for confirmation. During the sequential stages, the 

experimental results were analyzed using ANOVA tests based on the averages of each 

run after removing 24 hours of transition time, as suggested by Vanhatalo et al. (2013). 

 

2.5. Summary of methods used in appended papers  

Table 2.2 provides an overview of the methods chosen for the studies connected to 

the five appended papers and the papers’ relationship with the aims of the research 

objective.  
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3. RESULTS AND DISCUSSION 
This chapter summarizes the results of the studies presented in the five appended papers and 

discusses the main contributions, implications, and limitations of the research. The results are 

conceptually organized in relation to the research aims (i.e., around related topics) and therefore 

do not necessarily follow the order of the appended papers.  

 

3.1. Aim I: SPC and DoE challenges for improving continuous processes 

The literature review highlighted several challenges that may arise when applying SPC 

and DoE methods to continuous processes. As explained in section 2.2.1, these 

challenges were classified in categories. Figure 3.1 illustrates the categories of SPC and 

DoE challenges identified during the classification procedure of the literature review 

and the following sections summarize the main findings. Further details are provided 

in Paper A. 

 

Figure 3.1. SPC and DoE challenges for improving continuous processes identified during the 

literature review.  

SPC in continuous processes 

In continuous processes, operating conditions frequently change owing to grade 

changes, restarts, or process adjustments and process inertia leads to transition phases. 

Data storage should be designed to preserve the history of transition phases and the 

interrelation of variables during transitions (Kourti, 2003). The monitoring phase in 

SPC should begin after the transition is complete (Duchesne et al., 2002). The existing 

SPC literature recognizes the need for multivariate control charts to monitor multiple 

quality characteristics or process variables simultaneously as in continuous processes 

(Ferrer, 2014). Several options need to be considered here. The Hotelling T2 control 

chart is commonly used for monitoring up to ten variables exhibiting moderate cross-
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correlation. When the number of variables is larger, other multivariate SPC methods 

are available (Shi and MacGregor, 2000; Qin, 2012; Ge et al., 2013). Ge et al. (2013) 

classify the available process monitoring methods into five categories:  

1. Gaussian process monitoring methods (e.g., latent structure variable techniques 

such as PCA/PLS),  

2. Non-Gaussian process monitoring methods (e.g., independent component 

analysis),  

3. Non-linear process monitoring methods (e.g., neural networks),  

4. Time-varying and multimode process monitoring (e.g., adaptive/recursive 

methods), and  

5. Dynamic process monitoring (e.g., dynamic multivariate SPC methods).  

In these cases, the choice of multivariate SPC methods should depend on the process 

characteristics (for example, Gaussian/non-Gaussian, stationary/non-stationary, and 

linear/non-linear) and level of data autocorrelation.  

Among the above-mentioned methods, process monitoring based on 

PCA/PLS is an important quality improvement tool for data-rich environments 

already used successfully in the process industry (see, for example, Ferrer, 2014; Zhang 

et al., 2014; Silva et al., 2019). Using PCA/PLS reduces the high-dimensional 

monitoring problems to a few orthogonal principal components, which can be 

monitored either individually or simultaneously. Control charts based on PCA/PLS 

are well equipped to deal with cross-correlated, independent, and stationary data, but 

autocorrelation and non-stationarity affect their performance (De Ketelaere et al., 

2015). To cope with autocorrelation or non-stationarity, certain extensions of the 

PCA/PLS monitoring methods are also available in the literature. For autocorrelated 

data and stationary processes, Ku et al. (1995) suggest expanding the original data 

matrix by adding time-lagged versions of the original variables and transforming the 

autocorrelation into cross-correlation. The performance of PCA on this extended data 

matrix is referred to as DPCA. For independent data and non-stationary processes, 

recursive and adaptive methods are available (see, for example, Li et al., 2000; De 

Ketelaere et al., 2015). Figure 3.2 illustrates the PCA/PLS methods available for 

process and data challenges.  

The literature review presented in Paper A also highlight some technical issues and 

development needs to improve the applicability of these methods. While knowledge 

of the above-mentioned solutions support the adoption of these methods, researchers 
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and practitioners should be aware of the following issues that need to be overcome. 

Among others, the relevant problems include the following:  

 How to simultaneously handle autocorrelation and non-stationarity? (De 

Ketelaere et al., 2015), 

 How to select the number of latent variables to retain and lags to add in DPCA? 

(Himes et al., 1994; Ku et al., 1995; De Ketelaere et al., 2015; Vanhatalo et al., 

2017), 

 Fault detection and isolation (Kourti and MacGregor, 1996; Dunia et al., 1996; 

Yoon and MacGregor, 2001), and 

 Handling of outliers in the data (Stanimirova et al., 2007; Serneels and 

Verdonck, 2008).  

 

 

Figure 3.2. Process and data challenges, and available PCA/PLS methods. 

Another important SPC challenge that emerged during the literature review is the 

need to run continuous processes under EPC, such as for feedback controllers. 

Feedback controllers mitigate unwanted deviations of controlled variables through 

continuous adjustment of related manipulated variables (see, for example, Ogata, 

2010; Romagnoli and Palazoglu, 2012). The propagation of a disturbance through 

the process might not always be visible in the controlled response variable, but may 

be displaced to the related manipulated variable (Akram et al., 2012; Siddiqui et al., 

2015). The SPC examples simulated in the revised TE process presented in Papers C 
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and E and in the heat exchanger and steel rolling mill simulators presented in Paper 

D illustrate this behavior.  

To detect out-of-control process conditions, the traditional approach of 

applying a control chart to controlled variable(s) is often replaced with a control chart 

applied to manipulated variable(s) or a multivariate control chart monitoring the 

controlled and manipulated variables together (Montgomery et al., 1994; Tsung, 

1999). However, the study results presented in Papers D and E show that these 

approaches might hinder deeper process insight and understanding of out-of-control 

process conditions. Further details on the implications of monitoring either the 

manipulated or controlled and manipulated variables in the same multivariate chart(s) 

will be discussed in section 3.2.1.  

 

DoE in continuous processes 

The literature review highlighted both the challenges and existing solutions when 

conducting experiments in continuous processes. While the challenges affect all the 

experimental phases (i.e., planning, conducting, and analysis of experiments), the 

literature review shows that related solutions are not always available, and if available, 

need to be developed further. 

Following the recommendations of Coleman and Montgomery (1993), who 

highlight the critical importance of the planning phase, Vanhatalo and Bergquist 

(2007) provide a systematic approach to planning an industrial experiment in 

continuous processes. The authors present twelve steps for the planning phase, which 

need to have both technical and organizational choices due to the complexity of large-

scale experimentation. The choice of design preferences and factor levels and need 

for restricted randomization are as critical as the requirement for assigning 

responsibilities in coordinating the experiment or collecting relevant background 

information. Vanhatalo and Bergquist (2007) also recommend identifying the 

presence of controlled variables in the planning phase, suggesting that closed-loop 

operations affect the entire experimental strategy. Paper A classifies the 

experimentation in processes under closed-loop control as one of the important issues 

in continuous process experiments, as conventional DoE methods implicitly assume 

open-loop operations (Montgomery, 2012a). For further details, see section 3.2.2 and 

Paper B summarizing the results of study 4, which focuses on the use of DoE in 

processes under closed-loop. 

Planning and conducting experiments in continuous processes also imply 

unavoidable cost and time constraints (Vanhatalo, 2010). The often lengthy 
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experimental campaigns jeopardize the production plan since the production plant 

could be unavailable during an experimental campaign or produce off-spec products 

(Bergquist, 2015b). Nevertheless, the need for improvement often calls for 

experimentation. The use of simulators to test methodological ideas prior to 

implementation might be helpful to improve continuous processes. The results of 

study 5 are presented assuming this perspective (see section 3.3 and Paper C). 

Moreover, two best practices need to be promoted: [1] support and allocate resources 

to the planning phase, and [2] create awareness of experimental strategies suitable for 

large-scale experimentation (Vanhatalo and Bergquist, 2007).  

 Paper A presents the potential issues that emerge when analyzing experiments 

conducted in continuous processes. The experimental factors and responses from 

continuous processes can typically be represented as time series (Vining et al., 2016). 

In these cases, the existing methods are inadequate to design the experiments and 

properly analyze them. The literature review highlights that analytical methods such 

as functional data analysis, shape analysis, and time series analysis receive increasing 

attention from both academia and industry owing to their considerable importance 

(He, Z. et al., 2015; Vining et al., 2016). Moreover, continuous processes are dynamic 

systems with inertia, meaning that the impact of factors’ level changes on responses 

can take time to reach its full impact (Nembhard and Valverde-Ventura, 2003; 

Vanhatalo et al., 2010; Lundkvist and Vanhatalo, 2014). These transition times need 

to be considered in the planning and analysis phases because they might affect, for 

example, the length of experimental runs or estimation of effects.  

 Other challenges in the analysis phase relate to the use of multivariate methods 

to analyze the experimental results. In continuous processes, the presence of several 

cross-correlated responses suggests that a univariate approach to analyses might be 

ineffective (Ferrer, 2014; Vanhatalo and Vännman, 2008). Latent variable techniques 

can be used to summarize the information in experimental response variables. The 

latent variables can then be used as new responses to test the statistical significance of 

the experimental factors effects. El-Hagrasy et al. (2006), Vanhatalo and Vännman 

(2008), Baldinger (2012), Souihi et al. (2013), and Storm et al. (2013), among others, 

provide examples of multivariate analysis combined with DoE.  

 

3.2. Aim II: applying SPC and DoE to continuous processes under feedback 

control 

The following sub-sections summarize the results of studies 2, 3, and 4 in terms of 

aim II of the research objective, that is, to propose new or adapted SPC and DoE 
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methods to overcome some of the issues due to the presence of feedback controllers. 

For more details, see Papers B, D, and E.  

 

3.2.1. Monitoring processes under closed-loop control 

In a closed-loop system, quality characteristics or process variables that might be 

interesting to monitor are usually controlled for and kept around desired target values 

(i.e., set-points). Monitoring only the controlled variables in a control chart will often 

be unsuccessful because of the controllers’ potential masking effect of external 

disturbances. The literature recommends two basic approaches to monitor a process 

under feedback control: [1] monitoring the control error, that is, the difference 

between the controlled variable and set-point value (see, for example, Faltin et al., 

1993; Montgomery et al., 1994) and [2] monitoring the manipulated variable 

(MacGregor, 1991; Faltin et al., 1993). To maximize the chances of detecting out-

of-control process conditions, a combined approach of monitoring the controlled 

variable (or control error) and the manipulated variable in the same bivariate control 

chart has also been proposed (Tsung, 1999). The same approaches can also be 

extended to monitor multivariate processes. For further details, see section 1.4.1.  

The results of studies 2 and 3, summarized in Paper D and E, indicate that the 

above-mentioned approaches are valuable for detecting out-of-control process 

conditions, but might hinder deeper process insight. Instead, as will be explained later, 

monitoring both controlled and manipulated variables in separate charts might 

increase the knowledge of the process and controller performance when out-of-

control situations occur.  

Study 2 deals with single-input single-output processes and illustrates whether 

and how step and ramp disturbances manifesting themselves on the controlled and 

manipulated variables depend on the control mode used [proportional (P), 

proportional-integral (PI), or proportional-integral-derivative (PID)]. The study 

shows that the ongoing disturbance (step or ramp) and control mode used (P, PI, or 

PID) determine the pattern (mean shift or trend) of the disturbance signatures on the 

controlled and manipulated variables. The upper part of Table 3.1 shows on which 

variables (manipulated and/or controlled) the signature of a step or ramp disturbance 

manifest itself depending on the control mode used (P, PI, or PID) and the pattern 

(mean shift or trend) of the signatures. Assuming a set-point equal to zero, the lower 

part of Table 3.1 provides the formulas for calculating the steady-state values of the 

controlled and manipulated variables, knowing the step magnitude (𝑑̅) or slope of the 

ramp (𝑑̂) and the process (kp) and controller parameters (kc, and τI). Generally, 
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knowing the magnitude or slope of a disturbance is not a realistic situation. However, 

using the true steady-state values of the controlled and manipulated variables 

calculated from the process data, the inverse formulas can be useful to calculate, for 

example, the magnitude or slope of a disturbance.  

 
Table 3.1. (Upper part) Signatures of step and ramp disturbances on the controlled and 

manipulated variables depending on the control mode (P, PI, or PID). (Lower part) 
Steady-state values of the controlled and manipulated variables as functions of the step 

magnitude (𝑑̅) or slope of the ramp (𝑑̂) and the process (kp) and controller parameters (kc, 

and τI). 

Control Mode 

Step Disturbance  Ramp Disturbance 

Controlled 
variable 

Manipulated 
variable 

Controlled 
variable 

Manipulated 
variable 

P Mean shift Mean shift Trend Trend 

PI, PID No signature Mean shift Mean shift Trend 

Control Mode Steady-state values Steady-state values 

P 
𝑑̅

1 + 𝑘𝑐𝑘𝑝
 −

𝑘𝑐 𝑑̅

1 + 𝑘𝑐𝑘𝑝
 + ∞ −∞ 

PI, PID 0 (= set-point) −
𝑑̅

𝑘𝑝
 

𝜏𝐼

𝑘𝑐𝑘𝑝
𝑑̂ −∞ 

 

As an illustration of the results in Table 3.1, Figure 3.3 displays the time series plot 

and CUSUM chart of the controlled (a-b) and manipulated (c-d) variables of a steel 

rolling mill under a PI controller. Paper D provides full details on this example. A 

disturbance occurs around the 500th observation. An analysis of the CUSUM charts 

on the controlled and manipulated variables indicates that the controller is active 

(manipulated variable out-of-control), but unable to fully remove the disturbance 

effect on the controlled variable (i.e., the controlled variable is out-of-control and the 

process is not performing satisfactorily). Moreover, the (slight) mean shift of the 

controlled variable and trend pattern of the manipulated variable shown in the time 

series plots might be a hint of an ongoing ramp disturbance (see Table 3.1).  
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(a) Controlled variable – time series plot (c) Manipulated variable – time series plot 

  

(b) Controlled variable – CUSUM chart (c) Manipulated variable – CUSUM chart 

  

Figure 3.3. Time series plot and CUSUM chart of the controlled (a-b) and manipulated (c-d) 
variables of a steel rolling mill under a PI controller. The vertical dotted lines divide Phase I and 

Phase II data. A disturbance occurs around the 500th observation.  
 

The general implication of the results in Table 3.1 is that the P, PI, and PID control 

modes have limitations on the type of disturbances they can handle. Moreover, the 

results in Table 3.1 imply that monitoring the steady-state error, manipulated variable, 

and controlled and manipulated variables together in the same control chart (in this 

case, a bivariate chart) should enable detection of an out-of-control situation when a 

step or ramp disturbance occurs. However, none of the approaches illustrated in the 

literature can provide information on the process and controller performance 

simultaneously. This process insight can be gained when controlled and manipulated 

variables are monitored using separate charts.  

Study 3 summarized in Paper E can be considered, to some extent, as an 

extension of study 2 to multivariate processes. In multivariate processes (with multiple 

inputs and several response variables), feedback controllers need to keep several 

controlled variables at their set-point values and several manipulated variables are 
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likely to be adjusted. Typically, control loops involve crucial quality characteristics or 

process variables that need to be kept around target values, for example, to ensure 

product quality specifications or stable process conditions within equipment 

constraints. Other response variables related to process performance indicators, such 

as energy consumption or product waste, might be more difficult or too expensive to 

control for and are not usually involved in any control loop. These additional response 

variables (called measured variables here) are generally affected by the process 

operating conditions and hence assess the overall process performance.  

The author of this thesis argues that in a multivariate process (with multiple 

inputs and several response variables), the response variables can be classified into at 

least three categories: controlled, manipulated, and measured variables. Akin to study 

2 in Paper D, grouping these response variables (the controlled, manipulated, and 

measured variables) and monitoring them in separate multivariate charts, rather than 

jointly, might improve the process knowledge as well as controllers’ performance 

when out-of-control conditions occur.  

In general, a combined study of the control charts applied to controlled and 

measured variables provides information on process performance. As mentioned 

earlier, controlled variables usually relate to the quality characteristics of a product or 

the process producing it. Out-of-control signals in control chart(s) on the controlled 

variables might indicate that the process performance and hence product quality are 

most likely critically affected. However, out-of-control signals in control chart(s) on 

the measured variables might indicate that the process performance is compromised, 

even though the product quality might most likely be unaffected.  

As in the univariate case, the combined study of the control charts on the 

controlled and manipulated variables would show the controllers’ performance. An 

analyst can check whether the control action is active or inactive (manipulated 

variables out-of-control or in control) and its ability or inability to partially or fully 

compensate for the disturbance (controlled variables out-of-control or in-control). 

More details on the potential scenarios that an analyst might encounter are provided 

in Paper E.  

The approach often used to monitor all the variables together in the same 

multivariate chart(s) is valuable to detect out-of-control process conditions. However, 

this approach does not directly provide the process insight gained by monitoring the 

variables in groups as illustrated above. Moreover, in case of an out-of-control signal, 

the suggested approach might support the search of disturbance. When an out-of-

control situation occurs, the controllers’ action propagates the effect of a disturbance 
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to several process variables, making the contribution plots difficult to interpret (Yoon 

and MacGregor, 2001; Qin, 2003). Classifying the process variables in “blocks” (or 

groups) can reduce the “smearing effect” of the contribution plots on non-faulty 

variables (see, for example, MacGregor and Kourti, 1995; Qin et al., 2001), as the 

analyst will have to analyze the contribution plots for groups of variables rather than 

all the variables together.  

 

3.2.2. Experimentation in processes under closed-loop control 

Designed experiments imply deliberately changing a set of experimental factors in 

order to study how important process variables or quality characteristics react. In an 

open-loop process, the experimenter can discover the potential impact of factor-level 

changes in the process response(s). In this case, the purpose of DoE is essentially to 

reveal the potential causal relationships between the experimental factors and process 

response(s). Typically, in a closed-loop system, the causal relationships between the 

process inputs (or manipulated variables) and controlled response variables are already 

established and known, and are normally not the focus of the designed experiment. 

Generally, the existing relationships between process inputs and response variables are 

discovered using system identification methods dealing with building dynamic models 

(usually a set of differential equations) based on observed data from the system (Ljung, 

2007). In system identification, experimental data are used to find the optimal input 

signals and model the system to ensure stability. However, as Paper B shows, designed 

experiments can improve industrial processes under feedback control supporting in 

factor screening, factor characterization, or process improvement and optimization.  

Closed-loop operations affect all the experimental phases; that is, planning, 

conducting, and analyzing. Continuous interference by controllers makes the 

experimentation challenging, as the control action might neutralize the factors’ level 

change impact on the response variables. Moreover, if the experimental factors are 

not properly chosen in the planning phase, all attempts to change the experimental 

factors’ levels may prove futile because the feedback controllers might counteract their 

deliberate changes. That is, the input variables involved in control loops (or 

manipulated variables) cannot be considered as potential experimental factors since 

they are not free to vary independently. 

Study 4, summarized in Paper B, illustrates two potential scenarios for 

experiments in processes under closed-loops (see Table 3.2). In the first scenario, the 

experimenter can consider any set of inputs not involved in control loops as potential 

experimental factors. In a closed-loop system, input variables not involved in control 
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loops behave as disturbances and thus can be viewed as experimental factors. In this 

case, both the controlled and manipulated variables are interesting response variables. 

An analysis of the controlled variables will provide information on the presence of 

controllers if in doubt, and their performance. An analysis of the manipulated variables 

will reveal whether experimental factors affect the important process phenomena 

controlled in the loops. To better clarify this concept, consider Figure 3.4. 

Table 3.2. Potential experimental scenarios to conduct designed experiments in processes under 
closed-loop control. 

Experimental scenario Experimental factors Response variable(s) 

1 
Process inputs not involved 

 in control loops 
Controlled and manipulated 

variables 

2 Controlled variables’ set-points 
Process performance indicators 

(e.g., operating cost, energy 
consumption and, product waste) 

 

Figure 3.4 shows the behavior of the manipulated and controlled variables of the TE 

process control loop 16 when two inputs not involved in control loops are used as 

experimental factors. The charts show (a) the controlled variable XMEAS(9), and (b) 

the manipulated variable XMV(10). The coded levels of the experimental factors 

XMV(9) and XMV(12) are superimposed in both charts. A simple visual inspection 

of the charts reveals that the controlled variable is insensitive to the factors’ level 

changes, suggesting the presence of a full-operational controller. Moreover, an analysis 

of the manipulated variable’s chart suggests that the factors’ level changes affect the 

process phenomena controlled in the loop. 

In the second scenario, the experimenter can change the controlled variables’ 

set-points to study their effect on process performance indicators, such as cost, product 

waste, and energy consumption (experimental scenario 2 in Table 3.2). In this case, 

the change in the set-points’ levels is equivalent to moving the process from an 

operating condition to another. The process performance indicators can be improved 

by finding “better” set-points-level settings. 
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(a) Controlled variable - XMEAS(9) 

 

(b) Manipulated variable – XMV (10) 

 

Figure 3.4. Impact of inputs not involved in control loops on the (a) controlled and (b) 
manipulated variables of the TE process loop 16. 

 

The suggested experimental scenarios for experiments in closed-loop systems can 

generate knowledge and contribute to process improvement, making it possible to 

study 

 the presence of controllers if in doubt, 

 the performance of controllers, that is, whether they are functioning well,  
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 the impact of experimental factors on process phenomena, and 

 how the controlled variables’ set-points affect the process performance 

indicators. 

 

3.3. Aim III: the TE simulator for SPC and DoE methods development  

New SPC or DoE methods development is generally difficult to test in real 

continuous process plants. SPC method development does not usually affect the 

production plant, but the need for datasets with specific characteristics, such as sample 

size, sampling time, and occurrence of a known fault, could limit or slow down the 

testing process. Conversely, DoE method development may jeopardize the 

production plant and affect the production goals. Production engineers and managers 

may find it inconvenient to invest time and money on lengthy experimental 

campaigns. Simulation tools can thus be instrumental in SPC and DoE method 

development. 

 Reis and Kennet (2017) map a wide variety of resources and simulators that 

can be used to teach statistical methods, such as Rice Virtual Lab in Statistics, StatLab, 

and PenSim8. The authors classify the simulators based on three characteristics: [1] 

linear/non-linear elements in the simulation model, [2] time-independent/time-

dependent behavior, and [3] size of simulator. In this classification, the TE process is 

considered one of the most complex and realistic simulators since it mimics a large-

scale, non-linear, and dynamic process. Moreover, the TE process simulator has to be 

run with an implemented control strategy to overcome its open-loop instability 

(Downs and Vogel, 1993). 

The decentralized control strategy of the TE process (Ricker, 1996) is attractive 

from an SPC and DoE methods development perspective because it can mimic the 

challenges frequently found in continuous processes (see sections 1.4 and 1.6). Ricker 

(1996) devised the decentralized control strategy of the TE process and implemented 

a simulator in Matlab/Simulink® (Ricker, 2005). Recently, Bathelt et al. (2015a; 

2015b) implemented an upgraded version of Ricker’s simulator, the revised TE 

process simulator, in Matlab/Simulink®. Table 3.3 compares the main characteristics 

                                        

 
8 Rice Virtual Lab in Statistics offer an online statistics open textbook and additional resources to assist students in 

understanding statistical concepts (http://onlinestatbook.com/rvls.html). StatLab is a free web-based application for 
supporting teaching the basics of DoE (https://www.win.tue.nl/statlab/). PenSim is a web-based simulator designed 

for students’ education that simulates a fed-batch penicillin production (http://simulator.iit.edu/web/pensim/). 
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of the decentralized TE process simulator strategy of Ricker (2005) and the revised 

TE process simulator strategy of Bathelt et al. (2015b). 

From Table 3.3., the revised TE process simulator offers more flexibility than 

the simulator originally developed by Ricker (2005). These new possibilities 

discovered while developing study 5 and summarized in Paper C widen the usability 

of the revised TE process simulator, making it more suitable for testing the SPC and 

DoE methods. The illustrated examples in Papers B and C simulated using Ricker’s 

simulator and the revised TE process, respectively, highlight this concept as well. 

Among the most relevant features, the possibility of changing the seed of each 

simulation and scaling random disturbances allows for introducing random variation 

in the simulation results, which is essential for testing SPC and DoE methods. 

Moreover, from an SPC perspective, the possibility of scaling process disturbances 

allows for testing the sensitivity of SPC methods. However, the revised TE process 

lacks a graphical user interface (GUI). New users might find it challenging to 

understand the details of the revised TE process and to run it. Thus, the results of 

Paper C are illustrated in order to support the interaction between a new user and the 

simulator. Flowcharts using the Business Process Modelling Notation (BPMN) 

provide a step-by-step description of how to use the simulator, and simulate data for 

SPC and DoE applications.  

Table 3.3. Comparison of the main characteristics of the decentralized TE process of Ricker 
(2005) and the revised TE process of Bathelt et al. (2015b). 

Characteristic 

Decentralized 

TE process 

(Ricker, 2005) 

Revised  

TE process  

(Bathelt et al., 2015b) 

Set simulation seed No Yes 

Set simulation length and sampling frequency Yes Yes 

Introduce process disturbances Yes Yes 

Scale process disturbances No Yes 

Monitor output of the disturbances No Yes 

The random generator uses different state variables 
for process disturbances and measurements noise 

No Yes 

Possibility to pause and resume the simulation 
using final process conditions 

Yes Yes 

Repeatability of simulation results No Yes 

Graphical user interface (GUI) No No 
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3.4. Research limitations 

The conclusions and recommendations drawn from the studies related to aim II of 

this thesis are based on data collected through simulations. Papers B and E used the 

TE process as testbed for the adapted SPC and DoE methods. The data for Paper D 

were collected using simulators of two common industrial applications, that is, a heat 

exchanger and a steel rolling mill. 

 The method chosen for data collection via simulations has both advantages and 

disadvantages. From an SPC perspective, the use of simulators implies the immediate 

availability of datasets with the desired characteristics (sampling time, number of 

observations, type of process disturbance, and so on). From a DoE perspective, the 

use of TE simulators implies the availability of a realistic process to test new 

experimental methods. Finding industrial partners willing to share their production 

data for SPC methods development is potentially easier than finding those willing to 

share their production plants for conducting lengthy and costly experimental 

campaigns. Testing new DoE methods would be feasible if the company is proposing 

to run experiments with the sole aim of improving the production process. Thus, 

DoE methods development might be limited due to the lack of available industrial 

partners willing to support the research ideas.  

The main drawback of working with simulators is that the SPC analyst or 

experimenter cannot consider the challenges that would emerge when working in 

real environments. Among them, in SPC applications, the collection of data from 

multiple and interconnected sources and massive datasets is common for continuous 

processes. Thus, what data and how to handle them properly will become crucial in 

addressing questions of interest. In DoE applications, planning, conducting, and 

analyzing experiments would need a transversal organization in real processes. 

Moreover, replicates of experiments will most likely not be possible. Unforeseen 

events, unexpected complications during experimental runs, or lack of coordination 

and information might also affect the experimental results, thus further challenging 

the testing process of the methods. 

The suggested SPC and DoE methods in the research tested on simulated data 

can be applied to real continuous processes. However, one can fairly expect these 

methods to be implemented considering the needs of the production environments.  

 



 
EMPIRICAL WORK AND FINDINGS 

 

49 

 

3.5. Main contributions 

This research explored the challenges usually encountered when applying SPC and 

DoE methods to continuous processes, with focus on the adapted strategies to 

overcome some of the issues due to one of the identified challenges, the presence of 

feedback controllers. This research also proposed simulation tools that can be used in 

SPC and DoE methods development.  

 Creating awareness of potential challenges when applying SPC and DoE 

methods to continuous processes is an essential step supporting the development of 

these methods. This research reinforces the knowledge of SPC and DoE methods 

development needs and suggests the current remedies found in the literature to 

overcome these challenges. A first contribution of this research is to show the 

researchers the SPC and DoE challenges that need to be overcome and to encourage 

practitioners and quality engineers to adopt these methods and benefit from them.  

Other contributions of this research come from the SPC and DoE methods 

suggested for application to continuous processes under feedback control. Feedback 

controllers challenge the implicit SPC and DoE assumption of open-loop operations. 

From an SPC perspective, feedback controllers imply that the quality characteristics 

or process variables potentially interesting to be monitored are controlled for and kept 

around desired target values. Generally, the impact of external process disturbances 

are displaced from the controlled to manipulated variables. Monitoring only the 

controlled variables might be futile. The approaches suggested in the literature for 

monitoring processes under feedback control mainly focus on detecting out-of-

control process conditions (see section 1.4.1). Certainly, the detection of out-of-

control conditions is a key aspect of an effective process monitoring procedure. 

However, this research assumes a broader perspective. The suggested SPC methods 

for monitoring under feedback control emphasize how the process knowledge and 

understanding can improve when an out-of-control situation occurs. Another 

contribution of this research is to suggest a monitoring procedure for processes under 

feedback control that jointly uses the information from the control charts and 

controllers to improve the process knowledge and the controllers’ performance when 

out-of-control situations occur. This enhanced knowledge can be achieved 

monitoring the controlled, manipulated, and measured variables (if they exist) 

simultaneously, but in separate charts. The following questions can be answered 

simultaneously using the suggested approach: Is the compensatory control action 

active? Is the controller able to fully remove the impact of a disturbance on the 
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controlled variables? Is the disturbance affecting the process phenomena controlled 

for in a closed-loop? Is the controller in place able to handle the ongoing disturbance? 

A direct implication of this enhanced knowledge is to provide support to search 

and identify the disturbance. In single-input single-output processes controlled for by 

varying the PID controllers, step and ramp disturbances leave distinctive signatures on 

the controlled and manipulated variables. Thus, monitoring the controlled and 

manipulated variables simultaneously and in separate charts provides information on 

process and controller performance and indicates the potential disturbances affecting 

the process. 

As in single-input single-output processes, an SPC analyst can monitor the 

controlled, manipulated, and measured variables of a multivariate process under 

feedback control in separate control charts. This will show the SPC analyst whether 

the control action is active, its ability or inability to deal with the ongoing disturbance, 

and whether an out-of-control condition is affecting the process phenomena 

controlled for in a loop. Although it is more challenging to understand the disturbance 

signature in a multivariate process than in a univariate process, the suggested approach 

can support the search and identification of an ongoing disturbance. As for an out-of-

control condition, identification of the disturbance might be easier because the analyst 

will have to analyze the contribution plots for groups of variables rather than for all 

the variables at once. The suggested approach can thus mitigate the so-called smearing 

effect (Yoon and MacGregor, 2001; Qin, 2003), that is, the spreading of disturbance 

on the non-faulty variables. 

 From a DoE perspective, the main contribution of this research pertains to the 

benefits of using experimental methods in process under closed-loop, a different 

framework compared to the one usually found in textbooks or traditional DoE 

applications. The research provides an adapted framework to widen the applicability 

of DoE methods to industrial processes under feedback control. The traditional open-

loop experimental framework is adjusted to the closed-loop framework and the 

implications are discussed. In this adjustment, the two suggested experimental 

scenarios classify the potential experimental factors as either a set of inputs not 

involved in the control loops, or the set-points of the controlled variables (see Table 

3.2). In the former case, the manipulated and controlled variables become the 

responses. In the latter case, the typical responses include process performance 

indicators such as cost, product waste, or energy consumption. 

The adapted SPC and DoE methods for application to processes under 

feedback control constitute a contribution to the quality engineering field, and also 
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provide useful suggestions to industrial practitioners and engineers interested in quality 

control and improvement of continuous processes.  

The last main contribution of this study is to provide detailed guidelines on how 

to use the TE process, a flexible simulation tool, to further develop SPC and DoE 

methods and overcome the challenges presented by continuous processes. The TE 

process has been used for methodological work especially in the SPC field for a long 

time. However, the previous simulator’s deterministic nature has most likely 

hampered the researchers in choosing development work and making fair comparison 

of methods. This study promotes the use of the TE process simulator widely used in 

the control theory field for SPC and DoE methods development. Following the ideas 

and recommendations presented in this study, the deterministic nature of the TE 

process can be overcome and the simulator can become a valuable tool for SPC and 

DoE methods development. Moreover, the TE simulator can play a key role in 

teaching SPC and DoE concepts in statistical and quality engineering courses in 

academia. Thus, this last contribution of the study is undoubtedly the most valuable 

one for researchers interested in SPC and DoE methods development and academics 

interested in teaching SPC and DoE concepts. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PART III: FUTURE RESEARCH 

 

 

“Somewhere, something incredible is 

 waiting to be known.” 

Carl Sagan 
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4. FUTURE RESEARCH DIRECTIONS 
This chapter presents ideas and new questions for future research that emerged during the Ph.D. 

research education and that I would like to pursue in the future. 

 

PC and DoE methods can be valuable to support product and process quality 

improvement, but companies will not gain full advantage without adjusting 

these statistical methods to the new production environments. In later years, 

the research community can reasonably be assumed to focus increasingly on the 

challenges offered by data-rich manufacturing environments. Moreover, SPC and 

DoE methods and their implementation can be affected by the new industrial 

revolution, Industry 4.0. SPC and DoE methods will most likely be increasingly used 

along with machine learning and artificial intelligent to gain full advantage from 

simultaneous application. Nevertheless, both methodological and application-

oriented SPC and DoE research will still be needed to solve problems arising from 

the process industry. 

Considering the background and development of this research, future studies 

can explore both methodological and applied directions. The availability of the revised 

TE process as flexible simulator and testbed for method development allows for 

undertaking more theory-oriented studies of the challenges described in the thesis, 

such as the multivariate nature of process data, process dynamics, and closed-loop 

operations. Moreover, thus far, most of the multivariate SPC methods suggested in 

the literature have been tested using pre-simulated training and testing datasets from 

the TE process. The characteristics of the revised TE simulator make it possible to 

revisit the suggested multivariate SPC methods and perform improved and more 

realistic comparative studies between existing methods or between existing and new 

methods. 

The research related to the challenge of applying SPC and DoE methods in 

continuous processes under EPC is a very recent topic, and could offer a rich research 

path to explore in the future. A natural continuation of the research undertaken in 

Paper D could be, for example, to run extensive simulations and study the sensitivity 

of commonly used control charts in processes governed by variations of PID 

controllers in relation to the controllers’ parameters. This type of studies could benefit 

both univariate and multivariate processes. Further development of the research in 

Paper E could investigate how different types of disturbances manifest themselves on 

the controlled, manipulated, and measured variables of a multivariate process. The 

results could be valuable to support the search and identification of process 
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disturbances. More research related to fault identification and isolation tasks in 

processes under EPC is also needed. In the future, an integrated framework that helps 

in understanding controller and process performances simultaneously can provide 

more powerful tools for improved disturbance diagnosis.  

More research to develop the adapted or new DoE methods for processes 

operating under EPC can provide useful contributions to the DoE field. For example, 

analysis methods to model the dynamic relations between several experimental factors 

and the time series response(s) would be interesting to explore. From this perspective, 

the first experimental scenario described in Paper B is of special interest (see Table 

3.2). A more in-depth study of the process control theory could lead to more 

advanced analysis methods of experimental results, where a closed-loop system could 

be transformed into its relative open-loop system. If the effect of control action could 

be filtered back from the controlled variable, the experimental factors change effects 

on the “back-filtered” variables could be analyzed and compared with those on the 

manipulated and controlled variables. 

Further interesting research relates to how to adapt and apply sequential 

experimentation methods such as response surface methodology (RSM) and 

evolutionary operations (EVOP), to processes under feedback control. Adjustments 

of the experimentation strategies may be needed in this framework because, for 

example, the response variable(s) to be optimized may not be immediately clear.  

A more in-depth study of the process control and system identification theory 

is therefore crucial and highly necessary to develop the above-mentioned ideas and 

nurture further research in developing SPC and DoE methods.  
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APPENDIX – Research Process 

Figure A.1 illustrates a Gantt chart showing the main research activities of this doctoral 

study that led to the five appended papers. The authors’ contributions to the appended 

papers are also highlighted (for more information refer back to section 1.5). In the 

chart, upside down triangles mark the beginning of a research study, circles indicate 

conference presentations for the appended papers, and triangles and diamonds indicate 

the papers that have been submitted or accepted for publication, respectively. 
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Abstract  
 
Data analytics remains essential for process improvement and optimization. Statistical 
process control and design of experiments are among the most powerful process and 
product improvement methods available. However, continuous process environments 
challenge the application of these methods. In this article, we highlight SPC and DoE 
implementation challenges described in the literature for managers, researchers and 
practitioners interested in continuous production process improvement. The results may 
help managers support the implementation of these methods and make researchers and 
practitioners aware of methodological challenges in continuous process environments.  
 
Keywords: Productivity, Statistical tools, Continuous processes 
 
 
Introduction 
Continuous production processes (CPPs), often found in, e.g., pulp and paper, chemical, 
steel, or other process industries, constitute a significant part of goods production. In a 
CPP, the product is gradually and often with minimal interruption refined through 
different process steps (Dennis and Meredith, 2000). Raw materials in these processes 
often stem directly from natural resources and characteristics of inputs such as ores or 
wood will therefore vary substantially. CPPs are often large-scale and tend to include 
interconnected process steps and complex flows. Continuous production environments 
are typically inflexible producing only one or a few products, require large investments, 
and occupy a large area. Wear and varying raw material characteristics are examples of 
frequent disturbances, making engineering process control (EPC) necessary to stabilize 
product quality and process characteristics (Montgomery et al., 1994; Box and Luceño, 
1997). Although EPC keeps quality characteristics on target, CPPs require continuous 
improvements to remain competitive (Hild et al., 2001).  
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The main possibilities to learn and improve any process come from the analysis of 
observational and experimental process data. While first principles support correlations 
among observational data, process analyst usually needs experiments to discover causal 
relationships in industrial processes (Montgomery, 2012).  

In this article, we focus on statistical process control (SPC) and design of experiments 
(DoE) since they constitute two fundamental process improvement methodologies. The 
purpose of SPC is to monitor the process and reduce process variation through 
identification and elimination of assignable causes of variation. In the SPC field 
univariate and multivariate control charts constitute the most important improvement 
tools. Alarms issued by control charts indicate the presence of potential assignable causes 
(i.e., unusual events). Root-cause analysis is the next step to uncover reasons for these 
events and if possible, to eliminate their causes. SPC is a long-term improvement 
methodology, while EPC is a short-term control strategy that transfers variability from 
the controlled variable to manipulated variables (MacGregor and Harris, 1990). The 
purpose of DoE is to plan, conduct and analyse experiments to improve products and 
processes in a systematic and statistically sound manner.  

Since their introduction in the early twentieth century, management controlled 
improvement programs such as Robust Design, Total Quality Management, and Six 
Sigma have been promoting these methodologies. Their apparent omission from the 
currently popular lean program descriptions, as well as methods within popular data 
analytics and machine learning, indicate that textbook implementation of these methods 
may be ill-suited for today’s production environment. It is becoming increasingly 
apparent that standard SPC and DoE methods need to be adapted to challenges such as 
rapid data collection from multiple and interconnected sources and massive datasets 
(Vining et al., 2015), which are common for CPPs. We argue that DoE and SPC are far 
from obsolete and that companies will not take full advantage of the big data transition 
without such proper statistically based methodologies for learning and improvements. 
However, practitioners must be aware of the challenges that this data rich environment 
brings to SPC and DoE.  

McAfee et al. (2012) highlight leadership and decision-making as important 
management challenges in the big data era. If managers of CPPs understand SPC and 
DOE challenges, they can support pairing their data with effective improvement methods. 
Hild et al. (1999) suggest using thought maps to promote improvement methods and 
critical thinking. While managers need to be aware of techniques such as DoE and SPC 
to reduce resources, to meet customer requirements and, perhaps most important, they 
should also promote their use (Lendrem et al., 2001; Bergquist and Albing, 2006; Tanco 
et al., 2010).  

The purpose of this article is to highlight challenges and development needs described 
in the literature for SPC and DoE in CPPs. We also provide some examples of state-of-
the-art solutions to current challenges.  

 
Method 
Literature searches were conducted in April 2017 using the Scopus database, limited to 
publications in English in the last 30 years (1987->). Table 2 and 3 show sequential search 
steps and keywords used. We examined reference lists of selected publications in Search 
4 to minimize the risk of missing relevant publications, following recommendation by 
Randolph (2009).  
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Table 2 – Search terms and number of publications in each step in the SPC search. 
Search # Search terms and queries Step 1 Step 2 Step 3 Step 4 Step 5 

Search 1 
(“statistical process control”) AND 

(“continuous process” OR “continuous 
production”) 

136 32 14 

C
la

ss
ifi

ca
tio

n 

23  
(7) 

Search 2 
(“statistical process monitoring”) AND 
(“continuous process” OR “continuous 

production”) 
16 2 0 

Search 3 (“statistical process monitoring”) AND 
(“process industry”) 9 4 3 

Search 4 References of selected publications in 
Search 1, 2 and 3 436 64 35 

 
The initial sample from Step 1 is the number of publications found using the keywords 

in Scopus. Duplicates were deleted in each search. In Step 2, the initial sample was 
reduced by screening titles, author keywords, and sources. Conference articles were 
excluded if a later journal article of the same authors and with the same title was found. 
Many publications were rejected after abstracts were read in Step 3. We then classified 
challenges or development needs for DoE and SPC in CPPs in Step 4. Publications were 
further analysed in Step 5 to identify the central or pivotal publications on which our 
results are mainly based. Additional relevant publications known by the authors 
(indicated in brackets at Step 5 in Tables 2 and 3) were also added and analysed.  

 
Table 3 – Search terms and number of publications in each step in the DoE search. 

Search # Search terms and queries Step 1 Step 2 Step 3 Step 4 Step 5 

Search 1 (“design of experiments”) AND (“continuous 
process” OR “continuous production”) 49 27 8 

C
la

ss
ifi

ca
tio

n 

20 
(11) 

Search 2 (“experimental design”) AND (“continuous 
process” OR “continuous production”) 50 25 15 

Search 3 (“experimental design”) AND (“process 
industry”) 12 7 2 

Search 4 References of selected publications in 
Search 1, 2 and 3 877 66 40 

 
SPC challenges in continuous production processes 
The literature review revealed many technical solutions to challenges arising when using 
SPC in continuous processes. The aim of this section is to provide an overview of 
challenges and potential strategies that managers can promote. Technical details are 
therefore not be completely covered in this article.  
 
Process transitions and data acquisition  
Operating conditions frequently change due to grade changes, restarts or process 
adjustments and process inertia leads to transition phases. Data storage should be 
designed as to preserve the history of transitions phases and interrelation of process 
variables during transitions (Kourti, 2003). Process transitions may involve loss of 
production time and increased costs due to produced sub-grade products. The monitoring 
phase in SPC should begin after the transition is complete (Duchesne et al., 2002). 
Moreover, properly stored historical data is crucial to gain process knowledge.  
 
Multivariate nature of process data 
Important reactions such as phase changes from ore to metal are difficult to measure 
accurately. Instead, engineers try to measure a multitude of secondary variables such as 
temperatures and pressures as proxies to the real, hidden process events. Technological 
development continuously reduces sensor costs and increases data storage capacity. 
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Today measuring, e.g., a reactor temperature at multiple locations is easily achieved. With 
many underlying phenomena, the analyst soon has hundreds of cross-correlated variables 
that need simultaneous monitoring.  A univariate approach with each variable in separate 
control charts is inefficient and often misleading.  

Fortunately, there are many multivariate SPC tools available (see, e.g., Shi and 
MacGregor, 2000; Qin, 2012, and Ge et al., 2013). These methods can be classified in 
five categories: Gaussian process monitoring methods (e.g. latent structure variable 
methods), non-Gaussian process monitoring methods (e.g. independent component 
analysis), non-linear process monitoring methods (e.g. neural networks), time varying 
and multimode process monitoring (e.g. adaptive/recursive methods), and dynamic 
process monitoring (e.g. dynamic multivariate SPC methods). The choice of multivariate 
SPC method depends on assumed process characteristics: Gaussian/non-Gaussian, 
static/dynamic, and linear/non-linear. Data characteristics such as if data are two or 
multidimensional or if data can be assumed to be time independent also affect the choice. 
An important multivariate process monitoring technique is to use a few linear 
combinations of the process variables (the so-called latent variables). Multivariate 
monitoring based on latent variables such as Principal Component Analysis (PCA) and 
Partial Least Square (PLS) are popular and important especially due to their 
dimensionality reduction properties (Frank and Friedman, 1993; MacGregor and Kourti, 
1995). Kourti et al. (1996) provide a review of examples with industrial applications of 
latent variable monitoring techniques in process plants such as a chemical smelter, a 
polymerization process, a pulp digester, and others. Ferrer (2014) illustrates how latent 
variable methods for process understanding, monitoring and improvement can be used 
effectively in a petrochemical CPP. Latent variable techniques use the process variables’ 
cross-correlation. Process monitoring uses a few linear combinations of the process 
variables (the so-called latent variables). Commonly, a Hotelling T2 control chart 
simultaneously monitors the retained latent variables from the PCA/PLS model whereas 
the squared prediction error (Q) chart monitors the model’s residuals. When the charts 
signal an out-of-control observation, these composite statistics are often decomposed into 
the original variables for fault identification (Himes et al., 1994; Ku et al., 1995; Kourti 
and MacGregor, 1996; Yoon and MacGregor, 2001; De Ketelaere et al., 2015) 

 
Serial correlation (autocorrelation) 
Process variables in CPPs are often highly (and positively) autocorrelated due to high 
sampling rates and process dynamics. This challenge is increasing due to sensor 
development and availability of almost unlimited data storages. Serial correlation usually 
means that the current observation is similar to the previous one. Since autocorrelation 
affects the estimation of the process’ variability, autocorrelation can lead to increased 
false alarm rates in both univariate and multivariate control charts or incorrectly estimated 
process capability indices (Tracy et al., 1992; Runger, 1996; Mastrangelo et al., 1996; 
Bisgaard and Kulahci, 2005; Jarrett and Pan, 2007). 

Two ways to handle SPC of multivariate, autocorrelated data have been suggested. 
The first employs a standard univariate or multivariate control chart but with adjusted 
control limits to achieve the desired in-control alarm rate. The second requires ‘filtering 
out the autocorrelation’ through a univariate or multivariate time series model and 
applying a control chart to the residuals from this model. However, fitting a multivariate 
time series model with many variables is difficult.  

Latent variables based SPC is recommended for cases with multiple and highly cross-
correlated process variables. Vanhatalo and Kulahci (2015) show that autocorrelated 
process variables still affect the monitoring performance of PCA based control charts 
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since the principal components also are autocorrelated. Control charts based on PCA/PLS 
are well equipped to deal with cross-correlated, independent, and stationary data but will 
be affected by autocorrelation. De Ketelaere et al. (2015) review extensions of PCA/PLS 
based monitoring methods available for more complex process and data characteristics, 
see Figure 1. Specifically, dynamic PCA/PLS have been promoted for handling the 
autocorrelation by adding time-lagged variables (Ku et al., 1995) to transform 
autocorrelation into the cross-correlation that is suitable for PCA/PLS. 

 

 
Figure 1 – Process and data challenges and available PCA/PLS methods. 

 
Process capability analyses are important and popular for assessing process performance, 
frequently used in six sigma companies and promoted by various management and 
industrial systems standards. However, positive autocorrelation would lead to an 
overestimation of process capability indices (Shore, 1997; Zhang, 1998; Sun et al., 2010; 
Lundkvist et al., 2012).  

The literature seems to lack a comprehensive solution to assessing process capability 
from processes with autocorrelated and multivariate data. Pan and Huang (2015) develop 
two multivariate process capability indices for autocorrelated data and compare their 
performance via a simulation study and, Mignoti and Oliveira (2011) propose an 
adjustment of multivariate capability indices to handle autocorrelation. 

 
Presence of engineering process control  
Fault detection using SPC control charts could fail when EPC is applied. Integrating SPC 
and EPC requires applying control charts to manipulated and not to controlled process 
variables. Box and Kramer (1992) provide a comprehensive discussion on the interface 
between EPC and SPC and Montgomery et al. (1994) demonstrate the effectiveness of 
integrating SPC and EPC in process surveillance. Contributions related to this challenge 
for most CPPs can also be found in Box and Luceño (1997), Janakiram and Keats (1998), 
Capilla et al. (1999), Tsung (2000) and in Huang and Lin (2002). 
 
DoE challenges in continuous production processes 
The literature seems unanimous on the benefits of using DoE but also on the need of 
managerial support for increased use of DoE in industry (Tanco et al., 2009; Bergquist, 
2015b). In this section, we describe specific challenges when applying DoE in CPPs but 
also suggest remedies. 
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Large scale and costly experimentation 
Operations in CPP plants typically occur around the clock with few operators in charge. 
Full-scale experiments may thus involve the majority of the production staff, making 
managerial support, coordination, and information flow essential. Moreover, the often 
lengthy experimental campaigns can jeopardize the production plan. Previously 
unexplored factor settings may lead to production of low-grade products. Time and costs 
are therefore unavoidable constraints. Nevertheless, the need for improvements often 
make experimentation necessary. Relevant examples include Wormbs et al (2004) who 
describe experimentation to evaluate production methods of milk using a three factors, 
two-levels full factorial design in a dairy company and, Gonnissen et al. (2008) who show 
how a continuously produced powder mixture can be optimized using DoE.  

We have found two best practices that managers can promote: (i) support and allocate 
resources to the planning phase of the experiment and (ii) create awareness of 
experimental strategies suitable for large scale experimentation. 

Montgomery (2012) and Box et al. (2005) highlight the planning activities preceding 
the actual experiments. However, recognizing that the planning phase is seldom a taught 
skill, Coleman and Montgomery (1993) provide a systematic approach to plan an 
industrial experiment. Later, Vanhatalo and Bergquist (2007) adapt this approach to 
CPPs. Beside a well-chosen design, the planning phase should include, e.g., a clear 
problem statement, background such as expert knowledge or previous experiments, and 
someone responsible for coordination and information flow. Of special importance for 
CPPs is a list of experimental restrictions such as the number of possible experimental 
runs, easy/hard-to-change factors, randomization restrictions and design preferences.  

Due to restrictions, cost, and time constraints, experiments in CPPs typically involve 
few factors, runs and replicates (Vanhatalo and Bergquist, 2007). Two-level (fractional) 
factorial designs are especially important to reduce the number of runs and factor level 
changes (Bergquist, 2015a). Box-Behnken designs also require few runs and are 
particularly suitable when extreme regions of the experimental space need to be avoided 
(Stazi et al., 2005; Kamath et al., 2011; Iyyaswami et al., 2013). Needs for restricted 
randomization, for instance to minimize transition times, may require split-plot designs 
(Sanders and Coleman, 1999; Bjerke et al., 2008; Vanhatalo and Vännman, 2008).  

Response surface methodology (Box and Wilson, 1951; Myers et al., 2004) and 
evolutionary operation (Box, 1957) are two useful sequential experimental strategies 
when the goal is process optimization. Kvist and Thyregod (2005) demonstrate 
evolutionary operation for optimizing an industrial enzyme fermentation process.  

 
Closed loop process operation 
Applying EPC means running CPPs under closed-loop control, which complicates 
experimental design and analysis. Conventional DoE methods make the implicit 
assumption of open-loop operation in which effects of changes of experimental factors 
on responses may be studied directly. In closed-loop, many potentially interesting 
variables are kept around a certain values (set-points) to achieve desired product quality 
and/or for plant safety reasons. Potential effects of experimental factors on controlled 
variables are masked when manipulated variables are adjusted to counteract their 
deviations from set-points (Figure 2).  

Capaci et al. (2017) suggest two closed-loop experimental strategies that classify the 
potential experimental factors as either a set of system inputs not involved in control loops 
or the actual control loop set-points, see Figure 2. In the former case, the manipulated 
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variables become the responses. The experimenter can also use controlled variables as 
responses to study controller effectiveness. In the latter case, typical responses include 
overall process performance indicators such as cost and/or quality. 

 

 
Figure 2. Schematic overview of process operating under closed-loop control 

 
Process transitions and time series responses  
High sampling frequencies in CPPs produce time series responses. Moreover, process 
dynamics often cause effects of experimental factors to develop gradually and then 
stabilize (Nembhard and Valverde-Ventura, 2003; Bisgaard and Khachatryan, 2011). 
These process transitions need consideration. Vanhatalo et al. (2013) develop possible 
analysis methods for experiments with time series responses. If the analyst can estimate 
the transition time (see for example Vanhatalo et al., 2010), the analyst can (i) use 
averages of the response in each run after eliminating transition time or (ii) use transfer 
function-noise modelling. However, transition times may prolong experimentation since 
it may be unclear when the process reaches steady state. Lundkvist and Vanhatalo (2014) 
apply a version of the second method to model time series of factors and responses of a 
full-scale blast furnace experiment. He et al. (2015) provide a recent review of additional 
available methods to analyse dynamic process responses in DoE. 
 
Multivariate responses 
Cross-correlations among responses often make multivariate analysis methods effective. 
Applications of multivariate projection methods such as PCA and PLS have been used to 
reduce the dimensionality and restrict the loss of information compared to univariate 
response analysis. A multivariate analysis approach also controls the Type I error rate. 
Vanhatalo and Vännman (2008) use principal components as new responses for a blast 
furnace experiment. El-Hagrasy et al. (2006), Baldinger (2012) and Souihi et al., (2013) 
provide additional multivariate analysis examples in DoE. 
 
Conclusions and discussions 
In this article, we focus our attention on discussing challenges of employing SPC and 
DoE for improving CPPs. Existing challenges do not mean that these methods cannot be 
used or should be discouraged. Similar or other challenges will be encountered also in 
other data analytics methods as in machine learning or neural networks. Managers of 
CPPs environments need to be aware that data-rich environments produce challenges for 
most employed methods. This is true also in applying SPC and DoE. We are aware that 
many of the mentioned challenges are not unique for CPPs and lie outside of the general 
managerial knowledge domain. A managerial implication is thus to guide analysts to a 
proper choice of tools by posing questions of how to address these challenges. We 
recommend that managers should solicit the competence of a statistically trained data 
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analyst until process engineers gain such competence. This is especially true during SPC 
method selection, or when designing and analysing experiments. 

Our literature review has revealed challenges in using SPC and DoE in CPPs, but also 
many remedies to overcome those challenges. Applications of SPC in CPPs are often 
multivariate, need to deal with autocorrelation and process transitions, as well as to work 
alongside EPC procedures. DoE may need to deal with the large-scale, closed-loop 
operation and multivariate time series responses. An important message is also that SPC 
and DoE methods can be applied readily using proper adjustments presented in the 
literature. We also recommend managers to make sufficient resources available to 
engineers and analysts to adapt methods and to acquire software that can support 
application. Software are continuously developing to meet some of the challenges we 
highlight in this article. Examples of commercial software that can aid the application of 
SPC in CPPs are Prosensus® (www.prosensus.com), Simca® (www.umetrics.com), and 
Unscrambler X® (www.camo.com). Available DoE software include JMP® 
(www.jmp.com), Design Expert® (www.statease.com), and Modde® 
(www.umetrics.com). For the more experienced analyst free software such as the R 
statistics software are interesting alternatives.  
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Exploring the Use of Design of Experiments in
Industrial Processes Operating Under Closed-
Loop Control
Francesca Capaci,a*† Bjarne Bergquist,a Murat Kulahcia,b and
Erik Vanhataloa

Industrial manufacturing processes often operate under closed-loop control, where automation aims to keep important
process variables at their set-points. In process industries such as pulp, paper, chemical and steel plants, it is often hard to
find production processes operating in open loop. Instead, closed-loop control systems will actively attempt to minimize
the impact of process disturbances. However, we argue that an implicit assumption in most experimental investigations is
that the studied system is open loop, allowing the experimental factors to freely affect the important system responses. This
scenario is typically not found in process industries. The purpose of this article is therefore to explore issues of experimental
design and analysis in processes operating under closed-loop control and to illustrate how Design of Experiments can help in
improving and optimizing such processes. The Tennessee Eastman challenge process simulator is used as a test-bed to
highlight two experimental scenarios. The first scenario explores the impact of experimental factors that may be considered
as disturbances in the closed-loop system. The second scenario exemplifies a screening design using the set-points of
controllers as experimental factors. We provide examples of how to analyze the two scenarios. © 2017 The Authors Quality
and Reliability Engineering International Published by John Wiley & Sons Ltd

Keywords: Design of Experiments; engineering control; feedback adjustment; simulation; Tennessee Eastman process

1. Introduction

I
ndustrial processes often involve automated control systems to reduce variation of quality characteristics or variables affecting
plant safety. Sometimes, the control relies on human intervention, such as subjective evaluation of the process state followed
by an operator’s control action. Processes operating under such control regimes are operating under some form of closed-loop

control. Experimenting in these processes will be challenging due to controllers’ continuous interference, see Box and MacGregor.1,2

Because the control action will potentially eliminate the impact of experimental factor changes, experimentation in closed-loop
systems may be seen as futile. However, we argue that well designed and properly analyzed experiments run under such conditions
can yield valuable information.

This article relates to system identification, which aims at building mathematical models of dynamic systems based on observed
data from the system, see Ljung.3 Experimental design in that sense typically concerns the selection of a proper input signal
disturbance to discover the causal relationships between the disturbance and the responses or manipulated variables. This way,
system identification allows for the estimation of model parameters to optimize a feedback controller, see, e.g. Jansson.4 Typically,
experimental design research in the system identification field studies ‘optimal’ input signals to model the system.

In this article, we are primarily concerned with factor screening, factor characterization or process improvement and optimization
rather than modeling process dynamics through factors that are already known to affect the response. Similar to system identification
experiments, allowable factor ranges are usually restricted, the experiments could be run in full-scale production and the number of
experimental runs are limited. However, compared to system identification, the experiments we consider are run for longer periods of
time and, most importantly, they have a more overarching purpose of improving or optimizing a process rather than to guarantee
stability of a control loop.
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Closed-loop environments add complexity to experimental design and analysis because the control strategy affects the choice of
experimental factors. For example, some input variables are manipulated within control loops and therefore may not be suitable as
experimental factors. Moreover, even though closed-loop operation is common, we argue that Design of Experiments (DoE) literature
typically rests on the implicit assumption that the studied system is operating in open loop, hence allowing the experimental factors
to freely affect the response(s). However, as pointed out by, e.g. Vanhatalo and Bergquist5 and Hild et al.,6 process control systems are
designed to maintain the important process variables at their set-points with low variability. Hence, control loops may counteract
deliberate changes of experimental factors and thereby displace the effect from typical responses to manipulated variables. An
analysis implication is that these manipulated variables instead may have to be used as responses to understand the experimental
factors’ impact on the system.

The purpose of this article is therefore to explore experimental design and analysis issues in processes operating under closed-loop
control and to illustrate how DoE can add value in improving or optimizing such processes. We will pursue this through the help of a
process simulator. Process simulators in general have limitations in mimicking the behavior of a real process, but they also offer the
flexibility required for methodological developments without jeopardizing plant safety or product quality.

A well-known simulator in the engineering control community is the Tennessee Eastman (TE) challenge chemical process simulator
first described by Downs and Vogel.7 The TE simulator has been primarily used in the development of different process control
strategies and for the development of statistical process monitoring methods mainly in chemometrics literature, see for example
Kruger et al.8 In this article, we run the TE process with a decentralized control strategy to simulate and illustrate experiments in a
closed-loop system.

The remainder of this article is organized as follows: Section 2 establishes important concepts and provides a general comparison
of open loop and closed-loop systems from a DoE perspective. Section 3 provides a general description of the TE process simulator
and the chosen control strategy. Section 3 also outlines the two experimental scenarios we illustrate in closed-loop operation of the
process. The experimental scenarios are elaborated and analyzed in Sections 4 and 5, respectively. Finally, conclusions and discussion
are provided in Section 6.

2. Experiments run in open vs. closed-loop systems

Experiments imply that one or many input variables (experimental factors) are allowed to vary to affect the output (response(s)) with
the aim of revealing potential causal relationships (effects) between factors and responses, and providing estimates of these effects.
The response could be also affected by random disturbances, see Figure 1.

In a process operating under closed-loop control, unwanted variable deviations are mitigated by adjusting a manipulated variable,
see Figure 2.

From an experimental perspective, the manipulated variables involved in control loops are not potential experimental factors. In
fact, because manipulated variables are involved in control loops, the control engineers have an idea, e.g., from a past experiment,
how the manipulated variables affect the response. In relation to Figure 2, the experimental factors in a closed-loop setting should
be viewed as disturbances to the system operating under closed-loop control. The potential effects of a disturbance on the controlled
variable(s) are therefore typically masked and displaced to one or several manipulated variables if the control system is working

Figure 1. Experimental paradigm for open-loop operation. Figure inspired by Montgomery.9

Figure 2. Schematic overview of a process under closed-loop control.
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properly. This constitutes the first message we would like to convey in this article. That is, if the control action is ignored, the
experimental factor changes will likely not affect the response (the controlled variable) significantly. An erroneous conclusion from
the lack of detectable reaction would then be, depending on the effectiveness of the control action, that the factor is unimportant.
However, if the presence of the controller is suspected or known, controlled variables may be used as responses primarily to test
the presence and the effectiveness of the controllers. Manipulated variables may thus be considered as responses to study the impact
of the experimental factors on the system and its dynamics due to the displacement of the potential effects from controlled to
manipulated variables.

We classify experimental factors for processes operating under closed-loop control as (i) either a set of system inputs not involved
in any control loop (should be viewed as disturbances in Figure 2) or (ii) the actual set-point values in the control loops. In the former
scenario, both the manipulated and controlled variables can be used as experimental responses, while in the latter case more natural
responses may be overall process performance indicators such as cost and/or product quality.

3. The Tennessee Eastman process simulator

Downs and Vogel7 introduced the TE chemical process simulator for studying and developing engineering control design. The
process is open loop unstable meaning that it will deviate and stop after a certain time period without any active control. With an
appropriate control strategy, however, the process will remain stable. Several different control strategies for the TE process have been
proposed; see for example McAvoy,10 Lyman and Georgakis,11 and Ricker.12 The TE process has also been used as a test-bed for
methodological development of multivariate statistical process monitoring.8,13–16

In the remainder of this section, we will describe some of the details of the TE process to facilitate the understanding of the
experimental scenarios we use.

3.1. Process description

The TE process is a chemical process for which the components, kinetics, processing and operating conditions have been modified for
proprietary reasons, see Downs and Vogel.7 Following four irreversible and exothermic reactions, the process produces two liquid
products from four gaseous reactants. With an additional byproduct and an inert product, eight components are present in the
process. The process has five major unit operations: a reactor, a product condenser, a vapor–liquid separator, a recycle compressor
and a product stripper as shown in a simplified process overview in Figure 3. A more detailed process map is given in the original
reference.7

The physical inputs to the process consist of four gaseous streams, out of which three are fed to a reactor. After the reaction, the
product mixture flows into a condenser, in which most of the gas is condensed. Some non-condensable components remain as
vapors and the two phases are separated in the vapor–liquid separator. Vapor is partially recycled and purged together with the inert
product and the byproduct. The product stripper separates remaining reactants from the products. The reactants are recycled, and
the products exit the process from the stripper.

The TE process simulator has 12 manipulated variables (XMVs) and 41 measured variables (XMEASs). Out of 41 measured variables,
22 are measured directly while the remaining 19 variables can be calculated by the composition of the directly measured streams. In
addition to XMVs and XMEASs, operating costs, production and product quality data are also recorded.

Figure 3. A schematic overview of the TE process.
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The TE process has six different operating modes based on the production ratio of the two products and the production rate. Mode
1 is the most commonly used base case in research articles, which we also employ in this article. Five operating constraints need to be
fulfilled to avoid process shutdown. There is also a possibility to activate 20 pre-set process disturbances (IDVs) during process
operation. Downs and Vogel7 provide more information on manipulated and measured variables, operating constraints, disturbances
and the different operating modes.

3.2. Implemented process control strategy

A control strategy is a prerequisite for experimentation in the TE process because it is open loop unstable. Ricker12 developed a
decentralized control strategy for the TE process for improved performance, especially for the maximization of the production rate.
The decentralized approach partitions the TE plant into 19 sub-units to each of which a controller is added. Tables I and II list the
control loops, controlled variables, their set-points and manipulated variables. Note that we also provide XMV(i) and XMEAS(j); the
ith manipulated variable and the jth measured variable given in Tables III and IV of the original article by Downs and Vogel7 for ease
of comparison. The manipulated variables listed with different codes, such as Fp, r7 etc. come from the decentralized control strategy
settings given in Ricker.12

We use a Matlab/Simulink decentralized control simulator (available at: http://depts.washington.edu/control/LARRY/TE/download.
html#MATLAB_5x). In this configuration, all constraints are satisfied and the process can operate without undesired shutdowns.
Moreover, the set-point values for some controlled variables and the values of inputs (XMVs) not involved in control loops may be
varied, thereby allowing for experimentation.

The override loops 18 and 19 are exceptions to the control procedure described in Section 2. These control loops are only active
when abnormal conditions occur that require an operating strategy change. Severe disturbances such as an introduction of the feed
loss of A (IDV 6) activate the override loops. The production index Fp and the compressor recycle valve XMV(5) are not manipulated
when the process operates without disturbances. All variables that can be manipulated except for the stripper steam valve XMV(9)
and the agitator speed XMV(12) are involved in control loops in the decentralized control strategy. Consequently, XMV(9) and
XMV(12) may be varied during experimentation and should then be viewed as disturbances in Figure 2.

3.3. Chosen experimental scenarios in the TE process

Two experimental scenarios in the TE process will illustrate experimentation in a process under closed-loop control. The first scenario
will demonstrate an experiment when the system is disturbed by experimental factors. Input variables not involved in control loops
can act as such disturbances and therefore be defined as experimental factors. The second scenario will demonstrate the use of the
set-points of the control loops as experimental factors.

3.3.1. Scenario 1. The aim of this scenario is to demonstrate and visualize how experimental factor variation effects are distributed
among the controlled and manipulated variables and how these effects can be analyzed. Recall that the stripper steam valve XMV(9)

Table I. Control loops for the decentralized control strategy (Ricker12)

Loop

Controlled variable Manipulated variable

Name Code Name Code

1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3)
2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1)
3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2)
4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4)
5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6)
6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7)
7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8)
8 Production rate (stream 11) XMEAS(41) Production index Fp
9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7
10 Separator liquid level XMEAS(12) Ratio in loop 6 r6
11 Reactor liquid level XMEAS(8) Set-point of loop 17 s.p. 17
12 Reactor pressure XMEAS(7) Ratio in loop 5 r5
13 Mol % G (stream 11) XMEAS(40) Adjustment to the molar feed rate of E Eadj
14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1
15 Amount of A + C in reactor feed, yAC (stream 6) XMEAS(6) Sum of ratio in loop 1 and 4 r1 + r4
16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10)
17 Separator temperature XMEAS(11) Condenser cooling water flow XMV(11)
18 Maximum reactor pressure XMEAS(7) Production index Fp
19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5)
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and the agitator speed XMV(12) are the only two manipulated variables not involved in control loops. Moreover, if the process is run
without introducing any of the pre-set disturbances (IDVs), the compressor recycle valve XMV(5) is not manipulated and can be
considered as another possible experimental factor. Because the TE simulator is designed the way it is, these factors not involved
in control loops can be seen as potential experimental factors (disturbances), and an experiment can be designed to evaluate their
impact on the system. We would like to note that in a real process the experimental factors need not only come from a list of numeric
input variables not involved in control loops but can rather be drawn from a variety of potential disturbances to the system, such as
different raw materials, methods of operation etc. Our choice here is convenient because XMV(5, 9, and 12) can be changed rather
easily in the simulation model.

Three experimental factors are thus available in this scenario. Response variables will be the controlled variables as well as the
manipulated variables in the control loops (see Section 2). Table III presents base case values of XMV(5, 9 and 12) and their allowed
ranges in operating Mode 1 of the TE process.

Table II. Set-point values in the control loops for the decentralized control strategy (Ricker12)

Loop Controlled variable

Set-point

Base case values Units

1 A feed rate (stream 1) 0.2505 kscmh
2 D feed rate (stream 2) 3664.0 kg h�1

3 E feed rate (stream 3) 4509.3 kg h�1

4 C feed rate (stream 4) 9.3477 kscmh
5 Purge rate (stream 9) 0.3371 kscmh
6 Separator liquid rate (stream 10) 25.160 m3 h�1

7 Stripper liquid rate (stream 11) 22.949 m3 h�1

8 Production rate (stream 11) 100 %
9 Stripper liquid level 50 %
10 Separator liquid level 50 %
11 Reactor liquid level 75 %
12 Reactor pressure 2705 kPa
13 Mol % G (stream 11) 53.724 mol%
14 Amount of A in reactor feed, yA (stream 6) 54.95 %
15 Amount of A + C in reactor feed, yAC (stream 6) 58.57 %
16 Reactor temperature 120.40 °C
17 Separator temperature 80.109 °C
18 Maximum reactor pressure 2950 kPa
19 Reactor level override 95 %

Table III. Potential experimental factors in scenario 1. Input variables not involved in control loops

Variable name Code Base case value (%) Low limit (%) High limit (%)

Compressor recycle valve XMV(5) 22.210 0 100
Stripper steam valve XMV(9) 47.446 0 100
Agitator speed XMV(12) 50.000 0 100

Table IV. Potential experimental factors of the TE process: set-point values of the control loops

Loop Controlled variable Base set-point

7 Stripper liquid rate (production) 22.949 m3 h�1

9 Stripper liquid level 50%
10 Separator liquid level 50%
11 Reactor liquid level 75%
12 Reactor pressure 2705 kPa
13 Mole % G 53.724 mol%
14 Amount of A in reactor feed (yA) 54.95%
15 Amount of A + C in reactor feed (yAC) 58.57%
16 Reactor temperature 120.40 °C
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3.3.2. Scenario 2. The aim of this scenario in the TE process is to explore the set-points of the controllers to reveal their potential
impact on the process operating cost. That is, to see causal relationships between the process’ operating conditions and an important
process performance indicator. By changing the set-points, the second experimental scenario indirectly uses the levels of the
controlled variables as experimental factors. However, some of the set-points are actually controlled in a cascaded procedure based
on directives generated by other controllers. Thus, only a subset of the controlled variables may be considered potential experimental
factors. Table IV lists the controlled variables that may be used as potential experimental factors and their set-point values for
operating Mode 1.

4. Scenario 1: design and analysis

This section and Section 5 through examples illustrate the two experimental scenarios explained above. We would like to clarify that
the aim of these examples is not to show the ‘best’ experimental designs or analysis procedures but rather to illustrate issues related
to experimentation in closed-loop operation.

4.1. A two-level factorial design

Scenario 1 involves a 22 randomized factorial design with three replicates with the aim of estimating location effects (main effects and
interaction) of the stripper steam valve XMV(9) and of the agitator speed XMV(12) on controlled variables and associated manipulated
variables. Control loops 9, 10, 11, 12 and 16 (see Table I) include constraints implemented for securing plant safety and adequate
control actions to avoid shutdown.

The run-order of the experiments and the averages of the controlled and manipulated variables are given in Table V. The TE
process was run for 36 h under normal operating conditions, i.e., the base case values for operating Mode 1, before starting the first
experimental run. This ‘warm-up phase’ allows for the process to reach a steady-state condition before the manipulated variables are
changed. Thereafter, every run lasted 50 h, and all 12 runs were run in sequence during continuous operation of the process. We did
not apply any of the possible pre-set disturbances (IDVs) during experimentation. Including the warm-up phase, the entire experiment
contained 636 h of simulated operation (real simulation time is only 115 s on a computer using an Intel® Core™ i5-4310 U processor
running at 2.0 GHz with 16 GB of RAM.) The controlled and manipulated variables were sampled every 12 min.

Due to the process’ continuous nature, the experimental factors and responses need to be viewed as time series. For example,
Figure 4 illustrates the impact of the experimental factors on the controlled and manipulated variables in Loop 16 which controls
the reactor temperature, XMEAS(9), by adjusting the reactor cooling water flow, XMV(10).

As seen in Figure 4, the experiment has a substantial impact on the manipulated variable – reactor cooling water flow, XMV(10).
However, even though the levels of the experimental factors are changing, the controlled reactor temperature XMEAS(9) exhibits a
random variation around its set-point value, indicating that the impact on this controlled variable is small or non-existent. A similar
behavior has been observed also for loops 9, 10 and 11.

4.2. Statistical analysis

In the first scenario, the manipulated variables of loops 9, 10, 11, 12 and 16 are considered as the main response variables. A simple
but reasonable way to analyze the experiments with time series responses is to ignore the time series aspect of the responses and to
calculate the average value for each run in Table V, see Vanhatalo et al.17. Vanhatalo et al.18 recommend removing apparent dynamic
behavior at the beginning of each run. However, the initial observations are here included to investigate if the control loops are
effective because the control action may not succeed to remove the impact on the controlled variable instantly. The run averages
can be used to perform analysis of variance (ANOVA). Table VI presents a summary of the ANOVA based on the averages in
Table V. The analysis was performed using the software Design-Expert® version 9.

Based on the high p-values for the controlled variables in Loops 11, 12 and 16, the results do not indicate that the experimental
factors affect their related controlled variables. However, as revealed by the low p-values for the manipulated variables in Loops 12
and 16 in Table VI, the experimental factors affect process phenomena controlled by these loops. Furthermore, Loops 9 and 10 fail
to remove the full impact of the experimental factor variation on the controlled variables as indicated by the low p-values on the
controlled variables. There is no evidence that the experimental factors are affecting process phenomena controlled by Loop 12.
Furthermore, the low p-value of the main effect of the stripper steam valve XMV(9) on the stripper liquid level in Loop 9, XMEAS(15),
is explained by the inclusion of the transition time. The run averages are affected because the control action of Loop 9 is delayed.

4.3. Concluding remarks for scenario 1

When experimenting in a closed-loop system, the analyst should expect that the impact of the experimental factors could be partly or
completely displaced from the controlled variables to manipulated variables. This is true despite using inputs not involved in control
loops as experimental factors, if the experimental factors affect the phenomena controlled in the loops. However, as illustrated, the
analysis may reveal potential ineffectiveness of the controllers to completely or instantly remove disturbances acting on controlled
variables. We therefore recommend viewing the responses as two important and closely related groups: [1] controlled variables
and [2] manipulated variables when analyzing an experiment in a closed-loop system as illustrated above.
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5. Scenario 2: design and analysis

The second scenario illustrates a different way of running experiments in closed-loop controlled processes. Now, we consider the set-
points of the control loops as experimental factors. Our major concern is no longer to reveal cause and effect relationships between
inputs and important measured variables in the process. These should have been identified already in the engineering control design
phase. Instead, we are exploring the set-points of the controllers to see causal relationships between the process operating conditions
and process performance indicators with the aim of optimizing the process.

5.1. A screening experiment

In this case, we focus on the process operating cost as an important response. We have nine possible set-points to change (see
Table IV), and we wish to test their impact on the process operating cost using a two-step sequential experiment. The starting point

Figure 4. Overview of experimental factors’ impact on variables related to control loop 16. The manipulated variable, XMV(10), is given in the top chart and controlled
variable, XMEAS(9), in the bottom chart. The levels, in coded units, of the experimental factors XMV(9) and XMV(12) are superimposed on the plots. The duration of each

experiment is 50 h.
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is a 29�5
III fully randomized fractional factorial design with four additional center points. This resolution III design is then followed by a

full fold-over in a new block to entangle some aliased effects. The final design, i.e., the original plus the fold-over, is of resolution IV.
Some factor setting combinations will invoke a process shutdown and some shutdown limits are also given in the Downs and

Vogel7 paper. The base case value of each factor (rounded to the nearest integer) was chosen as either the low or high factor level
in the design. The other level of each variable was defined by trial and error by either adding to or subtracting from the base case
value while trying to keep the process from shutting down. Table VII provides the low and high levels of each experimental factor
(set-point) used in the experiment.

Furthermore, we chose to keep XMVs (5, 9 and 12) fixed at their base case values given in Table III during the experiment because
they are not involved in the loops but do affect the process behavior.

A ‘warm-up phase’ of 36 h was once again used before the start of the first run of the experiment. During this phase, the
experimental factors (set-points) were fixed to their base case values for operating Mode 1. The 40 runs of the experiment are given
in Table VIII. Each experimental run lasted 50 h. Including the warm-up phase, the entire experiment contained 2036 h of operation
(simulation time was 147 s for all runs). From the TE simulator, the process operating cost ($/h) can be extracted, and we have the
operating cost for every 12 min. Figure 5 illustrates the impact of the experimental factors on the process operating cost during
the first three experiments in run order.

Table VII. Low and high level of the set-points used as experimental factors

Loop Controlled variable Base set-point Low level High level

7 Stripper liquid rate (production) 22.949 m3 h�1 21 m3 h�1 23 m3 h�1

9 Stripper liquid level 50% 50% 60%
10 Separator liquid level 50% 35% 50%
11 Reactor liquid level 75% 70% 75%
12 Reactor pressure 2705 kPa 2600 kPa 2705 kPa
13 Mole % G 53.724 mol% 54 mol% 62 mol%
14 Amount of A in reactor feed (yA) 54.95% 55% 65%
15 Amount of A + C in reactor feed (yAC) 58.57% 50% 59%
16 Reactor temperature 120.40 °C 120 °C 127 °C

Table VIII. Run order, standard order of the runs and average operating cost both before and after removal of transition time at
the beginning of each run

Block 1: 29�5
III experimental design Block 2: Full fold-over

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

Run
order

Standard
order

Operating
cost ($/h)

Operating cost ($/h)
(after removing
transition time)

1 14 201.11 201.68 21 38 139.46 130.84
2 2 156.51 154.51 22 26 130.55 131.72
3 9 148.60 143.56 23 34 152.75 146.08
4 4 127.37 140.00 24 27 156.25 157.61
5 6 185.37 172.01 25 35 182.89 170.58
6 20 124.19 129.89 26 22 125.28 126.76
7 1 139.87 141.24 27 30 175.37 157.19
8 17 133.27 131.09 28 39 120.70 131.02
9 11 123.56 129.74 29 33 151.78 150.66
10 12 255.76 215.15 30 24 166.46 155.20
11 8 175.52 187.61 31 29 129.43 142.91
12 16 164.44 160.05 32 31 186.93 167.84
13 18 127.84 130.15 33 28 166.30 167.94
14 15 147.23 142.59 34 36 164.98 165.41
15 19 130.64 132.81 35 37 128.14 132.72
16 5 104.70 109.27 36 21 145.67 140.70
17 13 181.27 161.61 37 32 104.34 115.46
18 3 128.85 127.87 38 23 174.01 166.69
19 7 182.26 177.45 39 25 213.02 198.88
20 10 117.49 127.62 40 40 127.23 135.06
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5.2. Statistical analysis

The aim of the experiment is to find set-points which reduce the long-term operating cost. In contrast to scenario 1, it makes sense to
remove transition time from the runs and then use the remaining observations to calculate run averages. To keep the observations
during the transition time in the calculation of run averages will lead to an underestimation of the location effect of the factors and
interactions, see Vanhatalo et al.17 The process operating cost exhibits some transition time before reaching the steady state as
illustrated in Figure 5. A visual inspection of the operating cost reveals that 24 h can be considered as a reasonable transition time
(grey shaded area in Figure 5), and thus the observations obtained during the first 24 h of all runs were removed before calculating
the run averages, see Table VIII.

Table IX presents an ANOVA table of the 40-run experimental design in Table VIII based on a significance level of 5%. We have also
repeated the analysis including the transition time. The results of that analysis are not reported in this article, but with the transition
time included, the same main effects turn out to be active, but the significant interaction effects differ. As seen in Table IX, seven main
effects and eight two-factor interaction alias strings are active (interactions of order three or higher are ignored). It is perhaps not
surprising that most factors affect the operating cost because control loops aim to control important process phenomena which tend
to affect the production cost. Moreover, the interconnectedness of the different control loops is demonstrated by the many
significant interactions.

Note that the curvature test is significant and that the model exhibits significant lack of fit, suggesting that a higher order model is
appropriate. The fitted model in Table IX is thus ill-suited for optimization and prediction but provides a starting point for future
response surface experimentation. The many significant two-factor interaction alias strings would need further investigation to decide
which among the aliases are actually active. However, as we mentioned earlier, the main purpose of this article is not necessarily to
provide an optimization procedure on a simulated process but rather to draw attention to possibilities and pitfalls in experimentation
under closed-loop operation. Hence, for demonstration purposes, we simply assume that the first interactions of the interaction
strings in Table IX are the important ones, ignoring the interactions in brackets. We proceed to use the estimated model to provide
suggested factor settings for the lowest operating cost within the experimental region. In this case, the lowest cost will be at a corner
point on the multidimensional hyperplane. The settings of the factors and the predicted operating cost at this point (104.5 $/h) are
provided in Table X. The significant curvature, the lack of fit tests and the R2 for prediction indicate that the predictive ability of the
model is poor. A confirmation run in the TE process simulator using the suggested factors settings gives the long-term average
operating cost 109.1 $/h. The 4.6 $/h discrepancy between the predicted cost and the confirmation run is likely due to the models’
poor predictive ability. Nevertheless, this rough analysis provides a significant improvement of the process operating cost. A
simulation of the process keeping the factors settings at the base set-points values given in Table VII gives a long-term average
operating cost of 170.2 $/h. Hence, running the process at the suggested factors settings leads to a substantial cost reduction of
61.1 $/h. Further reduction of the operating cost is likely possible but outside the scope of this article.

5.3. Concluding remarks for scenario 2

The second scenario illustrates how designed experiments can be used to improve process performance indicators using the set-
points of variables controlled in closed-loop. This scenario also exemplifies the importance of considering, and here removing, the
transition time during analysis. We want to point out that the set-points of the controllers in this example and in real life in general
affect important process operating conditions. The experimenter should therefore expect that improper choices of factor levels of the

Figure 5. The operating cost during the first three runs of the experiment. Note the dynamic behavior of the response during the first part of each run. The shaded areas
highlight the removed observations before calculating the run averages. The duration of each experiment is 50 h.
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set-points may lead to unexpected process behavior or even shutdown. Special care should be taken in choosing the levels because
the window of operability may be irregular or unknown.

6. Conclusion and discussion

This article explores important issues in designing and analyzing experiments in the presence of engineering process control. The
closed-loop operation increases process complexity and influences the strategy of experimentation. Two experimental scenarios

Table X. Suggested settings of the set-points of the control loops to provide the lowest operating cost of the estimated model
within the experimental region

Loop Set-point Suggested setting

7 Stripper liquid rate (production) 21 m3 h�1

9 Stripper liquid level Not in model, use base case
10 Separator liquid level Not in model, use base case
11 Reactor liquid level 70%
12 Reactor pressure 2705 kPa
13 Mole % G 62 mol%
14 Amount of A in reactor feed (yA) 65%
15 Amount of A + C in reactor feed (yAC) 50%
16 Reactor temperature 120 °C

Resulting predicted process operating cost: 104.5 $/h

Table IX. ANOVA and estimated effects based on the averages of the response after removing the transition time. The model
includes only terms significant at 5% level. Aliased two-factor interaction aliases that based on the heredity principle are less likely
given in italic text within brackets. The control loop numbers are indicated by (#) in the factor names

Source
Sum of
squares df

Mean
square F value Prob > F

Estimated standardized
effects

Block 15.11 1 15.11
Model 18 431.18 15 1228.75 83.97 <0.0001
A: #7—Production 3946.30 1 3946.30 269.68 <0.0001 11.11
D: #11—Reactor level 321.10 1 321.10 21.94 0.0001 3.17
E: #12—Reactor
pressure

3131.68 1 3131.68 214.01 <0.0001 �9.89

F: #13—Mole %G 4085.75 1 4085.75 279.21 <0.0001 �11.30
G: #14—yA 443.48 1 443.48 30.31 <0.0001 �3.72
H: #15—yAC 2444.72 1 2444.72 167.07 <0.0001 8.74
J: #16—Reactor temp 126.25 1 126.25 8.63 0.0076 �1.99
AD (BH CG FG) 124.36 1 124.36 8.50 0.0080 1.97
AF (BG CH DE) 207.73 1 207.73 14.20 0.0011 �2.55
AG (BF CD EH) 78.98 1 78.98 5.40 0.0298 �1.57
AH (BD CF EG) 151.98 1 151.98 10.39 0.0039 �2.18
AJ 532.42 1 532.42 36.38 <0.0001 �4.08
FJ 282.93 1 282.93 19.34 0.0002 2.97
GJ 619.92 1 619.92 42.36 <0.0001 4.40
HJ 1933.59 1 1933.59 132.14 <0.0001 7.77
Curvature 3415.43 1 3415.43 233.40 <0.0001
Residual 321.93 22 14.63
Lack of Fit 305.16 16 19.07 6.82 0.0129
Pure Error 16.77 6 2.80
Cor Total 22 183.66 39

R2 83.1%
Adjusted R2 72.1%
R2 prediction 67.2%
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based on the TE process simulator are used to answer the questions why and how to conduct and analyze experiments in closed-loop
systems.

Even though we have prior experience with experiments lasting several weeks in continuous processes, the 2038 h of
experimentation we use in our examples may admittedly be considered unrealistically long in practice. This is, however, beside the
point because the examples we provide are for demonstration purposes, and we did not necessarily focus on shortening the duration
of the experiments.

The first experimental scenario illustrates how the experimental factors not directly involved in control loops impact the closed-
loop system and how the controllers affect the analysis. The controllers adjust manipulated variables to limit or eliminate the
experimental factor effects on the controlled variable(s). We note that this will only occur if the experimental factors affect
phenomena/variables governed by the closed-loop system. The effect on the controlled variables is partly or fully transferred to
the manipulated variables depending on the effectiveness of the controllers. Hence, both the controlled and manipulated variables
should be used as responses. Analyzing the effects of experimental factors on controlled variables may give important information
about the effectiveness of the engineering process control. The effects on the manipulated variables instead reveal whether the
experimental factors affect important process behavior.

In the second scenario, the experimental factors are the set-points of the controlled variables. The set-points are target values for
the controlled variables and are typically closely tied to important process operating conditions. A level change of the set-points can
therefore be considered equivalent to shifting the location of the process. Overall process performance indicators such as operating
cost or product quality may then be suitable responses.

Using two scenarios we have illustrated that DoE can generate knowledge and aid process improvement in closed-loop systems.
More specifically, DoE can be used to study:

• if the engineering process control is efficient and cost effective;
• if experimental factors affect important process phenomena; and
• how controlled variable set-points affect important process performance indicators.

We believe simulation software like the TE process offer great opportunities for methodology development in experimentation in
closed-loop systems. In this article, we simply provide some basic ideas and approaches, but more research is needed for further
development of experimentation and analysis methods for better process understanding and optimization in closed-loop systems.
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The revised Tennessee Eastman process simulator as testbed for SPC
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ABSTRACT
Engineering process control and high-dimensional, time-dependent data present great
methodological challenges when applying statistical process control (SPC) and design of
experiments (DoE) in continuous industrial processes. Process simulators with an ability to
mimic these challenges are instrumental in research and education. This article focuses on
the revised Tennessee Eastman process simulator providing guidelines for its use as a
testbed for SPC and DoE methods. We provide flowcharts that can support new users to
get started in the Simulink/Matlab framework, and illustrate how to run stochastic simula-
tions for SPC and DoE applications using the Tennessee Eastman process.

KEYWORDS
closed-loop; design of
experiments; engineering
process control; simulation;
statistical process
control; tutorial

Introduction

Continuous production during which the product is
gradually refined through different process steps and
with minimal interruptions (Dennis and Meredith 2000)
is common across different industries. Today these proc-
esses manufacture both consumption goods such as
food, drugs, and cosmetics, and industrial goods such as
steel, chemicals, oil, and ore. Full-scale continuous pro-
duction plants present analytical challenges since they
are characterized by, for example, high-technological
and complex production machinery, low flexibility,
engineering process control (closed-loop operations) and
high production volume. Automated data collection
schemes producing multi-dimensional and high-fre-
quency data generate additional analytical challenges.
However, these processes still need to be improved con-
tinuously to remain competitive. Statistical process con-
trol (SPC) and design of experiments (DoE) techniques
are essential in these improvement efforts.

The main challenge of applying SPC and DoE in
continuous process settings comes from that these proc-
esses are run under engineering process control (EPC).
EPC works by adjusting process outputs through manip-
ulated variables. This autonomous control implies that
when EPC is in place, the traditional SPC paradigm to
monitor the process outputs needs to be adjusted to be
effective since the process output(s) most likely follows

the set-point(s) closely. However, the primary goals of
EPC and SPC differ. SPC as a methodology is not aimed
to produce feedback-controlled stability, but to help the
analyst detect and eliminate unexpected sources of
variation and disturbances that otherwise may go
undetected. Also, while EPC can be used to compensate
for a process disturbance, it has limits to what disturb-
ance types and sizes it can handle. However, delving
deep into the possibilities and obstacles of EPC in these
settings goes beyond the scope of this article, as we wish
to study the place for SPC and DoE in an environment
containing EPC.

DoE involves deliberately disturbing the process to
study how the process reacts, and traditionally, this
involves studying an important response such as a
product quality characteristics or a process output
such as the yield. In the process industrial context
where processes are run under EPC, such efforts may
be futile as EPC may counteract any deliberate
changes. However, better process conditions may be
found by changing set-points or studying manipulated
variables. Adding SPC and working with improve-
ments using DoE to a process already operating under
EPC may thus help improve processes, as we further
demonstrate in this article.

The literature on the use of SPC and DoE in pro-
cess industrial applications is extensive. However, a
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majority of these examples fail to capture essential
challenges that analysts face when applying these
methods in modern continuous processes. Recent SPC
literature highlights the need to adapt SPC practices
to the new manufacturing environments with massive
datasets, multistep production processes, or greater
computing capabilities (Ge et al. 2013, Ferrer 2014,
Vining et al. 2015). Similarly, features of continuous
processes unavoidably affect experiments and how
experimental design strategies should be adapted, see,
e.g., Vanhatalo and Bergquist (2007) and Capaci et
al. (2017).

Methodological work to upgrade current SPC and
DoE methods to address the continuous production
challenges is needed, but it is often overly complicated
to do methodological development using real proc-
esses. Tests of SPC or DoE methods in full-scale
plants tend to require considerable resources and may
jeopardize the production goals. Simulators may offer
a reasonable trade-off between the required flexibility
to perform tests and the limitations in mimicking the
behavior of a real process.

Reis and Kenett (2017) map a wide range of simu-
lators that can be used to aid the teaching of statistical
methods to reduce the gap between theory and prac-
tice. They classify existing simulators based on various
levels of complexity and guide educators to choose a
proper simulator depending on the needed sophistica-
tion. Reis and Kenett (2017) classify the Tennessee
Eastman (TE) process simulator (Downs and Vogel
1993) as one of the more complex simulators
(medium-/large-scale nonlinear dynamic simulator)
suggesting its use for advanced applications in gradu-
ate or high-level statistical courses. Downs and Vogel
(1993) originally proposed the TE process as a test
problem providing a list of potential applications in a
wide variety of topics such as plant control, optimiza-
tion, education, non-linear control and, many others.
However, older implementations of the TE process
that we have come across have a fundamental draw-
back in that the simulations are deterministic, apart
from the added measurement error. An almost deter-
ministic simulator is of limited value in statistical
methodological development, since random replica-
tions as in Monte Carlo simulations are not possible.

The revised TE process by Bathelt et al. (2015a)
does provide sufficient flexibility to create random
errors in simulations. Especially after this latest revi-
sion, we believe that the TE process simulator can
help bridge the gap between theory and practice as
well as provide a valuable tool for teaching. However,
as argued by Reis and Kenett (2017), the TE process

simulator together with other advanced simulators
lack an interactive graphical user interface (GUI),
which means that the methodological developer still
needs some programming skills.

In this article, we aim to provide guidelines for
how to use the TE process simulator as a testbed for
SPC and DoE methods. We use the revised TE pro-
cess presented in Bathelt et al. (2015a) run with a
decentralized control strategy (Ricker 1996).
Flowcharts based on the Business Process Modelling
Notation (BPMN) illustrate the required steps to
implement the simulations (Chinosi and Trombetta
2012). Finally, we provide examples of SPC and DoE
applications using the TE process.

The next section of this article provides a general
description of the revised TE process simulator and
the chosen control strategy. Sections 3 and 4 describe
how to run simulations for SPC and DoE applications,
respectively. We then present two simulated SPC and
DOE examples in the TE process (Sections 5 and 6).
Conclusions and discussion are provided in the
last section.

The Tennessee Eastman process simulator

The TE process simulator emulates a continuous
chemical process originally developed for studies and
development of engineering control and control strat-
egy design. See, for instance, plant-wide strategies
(Lyman and Georgakis 1995), or model predictive
control strategies (Ricker and Lee 1995).
Independently of the chosen control strategy, the TE
process mimics most of the challenges continuous
processes present. The TE process has also been popu-
lar within the chemometrics community. Simulated
TE process data have been used extensively for meth-
odological development of multivariate statistical pro-
cess control methods. For instance, the TE process
simulator has been used for work on integrating
dynamic principal component analysis (DPCA) into
process monitoring, see Ku et al. (1995), Rato and
Reis (2013), and Vanhatalo et al. (2017). Other TE
process simulator examples for multivariate monitor-
ing include Kruger et al. (2004), Lee et al., (2004),
Hsu et al., (2010), and Liu et al., (2015). However,
examples of DoE applications using the TE process
are limited. Capaci et al. (2017) illustrate the use of
two-level factorial designs using the TE process run
under closed-loop control. Likely, methodological
work has been hampered by the previous TE process
simulator’s deterministic nature.
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From an SPC and DoE method development per-
spective, the decentralized control strategy proposed
by Ricker (1996) and later revised by Bathelt et al.
(2015a) is attractive because of the characteristics of
the simulator under this strategy. Therefore, we intend
to illustrate how the new revised simulation model of
the decentralized TE process implemented by Bathelt
et al. (2015b) can be adjusted to allow stochastic sim-
ulations and replications. The simulator has the fol-
lowing additional advantages:

� the simulator is implemented in the Simulink/
MatlabVR interface and can be obtained for free,

� the set-points of the controlled variables and the
process inputs can be modified as long as they are
maintained within the restrictions of the decentral-
ized control strategy,

� the analyst can specify the characteristics of the
simulated data as, for example, length of experi-
mentation, sampling frequency, type and magni-
tude of process disturbances, and

� the simulation speed is fast. For example, to simu-
late the SPC example in this article with 252 hours
of operation in the TE process takes less than a
minute (56.26 seconds) on a computer using an
IntelVR CoreTM i5-4310U processor running at
2.0 GHz with 16 GB of RAM.

Process description

The TE process plant involves five major units: a
reactor, a condenser, a vapor-liquid separator, a prod-
uct stripper and a recycle compressor (Downs and
Vogel 1993). The plant produces two liquid products
(G and H) from four gaseous reactants through a
reaction system composed of four irreversible and
exothermic reactions. It also produces an inert prod-
uct and a byproduct purged as vapors from the sys-
tem through the vapor-liquid separator (Figure 1).

Reactants A, D and E flow into a reactor where the
reaction takes place. The output from the reactor is
fed to a condenser. Some non-condensable vapors
join the liquid products, but the following vapor-
liquid separator again splits the substances into separ-
ate flows. Vapor is partially recycled and partially
purged together with the inert product and the
byproduct. The stripper separates the remaining A, D
and E reactants from the liquid and another reactant,
C, is added to the product. The final products then
exit the process and the remaining reactants
are recycled.

The TE process has 12 manipulated variables
(XMVs) and 41 measured variables (XMEAs). Tables
in Downs and Vogel (1993) provide detailed informa-
tion about all the process variables and the cost func-
tion that provides the process operating cost in $/h.
The combination of three G/H mass ratios and four
production rates of the final products define six differ-
ent operating modes of the process. The user can also
choose to activate 20 preset process disturban-
ces (IDVs).

The TE process is open-loop unstable and it will
rapidly leave the allowed process operations window
and then shut down if it is run without engineering
process control. Therefore, a control strategy is neces-
sary for process stability. To avoid shutdowns and for
securing plant safety, the control strategy should abide
by five operating constraints related to the reactor
pressure, level and temperature, the product separator
level, and the stripper base level. Even with controllers
working correctly, the TE process is sensitive and may
shut down depending on the controller tuning and
the set-points of the controlled variables.

Decentralized control strategy

The decentralized control strategy partitions the plant
into sub-units and designs a controller for each one,
with the intent of maximizing the production rate.
Ricker (1996) identified nineteen feedback control
loops to stabilize the process. Table 1 provides the
control loops and the related controlled and manipu-
lated variables. The original article by Ricker (1996)
provides detailed information about the design phases
of the decentralized control strategy.

The revised TE simulation model

Ricker (2005) devised the decentralized TE control
strategy as a Simulink/MatlabVR code. Bathelt et al.
(2015b) recently developed a revised version of the

Figure 1. A simplified overview of the TE process flow.
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simulation model. The revision is an update of
Ricker’s (2005) code that widens its usability by allow-
ing for customization of the simulation by modifying
a list of parameters in the process model function.
Below we describe how to initialize the revised TE
simulator and how to use the model function parame-
ters to achieve intended simulator characteristics.

Initialization of the revised TE model
The files of the revised model are available as a
Simulink/MatlabVR code at the Tennessee Eastman
Archive (Updated TE code by Bathelt et al. (2015b)).
Figure 2 illustrates the workflow to initialize the simu-
lator through a simulation test, using the BPMN
standard (Chinosi and Trombetta 2012). The simula-
tor requires three phases to be initialized: installation,
test, and use. The installation mainly consists of
downloading the files and setting them in the same
computer directory. Then a simulation test can be
launched to check if the installation has been success-
ful. During the simulation test, four online plots dis-
play the reactor pressure, process operating cost,
production flow, and product quality trend. When the
simulation ends, the simulator provides datasets of
XMVs and XMEAs as well as the related plots. The
correct completion of the installation and test phases
ensures that the simulator works properly and it is
ready to be used. Initialization is then completed.

The simulator can be run in both operating Mode
1 and 3. Operating Mode 1, which we use in this art-
icle, seems to be the most commonly used in the lit-
erature. The model “MultiLoop_mode1” runs the
process at Mode 1 when the set-points of the input
variables not involved in control loops and of the

controlled variables are set up according to the base
case values given in Tables 2 and 3.

In Figure 2, “DoE applications” and “SPC
applications” consist of different compound activities,
expanded later, that the user must follow depending
on which method is being applied. The definition of
the model function parameters is one of these activ-
ities and can be done following the instruc-
tions below.

Using the model function parameters to customize
the simulation
The model function “temexd_mod” contains the “TE
code” and it is located in the “TE Plant” block of the
Simulink model. A double-click on “temexd_mod”
opens a dialog window. In the field “S-function
parameters,” the user can define three model function
parameters separated by commas. Square brackets are
used for undefined parameters. The simulation can be
customized to fit different needs by changing these
parameters. Table 4 provides more details of the
model function parameters.

Parameter 1 relates to the initial values of the
model states. Since we wish to run the process in
Mode 1, we hereafter assume that this parameter is
set as empty unless otherwise specified. Therefore, the
default “xInitial” array is used when we launch the
simulator. Parameters 2 and 3 enable the customiza-
tions introduced in the revised TE code.

The possibility to change the seed of each simula-
tion (parameter 2) creates the opportunity to avoid
deterministic simulations, but only when the user acti-
vates process disturbances (IDVs) of the type random
variation in the model, see Table 5. Parameter 3

Table 1. Controlled and manipulated variables in the 19 loops of the decentralized control strategy. The manipulated variables
with codes such as Fp and r7 come from the decentralized control strategy settings (Ricker 1996). XMV(i) and XMEAS(j) are num-
bered according to the original article by Downs and Vogel (1993).
Loop Controlled variable Code Manipulated variable Code

1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3)
2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1)
3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2)
4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4)
5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6)
6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7)
7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8)
8 Production rate (stream 11) XMEAS(41) Production index Fp
9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7
10 Separator liquid level XMEAS(12) Ratio in loop 6 r6
11 Reactor liquid level XMEAS(8) Set-point of loop 17 s.p. 17
12 Reactor pressure XMEAS(7) Ratio in loop 5 r5
13 Mol % G (stream 11) XMEAS(40) Adjustment of the molar feed rate of E Eadj
14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1
15 Amount of AþC in reactor feed, yAC(stream 6) XMEAS(6) Sum of loops 1 and 4 ratio r1þ r4
16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10)
17 Separator temperature XMEAS(11) Condenser cooling water flow XMV(11)
18 Maximum reactor pressure XMEAS(7) Production index Fp
19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5)
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allows for activating/deactivating the model flags listed
in Table 4. Each model flag corresponds to a bit that
can be switched using the binary notation. The value
of parameter 3 corresponds to the decimal integer of
the binary number obtained after setting the value of
each bit. For example, the binary number (11100010)2
is equivalent to the parameter value of (226)10, which
produces the exemplified model structure given in
Table 4. Note that for the right conversion from a
binary to a decimal number, the binary number must
be written starting from the highest to the lowest bit
position (from 15 to 0).

As a rule of thumb, model flags 5 and 6 should be
active during the simulation while the user can set the

other model flags to adjust the model to the simula-
tion needs. Further details of the model flag structure
are given in Bathelt et al. (2015a).

Creating random simulations in the revised TE
process simulator

The TE process is complex and in that sense mimics a
real chemical process. While the high degree of com-
plexity makes it useful as a testbed for methodological
development, the same complexity imposes some limi-
tations. As already stated, without customization, the
TE simulator provides an output that does not differ
much from a deterministic simulation where all meas-
urement error is set to zero.

Figure 3 shows a schematic overview of the revised
TE simulation model highlighting potential sources of
random variation. Note that the TE process variables
are only affected by white Gaussian noise mimicking
typical measurement noise when random disturbances
of type “random variation” are turned off. Thus,
repeated simulations with the same setup will produce
identical results, except for measurement error, which
limit the model’s value when running repeated simu-
lations. Repeated simulations are for instance used
when assessing the performance of an SPC method or
when replicates of experimental runs are needed.

To overcome this limitation, we suggest running
the simulator with added measurement noise and
one or more of the random disturbances (IDVs)
listed in Table 5 activated. Indeed, the possibility to
scale random variation disturbances allows the user
to add variability without overly distorting the
results. The possibility to change the seed is also

Table 4. Description and settings of the parameter list for the process model function “temexd_mod” (Bathelt et al. 2015a). An
example of settings for parameter 3 is given.
Parameter list of
“temexd_mod” Description Setting

1 An array of the initial values of the 50 states of the model.
The user can specify a vector of 50 states of the model to
run the simulator in a specific operating mode

Empty: default values of process operating
Mode 1 are used (Downs and Vogel 1993).

2 Initial value (seed) of the random generator Every integer number greater than 0 is valid.

Model structure flag

3 Bit Description Example (11100010)2¼ (226)10
0 Additional measurements points 0 Integer value equivalent to the binary

number activating/deactivating the bit
of the model structure flag

1 Monitoring outputs of the disturbances 1
2 Monitoring outputs of the reaction and process 0
3 Monitoring outputs of the component’s concentration 0
4 Deactivation of measurement noise 0
5 Random generator uses different state variables for

process disturbances and measurements noise
1

6 Solver-independent calculations of the process disturbances 1
7 Disturbances are scaled by the value of the activation flags 1
15 Reset model structure to original structure of Ricker (2005) 0

Table 2. Base case set-points of the input variables not
involved in control loops for operating Mode 1.

Variable name Code
Base case
value (%)

Low
limit (%)

High
limit (%)

Compressor Recycle Valve XMV(5) 22.210 0 100
Stripper Steam Valve XMV(9) 47.446 0 100
Agitator Speed XMV(12) 50.000 0 100

Table 3. Base case set-points of the controlled variables
(available experimental factors) in the TE process for operating
Mode 1.
Loop Controlled variable Base set-point

7 Stripper liquid rate (production) 22.949 m3 h�1

9 Stripper liquid level 50%
10 Separator liquid level 50%
11 Reactor liquid level 75%
12 Reactor pressure 2705 kPa
13 Mole % G 53.724 mol%
14 Amount of A in reactor feed (yA) 54.95%
15 Amount of AþC in reactor feed (yAC) 58.57%
16 Reactor temperature 120.40 oC
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important for our conclusion that the revised TE
model is suitable for methodological tests of SPC and
DoE methods.

It should be noted that the choice of the scale factor(s)
to adjust the random variation depends on the random
disturbance(s) introduced in the simulation model and
the aim of the simulation study. The random disturban-
ces vary in both magnitude and dynamics and hence
impact the process differently. Therefore, we leave the
choice of disturbances and the scale factor(s) to the user
but explain the ideas behind our choices in our examples.

The TE process simulator in the SPC context

SPC applications require historical in-control data
(Phase I dataset) and an online collection of data to

perform Phase II analysis. Samples from Phase I and
Phase II are typically collected in one shot in the TE
process simulator. Using the BPMN standard, the
upper half of Figure 4 presents the tasks required to
simulate Phase I and Phase II data. Table 5 lists pos-
sible process disturbances (IDVs) that can be used as
faults in Phase II. Note that the revised TE model
adds eight “random variation” disturbances to the
simulator, IDV(21)-IDV(28). A valuable characteristic
of the revised simulator for SPC applications is the
possibility to scale all process disturbances by setting
their disturbance activation parameter values between
0 and 1.

Before we highlight three important SPC challenges
that frequently occur in continuous processes and that
the TE process simulator can emulate.

TE Model 
(Equations, Derivatives)

Set-Points

Input Variables 

Not Involved in 

Control Loops

Controlled/

Measured Variables

Measurements Noise 
(White Gaussian Noise)

Process Disturbances (IDVs)
(Random Variation)

ON
ON/OFF

(if ON: 0 < Scale Factor ≤ 1)

Seed/Generator of the Random Numbers 

Figure 3. Schematic overview of the revised TE simulation model with a focus on potential sources of random variation.

Table 5. The 28 process disturbances available (Downs and Vogel 1993, Bathelt et al. 2015a).
Variable Number Process Variable Type

IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C ratio constant (stream 4) Step
IDV(3) D feed temperature (stream 2) Step
IDV(4) Water inlet temperature for reactor cooling Step
IDV(5) Water inlet temperature for condenser cooling Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss- reduced availability (stream 4) Step
IDV(8) A,B,C proportion in stream 4 Random variation
IDV(9) D feed temperature (stream 2) Random variation
IDV(10) A and C feed temperature(stream 4) Random variation
IDV(11) Water inlet temperature for reactor cooling Random variation
IDV(12) Ater inlet temperatur for condenser cooling Random variation
IDV(13) Variation coefficients of reaction kinetics Random variation
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Variation coefficient of the steam supply of the heat exchanger of the stripper Random variation
IDV(17) Variation coefficient of heat transfer in reactor Random variation
IDV(18) Variation coefficient of heat transfer in condenser Random variation
IDV(19) Unknown Unknown
IDV(20) Unknown Random variation
IDV(21) A feed temperature (stream 1) Random variation
IDV(22) E feed temperature (stream 3) Random variation
IDV(23) A feed flow (stream 1) Random variation
IDV(24) D feed flow (stream 2) Random variation
IDV(25) E feed flow (stream 3) Random variation
IDV(26) A and C feed flow (stream 4) Random variation
IDV(27) Reactor cooling water flow Random variation
IDV(28) Condenser cooling water flow Random variation
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Multivariate data

The 53 variables available in the TE process (12
XMVs and 41 XMEAs), some of which are highly
cross-correlated, allow for studies of multivariate
monitoring methods. The TE process has been used
extensively within the chemometrics literature to test
monitoring applications and fault detection/isolation
methods based on latent structures techniques such as
principal component analysis (PCA) and partial least
squares (PLS). The simulator does not produce miss-
ing data, but the analyst may remove data manually
if needed.

Autocorrelated data

The user can choose the variables’ sampling rate in
the TE process, but for most choices, the resulting
data will be serially correlated (autocorrelated).
Autocorrelation will require adjustment of the control
limits of control charts since the theoretical limits will
not be valid. This faulty estimation will affect in-con-
trol and out-of-control alarm rates (Bisgaard and
Kulahci 2005, Kulahci and Bisgaard 2006), and this
also extends to process capability analysis affecting
both univariate and multivariate techniques.

Closed-Loop Operation

Closed-loop engineering process control is constantly
working to adjust process outputs through manipu-
lated variables, which represents an interesting SPC
challenge. Control charts applied to controlled outputs
could fail to detect a fault and might erroneously indi-
cate an in-control situation. The traditional SPC para-
digm to monitor the process output when engineering
process control is in place requires proper adjustments
and the TE process simulator provides a good testbed
for this.

The TE process simulator in DoE context

The lower part of Figure 4 provides a guide on how
to simulate data in using the TE process for testing
DoE methods for continuous processes operating
under closed-loop control. Note that one of the early
tasks is to activate one or more process disturbances
of type “random variation,” see Table 5, to overcome
the deterministic nature of the simulator. Two experi-
mental scenarios can, for example, be simulated using
the TE process simulator (Capaci et al. 2017). In the
first scenario, the experimental factors can include the
three manipulated variables not involved in control

loops, XMV(5), XMV(9), and XMV(12), see also
Table 2, while the responses can include both manipu-
lated and controlled variables. In the second scenario,
the experimenter can use the set-point values of the
control variables as experimental factors and the oper-
ating cost function as a response. However, a cascaded
procedure based on directives generated by the decen-
tralized control strategy will make some set-points
dependent. Therefore, the experimenter only has the
subset of the nine set-points given in Table 3 available
as experimental factors in the second scenario.

The TE process simulator allows the user to pause,
analyze the experiment, and make new choices based
on the results. Thus, sequential experimentation, a
cornerstone in experimental studies, is possible to
simulate. The experimenter can repeat the experimen-
tal runs and expand the experiment with an aug-
mented design since the seeds for the random
disturbances can be changed. Hence, TE process
simulator can emulate potential experimentation strat-
egies such as response surface methodology (Box and
Wilson 1951) and evolutionary operation (Box 1957).
Even though cost and time concerns are irrelevant
when experiments are run in a simulator and the
number of experimental factor levels and replicates
are practically limitless compared to a real-life experi-
ment, there are only a few potential experimental fac-
tors available. The simulator may aid studies on the
robustness and the analysis of an experiment where
the number of experimental runs is limited, such as
unreplicated designs with a minimum number
of runs.

Below we highlight three challenges for the analyst
when applying DoE in the TE process. These chal-
lenges are also commonly found in full-scale experi-
mentation in continuous processes:

The closed-loop environment

The TE process experimenter must select experimental
factors and analyze process responses while taking
into account the presence of feedback control systems
(Capaci et al. 2017). The decentralized control of the
TE process will mask relationships between process
input and output (see also McGregor and Harris
1990), and feedback control loops will limit the possi-
bility to vary all the process inputs freely.
Furthermore, the experimenter must restrict potential
experimental factor changes within constrained oper-
ating regions to avoid any process shutdowns. As in
open-loop systems, the choice of the experimental fac-
tor levels becomes crucial to assure the closed-loop
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process stability. However, one cannot expect the
experimenter, new to the TE process, to predict the
process behavior due to experimental factor changes.
Instead, we have found that a trial-and-error approach
of sufficiently stable operating regions has given suffi-
cient a-priori knowledge of potentially feasible operat-
ing regions (such an approach is, of course, unfeasible
in the real process case as it potentially involves mul-
tiple process shutdowns.) Later, results of the experi-
mentation can provide an improved posteriori
knowledge of actual feasible operating regions.
Therefore, DoE methods can be used for factor
screening, factor characterization, or process improve-
ment and optimization in these processes. Moreover,
it is fair to assume that a subsequent re-tuning of the
control parameters at different sub-regions within the
whole tolerable experimental region might lead to a
further improvement of the process and an expansion
of the region of tolerable operating conditions.

Transition times between runs

The time required for different responses to reach a
new steady state in the TE process will differ depend-
ing on the factors and the magnitude of the change.
The characterization of transition times is crucial to
minimize their effect on the experimental results as
well as to allocate the time needed for the treatments
to take full effect (Vanhatalo et al. 2010). Long transi-
tion times between steady-state conditions add to the
costs of randomizing the runs in a real experiment.
The literature suggests using split-plot designs to
restrict factor changes in this situation. Moreover, it is
common to avoid resetting the levels of factors
between consecutive runs where the factors are to be
held at the same level for time and cost concerns.
However, maintaining the factor level settings between
adjacent runs and disregarding resetting lead to a cor-
relation between neighboring runs and to
designs called randomized-not-reset (RNR) designs
(Webb et al. 2004). These can also be studied in the
TE process.

Time series data for factors and responses

The continuous nature, the dynamic behavior, and the
transition times of the TE process make it necessary
to view experimental factors and responses as time
series. The analysis of the experiments from the TE
process allows for considering the time series nature
of factors and responses. The response time series
need to be summarized in averages or standard

deviations to fit in a standard analysis such as the
analysis of variance (ANOVA). Transfer function-
noise modeling may be used to model the dynamic
relations between experimental factors and the
response(s) (Lundkvist and Vanhatalo 2014).

Example 1: The TE process simulator and SPC

Note that the aim of the example provided here (and
in Section 6) is not to describe the most complex
scenario available nor is it to suggest the “best sol-
ution” to the illustrated challenges. The examples are
provided to show how the TE process can act as a
testbed for developing and testing methodological
ideas. In the first example, we illustrate how closed-
loop operation can affect the shift detection ability of
control charts. In particular, this example demon-
strates how control charts applied to the (controlled)
output could fail to detect a fault and, therefore,
might erroneously indicate an in-control situation. It
should be noted that this issue has been already
handled in other research articles, see, for example,
Rato and Reis 2014, 2015, and here we make use of it
for illustration purposes.

The example focuses on control loops 9–12 and 16
(Table 1). These loops regulate the process operating
constraints needed to secure plant safety and to avoid
unwanted shutdowns. Five process inputs (r5, s.p.17,
XMV(10), r6, and r7), i.e., the manipulated variables,
control the related TE process outputs (XMEAS 7–9,
12 and 15). We here refer to control loops 9–12 and
16, and their related variables as critical control loops,
critical controlled variables (C-XMEAS) and critical
manipulated variables (C-XMVs) respectively.

Selecting and scaling disturbances

After a preliminary study of the process disturbances
of type random variation (Table 5) available in the TE
process, we further analyzed the behavior of IDV(8)
and IDV(13). IDV(8) varies the proportion of the
chemical agents (A, B, C) in stream 4 of the process,
mimicking a reasonably realistic situation, whereas
IDV(13) adds random variation to the coefficients of
reaction kinetics, propagating its impact through the
whole process. We performed 4 sets of 20 simulations
each with a scale factor of the disturbances equal to
0.25, 0.5, 0.75 and 1 to understand the impact of
IDV(8) and IDV(13) on process behavior. Each simu-
lation, run with a randomly selected seed, lasted
200 hours in the TE process and the outputs of the
random disturbances were collected with a sampling
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interval of 12 minutes. We kept constant the set-
points of the inputs not involved in control loops and
of the controlled variables at the base case values of
operating Mode 1 (Tables 2 and 3).

Based on the averages and standard deviations pre-
sented in Table 6, to achieve random variation in the
TE process, we ran Phase I and Phase II data collec-
tion with both IDV(8) and IDV(13) active, with ran-
domly selected scale factors between 0 and 0.25 and, 0
and 0.5 respectively.

We then performed a preliminary simulation with
the same simulator settings for the random disturban-
ces to select the magnitude of the step size (fault) for
Phase II. Table 6 shows the magnitude of the step size
for the scale factor equal to 0.25, 0.5, 0.75 and, 1. We,
therefore, introduced a step change in the cooling
water inlet temperature of the reactor in Phase II, i.e.,
IDV(4), with a randomly selected scale factor between
0.25 and 0.5.

Data collection

The TE process was first run for 144 hours at normal
operating conditions (Phase I), i.e., base case values
for operating Mode 1. A step change in the cooling
water inlet temperature of the reactor (IDV4) was
then introduced in the process for 108 hours (Phase
II). The randomly selected scale factors of disturban-
ces IDV(4), IDV(8) and IDV(13) in this simulation
were 0.32, 0.1 and 0.25 respectively. Values on C-
XMEAS and C-XMVs were collected in sequence dur-
ing continuous operation of the process with a sam-
pling time of 12 minutes.

Multivariate process monitoring

For illustration purposes, consider a standard
Hotelling T2 multivariate control chart for individual
observations for the five critical controlled variables of
the TE process (C-XMEAS). The Phase I sample was
produced by excluding the start-up phase of the

process. The critical controlled variables exhibit a
dynamic behavior for about 36 hours or 180 samples
at the start of the simulation. After this “warm-up
phase,” the TE process was deemed to have reached
steady-state.

Samples of C-XMEAS collected during steady-state
operation provide a more stable estimation of the
sample covariance matrix, S, and thus of the T2 val-
ues. We discarded the first 180 observations and used
datasets of 540 samples both in Phase I and Phase II
to build the Hotelling T2 chart, see Figure 5. The
standard sample covariance matrix was used to form
the T2 chart. The theoretical Phase I and Phase II
upper control limits were based on the b and F distri-
butions and on the assumption that observations are
time-independent (Montgomery 2012). This assump-
tion is unrealistic because of the observed positive
autocorrelation in the critical controlled variables (and
as a result also in the T2 values), and consequently,
the upper control limits should be adjusted, see
Vanhatalo and Kulahci (2015). However, the point we
want to make here will still be evident from the
appearance of Figure 5 using the theoretical control
limits and we here intentionally avoid a detailed dis-
cussion on adjusted control limits.

There are a few T2 observations above the control
limit in the Phase II sample based on C-XMEAS (top
panel in Figure 5), but an analyst might as well con-
clude that there is little evidence to deem the process
out-of-control. Moreover, a visual inspection of the C-
XMEAS univariate plots in Figure 6 seems to support
this conclusion, as the critical controlled variables
appear to be insensitive to the step change in the
cooling water inlet temperature of the reactor (IDV4).
However, this conclusion is incorrect. Since the TE
process is run in closed-loop operations, the analyst
should know that the engineering process control
seeks to displace most of the variability induced by
the step change (fault) to some manipulated varia-
ble(s). In fact, the correct conclusion in this scenario
is that the process is still working at the desired

Table 6. Averages and standard deviations of IDV(8) and IDV(13) based on 20 simulations. Step size of IDV(4) for different scale
factor values.
Variable number Process variable Scale factor Average Step size Standard deviation

IDV(4) Cooling water inlet temperature
of reactor

0.25n
n¼ 0,1,… ,4

35 þ1.25n -

n¼ 1 n¼ 2 n¼ 3 n¼ 4
IDV(8) Proportion of A in stream 4 0.25n 48.51 0.372 0.748 1.126 1.50

Proportion of B in stream 4 0.25n 0.50 0.038 0.074 0.110 0.15
Proportion of C in stream 4 0.25n 50.99 0.374 0.751 1.130 1.51

IDV(13) Variation coefficient of reaction
kinetics Aþ CþD ! G

0.25n 1 0.03n

Variation coefficient of reaction
kinetics Aþ CþD ! G

1
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targets thanks to the feedback control loops. If the C-
XMVs are studied, the analyst would probably deem
the process to be out-of-control. That the process is
disturbed becomes evident by studying the Hotelling
T2 chart based only on the five C-XMVs (bottom
panel in Figure 5). While one may consider the pro-
cess in control during Phase I, it is out-of-control in
Phase II. Moreover, a visual inspection of the univari-
ate C-XMVs plots in Figure 6 suggests that an
increase in the flow of the reactor cooling water,
XMV(10) compensates for the effect of the introduced
fault in the inlet temperature. Such a control action
could, of course, increase waste of water and/or
energy while trying to maintain product properties
on target.

Closing remarks

The example above shows a possible application of
how to use the TE process as a testbed for SPC meth-
ods. As the TE process is run in closed-loop oper-
ation, control actions may partly or entirely displace
the impact of a disturbance from the controlled varia-
bles to manipulated variables. The traditional
approach of applying a control chart on the (con-
trolled) process output then needs to be supplemented

with a control chart on the manipulated variables.
The concurrent use of both of these control charts
allows for [1] confirming the presence and effective-
ness of the controller by analyzing the control chart
for the controlled variables and [2] identifying poten-
tial assignable causes by analyzing the control chart
for the manipulated variables.

Example 2: DoE in TE process simulator

This example illustrates a response surface method-
ology approach based on sequential experimentation
using a subset of the set-points of the control loops in
the TE process. The example starts with a two-level
fractional factorial design, which is augmented to a
central composite design, followed by confirmation
runs in the simulator. The example describes how to
use the TE process for experimentation. Hence, we
conduct a simplified analysis of the experimental
results applying ANOVA on the average values of the
time series of the factors and the response of each
experimental run, as suggested by Vanhatalo et
al. (2013).

Closed-loop process performance may improve by
exploring the relationships between the set-points of
the controlled variables and an overall performance

Figure 5. Hotelling T2 chart based on individual observations for the C-XMEAS (top) C-XMVs (bottom). The vertical line divides
Phase I and Phase II data.
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indicator such as production cost. Consider an experi-
ment where we first want to identify reactor set-points
that affect the operating cost and then aim to minim-
ize this cost. Our experimental factors are in this case
the five set-points of the controlled variables in loops
11, 12, 14, 15 and 16. The response is the process
operating cost ($/h). Table 7 presents the set-points of
the starting condition, the average operating cost
(long-term value) given these set-points, and the
chosen levels of the set-points in the two-level experi-
mental design. Note that the choices of experimental

factor levels were found using trial-and-error by
changing the base case values, testing that these values
yield a stable process. The input variables that were
not involved in control loops were set at operating
Mode 1 values (Table 2) in all simulations.

Selecting and scaling disturbances

Real processes are often disturbed by unknown sour-
ces. The random process variation in the simulator
needs to be comparable to disturbances affecting a

Figure 6. Univariate time series plots for C-XMEAS (left column) and C-XMVs (right column) during both Phase I and II.
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real process. We used the random disturbances
IDV(8) and IDV(13) to add random disturbances to
the process. The impact of IDV(8) on the operating
costs of the process was studied using ten simulations
with the starting set-points given in Table 7. The scale
factor of IDV(8) was then increased in increments of
0.1 in each run. Each simulation, run with a random
seed, lasted 200 hours (simulation time, not real time)
and the operating cost was sampled every 12 minutes
(simulation time). We repeated the procedure for
IDV(13), increasing the scale factor in increments of
0.1 in each run. Visual inspection of the resulting cost
time series led us to the conclusion that the scale fac-
tors for both IDV(8) and IDV(13) should be set
between 0.1 and 0.4 to produce reasonable random
variability.

The scale factors of IDV(8) and IDV(13) were set
to 0.31 and 0.1 respectively throughout the simula-
tions after drawing random numbers from a uniform
distribution between 0.1 and 0.4. From another set of
20 simulations with these selected scale factors, the
average (long-term) operating costs were 147.60 $/h
with a standard deviation of 36.75 $/h. Visual inspec-
tion shows that the process operating cost exhibits a
transition time of approximately 24 hours before
reaching the steady state. Therefore, we removed
observations of the cost function during the first
24 hours before calculating the average and standard
deviation of the time series of the process operat-
ing cost.

Experimental design and analysis

Analyses reported in this section were all made using
Design ExpertVR version 10.

Phase I: Screening
We chose a 25� 1

V fully randomized fractional factorial
design with four additional center runs to screen the five
factors (reactor set-points) in Table 7. The experiment

started by a “warm-up phase” where the TE process was
run for 36 hours (180 samples) using the starting set-
point settings in Table 7. After these 36 hours, the TE
process was deemed to have reached steady-state. At
steady-state, all runs were conducted in sequence accord-
ing to their run order during continuous process oper-
ation. The simulation runs lasted 50 hours each (250
samples) and the simulation seed was randomly changed
before each run. The operating cost was sampled every
12 minutes.

We calculated response averages for each run to
analyze the response time series of the cost. We
removed the observations of the transition time before
calculating the run averages to avoid a biased estima-
tion of the main effects and their interactions
(Vanhatalo et al. 2013). The transition time during
some runs was determined to be approximately
24 hours through visual inspection. Some settings
thus affected process stability, which meant that the
run averages were based on the run’s last 26 hours
(130 samples). Table 8 shows the run order during
the experiment and the averages of the process operat-
ing cost for each run.

Table 9 presents an ANOVA table of active effects
(at 5% significance level) based on the first 20 experi-
mental runs of Table 8. Four main effects and two
two-factor interactions have statistically significant
effects on the operating cost. We also included the
main effect of factor E in the model due to effect her-
edity. However, the significant curvature suggests that
a higher order model may be needed.

Phase 2: Second-order model
Augmenting the resolution V fractional factorial
design with ten additional axial points run in a new
block produced a central composite design, allowing
for estimation of a second-order model. We simulated
the second block of experimental runs in sequence as
a continuation of the first 20 runs and used the same
procedure to calculate run averages as in the first

Table 7. Long-term average operating cost at the set-points of the starting condition. Low and high level of the set-points used
as experimental factors.
Loop Controlled variable Set-points of the starting condition Low level High level

7 Stripper liquid rate (production) 22.949 m3 h�1 - -
9 Stripper liquid level 50% - -
10 Separator liquid level 50% - -
11 Reactor liquid level 75% 70% 75%
12 Reactor pressure 2705 kPa 2600 kPa 2705 Kpa
13 Mole % G (product quality) 62 mol% - -
14 Amount of A in reactor feed (yA) 54.95% 55% 65%
15 Amount of AþC in reactor feed (yAC) 58.57% 50% 59%
16 Reactor temperature 120.40 oC 120 oC 127 oC
Long-term average operating cost 147.60 $/h
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block. We did not impose any blocking effect in the
simulations. The analysis of the 30-run augmented
design gives the second-order model shown in the
ANOVA table (Table 10). The residual analysis indi-
cated that the 15th run (standard order #2) could be

an outlier. However, since we did not find a reason-
able explanation for this outlier, we chose to include
it in the model despite a slight decrease in the R2, R2

adjusted, and R2 predicted statistics. Table 10 thus
presents the ANOVA table of the augmented design

Table 8. Run order, standard order of the runs, and average operating cost after removing the transition time at the beginning
of each run. The “c” in standard order marks the center points.

Block 1: 25� 1
V Block 2: Augmented plan

Run
order

Standard
order

Operating
Cost ($/h)

Run order Standard
order

Operating
Cost ($/h)

Run order Standard
order

Operating
Cost ($/h)

1 9 163.66 11 17c 128.83 21 27 147.82
2 14 162.79 12 19c 126.96 22 22 135.91
3 12 155.84 13 3 144.00 23 21 126.96
4 10 175.84 14 13 175.24 24 28 189.13
5 7 127.38 15 2 180.51 25 29 168.99
6 18c 131.29 16 1 140.62 26 26 136.39
7 20c 123.26 17 16 159.84 27 24 117.51
8 6 145.13 18 8 136.36 28 30 163.25
9 5 151.53 19 11 158.39 29 23 147.95
10 4 129.90 20 15 136.09 30 25 140.13

Table 9. ANOVA and estimated effects based on the first 20 runs in Table 8. Third order and higher interactions are ignored.
Source Sum of Squares df Mean Square F Value Prob> F Estimated Standardized Effects ($/h)

Model 3941.46 7 563.07 29.65 < 0.0001
A: Reactor Liquid Level 151.89 1 151.89 8.00 0.0164 3.08
B: Reactor Pressure 1360.21 1 1360.21 71.64 < 0.0001 -9.22
C: Amount of A in the reactor feed (yA) 184.90 1 184.90 9.74 0.0097 -3.40
D: Amount of AþC in the reactor feed (yAC) 1093.39 1 1093.39 57.58 < 0.0001 8.27
E: Reactor Temperature 21.22 1 21.22 1.12 0.3131 -1.15
CE 225.63 1 225.63 11.88 0.0055 3.76
DE 904.21 1 904.21 47.62 < 0.0001 7.52
Curvature 2017.86 1 2017.86 106.27 < 0.0001 3.08
Residual 208.87 11 18.99
Lack of Fit 174.46 8 21.81 1.90 0.3234
Pure Error 34.41 3 11.47
Cor Total 6168.18 19

R2 63.90%
Adjusted R2 42.84%
R2 prediction 34.71%

Table 10. ANOVA and estimated effects for the augmented design using observations in both blocks. The model includes only
those terms significant on a 5% significance level. Third order and higher interactions are ignored.

Source Sum of Squares df Mean Square F Value Prob> F
Estimated

Standardized Effects ($/h)

Block 0.49 1 0.49
Model 9896.57 10 989.66 51.10 < 0.0001
A: Reactor Liquid Level 188.15 1 188.15 9.72 0.0060 2.80
B: Reactor Pressure 1809.73 1 1809.73 93.45 < 0.0001 -8.68
C: Amount of A in the reactor feed (yA) 159.56 1 159.56 8.24 0.0102 -2.58
D: Amount of AþC in the reactor feed (yAC) 1924.18 1 1924.18 99.36 < 0.0001 8.95
E: Reactor Temperature 37.30 1 37.30 1.93 0.1821 -1.25
CE 225.63 1 225.63 11.65 0.0031 3.76
DE 904.21 1 904.21 46.69 < 0.0001 7.52
C2 160.68 1 160.68 8.30 0.0100 2.40
D2 2772.06 1 2772.06 143.14 < 0.0001 9.95
E2 2453.31 1 2453.31 126.68 < 0.0001 9.36
Residual 348.58 18 19.37
Lack of Fit 314.17 15 20.94
Pure Error 34.41 3 11.47
Cor Total 10245.64 29

R2 96.60%
Adjusted R2 94.71%
R2 prediction 89.49%
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in Table 8 (5% significance level). The non-significant
lack of fit and the high values of the R2 statistics indi-
cate that the model fits the data well and has good
predictive ability.

We then minimized the operating cost within the
experimental design region spanned by the low and
high levels of the factors in Table 7 based on the
model in Table 10. The numerical optimization tool
in the Design ExpertVR was used to search the design
space, and Table 11 presents the settings of the reactor
set-points that result in the lowest predicted cost.

Phase 3: Confirmation runs
Three additional confirmation runs were simulated in
the TE process using the suggested set-points
(Table 11). The average cost of these runs was 117.16
$/h. An average operating cost of 117.16 $/h repre-
sents a reduction of 30.44 $/h compared to the oper-
ating cost when starting set-point values are used, a
reduction that we assume most production engineers
would deem considerable.

Closing remarks

The sequential experimentation example illustrates
how DoE methodologies can be explored in processes
where engineering process control is present using the
TE process simulator as a testbed. The example shows
how a continuous process operating in closed-loop
can be improved by shifting the set-points of the con-
trolled variables. Experimental plans can help to
explore the relationship between set-points and overall
process performance indicators such as process cost
or product quality. Note that the change in operating
conditions invoked by the recommended change of
the set-points may require re-tuning of the controllers
in the system. We have not done that. That is, we
assume that the control configuration and settings can
still maintain the stability of the system in the new
operating condition based on the new set-points. In
our approach, we use DoE as a systematic solution to

reduce the cost of the TE process based on an existing
control system without redesigning it. As such, it
resembles ideas in the so-called retrofit self-optimizing
control approach from the engineering control
domain described by Ye et al. (2017).

Conclusions and discussion

The TE process simulator is one of the more complex
simulators available that offers possibilities to simulate
a nonlinear, dynamic process and operates in closed-
loop useful for both methodological research and
teaching. In this article, we provide guidelines for
using the revised TE process simulator, run with a
decentralized control strategy, as a testbed for new
SPC and DoE methods. In our experience, under-
standing the details of the TE process simulator and
getting it to run may be challenging for novice users.
The main contribution of this article is the flowcharts
coupled with recommended settings of the TE process
that will help a novice user of the simulator to get
started. Another contribution is the suggested
approach of how to induce random variation in the
simulator. The possibility of introducing random vari-
ability in the simulator improves the usability of the
TE process simulator in SPC and DoE contexts. This
way, independent simulations can now be produced
for SPC applications and independent replicates can
be run in an experimental application.

In the two examples provided, we illustrate some of
the challenges that an analyst normally faces when
applying SPC and DoE in continuous processes oper-
ating under closed-loop control. We would like to
reiterate that the illustrated examples are only exam-
ples of applications for which the TE process simula-
tor can be used. We believe that the revised TE
process simulator offers ample opportunities for
studying other and more complicated scenarios that
will mimic real-life applications.

SPC methods do not jeopardize the production or
the product quality since these methods use

Table 11. The suggested setting of the reactor set-points to obtain lowest operating cost.
Loop Controlled variable Suggested set-points setting

7 Stripper liquid rate (production) Not in model (refer to Table 7)
9 Stripper liquid level Not in model (refer to Table 7)
10 Separator liquid level Not in model (refer to Table 7)
11 Reactor liquid level 70.37%
12 Reactor pressure 2701.30 kPa
13 Mole % G (product quality) Not in model (refer to Table 7)
14 Amount of A in reactor feed (yA) 63.67%
15 Amount of AþC in reactor feed (yAC) 52.25%
16 Reactor temperature 124.25 oC

Estimated process operating cost 117.07 $/h
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observational data and require human intervention if
out-of-control situations are indicated. For instance,
in a real scenario, the process engineer may deem that
the out-of-control situation is too marginal to stop
the process for corrective actions but keep the disturb-
ance in mind the next time the process is overhauled.
However, when developing and testing SPC methods,
the revised TE process simulator can quickly provide
datasets with the desired characteristics as, for
example, sample size, sampling time, or occurrence of
a specific fault.

Unlike SPC methods, developing of DoE methods
requires data from a process that was deliberately dis-
turbed and getting access to such data could mean
loss of product quality or risking the plant integrity.
Consequently, the method developer will have trouble
getting production managers to accommodate requests
for disturbing the processes, just for the sake of devel-
oping new methods. Experimental campaigns in con-
tinuous processes tend to be lengthy and expensive.
Therefore, simulators are particularly useful for devel-
oping DoE methods in such environments.

As a suggestion for further research, the possibility
to develop other statistically based methods such as
times series modelling or predictive analytics to be
useful for a continuous process environment using the
revised TE process in other applications on a wide
variety of topics should of course be possible.
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Abstract 

The concurrent use of statistical process control and engineering process control involves 

monitoring manipulated and controlled variables. One multivariate control chart may 

handle the statistical monitoring of all variables, but observing the manipulated and 

controlled variables in separate control charts may improve understanding of how 

disturbances and the controller performance affect the process. In this article, we illustrate 

how step and ramp disturbances manifest themselves in a single-input–single-output 

system by studying their resulting signatures in the controlled and manipulated variables. 

The system is controlled by variations of the widely used proportional-integral-derivative 

(PID) control scheme. Implications for applying control charts for these scenarios are 

discussed. 

Keywords: engineering process control (EPC), statistical process control (SPC), control 

charts, proportional-integral-derivative (PID), disturbance signatures. 

1. Introduction 

Statistical process control (SPC) and engineering process control (EPC) have developed 

more or less independently, but with the same overarching goal of reducing process 
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variability. SPC methods typically employ control charts to monitor that a product quality 

characteristic or important process variable remains close to a nominal value. If control 

charts signal a statistically significant change in the process mean and/or variability, the 

SPC methodology assumes that off-line process analysis will be able to identify sources of 

variation, so-called assignable causes. Given that the root-cause can be identified, problem-

solving methods can then be used to remove or reduce effects of the variation sources. 

EPC, conversely, attempts to make a process insensitive to external disturbances by 

continuously adjusting a process input (manipulated variable) to ensure that an output 

variable (controlled variable) remains on target (the controller set-point).  

 The assignable causes in SPC usually arise from external disturbances. Such 

disturbances will increase probabilities for out-of-control signals in control charts. An out-

of-control signal should trigger further investigation and corrective action and, given a 

successful remedial action, the reduced variability improves the process performance. The 

EPC controllers continuously adjust the process to minimize deviations of a controlled 

variable from its set-point due to various unexpected and/or unplanned external 

phenomena. The control action stems from the manipulation of a related and less sensitive 

variable thereby transferring the variability from the controlled variable to the manipulated 

variable. Knowledge of the causal relationships between such manipulated and controlled 

variables and of the process dynamics is therefore important to determine the required EPC 

adjustments. Athough the continuous adjustments of the manipulated variable may be able 

to keep the controlled variable at its set-point they may come at some increased cost that 

we would like to avoid. 
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  The currently high and increasing level of automation leads to complex production 

environments where a combination of EPC and SPC may be needed to improve the 

processes, as for example, in semiconductor manufacturing (Janakiram and Keats 1998). 

Accordingly, there have been attempts to develop a unified tool for process improvement 

that concurrently uses EPC for process adjustments and SPC for process monitoring (Box 

and Kramer 1992; Box and Luceño 1997). MacGregor (1988) suggested that engineers 

could use control charts to monitor a process that was already under feedback control. For 

additional background and discussions, see, for example, Vander Wiel (1992), MacGregor 

(1992), Tucker et al. (1993), Fultin et al. (1993), Del Castillo (2002), and Vining (2010). 

 To apply SPC naïvely in a process under feedback control without considering how 

the implemented feedback control should affect the choice of variables to monitor is risky. 

A control chart applied to a tightly controlled variable in an EPC scheme will often result 

in a small “window of opportunity” or in a failure to detect out-of-control situations due to 

the continuous adjustments of the manipulated variable (Vander Wiel 1996). In the SPC 

literature, there are two basic recommended approaches to deal the potential masking effect 

that EPC may have on process disturbances. The first approach suggests monitoring the 

difference between the controlled variable and set-point value, i.e., the control error 

(Montgomery et al. 1994; Keats et al. 1996; Montgomery et al. 2000). Keats et al. (1996) 

showed that a control chart that monitors the control error detects sources of variation for 

which the feedback controller does not compensate. The study included integral (I), 

proportional-integral (PI), and proportional-integral-derivative (PID) control schemes. 

Montgomery et al. (1994; 2000) drew similar conclusions for feedforward control schemes. 
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The second approach is to monitor the manipulated variable itself (Box and Kramer 1992; 

Capilla et al. 1999; Capaci et al. 2018). Tsung and Tsui (2003) demonstrate that monitoring 

the manipulated variable may be more appropriate than monitoring the controlled variable 

for some processes and vice versa for others. Therefore, a combined approach that jointly 

monitors the control error and the manipulated variable (or the controlled and the 

manipulated variables) using a multivariate control chart is also possible (Tsung, Shi, and 

Wu 1999; Tsung 1999). A combined approach increases the chances that the control chart 

will issue an out-of-control signal. The out-of-control signal may be issued either when the 

controller fails to compensate for the disturbance completely or when the manipulated 

variable deviates from its normal (expected) operating condition. 

 The main aim of this article is to provide further insight and guidelines to an analyst 

who wants to apply SPC on a system under feedback control. We focus on outlining and 

illustrating what we in this article will call ‘disturbance signatures’ (e.g., mean shifts or 

trends) and how these will manifest themselves in the controlled and/or manipulated 

variables at steady-state for step and ramp disturbances. We limit our study to a single-

input–single-output (SISO) system controlled by variations of the widely used 

proportional-integral-derivative (PID) control scheme. Step and ramp disturbances 

represent two general classes of disturbances and control engineers often use such 

disturbances to quantify feedback control systems in practice. The controlled and 

manipulated variables are also monitored using control charts. We argue that monitoring 

both the manipulated and controlled variables in separate univariate charts instead of using 

a combined, multivariate chart may increase understanding of the out-of-control condition 
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of the process and also makes it possible to evaluate controller performance. We use two 

simulated examples of SISO systems in Matlab/Simulink® to illustrate the disturbance 

signatures in the controlled and manipulated variables and the implications for process 

monitoring. 

2. Preliminaries on Engineering Process Control 

Feedback control schemes mitigate unwanted deviations of a process variable by adjusting 

a related manipulated variable, i.e., a process input. These adjustments (the actuator 

signals) depend on the implemented control scheme and the output error fed back to the 

controller. The output error is the difference between the actual measured value of the 

process variable and its set-point. Feedback control systems are also referred to as closed-

loop systems. Figure 1 shows a general block diagram of a closed-loop system (Romagnoli 

and Palazoglu 2012). Conventionally, the variables are expressed in the frequency domain 

through their Laplace transformed quantities:  

• 𝑦𝑦(𝑠𝑠) is the controlled variable to be kept at its set-point value 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠), 

• 𝑢𝑢(𝑠𝑠) is the actuator signal of the controller, i.e., the manipulated variable, 

• 𝑦𝑦𝑚𝑚(𝑠𝑠) is the measured output variable, 

• 𝑒𝑒(𝑠𝑠) is the output error, i.e., 𝑒𝑒(𝑠𝑠) = 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑦𝑦𝑚𝑚(𝑠𝑠), and 

• 𝑑𝑑(𝑠𝑠) is the disturbance signal affecting the process.  

By definition, all Laplace transformed variables are also in deviation form, i.e., each 

variable represents its deviation from a corresponding steady-state value.  
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The dynamics of the various elements in the feedback loop are defined through their 

transfer function models as, 

• 𝑔𝑔𝑠𝑠(𝑠𝑠) is the transfer function of the process plant, 

• 𝑔𝑔𝑐𝑐(𝑠𝑠) is the transfer function of the controller,  

• 𝑔𝑔𝑚𝑚(𝑠𝑠) is the transfer function of the measuring element (e.g., a sensor) and, 

• 𝑔𝑔𝑑𝑑(𝑠𝑠) is the transfer function describing how the disturbance influences the output. 

 

Figure 1. Block diagram of a closed-loop system subject to a disturbance.  

2.1. Transfer Function of the Controller  

The implemented EPC action defines the controller model (e.g., a transfer function model, 

𝑔𝑔𝑐𝑐(𝑠𝑠)). The outcome of the EPC action is evaluated considering several criteria such as 

closed-loop stability and performance. The speed of the response, the degree of overshoot 

and damping, as well as the ability of the control system to eliminate the steady-state error 

are often important aspects of controller performance evaluation (Romagnoli and 

Palazoglu 2012). Below, we briefly discuss the properties of the common PID controller. 
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The PID controller is typically deployed in one of three control modes - P, PI, or PID - 

depending on the system requirements. For convenience and ease of exposition, we will 

assume that the transfer function of the measuring element, 𝑔𝑔𝑚𝑚(𝑠𝑠) = 1.  We will thus have 

𝑦𝑦𝑚𝑚(𝑠𝑠) = 𝑦𝑦(𝑠𝑠). 

Proportional (P) controller  

The P mode is the simplest form of a feedback controller. The relationship between the 

manipulated variable and the control error is expressed proportionally as, 

 𝑔𝑔c(𝑠𝑠) = 𝑢𝑢(𝑠𝑠)
𝑒𝑒(𝑠𝑠) =  𝑘𝑘𝑐𝑐 (1) 

where the constant 𝑘𝑘𝑐𝑐 denotes the proportional gain. The P controller has the main 

advantage of having only one parameter (𝑘𝑘𝑐𝑐) to tune. However, the P controller can 

produce a steady-state error. That is, a non-zero difference, 𝑒𝑒(𝑠𝑠) ≠ 0, between the set-point 

and measured output will remain indefinitely as long as the disturbance persists.  

Proportional-Integral (PI) controller  

The PI controller combines the proportional and integral control actions according to the 

transfer function: 

 𝑔𝑔c(𝑠𝑠) = 𝑢𝑢(𝑠𝑠)
𝑒𝑒(𝑠𝑠) =  𝑘𝑘𝑐𝑐 � 1 + 1

𝜏𝜏𝐼𝐼𝑠𝑠
�                 (2)  

where 𝜏𝜏𝐼𝐼 is the integral time. In the PI control mode, the integral part of the control action 

works to eliminate the steady-state error. However, tuning of 𝜏𝜏𝐼𝐼 is critical, as a too large 

value can lead to long settling times and a too small value can produce an oscillatory 

response of the controlled variable.  
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Proportional-Integral-Derivative (PID) controller 

A PID controller combines the proportional, integral, and derivative control actions. The 

transfer function of this combined control action is given by, 

 𝑔𝑔c(𝑠𝑠) = 𝑢𝑢(𝑠𝑠)
𝑒𝑒(𝑠𝑠) =  𝑘𝑘𝑐𝑐 �1 +  1

𝜏𝜏𝐼𝐼𝑠𝑠
 +  𝜏𝜏𝐷𝐷𝑠𝑠�                (3) 

where 𝜏𝜏𝐷𝐷 represents the derivative time. A PID controller has the added advantage of 

balancing the aggressive integral action by providing an anticipatory element through the 

derivative action (Romagnoli and Palazoglu 2012).  

2.2. Transfer Function Model of the Process Plant  

One of the core components of a controlled system is the process plant model, representing 

the dynamic behavior of the controlled variable of interest in response to a specific input 

(manipulated) variable. The model of the process plant is usually expressed in the following 

general form, 

𝑔𝑔𝑠𝑠(𝑠𝑠) = 𝑘𝑘𝑝𝑝 (𝑏𝑏0𝑠𝑠+1)(𝑏𝑏1𝑠𝑠+1)…(𝑏𝑏𝑚𝑚𝑠𝑠+ 1)
(𝑎𝑎0𝑠𝑠+1)(𝑎𝑎1𝑠𝑠+1)…(𝑎𝑎𝑛𝑛𝑠𝑠+ 1)        (4) 

where 𝑘𝑘𝑠𝑠 is the process gain and the a’s and b’s can be viewed as time constants associated 

with the underlying physical phenomena. The constants m and n represent the order of the 

numerator and denominator polynomials and their difference denotes the relative order of 

the model. For causal systems, 𝑚𝑚 ≤ 𝑛𝑛. 
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2.3. Closed-Loop Systems Subject to a Disturbance 

Closed-loop systems are designed to satisfy particular control objectives such as stability 

and performance while addressing two specific problems: set-point tracking and 

disturbance rejection. In this article, our focus will be on the disturbance rejection problem, 

and we will thus assume that the set-point is held constant. We will study the effect of 

external disturbances on systems controlled by variations of PID control modes and show 

that in some cases, even though the controller attempts to mitigate unwanted variations by 

adjusting the manipulated variable, the controlled variable may have a resulting steady-

state error depending on the disturbance type. Therefore, steady-state analysis of both the 

controlled and manipulated variables in systems where EPC is implemented is relevant for 

understanding how SPC will work if applied to that system. Specifically, the steady-state 

analysis is important to understand how SPC can help detect the out-of-control signals that 

may result from disturbance signatures in the controlled and manipulated variables. In what 

follows, we focus on analyzing the steady-state behavior of the controlled and manipulated 

variables in closed-loop systems subject to a disturbance. We examine the effects of using 

P, PI, and PID controllers on the behavior of the controlled and manipulated variables for 

step and ramp disturbances. As most textbooks on process control provide the 

mathematical background, we give here only essential concepts for purposes of 

completeness. Appendix A provides a more detailed derivation.  

2.4. Steady-State Response of Controlled and Manipulated Variables 

The following assumptions are made: 
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• the set-point 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) is constant over time, that is, 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) = 0,  

• the set-point 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) and the disturbance 𝑑𝑑(𝑠𝑠) are handled independently, and  

• the closed-loop system is stable. 

As shown in Appendix A, using the Final Value Theorem, the steady-state error 𝑒𝑒𝑠𝑠𝑠𝑠 and 

the steady-state values (the long-term value after the transient dynamics have settled) of 

the controlled and manipulated variables, 𝑦𝑦𝑠𝑠𝑠𝑠 and 𝑢𝑢𝑠𝑠𝑠𝑠, are determined to be: 

𝑒𝑒𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝑠𝑠𝑒𝑒(𝑠𝑠) =  lim
𝑠𝑠→0

𝑠𝑠 �− 𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)�                                        (5) 

𝑦𝑦𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝑠𝑠𝑦𝑦(𝑠𝑠) = lim
𝑠𝑠→0

 𝑠𝑠 � 𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)� = −𝑒𝑒𝑠𝑠𝑠𝑠             (6) 

𝑢𝑢𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝑠𝑠𝑢𝑢(𝑠𝑠) =  lim
𝑠𝑠→0

𝑠𝑠 �− 𝑔𝑔𝑑𝑑(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)�                                        (7) 

The steady-state values of the controlled and manipulated variables of a closed-loop system 

can be determined using Equations (5)-(7) if the implemented controller 𝑔𝑔𝑐𝑐(𝑠𝑠), the process 

plant model 𝑔𝑔𝑠𝑠(𝑠𝑠), the disturbance model 𝑔𝑔𝑑𝑑(𝑠𝑠), and the disturbance signal 𝑑𝑑(𝑠𝑠) are 

known. Again, for convenience, and without loss of generalization, we assume that 

𝑔𝑔𝑑𝑑(𝑠𝑠) = 1. 

Scenario I: Step disturbance 

In this first scenario, suppose that a step disturbance of magnitude 𝑑̅𝑑 affects the system in 

Figure 1, that is, 𝑑𝑑(𝑠𝑠) = 𝑑̅𝑑/𝑠𝑠. The steady-state values of the controlled and manipulated 

variables can now be determined for a given control mode - P, PI, or PID - using the process 
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plant model in Equation (4) and Equations (5-7). Table 1 presents the steady-state error ess, 

and the steady-state values of the controlled and manipulated variables, yss and uss, when a 

P, PI, or PID control mode is in place and a step disturbance of magnitude 𝑑̅𝑑 affects the 

system. 

 Table 1 shows that a P control mode produces a steady-state error ess proportional to 

𝑑̅𝑑 (magnitude of the disturbance) and inversely proportional to kc (proportional gain). Even 

though the controller adjusts the manipulated variable continuously, (uss ≠ 0), the controller 

cannot keep the controlled variable at the set-point. 

 

Table 1. Steady-state error (ess) and steady-state values of the controlled variable (yss) and 
manipulated variable (uss) of a closed-loop system subject to a step disturbance when a P, PI, 
or PID control mode is in place. 

Control Mode Steady-state error Controlled Variable Manipulated Variable 
 ess yss uss 

P −
𝑑̅𝑑

1 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑠𝑠
 

𝑑̅𝑑
1 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑠𝑠

 −
𝑘𝑘𝑐𝑐 𝑑̅𝑑

1 + 𝑘𝑘𝑐𝑐𝑘𝑘𝑠𝑠
 

PI, PID 0 0  (= 𝑦𝑦𝑠𝑠𝑠𝑠) −
𝑑̅𝑑
𝑘𝑘𝑠𝑠

 

 

On the contrary, both the PI and PID control modes produce a steady-state error ess = 0, 

which means that both control modes are able to remove the step disturbance effect from 

the controlled variable by adjusting the manipulated variable (uss ≠ 0). Note that for ease of 

discussion, we intentionally avoided adding a random component to the system. In the 

presence of a small amount of random noise, ess, yss, and uss also show the presence of 

noise, slightly fluctuating around their steady-state values. However, when the amount of 

random noise is not negligible, the control action design should also consider noise 
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attenuation. Hereafter, we assume that the random noise affecting the system is small and 

that the controller can cope with it.  

Scenario II: Ramp disturbance 

In this second scenario, suppose that a ramp disturbance of a slope 𝑑̂𝑑 affects the system, 

that is, 𝑑𝑑(𝑠𝑠) = 𝑑̂𝑑/𝑠𝑠2. Similar to the step disturbance scenario, the steady-state values ess, 

yss, and uss (given in Table 2) can be determined for the P, PI, and PID control actions when 

a ramp disturbance affects the system. Note that when a P action is in place, the steady-

state values ess, yss, and uss do not converge to a finite value. It is thus evident that a P 

control mode is not suitable if ramp disturbances are expected. When a PI or a PID control 

action is in place, the steady-state value of the controlled variable yss converges to a constant 

finite value, although different from the set-point value ysp, proportional to 𝑑̂𝑑 (slope of the 

ramp) and 𝜏𝜏𝐼𝐼 (the integral time constant) and inversely proportional to kc (the proportional 

gain of the controller). In summary, a PID control scheme cannot remove the steady-state 

error for a ramp disturbance. 
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Table 2. Steady-state error (ess) and steady-state values of the controlled variable (yss) and 
manipulated variable (uss) of a closed-loop system subject to a ramp disturbance when a P, 
PI, or PID is in place. Note that the signs of ∞ need to be changed to the opposite signs if 
𝑑̂𝑑 < 0. 

Control Mode Steady-state error Controlled Variable Manipulated Variable 
 ess yss uss 

P −∞ + ∞ −∞ 

PI, PID −
𝜏𝜏𝐼𝐼

𝐾𝐾𝑐𝑐𝐾𝐾𝑠𝑠
𝑑̂𝑑 

𝜏𝜏𝐼𝐼
𝐾𝐾𝑐𝑐𝐾𝐾𝑠𝑠

𝑑̂𝑑 −∞ 

3. SPC and EPC Used Concurrently 

As mentioned earlier, the aim of EPC is to reduce variation by keeping the variable of 

interest around a set-point through continuous adjustments of another variable. SPC also 

aims at reducing variation, but in this case, the aim is the detection and subsequently the 

removal of the disturbance from the system that causes more than an expected amount of 

variation. In that regard, EPC can be seen as relieving the symptom (i.e., excessive 

variation) without necessarily identifying and removing the cause of the problem. Its 

prevalence has primarily been due to its ease of application at a low cost. However, 

continuous monitoring of the process via SPC can be more effective than EPC alone when 

the disturbance is persistent, for example when the resulting disturbance signature in the 

manipulated variable is a mean shift and adjustments are relatively costly.  

SPC is by nature a real-time scheme. That is, process surveillance is performed as 

an on-going process. The idea is to focus on a variable of interest or a statistic directly 

related to the state of the process and based on its current value declare the process in-

control or out-of-control. Hence, SPC can ultimately be seen as a decision-making scheme 

and as is the case with any decision made, two potential errors can occur: labelling a process 

out-of-control when in fact it is in-control (false alarm) and vice versa (delay in detection). 



 
 

14 
 

 

 

The probability of these errors happening can be calculated if the distribution of the statistic 

being monitored is known. In most cases, even if the distribution is identified, its 

parameter(s) needs to be estimated. For that, an off-line study (also called Phase I study) is 

performed where the data is collected following the data collection scheme set for the real-

time monitoring and parameter estimates are estimated accordingly. These estimates can 

be used to calculate the probabilities of a false alarm or delay in detection for a given 

change in the distribution parameters. The uncertainties associated with the parameter 

estimation also affect the calculation of these probabilities, but this is beyond the scope of 

this article.  

In SPC, the primary decision-making tool is a control chart on which the statistic 

of interest is plotted along with a threshold(s) (also called the control limits) within which 

the statistic is expected to be for an in-control process. The threshold is obtained through 

the probability distribution of the statistic. Akin to Type I and Type II errors in hypothesis 

testing, the decision errors (false alarm and delay in detection) compete leading to a choice 

of threshold where a balance between the probabilities of these two errors is established. 

Similarly, the commonly used performance measure for a control chart is its average run 

length (ARL), the expected amount of observations collected before an out-of-control 

signal is seen. For an in-control process (and assuming that the observations are 

independent), the ARL is the inverse of the false alarm rate, and for an out-of-control 

process, it is the inverse of the probability of detection. For further details on control charts, 

we refer the reader to Montgomery (2012).  
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3.1. Control Charts for Individual Observations 

The Shewhart chart and the time-weighted control charts, such as the cumulative sum 

(CUSUM) control chart (Page 1954) or the exponentially weighted moving average 

(EWMA) control chart (Roberts 1959), are commonly applied univariate control charts for 

individual observations. In this article we elaborate on the CUSUM chart in somewhat 

more detail below as it performs well in detecting small shifts in the mean of a process, 

which we will encounter in the upcoming examples.  

As the name indicates, the statistic for the CUSUM chart is obtained through the 

accumulated deviation from the expectation. Since in this work we mainly focus on the 

shift in the process mean, we apply CUSUM on the deviations of the observations from 

their expectation. To avoid scaling issues, we standardize the variable by taking its average 

out and dividing it by the sample standard deviation both obtained from the Phase I study. 

For the standardized CUSUM chart, the following two statistics are recorded for upward 

and downward shifts in the mean, respectively:  

𝐶𝐶𝑖𝑖+ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, 𝑥𝑥𝑖𝑖−µ0
𝜎𝜎

 − 𝑘𝑘 + 𝐶𝐶𝑖𝑖−1+ �

𝐶𝐶𝑖𝑖− = 𝑚𝑚𝑚𝑚𝑛𝑛 �0, 𝑥𝑥𝑖𝑖−µ0
𝜎𝜎

 + 𝑘𝑘 + 𝐶𝐶𝑖𝑖−1− �
     (9) 

where µ0 is the target value and σ is the standard deviation of the process variable x 

estimated, respectively, using the average and the sample standard deviation, and k is the 

reference or slack variable. The slack variable is used to avoid excessive false alarms and 

often chosen to be halfway between the target mean (µ0) and out-of-control mean (µ1) that 

is of interest for fast detection. The shift is often given in standard deviation units 
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µ1=µ0+δσ. For the standardized variable, we then have k = δ/2. Furthermore, the starting 

values are 𝐶𝐶0+ = 𝐶𝐶0− = 0.  

The process is deemed out-of-control if either 𝐶𝐶𝑖𝑖+or 𝐶𝐶𝑖𝑖−exceeds a critical value h. 

In most practical applications, h = 5 is often recommended as it provides a good average 

run length (ARL) to detect shifts of 1σ in the process mean. The reader is referred to 

Montgomery (2012) for further details about the CUSUM chart.   

3.2. Disturbance Signatures in the Controlled and Manipulated Variables 

Depending on the applied control mode, (P, PI, or PID), the steady-state error in the 

controlled variable due to a step disturbance can be eliminated partially or completely 

through continuous adjustments of the manipulated variable (see Table 1). Moreover, Table 

2 shows that variations of the PID control scheme, at best, only reduces the steady-state 

error in the controlled variable that a ramp disturbance induces. Consequently, there are 

circumstances where the disturbance signature appears in both the controlled and 

manipulated variables. If control charts are applied to both the controlled and manipulated 

variables, then both may issue an out-of-control signal, albeit for different reasons. The 

choice of control mode will also influence how the two charts will signal for different types 

of disturbances. Moreover, the disturbance types and magnitudes, and the control chart and 

its parameters influence the charts’ detection abilities. General recommendations of which 

control charts and control chart parameter settings are most appropriate for each variable 

in a process under feedback control are hard to give. However, if we know which control 

action is in place (P, PI, or PID), we would know a-priori in which variables a step or a 
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ramp disturbance will manifest itself and what kind of signature to expect (mean shift or 

trend). Such knowledge can guide the choice of a control chart and eventually the 

disturbance identification during the monitoring phase (Phase II).  

 Table 3 indicates on which variables (manipulated and/or controlled) the signature 

of a step or ramp disturbance can be found depending on the control mode used (P, PI, or 

PID) and if this signature is of the type ‘mean shift’ or ‘trend’.  

Table 3. Signatures of step and ramp disturbances on the controlled and manipulated variables depending on 
the control mode (P, PI, or PID).  

Control Mode 
Step Disturbance  Ramp Disturbance 

Controlled 
variable 

Manipulated 
variable 

Controlled 
variable 

Manipulated 
variable 

P Mean shift Mean shift Trend Trend 
PI, PID No signature Mean shift Mean shift Trend 

 

As shown in Table 3, the signature of a step disturbance can be found as a mean shift solely 

in the manipulated variable when the PI or PID control modes are used, whereas the 

signature of a step or ramp disturbance will be visible as mean shifts or trends in both the 

controlled and manipulated variables in the remaining cases. In the former case, a properly 

chosen and parameterized control chart applied to the manipulated variable should issue an 

out-of-control signal if the controller is working properly. In latter cases, control charts on 

both the controlled and manipulated variables can be expected to issue out-of-control 

signals. Consequently, the typical approaches of monitoring either only the manipulated 

variable or both the manipulated and controlled variables in one multivariate control chart 

are expected to result in an out-of-control signal for all cases in Table 3. However, it should 

be underscored that the multivariate chart in itself would be less informative as monitoring 
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the controlled and manipulated variables separately allows for more insight, e.g., regarding 

how well the controller is performing, or if the controllers are malfunctioning as well as to 

offering clues of what type of disturbance may be affecting the system.   

4. Example 1 – Heat-Exchanger with a proportional (P) controller 

In this example, we will study how the disturbance signatures manifest themselves in the 

controlled and manipulated variables of a simulated SISO system controlled by a 

proportional (P) controller to exemplify some of the theoretical results presented in Tables 

1-3. 

4.1. Heat-Exchanger and Controller Transfer Functions  

The model of the process plant, gp(s), obtained empirically by Romagnoli and Palazoglu 

(2012), represents a heat-exchanger where the input-output relationship between the exit 

temperature (oC) of the process stream and the steam flow rate (ml/s) is expressed as 

𝑔𝑔𝑠𝑠(𝑠𝑠) = Temperature
Steam Flow Rate

=  2.58e−14.61s

33.73s + 1
       (10) 

Here it is assumed that the heat-exchanger is operating in closed-loop with a P controller:  

𝑔𝑔𝑐𝑐(𝑠𝑠) =  𝑢𝑢(𝑠𝑠)
𝑒𝑒(𝑠𝑠) =  𝑘𝑘𝑐𝑐 =  0.8315           (11) 

where the proportional gain, kc, was tuned using the Ziegler-Nichols technique. The system 

was simulated in Matlab/Simulink® adding a random, normally distributed noise with zero 

mean and constant variance, σ2 = 0.002.  
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4.2. Scenario I: Step Disturbance 

A dataset including 840 samples of the controlled and manipulated variables was produced 

through simulation. A step-change disturbance of magnitude 𝑑̅𝑑 = 0.25 was introduced at 

the 440th observation and onwards. 

Disturbance signatures in the controlled and manipulated variables 

The left half of Table 4 provides the mean, standard deviation, and steady-state values of 

the temperature (controlled variable) and steam flow rate (manipulated variable) when no 

disturbance is present, 𝑑̅𝑑 = 0. The mean and the standard deviation were calculated by 

removing the start-up phase of the process that was deemed to be completed after 40 

samples, creating a Phase I data set consisting of 400 observations. All theoretical steady-

state values, yss and uss, were calculated using the formulas in Table 1.   

 As shown in the left half of Table 4, the theoretical steady-state values yss and uss 

are similar to the respective mean values of the controlled and manipulated variables. 

Differences from the theoretical steady-state values are due to the added random noise. As 

the mean temperature is close to zero, it is clear that the P controller is able to keep the 

controlled variable at its set-point when the process is running without any disturbance 

(𝑑̅𝑑 = 0).  

 The right half of Table 4 provides the theoretical steady-state values yss and uss when 

the process is affected by a step disturbance of magnitude 𝑑̅𝑑 = 0.25 as well as the estimated 

means and standard deviations of the controlled and manipulated variables. The P 

controller is no longer able to maintain the temperature at the desired set-point value. The 
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mean of the controlled variable when the disturbance is active is 0.090, close to the 

theoretical steady-state value. As outlined in Table 3, when a P controller is used a step 

disturbance results in a mean shift on both the controlled and manipulated variables.  

Table 4. Mean, standard deviation, and steady-state values of the controlled and manipulated variables when 𝑑̅𝑑 = 0 and 
𝑑̅𝑑 = 0.25 (step disturbance).  

Variable 

Phase I: 
 𝒅𝒅� = 𝟎𝟎 

Phase II: Step disturbance 
 𝒅𝒅� = 𝟎𝟎.𝟐𝟐𝟐𝟐 

Mean Sd Steady-state 
value Mean Sd Steady-state 

value 
Temperature [oC]:controlled 0.001 0.047 yss 0 0.090 0.045 yss 0.080 

Steam flow rate [ml/s]:manipulated -1.066 38.87 uss 0 -74.937 37.74 uss -66.109 

 

Figures 2 (a-b) provide the time series plots of the 800 observations of the temperature 

(controlled variable) and steam flow rate (manipulated variable). Both variables show a 

transient and then a clear, sustained shift after the introduction of the step disturbance. 

Hence, we do not provide control charts as any univariate control chart would be able to 

detect these apparent mean shifts in the variables quickly.  

  
Figure 2. Time series plots of the controlled (a) and manipulated (b) variables. The step disturbance of magnitude 
𝑑̅𝑑 = 0.25 occurs at the 400th observation as indicated by the vertical dotted line. The horizontal lines in the time 
series plots indicate the mean values of the controlled and manipulated variables in Phase I and Phase II (after 
the introduction of the disturbance). 
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4.3. Scenario II: Ramp Disturbance 

A new dataset with 840 observations of the controlled and manipulated variables from the 

heat-exchanger example was generated. This time, a ramp disturbance with a slope 𝑑̂𝑑 =

0.01 was introduced at the 440th observation and onwards.  

Disturbance signatures in the controlled and manipulated variables  

Table 5 shows the mean, standard deviation, and the theoretical steady-state values of the 

controlled and manipulated variable without the disturbance (𝑑̂𝑑 = 0) and after the 

disturbance is introduced (𝑑̂𝑑 = 0.01). Again, the mean and the standard deviation when 

there is no active disturbance were calculated by removing the first 40 observations of the 

start-up phase. The theoretical steady-state values yss and uss are zero when 𝑑̂𝑑 = 0 (see Table 

1) and drawn from Table 2 when 𝑑̂𝑑 = 0.01. 

Table 5. Mean, standard deviation, and steady-state values of the controlled and manipulated variables when 𝑑̂𝑑 = 0 and  
𝑑̂𝑑  = 0.01 (ramp disturbance). 

Variable 

Phase I: 
 𝒅𝒅� = 𝟎𝟎 

Phase II: Ramp disturbance  
𝒅𝒅� = 𝟎𝟎.𝟎𝟎𝟎𝟎 

Mean Sd Steady-state 
value Mean Sd Steady-state 

value 
Temperature [oC]: controlled 0.0004 0.045 yss 0 0.4244 0.044 yss +∞ 

Steam Flow Rate [ml/s]: manipulated -0.3322 37.695 uss 0 -352.873 37.196 uss -∞ 

 

As expected, the simulation results summarized in Table 5 confirm those presented in Table 

3. The P controller cannot keep the temperature at its set-point when the ramp disturbance 

is introduced, and the disturbance signature is visible on the mean values of both the 

controlled and manipulated variables in Phase II. Note that the theoretical steady-state 

values of the controlled and manipulated variables approach infinity as the ramp 

disturbance approaches infinity. That is, the values of the controlled (manipulated) variable 
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keep increasing (decreasing) as long as the ramp disturbance continues to increase 

(decrease). Figures 3 (a-b) provide a graphical representation of this behavior where the 

temperature continues to increase and move away from its set-point while the steam flow 

rate keeps decreasing to counteract the disturbance. Similar to the previous case, these 

trends in both variables are apparent, so we do not provide control charts. Any univariate 

control chart would be able to signal an out-of-control situation in these variables quickly.  

  
Figure 3. Time series plots of the controlled (a) and manipulated (b) variables. A ramp disturbance of a slope 𝑑̂𝑑= 0.01 
occurs at 400th observation as indicated by the vertical dotted lines. 

4.4. Remarks on the Heat-Exchanger Example 

The heat-exchanger example illustrates that for the P control mode, the adjustments of the 

manipulated variable at best reduces the effect of a step disturbance on the controlled 

variable while a ramp disturbance will affect the controlled variable with a continuously 

increasing difference between the controlled variable and its set-point over time. 

Consequently, the signatures of a step or ramp disturbance are present on both the 

controlled and manipulated variables for the P control mode. When introducing control 

charts to monitor a process controlled by the P control mode, it may suffice just to monitor 

the controlled variable in a univariate chart. Since the disturbance signal in the controlled 
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variable may be a small mean shift, a robust choice may be to use a time-weighted control 

chart, such as a CUSUM chart to increase detection capability. Regarding diagnosing 

disturbances, note that the disturbance signatures on the controlled and manipulated 

variables keep their step and ramp characteristics in both cases. As we have illustrated, a 

step disturbance induces mean level shifts on both the controlled and manipulated variables 

for the P control mode whereas a ramp disturbance induces an increasing/decreasing trend 

in both variables. The analyst can thus use these known patterns to classify which type of 

disturbance is affecting the process, knowing that a P controller is governing it.  

5. Example 2 – Steel Rolling Mill with a Proportional-Integral (PI) 
Controller 

In this second example, we further illustrate the theoretical results presented in Tables 1-3 

but now with a different example using the PI control mode.  

5.1. Steel Rolling Mill and Controller Transfer Functions 

Figure 4 depicts a steel rolling mill where steel bars pass through a pair of rolls to reduce 

their thickness. Each time a new bar engages the rolls, the load change produces a torque 

on the rolls that reduces their speed. This unwanted speed reduction can be avoided by 

designing a feedback control scheme that keeps the roll speed (the controlled variable) at 

the desired set-point (Dorf and Bishop 2011). The steel rolling mills are usually equipped 

with a DC motor and a speed controller to maintain the speed of the rolls. That way, the 

DC motor can convert the electromotive force (the manipulated variable) into rotational 

energy according to the error fed back to the controller. The resulting feedback control 
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scheme has a block diagram like the one shown in Figure 1, where the torque on the rolls 

due to the load change can be interpreted as a (known) constant disturbance. 

 
Figure 4. Steel rolling mill. Figure inspired by Dorf and Bishop (2011). 

 

The described system was implemented in Matlab/Simulink®, introducing a normally 

distributed random noise with zero mean and constant variance σ2 = 6 x 10-5 chosen 

subjectively to provide a realistic simulation. The variance level was picked by trial and 

error. The employed DC motor has the following transfer function, 

𝑔𝑔p(𝑠𝑠) = Speed
Voltage

= 2.857
(𝜏𝜏𝑠𝑠+1) = 2.857

(0.086𝑠𝑠+1)       (12) 

A Matlab model of the DC motor by Elshamy (2006) is available in the Matlab central file 

repository. For additional information about the transfer function and typical constants of 

the DC motor, see Dorf and Bishop (2011, pp.70-73).  

 A PI controller with the following transfer function  

𝑔𝑔c(𝑠𝑠) =  𝑘𝑘𝑐𝑐 �1 +  1
𝜏𝜏𝐼𝐼𝑠𝑠

 � =  0.175 (1 +  1
0.086𝑠𝑠

 )                                             (13)  

was implemented to keep the roll speed at the set-point value. The controller parameters 

were tuned using the internal model control (IMC) rule by setting λ = τ/2, which indicates 
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a twice as fast closed-loop response time compared to the open-loop. The reader is referred 

to Romagnoli and Palazoglu (2012) for additional information about the IMC rules for 

tuning PID controllers.  

5.2. Scenario I: Step Disturbance 

Observations of the roll speed (controlled variable) and the voltage (manipulated variable) 

were collected in sequence during a continuous simulation of the process. Again, 840 

observations were generated. The first 440 observations were collected under normal 

operating conditions, that is, 𝑑̅𝑑 = 0. The first 40 observations were excluded to remove the 

start-up phase thus creating a Phase I data set of 400 observations. The last 400 

observations constitute the Phase II dataset. A step disturbance in the torque of magnitude 

𝑑̅𝑑 = −0.0025 was introduced at observation 100 in the Phase II dataset.  

Disturbance signatures in the controlled and manipulated variables 

Table 6 shows the mean, standard deviation, and theoretical steady-state values of the 

controlled and manipulated variables in Phase I and Phase II. The theoretical steady-state 

values yss and uss were calculated based on formulas in Table 1. 

Table 6. Mean, standard deviation, and steady-state values of the rolls’ speed and voltage in Phase I and Phase 
II (step disturbance of magnitude 𝑑̅𝑑 = − 0.0025). 

Variable 

Phase I: 
 𝒅𝒅� = 𝟎𝟎 

Phase II: Step disturbance 
 𝒅𝒅� = − 𝟎𝟎.𝟎𝟎𝟎𝟎𝟐𝟐𝟐𝟐 

Mean Sd Steady-state 
value Mean Sd Steady-state 

value 
Speed [rad/s]: controlled 0.000 0.0079 yss 0 0.000 0.0082 yss 0 

Voltage [mV]: manipulated -0.093 1.380 uss 0 0.585 1.431 uss 0.875 
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From Table 6 we see that mean values of the controlled and manipulated variables in Phase 

I are the same or similar to the theoretical steady-state values yss and uss indicating stable 

process operation during which the PI controller is able to keep the controlled variable at 

the set-point. The mean value of the manipulated variable is close to the theoretical value, 

uss, and the small difference is due to the random noise. Table 6 also provides the theoretical 

steady-state values yss and uss in Phase II. Note that in a real process, these values are not 

known in advance since the disturbance types and magnitudes are unknown beforehand. 

However, in the specific situation that the analyst can assume that the disturbance is a step-

change, formulas in Table 1 may actually be used to estimate the magnitude of the 

disturbance 𝑑̅𝑑 using the mean of the controlled (or manipulated) variable in Phase II as an 

estimate of the steady-state value yss (or uss).  

 Table 3 as well as the mean values of Phase II in Table 6 suggest that for the PI 

control mode, the signature of a step-change disturbance should only be visible as a mean 

shift in the manipulated variable. This means that the PI controller is able to keep the 

disturbance from affecting the controlled variable and the disturbance signature is only 

identifiable in the manipulated variable.  

Monitoring the controlled and manipulated variables in control charts 

Figures 5 (a-b) show the time-series plots of the controlled and manipulated variables in 

both Phase I and II. A visual inspection of the time-series plots shows that the controlled 

variable does not exhibit a clear shift when the step disturbance is introduced. However, 
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the time series plot of the manipulated variable seems to exhibit a slightly higher mean 

value after the step disturbance is introduced. 

 The Phase I and Phase II datasets with 400 observations each of the controlled and 

manipulated variables were used to create the control charts. Two CUSUM charts were 

applied to monitor the controlled and manipulated variables in Phase II, see Figures 5 (c-

d). Note that in this example (as well as in the previous one) the observations in Phase I 

(no disturbance) are independent and normally distributed. Without active disturbances, 

the random variability of the controlled and manipulated variables comes from the added 

random, normally distributed noise. Throughout this example, we used the common 

choices of k = 0.5 and h = 5 for the CUSUM charts (Montgomery 2012). Other choices are 

possible, but here we are mainly interested in illustrating how commonly used univariate 

control charts can be applied to the controlled and manipulated variables, and not in 

optimizing the sensitivity of the charts. Under the assumption of time-independent 

observations, the selected CUSUM charts’ parameters would result in an in-control average 

run length (ARL0) of 465 observations (Montgomery 2012). 

 From Figure 5 (c), we see that the CUSUM chart for the controlled variable does 

not issue any out-of-control signal. However, the CUSUM chart for the manipulated 

variable issues an out-of-control signal as the CUSUM passes the control limit at the 543rd 

observation in Figure 5 (d). From the analysis of the control charts, it is possible to conclude 

that the controlled variable is in control operating close to or at its desired set-point and 

that the PI controller prevents the disturbance from affecting the controlled variable. The 

signature of the disturbance is instead displaced to the manipulated variable. The engineer 
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may at this point undertake a root cause search for the disturbance if the sustained control 

action is causing unwanted costs or other negative consequences.  

  

  
Figure 5. Time series plots of the speed (a) and voltage (b) variables. A step-change disturbance of magnitude 𝑑̅𝑑 =
−0.0025 occurs at the 500th observation. The vertical dotted lines divides observations in Phase I and Phase II. (c) 
CUSUM chart for the controlled variable. (d) CUSUM chart for the manipulated variable. The vertical solid line 
indicates the out-of-control signal at the 543rd observation. 

5.3. Scenario II: Ramp Disturbance 

Another dataset of 840 observations was once again produced for both the controlled and 

manipulated variables following the same criteria of the previous step disturbance scenario. 

Again, the first 40 observations were removed and the Phase I dataset includes 400 

observations. This time, a ramp disturbance with a slope 𝑑̂𝑑 = −0.025 was introduced at 

observation 100 in the Phase II dataset. 
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Disturbance signatures in the controlled and manipulated variables 

Table 7 shows the mean, standard deviation, and theoretical steady-state values of the 

controlled and manipulated variables in Phase I (𝑑̂𝑑 = 0) and in Phase II (𝑑̂𝑑 = - 0.025). The 

theoretical steady-state values, yss and uss, are zero in Phase I whereas their values in Phase 

II were obtained using the formulas in Table 2.  

Table 7. Mean, standard deviation, and steady-state values of the rolls’ speed and voltage in Phase I and Phase 
II (ramp disturbance with a slope 𝑑̂𝑑 = − 0.025). 

Variable 

Phase I: 
 𝒅𝒅� = 𝟎𝟎 

Phase II: Ramp disturbance  
𝒅𝒅� = −𝟎𝟎.𝟎𝟎𝟐𝟐𝟐𝟐 

Mean Sd Steady-state 
value Mean Sd Steady-state 

value 
Speed [rad/s]: Controlled -0.000 0.0074 yss 0 -0.003 0.0077 yss -0.004 

Voltage [mV]: Manipulated 0.029 1.2948 uss 0 4.478 1.3330 uss + ∞ 

Monitoring the controlled and manipulated variables in control charts 

Figures 6 (a-b) show the time-series plots of the controlled and manipulated variables. A 

visual inspection of the time-series plots shows that after the disturbance introduction 

(500th observation) there is an obvious increasing trend in the manipulated variable and a 

slight decrease in the mean of the controlled variable. In this example, the PI controller 

does a fair job of keeping the roll speed close to its set-point by rapidly increasing the 

voltage. Based on theoretical results summarized in Tables 2-3, the signature of a ramp 

disturbance should remain on both the controlled and manipulated variables, but a signature 

in the controlled variable is perhaps not evident from a visual inspection of Figure 6 (a). 

Therefore, we move on to analyze the control charts for the controlled and manipulated 

variables. Again, we used a CUSUM chart for both the controlled and the manipulated 

variables using the same control chart parameters as in the previous step disturbance 

scenario, see Figures 6 (c-d). 
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Figure 6. Time series plots of the speed (a) and voltage (b) variables. A ramp disturbance with a slope 𝑑̂𝑑 = −0.025 
is introduced at the 500th observation. The vertical dotted lines divide Phase I and Phase II data. (c) and (d) are 
CUSUM charts for the controlled and manipulated variables, respectively. The vertical solid lines indicate the out-of-
control signal at the 542nd observation for the controlled variable and at 537th observation for the manipulated 
variable. 

 

The CUSUM chart for the controlled variable issues an out-of-control signal indicating a 

decrease in the mean of the controlled variable; see Figure 6 (c). Not surprisingly, the 

CUSUM chart in Figure 6 (d) for the manipulated variable also issues an out-of-control 

signal with an ever-increasing voltage. In a real-life scenario, however, the voltage would 

only be allowed to increase to a certain limit before the process would be shut down. 

5.4. Remarks on the Steel Rolling Mill Example 

The steel rolling mill example shows how for a given implemented control scheme and 

process plant, monitoring the controlled and manipulated variables separately may be 



 
 

31 
 

 

 

crucial for understanding and interpreting out-of-control situations in a closed-loop system. 

Monitoring both the controlled and the manipulated variables in separate charts allows the 

analyst to evaluate the performance of the controller but also to develop an increased 

understanding of which type of disturbance is active in the system (step or ramp). For the 

PI (or PID) control mode, a step disturbance results in a mean shift signature in the 

manipulated variable only. However, a ramp disturbance induces a mean level shift in the 

controlled variable and an increasing or decreasing trend in the manipulated variable. In 

which of the variables a disturbance signal can be detected depends on the control mode 

used, the type of disturbance affecting the system, and the choice of control chart, as we 

have illustrated in the examples above and in Tables 1-3.   

 A generalization on the proper choice of control chart for a general EPC application 

is not self-evident. The Shewhart chart for individual observations would be fast to signal 

when a large shift occurs, such as a dramatic step-change. However, at times the remaining 

signals in the controlled and/or manipulated variables may be much smaller and time-

weighted control charts, such as the CUSUM chart, would be needed for fast and effective 

shift detection. 

6. Conclusions and Discussion 

This article explores and discusses the concurrent use of EPC and SPC and more 

specifically the implications of monitoring variables from a system under feedback control 

through control charts. From an SPC perspective, the control action increases complexity 

and influences the behavior of the process variables when a disturbance affects the process. 
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The analyst may even fail to detect a disturbance affecting the system when monitoring 

only the controlled variable in an EPC scheme. This mistake may occur since the controlled 

variable in a feedback controller usually is “the” important process output that the naïve 

analyst may think warrants monitoring through SPC.  

 In this article, we provide formulas for calculating the theoretical steady-state values 

of the controlled and manipulated variables in a SISO system for the P, PI, and PID control 

modes, given that the system is affected by step or ramp disturbances. In the two simulated 

examples, we illustrate how step and ramp disturbance signatures manifest themselves in 

the controlled and manipulated variables for the above-mentioned control modes. The 

control mode used, the disturbance type, and the choice of control chart determine whether 

the disturbance signature can be detected in the controlled and/or manipulated variables. 

For step disturbances, PI and PID controllers can maintain the controlled variable on target 

by adjusting the manipulated variable thereby displacing the disturbance signature to the 

manipulated variable. For P controllers and for ramp disturbances combined with all tested 

control modes, the disturbance affects both the controlled and the manipulated variables.  

 Consequently, irrespective of the control mode applied, properly chosen and 

parameterized control charts monitoring the controlled and/or the manipulated variables 

should be able to signal out-of-control situations for step and ramp disturbances affecting 

the system. Our recommendation is to monitor both the controlled and manipulated 

variables when applying SPC on a process under feedback control. A combined study of 

the disturbance signatures in both control charts can also give important information on 

how well the controller is performing in terms of disturbance elimination as well as clues 
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of what type of disturbance is affecting the system (step or ramp). Indeed, for the P, PI, and 

PID control modes, univariate control charts monitoring only the manipulated variable may 

also issue out-of-control signals for step and ramp disturbances. Another alternative is to 

use a bivariate chart based on both the controlled and manipulated variables. However, 

these choices would potentially be at the expense of gaining a deeper process insight. For 

example, if the control chart for the controlled variable is in control and the control chart 

for the manipulated variable is out-of-control, one can infer that the controller is performing 

satisfactorily in keeping the controlled variable at its set-point by transferring the 

disturbance (variability) from the controlled variable to the manipulated variable. The 

disturbance signature in the manipulated variable may, of course, be a lingering problem if 

the sustained adjustment incurs increased costs or other negative consequences. The goal 

of SPC in this case is to eliminate the assignable cause to cut potential unwanted costs of 

corrective adjustments by the controller. Moreover, if the control charts for both 

manipulated and controlled variables are out-of-control, we may conclude either that the 

controller is not working or that the controller is working but unable to counteract the 

disturbance completely. In this case, understanding and eliminating the assignable cause is 

even more important to reduce unwanted costs of waste, resource consumption, production 

of off-spec products, safety risk, or to consider potential changes on the controller design 

if, for example, the assignable cause occurs frequently. 

This article focuses on SISO systems. Future research will explore multivariate 

systems and the potential of dividing controlled and manipulated variables in separate 

multivariate control charts for increased process insight. 
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Appendix A 

As shown in the block diagram of Figure 1, the effect of 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) and 𝑑𝑑(𝑠𝑠) on the controlled 

variable can be expressed through the representation of the set-point tracking and 

disturbance rejection problems. This yields the additive output response as, 

𝑦𝑦(𝑠𝑠) = 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠)

1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) + 𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)     (A.1) 

𝑦𝑦(𝑠𝑠) = 𝑔𝑔𝑆𝑆𝑆𝑆(𝑠𝑠)𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) + 𝑔𝑔𝐷𝐷(𝑠𝑠)𝑑𝑑(𝑠𝑠)  

where 𝑔𝑔𝑆𝑆𝑆𝑆(𝑠𝑠) and 𝑔𝑔𝐷𝐷(𝑠𝑠) are the closed-loop transfer functions for the set-point response 

and the disturbance response, respectively. Since the set-point is assumed to be constant 

(𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) = 0), we are left with the expression,  

𝑦𝑦(𝑠𝑠) = 𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)                      (A.2) 

The steady-state value of the controlled variable 𝑦𝑦𝑠𝑠𝑠𝑠 can then be determined using the Final 

Value Theorem: 

𝑦𝑦𝑠𝑠𝑠𝑠 = lim
𝑡𝑡→+∞

𝑦𝑦(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠[𝑦𝑦(𝑠𝑠)] = lim
𝑠𝑠→0

𝑠𝑠[𝑔𝑔𝐷𝐷(𝑠𝑠)𝑑𝑑(𝑠𝑠)]  (A.3) 

or, incorporating Equation (A.2) in Equation (A.3):  

 𝑦𝑦𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

 𝑠𝑠 � 𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)�     (A.4) 

where the steady-state value of the controlled variable 𝑦𝑦𝑠𝑠𝑠𝑠 becomes a function of the 

controller, 𝑔𝑔𝑐𝑐(𝑠𝑠), the process model 𝑔𝑔𝑠𝑠(𝑠𝑠), and the disturbance model, 𝑔𝑔𝑑𝑑(𝑠𝑠) as well as 
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the disturbance signal. If 𝑦𝑦𝑠𝑠𝑠𝑠 is non-zero, it represents the steady-state error. Similarly, the 

steady-state value of the manipulated variable is calculated as, 

𝑢𝑢𝑠𝑠𝑠𝑠 =  lim
𝑡𝑡→+∞

𝑢𝑢(𝑡𝑡) = lim
𝑠𝑠→0

𝑠𝑠[𝑢𝑢(𝑠𝑠)]  = lim
𝑠𝑠→0

𝑠𝑠[𝑒𝑒(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠)]    

Since the error term is expressed as, 

𝑒𝑒(𝑠𝑠) = 𝑦𝑦𝑠𝑠𝑠𝑠(𝑠𝑠) − 𝑦𝑦(𝑠𝑠) 

This yields, 

𝑢𝑢𝑠𝑠𝑠𝑠 = lim
𝑠𝑠→0

𝑠𝑠 � −𝑔𝑔𝑑𝑑(𝑠𝑠)
1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)� [𝑔𝑔𝑐𝑐(𝑠𝑠)] =  lim

𝑠𝑠→0
𝑠𝑠 � −𝑔𝑔𝑑𝑑(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠)

1+ 𝑔𝑔𝑝𝑝(𝑠𝑠)𝑔𝑔𝑐𝑐(𝑠𝑠) 𝑑𝑑(𝑠𝑠)�  (A.6) 
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ABSTRACT 

Many modern production processes involve engineering process control as in the case of 

feedback controllers. Nonetheless, statistical process control remains valuable for detecting 

and eliminating assignable causes of variation. As feedback controllers continuously adjust 

manipulated variables to keep critical process outputs on set-points, monitoring only the 

controlled outputs may be ineffective. Controlled and manipulated variables can be also 

jointly monitored in the same multivariate chart(s) such as a Hotelling T2 chart. However, 

this approach might hinder deeper process insight. 

 The aim of this article is to explore multivariate processes under feedback control, 

and to describe and illustrate a two-step monitoring procedure in which [1] the variables 

are pre-classified as controlled, manipulated, and measured variables and [2] a multivariate 

monitoring scheme is applied to each group of variables. Potential scenarios an analyst 

might encounter when applying the illustrated procedure are presented and knowledge 

discovery in terms of process and controller performance is discussed. The two-step 

monitoring procedure is applied using the Tennessee Eastman process simulator under a 

decentralized feedback control strategy. The results of two simulated examples are 

compared with the approach of monitoring the variables together in the same multivariate 

chart(s.) 

Keywords: multivariate processes, multivariate statistical process control, engineering 

process control, latent structure methods, enhanced process understanding. 

1. Introduction 

Statistical process control (SPC) is a well-known, established methodology that uses 

control charts as the main tool to monitor whether a specified product quality characteristic 

or an important process variable remains near a nominal value. Many modern industrial 

processes currently operate under engineering process control (EPC), as in the case of 
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feedback controllers. In industrial operations, EPC contributes to production plant safety, 

environmental impact reduction, and process and product optimization by keeping process 

variables of interest near desired target values.[1] Even though SPC and EPC appear to 

chase the same goal of reducing process variability, these methodologies rely on methods 

and concepts that are fundamentally different. 

 The core idea of the SPC methodology is to declare a process as in control, or out-

of-control, by monitoring the process mean and/or variability with a real-time scheme, 

namely, a control chart.[2] A shift of the process parameters usually arises from external 

disturbances, responsible for unwanted sources of variability so-called assignable causes 

of variation. When a shift of the process parameters occurs, a control chart should give an 

out-of-control signal and analysts can seek ways to isolate assignable causes of variation. 

A reduction of the long-term process variability is thus achievable once the assignable 

cause(s) has been detected and removed. Additionally, feedback controllers attempt to 

make a process insensitive to external disturbances by continuously adjusting a process 

input (manipulated variable) to ensure that a process output (controlled variable) remains 

on target (set-point.) The control action stems from the manipulation of a process input, 

thereby transferring the short-term variability from the controlled to the manipulated 

variable. Typically, feedback controllers are utilized to keep critical process outputs on 

target. On the contrary, other outputs that might be difficult to adjust are not governed by 

feedback controllers, but are still measured and analyzed to assess the overall process 

performance. Such measured outputs are called measured variables.  

 Over the years, the concurrent use of SPC and EPC has been widely recognized and 

there is abundant research on the topic.[3,4,5,6,7] Statistical process control charts should be 

applied to an engineering controlled process to detect and remove assignable causes of 

variation rather than continuously compensating for them.[8] This way, an overall process 

improvement is achievable using the complementary capabilities of SPC and EPC to reduce 

long-term and short-term process variability, respectively.[9]  

 Naïvely applying a control chart to a tightly controlled variable in an EPC scheme 

will often fail to detect out-of-control situations due to the continuous adjustments of the 

manipulated variable [10,11]. SPC literature recommends two basic approaches to deal with 

EPC’s potential masking of process disturbances. The first approach suggests monitoring 
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the difference between the controlled variable and set-point value, (i.e., the control 

error.)[12,13,14] The second approach is to monitor the manipulated variable.[15,16] Monitoring 

the control error (controlled variable) or the manipulated variable alone might be 

ineffective.[17,18,19] Therefore, a combined approach that jointly monitors the control error 

and the manipulated variable (or the controlled and the manipulated variables), using a 

bivariate control chart is also used.[17,18] A combined approach increases the chances that 

the control chart issues an out-of-control signal when either the controller fails to 

compensate for the disturbance completely or the manipulated variable deviates from its 

normal (expected) operating condition[20].  

 The combined approach of monitoring the controlled and manipulated variables in 

the same multivariate chart(s) can be also extended to multivariate processes.[18,21] In this 

case, when an out-of-control situation occurs, the faulty variables need to be isolated to 

diagnose the assignable cause of the disturbance. Contribution plots are commonly used to 

identify which variables make the greatest contributions to push the monitored statistic(s) 

above the control limits.[8] However, in case of complex faults or complex processes, 

contribution plots suffer from a ‘smearing effect’ on non-faulty variables, which might 

make the isolation of the faulty variables challenging.[22,23,24] Classifying the process 

variables in ‘blocks’, representing for example a process unit or a section of a unit, might 

make the fault isolation task easier, as the process variables are analyzed in groups rather 

than all at once.[8,25] As alternative, the analyst can resort to the analysis of the univariate 

control charts but, treating the variables one at a time, as they were independent, often 

makes the interpretation and diagnosis difficult.[8]  Although monitoring the controlled 

and manipulated variables in the same multivariate chart(s) usually allows detecting out-

of-control process conditions, this approach might hinder deeper process insight. 

Monitoring the controlled and manipulated variables separately might be crucial for 

understanding out-of-control process conditions and controller performance. For example, 

Capaci et al.[26] explore single-input single-output systems under variations of the 

proportional-integral-derivative control scheme, and illustrate if and how frequently 

occurring disturbances (i.e., step and ramp disturbances) manifest themselves in the 

controlled and manipulated variables at a steady state. Capaci et al.[26] argue in favor of 
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monitoring the manipulated and controlled variables in separate charts because the 

understanding of out-of-control conditions and controller performance might be improved.  

 The aim of this article is to explore multivariate processes (with multiple inputs and 

outputs) under feedback control and to describe and illustrate a two-step monitoring 

procedure in which [1] the variables are pre-classified as controlled, manipulated, and 

measured variables and [2] a multivariate monitoring scheme is applied to each group of 

variables. Potential scenarios an analyst might encounter when applying the illustrated 

procedure are presented and the gained knowledge of process and controller performance 

is discussed. The two-step monitoring procedure is applied using the Tennessee Eastman 

process simulator under a decentralized feedback control strategy. The results of two 

simulated scenarios are compared with the approach of monitoring all the variables 

together in the same multivariate chart(s.)  

2. Statistical Process Control Charts for Multivariate Processes 

This section provides a short theoretical background on multivariate control charts based 

on principal component analysis (PCA.) In section 4, Hotelling T2 and Q charts based on 

dynamic PCA are utilized to present the results from the application of the two-step 

monitoring procedure to the Tennessee Eastman (TE) process.  

2.1. Control Charts Based on Principal Components 

When the number of variables, k, to monitor is large and the level of cross-correlation 

among the variables is high, a common approach for reducing the dimensionality of the 

variable space is to apply PCA.[27,28] PCA transforms a set of correlated variables into a 

new set of uncorrelated latent variables, principal components (PCs), or scores that are 

linear combinations of the original variables defined as  

  𝒕𝑖 = 𝒑𝑖
′𝒙  (𝑖 = 1, 2, … , 𝑘)                                        (1) 

where 𝒙 is an observations vector on k variables, and 𝒑𝑖
′ is the ith eigenvector of the 

covariance matrix of 𝑿 subject to ‖𝒑𝑖
′‖ = 1. The variance of the ith PC is the eigenvalue 𝜆𝑖 

or 𝑣𝑎𝑟(𝒕𝑖) =  𝜆𝑖 and the PCs are defined so that 𝜆1 ≥  𝜆2 ≥ ⋯ ≥  𝜆𝑘 ≥ 0. Thus, the 

proportion of variability in the original data explained by the ith PC is given by 

𝜆𝑖

𝜆1+𝜆2+…+𝜆𝑘
                                                                 (2) 
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One can determine how much variability is explained by retaining the first few r < k PCs. 

Retaining only the first r PCs, a data matrix 𝑿 of m observations on k variables can be 

decomposed as 

𝑿 =  𝑻𝑷′ + 𝑬 = ∑ 𝒕𝒊
𝒓
𝒊=𝟏 𝒑𝒊

′  + ∑ 𝒕𝒊
𝒌
𝒊=𝒓+𝟏 𝒑𝒊

′                          (3) 

where the first r PCs are assumed to represent variation of underlying events driving the 

process phenomena, while the last k-r PCs are representative of the noise and can be 

summed up in a matrix of residuals E. Note that PCA is scale-dependent and the variables 

are often mean-centered and scaled to unit variance prior to PCA implementation. A 

complete explanation of PCA is available, for example, in Jolliffe [27] and Jackson [28].  

 Akin to other SPC procedures, a PCA-based monitoring scheme involves two 

phases. In Phase I, a process dataset representing normal operating conditions is used to 

estimate the in-control PCA model. In Phase II, new multivariate observations are 

monitored online based on the in-control model from Phase I. The process-monitoring 

scheme requires two complementary control charts that rely on the assumption of time-

independent observations.[29] The first is a Hotelling T2 chart based on the r first retained 

PCs (rather than the k original process variables) to monitor the variability in the PCA 

model space. The second is a Q control chart on the last k-r PCs to monitor the squared 

prediction error (SPE) of the residuals of the new observations, that is, the residual 

variability not captured by the PCA model.  

In Phase II, the T2 statistic is plotted against time along with the lower and upper control 

limits  

𝐿𝐶𝐿𝑇2 = 0                                                                          (4) 

𝑈𝐶𝐿𝑇2 =
𝑟 (𝑚 − 1)(𝑚 + 1)

𝑚2 − 𝑚𝑟
 𝐹 𝛼,𝑟,𝑚−𝑟 

where 𝐹 𝛼,𝑟,𝑚−𝑟 is the upper α percentile of the F distribution with r and m-r degrees of 

freedom. Note that in Phase I, the upper control limit for the T2 statistic is based on the beta 

distribution and is provided by Tracy et al. [30]  

In both Phase I and Phase II, the Q statistic is plotted against time, along with the upper 

control limit provided by Jackson and Mudholkar [31] 

𝑈𝐶𝐿𝑄 =  𝜃1 [
𝑧𝛼√2𝜃2ℎ0

2

𝜃1
+ 1 +  

𝜃2ℎ0(ℎ0−1)

𝜃1
2  ]

 
1

ℎ0

                      (5) 
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where 𝑧𝛼  is the 100(1 − 𝛼) percentile of the standardized normal distribution,  𝜃𝑗=1,2,3 =

 ∑ 𝜆𝑖
𝑗𝑘

𝑖=𝑟+1  , and ℎ0 = 1 −
2𝜃1𝜃3

3𝜃3
2 . The lower control limit is 0 in Phase I and in Phase II. For 

further details on control charts based on PCA, see MacGregor and Kourti[8], and Kourti[32].  

2.2. Control Charts Based on Dynamic Principal Components 

Frequently, process data exhibit a high level of both cross-correlation and autocorrelation. 

To account for static and dynamic relationships in the data, Ku et al.[33] suggest applying 

dynamic PCA (DPCA), that is, applying the usual PCA method to an augmented data 

matrix 𝑿𝑙𝑎𝑔obtained by appending to the original matrix 𝑿 its l time-shifted duplicates. 

Table 1 illustrates the procedure to determine the time-shifts or number of lags l. 

Alternative approaches are discussed in Rato and Reis [34], and Vanhatalo and Kulahci[35]. 

Table 1. Ku et al.’s procedure to select the number of lags (l) in DPCA.[33] 
1. Set l = 0. 

2. Form data matrix 𝑿𝑙𝑎𝑔 = 𝑿(𝑚−𝑙) x 𝑘(𝑙+1) =  [𝑿𝑚 x 𝑘     𝑿(𝑚−1) x 𝑘,1     …    𝑿(𝑚−𝑙) x 𝑘,𝑙]. 

3. Perform PCA on Xlag and calculate all the scores. 

4. Set d = kⅹ(l+1) and number of linear relations c(l) = 0 

5. Determine if the jth component represents a linear relation. If yes, go to 6; if no, go to 7.  

6. Set d = d - 1 and c(l) = c(l) +1; repeat 5.  

7. Calculate the number of new linear relations cnew (l) = c(l) - ∑ (𝑙 − ℎ + 1) 𝑐𝑛𝑒𝑤
𝑙−1
ℎ=0 (ℎ) 

8. If cnew (l) ≤ 0, go to 10; otherwise, go to 9. 

9. Set l = l + 1; go to 2.  

10. Stop. 

 

After applying DPCA on an in-control process dataset, Hotelling T2 and Q charts based on 

dynamic PCs can be used to monitor the process. Since the DPCA residual space is 

composed of PCs with small eigenvalues, the linear relationships among the process 

variables should be weak in the DPCA residual space. Consequently, the Q statistic, applied 

to residuals, assumed to be independent, can primarily monitor the process dynamics. Refer 

to De Ketelaere[36] for further details on PCA-based monitoring schemes for time-

dependent data. 

 Note that in case of strongly auto-correlated data, DPCA still produces auto-

correlated PCs and the control limits of the Hotelling T2 and Q charts might need to be 

adjusted.[37]  



 

7 

 

3. A Two-Step Monitoring Procedure for Processes under Feedback 

Control 

Engineering process control is extensively used in modern industrial processes to satisfy 

particular control objectives such as process stability and performance. In a process under 

feedback control, potential unwanted effects of external disturbances on a process variable 

(i.e., a process output) are mitigated by adjusting a related manipulated variable (i.e., a 

process input); see Figure 1. The required adjustments depend on the implemented control 

scheme (variations of the proportional-integral-derivative schemes) and the output error 

fed back to the controller. The output error measures the difference between the actual 

process output and the desired target value or set-point. Therefore, feedback controllers are 

also referred to as closed-loop systems.  

 

Figure 1.  Compact representation of a process under feedback control subject to a disturbance. 

The next section describes a two-step monitoring procedure for multivariate processes 

under feedback control in which [1] the variables are pre-classified qualitatively or 

quantitatively as controlled, manipulated, and measured and [2] a multivariate monitoring 

scheme is applied to each group of variables. Additionally, the next section presents 

potential scenarios an analyst might encounter when applying the suggested procedure, 

along with an understanding of process and controllers’ performance.  

3.1. Step 1: Classification of Process Variables  

The first step of the suggested two-step monitoring procedure is to pre-classify the 

variables of a multivariate process under feedback control as controlled, manipulated, and 

measured variables. In processes with many inputs and outputs, the same set of control 

objectives can often be achieved via several control strategies. To determine the most 

Controlled 

variable(s)

Output 

error(s)Set-point(s)
Controller(s)

Process or 

sub-processes

Manipulated 

variable(s)

Measurement of the controlled variable(s) 

-

+
+

+

Disturbance(s)
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appropriate control strategy, one of the most challenging tasks is the pairing between the 

(output) variables to be controlled and the (input) variables to be adjusted so that each 

controlled variable can approach the desired set-point.[1] Accordingly, control engineers 

first search for answers regarding potential causal relationships among process inputs and 

outputs, process dynamics, possible cross effects that the change of a process input might 

have on more outputs, and the interaction effects that the simultaneous change of more 

inputs might have on one output. Then, the pairing between the controlled and manipulated 

variables requires design decisions.[1] Control loops typically involve crucial process 

outputs that need to remain at the target values, for example, to maintain stable process 

operating conditions within equipment constraints for securing plant and personnel safety, 

and within quality-specification constraints.[1] On the contrary, other process outputs such 

as process operating costs, energy consumption, or product waste, are not usually involved 

in any control loop as they might be more difficult to adjust. These outputs are generally 

affected by the process operating conditions and are thus measured for assessing the overall 

process performance. The process outputs not involved in any control loop are called 

measured variables.  

 A qualitative or a quantitative approach can be used to classify the process variables 

as controlled, manipulated, or measured variables. A qualitative approach is feasible when 

existing knowledge about the variables’ pairing of the process under feedback control and 

the implemented control strategy are known. For example, in a multi-loop strategy, 

multiple controllers are designed to control the whole process and each controller adjusts 

one manipulated variable to regulate one controlled variable. Other times, all or a subset of 

the manipulated variables can be used to govern simultaneously all or a subset of the 

controlled variables using a multivariable control strategy.[1] It is reasonable to assume that 

process engineers possess this kind of knowledge. Hence, a qualitative approach could 

often be pursued. Conversely, a quantitative approach is also possible. In this case, 

historical data and all the methodologies taking advantage of correlation and regression 

methods, such as partial least squares[32] or regression regularization methods[38,39,40], can 

be used to discover the hidden relationships among the process variables. An application 

of this approach can be found in Gao et al.,[41] who show how sparse principal component 
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analysis regularized with a LASSO penalty can be used to discover the relationships among 

the process variables using simulated data from the TE process. 

3.2. Step 2: Monitoring Each Group of Variables Separately 

The second step of the suggested two-step monitoring procedure is to apply a multivariate 

monitoring scheme to each group of variables separately.  

 Monitoring controlled, manipulated, and measured variables in separate control 

charts provide additional knowledge on the process and controllers’ performance. 

Specifically, the knowledge on where (on which group of variables) the disturbances 

manifest themselves supports understanding the severity of the out-of-control condition 

and the functioning of the controllers. Table 2 shows potential scenarios an analyst might 

encounter when monitoring the controlled, manipulated, and measured variables in 

separate multivariate control charts and summarizes the knowledge gained by analyzing 

the control charts.  

Table 2. Potential scenarios and knowledge discovery regarding process and controller performance. 

Scenario 
Controlled 

Variables 

Manipulated 

Variables 

Measured 

Variables 

Knowledge Discovery 

Process 

Performance 

Controller 

Active 

compensatory 

control action? 

Performance 

1 

In-Control 

In-Control 

In-Control 
‘Ideal’ 

condition 
No N.A. 

2 
Out-of-

Control 

Not critically  

affected 
No N.A. 

3 
Out-of-

Control 

In-Control 
Not critically  

affected 
Yes 

Well-

functioning/full 

compensation 

for the 

disturbance 
4 

Out-of-

Control 

Not critically  

affected 
Yes 

5 

Out-of-

Control 

In-Control 

In-Control 
Critically 

affected 
No 

Malfunctioning 

and/or unable to 

counteract the 

disturbance 

6 
Out-of-

Control  

Critically 

affected 
No 

7 
Out-of-

Control 

In-Control 
Critically 

affected 
Yes 

8 
Out-of-

Control 

Worst 

condition 
Yes 
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Note that the information in Table 2 should be thought from an SPC perspective. For 

example, in scenarios 3-4, the process is out-of-control although a fully operational control 

strategy that keeps the controlled variables on target is an in-control process from an EPC 

perspective. Moreover, the severity of the disturbance effect on the process performance 

(critically/not critically affected) is considered from a product quality standpoint. Since the 

controlled variables usually relate to quality characteristics of a product or of a process 

producing it, the process performance is deemed as critically affected by the disturbance if 

the controlled variables are out-of-control.   

 In scenario 1, the process operates at the ‘ideal’ condition as no disturbances affect 

the process. In scenarios 2–4, the process performance is not critically affected by the 

disturbance, as the controlled variables are in control. Conversely, in scenarios 5–8, the 

process performance is critically affected, as the controlled variables are out-of-control. 

Moreover, in scenarios 1 and 2, no relevant information about the controllers’ performance 

is available, but for different underlying reasons. In scenario 1, the process is not subject 

to disturbances and the analyst cannot make considerations about the controllers’ 

performance. In scenario 2, the process is subject to a disturbance but because this 

disturbance does not affect the implemented control strategy, no information is available 

to draw conclusions on the controllers’ performance. In scenarios 3 and 4, a compensatory 

control action successfully eliminates the effect of the disturbance on the controlled 

variables; hence, the controllers perform satisfactorily. Finally, in scenarios 5–8, the 

controllers are not performing satisfactorily as they are malfunctioning and/or unable to 

counteract the disturbance. Among the illustrated scenarios, scenario 8, in which all the 

variables are out-of-control, illustrates the worst process operating condition. 

4. Two-Step Monitoring Procedure in the Tennessee Eastman Process  

In this section, the two-step monitoring procedure is applied using the TE process under a 

decentralized control strategy.[42,43] The results of two simulated examples are illustrated 

and compared with the approach of monitoring all variables in the same multivariate 

chart(s.)  

 Data were simulated using the most recent version of the decentralized control 

strategy of the TE process simulator implemented by Bathelt et al.[43], as it allows for 
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stochastic simulations, replications, and adjustments of the disturbances’ magnitude. The 

simulator works in Matlab/Simulink® and is available for download from the Tennessee 

Eastman Challenge Archive. [44] The analysis of the TE process data was conducted using 

the free R statistics software (the R Foundation for Statistical Computing) and the code is 

available upon request.  

4.1. Step 1: Classification of Variables in Tennessee Eastman Process 

The TE process simulator emulates a continuous chemical process composed of five major 

units: a reactor, a condenser, a vapor-liquid separator, a product stripper, and a recycle 

compressor. [45] The plant produces two liquid products from four gaseous reactants through 

four irreversible and exothermic reactions. It also produces an inert product and a byproduct 

purged as vapors from the system through the vapor-liquid separator. The TE process consists 

of 41 process outputs (XMEAS) and 12 process inputs (XMV) and can work in three operating 

modes (mode 1-3). In addition, the user can choose to activate 21 process disturbances (IDVs).  

 Ricker[42] devised the decentralized control strategy of the TE process. The decentralized 

control strategy partitions the plant into sub-units and designs a controller for each, with the 

intent of maximizing the production rate. Ricker identifies nineteen feedback control loops to 

stabilize the process and provides a comprehensive explanation of the implemented control 

strategy (control loops and pairing between the controlled and manipulated variables) and its 

design phases. Therefore, the classification of the TE process variables as controlled, 

manipulated, and measured variables can be accomplished using a qualitative approach.  

 Table 3 provides the control loops, the pairing between controlled and manipulated 

variables, and the measured variables for the decentralized control strategy of the TE process. 

As shown in Table 3, the classification has led to 16 controlled variables, 18 manipulated 

variables, and 25 measured variables.  
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Table 3. Controlled and manipulated variables in the 19 loops, and measured variables of the TE decentralized control 

strategy. The manipulated variables with codes such as Fp and r7 come from the decentralized control strategy settings.[42] 

XMV(i) and XMEAS(j) are numbered according to the original article by Downs and Vogel.[45] 

Loop Controlled variable Code Manipulated variable Code 

1 A feed rate (stream 1) XMEAS(1) A feed flow XMV(3) 

2 D feed rate (stream 2) XMEAS(2) D feed flow XMV(1) 

3 E feed rate (stream 3) XMEAS(3) E feed flow XMV(2) 

4 C feed rate (stream 4) XMEAS(4) A and C feed flow XMV(4) 

5 Purge rate (stream 9) XMEAS(10) Purge valve XMV(6) 

6 Separator liquid rate (stream 10) XMEAS(14) Separator pot liquid flow XMV(7) 

7 Stripper liquid rate (stream 11) XMEAS(17) Stripper liquid product flow XMV(8) 

8 Production rate (stream 11) XMEAS(41) Production index Fp 

9 Stripper liquid level XMEAS(15) Ratio in loop 7 r7 

10 Separator liquid level XMEAS(12) Ratio in loop 6 r6 

11 Reactor liquid level XMEAS(8) Set-point of Loop 17 s.p. 17 

12 Reactor pressure XMEAS(7) Ratio in loop 5 r5 

13 Mol % G (stream 11) XMEAS(40) 
Adjustment of the molar 

feed rate of E 
Eadj 

14 Amount of A in reactor feed, yA(stream 6) XMEAS(6) Ratio in loop 1 r1 

15 Amount of A+C in reactor feed, yAC (stream 6) XMEAS(6) Sum of loops 1 and 4 ratio r1 + r4 

16 Reactor temperature XMEAS(9) Reactor cooling water flow XMV(10) 

17 Separator temperature XMEAS(11) 
Condenser cooling water 

flow 
XMV(11) 

18 Maximum reactor pressure XMEAS(7) Production index Fp 

19 Reactor level override XMEAS(8) Compressor recycle valve XMV(5) 

Total 16  18  

Measured Variables  Code 

Recycle flow XMEAS(5) 

Product separator pressure XMEAS(13) 

Stripper pressure XMEAS(16) 

Stripper temperature XMEAS(18) 

Stripper steam flow XMEAS(19) 

Compressor work XMEAS(20) 

Reactor cooling water outlet temperature XMEAS(21) 

Separator cooling water outlet temperature XMEAS(22) 

Reactor feed analysis (Component A, B, C, D, E, F) XMEAS(23)-XMEAS(28) 

Purge gas analysis (Component A, B, C, D, E, F, G, H) XMEAS(29)-XMEAS(36) 

Product analysis (Component D, E, F) XMEAS(37)-XMEAS(39) 

Total 25 

 

4.2. Step 2: Separate Monitoring of the Controlled, Manipulated, and Measured 

Variables of the Tennessee Eastman process 

In the second step of the illustrated procedure, controlled, manipulated, and measured 

variables of the TE process are monitored using a DPCA-based multivariate SPC scheme 

for each group of variables. First, data were collected by running the decentralized TE 

process simulator.  
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Data collection 

The TE simulator was run twice to collect two datasets, one for each example. Values of 

the controlled, manipulated, and measured variables were collected in sequence during 

continuous simulation of the TE process and using the base-case values for operating mode 

1. To realize the process dynamics and the full effect of the disturbances, Downs and 

Vogel[45] suggest a simulation time of 24–48 hours. The process exhibits a transition time 

of about 36 hours on startup. Thus, in both simulations, the process was run for 84 hours 

at normal operating conditions and then for further 48 hours, introducing a disturbance at 

92 hours (see Table 4.) In the first simulation, the normal operating conditions were upset 

activating IDV(1), whereas in the second simulation activating IDV(4). IDV(1) mimics a 

step-change disturbance in the ratio between the chemical reactants A and C, that is, a quite 

realistic situation caused by substandard raw materials. IDV(4) emulates a step-change 

disturbance in the reactor cooling water inlet temperature, thus upsetting the process 

operational constraints.[45] Both disturbances were introduced with a scale factor of 0.50, 

that is, half of the maximum magnitude of the disturbance value. There are other possible 

choices, but in what follows, the focus is on the overall behavior of the controlled, 

manipulated, and measured TE process variables subject to a disturbance. Because the scale 

factor gives a scale replication of the variables’ behavior, other choices of the scale factor 

are not expected to affect the points made here.  

 To create random simulations without overly distorting the results, the TE process 

was run with two active random disturbances, IDV(8) and IDV(13) with a scale factor of 

0.10 and 0.25 respectively.[46] IDV(8) varies the composition of the components in stream 

4 of the process whereas, IDV(13) deviates the coefficients of reaction kinetics. Moreover, 

the seed of the random numbers (second parameter of the TE model) was randomly selected 

and changed at the beginning of each simulation. That way, repeated simulations with the 

same starting conditions generate different values providing more realistic process data. 

Specifically, in the following examples, changing the seed of each simulation implies 

dealing with two different Phase I samples. 

 Table 4 summarizes the settings of the simulations and of the TE model parameters 

to produce the datasets for the two examples. Capaci et al.[46]  include further details on 

how to use the decentralized TE simulator as a testbed for SPC methods, and Capaci et 
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al.[46] and Bathelt et al.[43] provide information on the parameters’ settings of the 

decentralized TE model. 

Table 4. Settings of the simulations and of the TE model parameters to produce the datasets of example 

1 and example 2. 

Settings Example 1 Example 2 

Simulation: 

   Sampling time  3 minutes 

   Simulation time of which: 

 Transition time on process startup 

 Phase I 

 Phase II 

132 hours: 

 36 hours (720 observations) 

 48 hours (960 observations) 

 48 hours (960 observations) 

   Step-change introduction at (from the simulation start) 92 hours (1840 observations) 

   Step-change disturbance in Phase II, magnitude IDV(1), 0.50 IDV(4), 0.50 

   Random disturbance 1 in Phase I and Phase II, magnitude IDV(8), 0.10 

   Random disturbance 2 in Phase I and Phase II, magnitude IDV(13), 0.25 

Parameters of TE model: 

   Parameter 1 (Initial conditions) Default values for Mode 1 

   Parameter 2 (Seed of the random generator) 8686 7746 

   Parameter 3 (Model structure flag) 194 

Example 1: IDV(1), Step-Change in the A/C Feed Ratio, B Composition Constant 

The Phase I samples of the controlled, manipulated, and measured variables were produced 

by removing the observations during the transition time on process startup (see, Table 4.) 

Samples of the process variables during steady-state operations provide a more stable 

estimation of the covariance matrices and thus of the in-control models. Therefore, Phase 

I samples of the controlled, manipulated, and measured variables collected during 48 hours 

(960 observations) of normal operating conditions at steady state were used to estimate the 

in-control model for each group of variables. In addition, the Phase I sample composed by 

the controlled, manipulated, and measured variables was used to estimate the in-control 

model for all the variables together. The compressor recycle valve XMV(5) was excluded 

from the monitoring scheme of the manipulated variables as it had a constant value 

throughout the simulations. Thus, the group of manipulated variables resulted in 17 

variables used for process monitoring.  

 Table 5 shows the minimum and maximum values of the autocorrelation coefficients 

at lag 1 for each group of variables in Phase I. Because the TE process variables exhibit 

moderate to high autocorrelation coefficients, a multivariate monitoring scheme based on 

DPCA was applied to monitor the controlled, manipulated, and measured variables, and 

the controlled, manipulated, and measured variables together.  
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Table 5. Minimum and maximum values of the autocorrelation coefficients at lag 1 for the controlled, 

manipulated, and measured variables, and for all the variables together in Phase I. Autocorrelation 

coefficients at lag 1 of the T2 and Q statistics for each group of variables in Phase I. 

Group of variables 
Autocorrelation coefficients at lag 1 in Phase I 

[Min, Max] T2 statistic Q statistic  

Controlled variables [0.2833, 0.9966] 0.8367 0.3981 

Manipulated variables [0.1389, 0.9979] 0.9837 0.7907 

Measured variables [0.5394, 0.9976] 0.8911 0.6819 

Controlled, manipulated, and measured variables [0.1389, 0.9979] 0.8988 0.5452 

 

Table 6 shows the number of lags (l), of variables, and of retained PCs, and percent of 

explained variance of the in-control DPCA models for the controlled, manipulated, and 

measured variables, and for the controlled, manipulated, and measured variables together. 

In each estimated model, the number of lags added to each group of variables was 

determined by applying the method by Ku et al.[33] (Table 1.) The retained PCs correspond 

to the number of PCs that provides the minimum absolute value of the difference between 

the cumulative variance explained by the PCs and the cumulative variance threshold value 

of 80%.  

Table 6. Number of lags (l), of variables, and of retained PCs, and percent of explained variance of the in-control 

DPCA models for the controlled, manipulated, and measured variables, and for the controlled, manipulated, and 

measured variables together. 
Group of variables No. of lags (l) No. of variables No. of retained PCs Explained variance 

Controlled variables 1 32 9 80.29% 

Manipulated variables 1 34 4 80.03% 

Measured variables 1 50 6 79.26% 

Controlled, manipulated, 

and measured variables 
1 116 10 80.13% 

 

The Phase II sample of each group of variables, 960 observations collected during 48 hours 

of simulation, was then used to build the Hotelling T2 and Q charts based on DPCA for the 

controlled, manipulated, and measured variables (Figure 2 [a-f].) Moreover, the Phase II 

sample composed by the controlled, manipulated, and measured variables was used to build 

the Hotelling T2 and Q charts based on DPCA for all the variables together (Figure 2 [g-

h].) The theoretical upper control limits were based on the 99.73% confidence level. Under 

the assumption of time-independent and normally distributed observations, this choice of 

the confidence level generates only 27 false alarms out of 10,000 observations and 

corresponds to the typically used 3-sigma control limits.[2]  The theoretical control limits 

could be adjusted due to the observed autocorrelation in both the T2 and Q statistics (see 
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Table 5.) However, an adjustment procedure of the control limits is intentionally avoided 

here because the message to convey is still relevant using the theoretical limits.  

 The out-of-control signals issued by the Hotelling T2 and Q charts applied to the 

controlled (Figure 2 [a-b]) and manipulated (Figure 2 [c-d]) variables indicate that the 

control action is not able to fully remove the effect of the disturbance on the controlled 

variables despite the compensatory control action of the manipulated variables. 

Furthermore, the control charts on the measured variables first issue an out-of-control 

signal near the disturbance introduction and then approach an in-control situation (Figure 

2 [e-f].) The behavior of the measured variables might be most likely due to a cascade 

effect based on the directives generated by the controllers that indirectly affect the process 

variables not involved in control loops.  

 The illustrated example matches scenario 7 in Table 2. Hence, an analyst might draw 

the conclusion that some controllers are malfunctioning or that the implemented control 

strategy is unable to handle the disturbance. Because the controlled variables are out-of-

control, the process performance is critically affected. Process engineers should 

immediately seek ways to remove the root cause of the disturbance to keep the production 

plant and the personnel safe, to avoid unwanted disruptions in the production plan, and to 

cut extra costs of the (in vain) control action. Note that the Hotelling T2 and the Q control 

charts applied to the controlled, manipulated, and measured variables all together (Figure 

2 [g-h]) promptly signal an out-of-control process condition, but do not provide any further 

insight on the process and controllers’ performance.  
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Only Controlled Variables 

  
Only Manipulated Variables 

  
Only Measured Variables 

  
Controlled, Manipulated, and Measured Variables All Together 

  
Figure 2. DPCA based Hotelling T2 and Q charts in Phase II for the [a-b] controlled variables, [c-d] manipulated 

variables, [e-f] measured variables, and for the [g-h] controlled, manipulated, and measured variables together. 
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Example 2: IDV(4), Step-Change in the Reactor Cooling Water Inlet Temperature 

Following the same criteria described above, the second simulated dataset was used to build 

the Hotelling T2 and Q charts based on DPCA when IDV(4), a step change in the reactor 

cooling water inlet temperature, affects the TE process. Table 7 shows the minimum and 

maximum values of the autocorrelation coefficients at lag 1 for each group of variables in 

Phase I. Table 8 provides the number of lags (l), of variables, and of retained PCs, and 

percent of explained variance of the in-control DPCA model for each group of variables.  

Table 7. Minimum and maximum values of the autocorrelation coefficients at lag 1 in Phase I and 

autocorrelation coefficients at lag 1 in Phase I of the T2 and Q statistics for the controlled, manipulated, and 

measured variables, and for all the variables together.  

Group of variables 
Autocorrelation coefficients at lag 1 in Phase I 

[Min, Max] T2 statistics Q statistics 

Controlled variables [0.2691, 0.9968] 0.6312 0.3176 

Manipulated variables [0.1530, 0.9976] 0.9348 0.6822 

Measured variables [0.5257, 0.9968] 0.8394 0.5227 

Controlled, manipulated, and measured variables [0.1530, 0.9976] 0.8521 0.6600 

 

Table 8. Number of lags (l), of variables, and of retained PCs, and explained variance of the in-control DPCA 

models for the controlled, manipulated, and measured variables, and for the controlled, manipulated, and 

measured variables together. 
Group of variables No. of lags (l) No. of variables No. of retained PCs Explained variance 

Controlled variables 1 32 9 79.49% 

Manipulated variables 1 34 4 80.14% 

Measured variables 1 50 7 79.44% 

Controlled, manipulated, 

and measured variables 
2 174 13 79.99% 

Figure 3 [a-h] shows the Hotelling T2 and Q charts based on DPCA for each group of 

variables in Phase II. As shown in Figure 3 [c-d], the Q control chart on the manipulated 

variables issues an out-of-control signal indicating that a compensatory control action is 

working to counteract the disturbance. The prompt reaction of the controllers is also made 

apparent by the isolated out-of-control signals (indicated by the arrows in Figure 3 [a-b]) 

issued by the control charts applied to the controlled variables near to the disturbance 

introduction. The disturbance variability is then fully displaced from the controlled to the 

manipulated variables and both the Hotelling T2 and Q charts on the controlled variables 

exhibit an in-control situation (Figure 3 [a-b].)  
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Only Controlled Variables 

  
Only Manipulated Variables 

  
Only Measured Variables 

  
Controlled, Manipulated, and Measured Variables All Together 

  
Figure 3. DPCA based Hotelling T2 and Q charts in Phase II for the [a-b] controlled variables, [c-d] manipulated 

variables, [e-f] measured variables, and for the [g-h] controlled, manipulated, and measured variables together.  

 



 

20 

 

The measured variables are insensitive to the disturbance: both the Hotelling T2 and Q 

charts seem to be in-control (Figures 3 [g-h]), except for a few sparse out-of-control signals 

issued by the Q chart that could most likely be explained with the underestimation of the 

control limits due to the autocorrelation of the Q statistic (see Table 7.). 

 The illustrated case matches scenario 3 in Table 2. Hence, a reasonable conclusion 

is that the control action is well designed to remove the effect of a disturbance, IDV(4), 

that could affect the process operational constraints. However, although the controlled and 

measured variables are on-target, an SPC analyst cannot deem the process to be in control. 

A more appropriate conclusion is that the process performance is not critically affected, as 

the controllers are fully compensating for the disturbance. Therefore, an overall 

improvement of the process performance can be achieved by detecting and removing the 

assignable cause that generates the unwanted costs of the compensatory control action. As 

in the previous example, it should be underscored that the Hotelling T2 and Q charts applied 

to the controlled, manipulated, and measured variables all together clearly detect an out-

of-control process condition (Figure 3 [g-h]), but once again at the expense of a more 

thorough understanding of the out-of-control situation. 

4.3. Remarks  

As many modern industrial processes operate under EPC, the usual approach of applying 

a control chart only on the process outputs might be ineffective because of the potential 

masking action of the controllers. Sometimes, a multivariate scheme that monitors process 

outputs and manipulated variables together in the same multivariate chart(s) is used. 

However, as shown in the above examples, this approach allows detecting out-of-control 

process conditions but does not provide additional knowledge on process and controllers’ 

performance. On the contrary, monitoring controlled, manipulated, and measured variables 

in separate multivariate charts makes available information on process performance 

(severity of out-of-control process conditions) and controllers’ performance 

(ability/inability to handle a disturbance or controllers’ malfunctions) when a disturbance 

occurs. 
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5. Conclusions and Discussion 

Due to the ease of application at low cost, many modern industrial processes involve EPC, 

as in the case of feedback controllers. Nevertheless, SPC remains valuable for detecting 

and eliminating assignable causes of variation.  

 This article explores the concurrent use of EPC and SPC in multivariate processes 

and illustrates how an analyst can use the information provided by the two complementary 

approaches in quality improvement efforts. EPC increases the process complexity and 

affects the process variables’ behavior in different ways. Thus, an SPC analyst could 

enhance the understanding of the process and controllers’ performance by classifying and 

monitoring the process variables in groups. This article illustrates a two-step monitoring 

procedure in which [1] the variables are pre-classified as controlled, manipulated, and 

measured variables, and [2] a multivariate monitoring scheme is applied to each group of 

variables separately. Potential scenarios an analyst might encounter when applying the 

illustrated procedure and the additional knowledge gained regarding process and 

controllers’ performance is discussed. In general, the combined study of control charts on 

the controlled and measured variables provides information on process performance, 

whereas the combined study of control charts on the controlled and manipulated variables 

gives information on controllers’ performance.  

 Through two simulated examples, the application of the two-step monitoring 

procedure to the TE process explores two potential (faulty) scenarios. In the first example, 

a disturbance critically affects the process performance. The compensatory control action 

of the manipulated variables is unable to remove the effect of the disturbance on the 

controlled variables. Thus, the critical nature of the out-of-control situation should trigger 

an immediate search of the assignable cause(s) and the implemented control strategy should 

be inspected. In the second example, a disturbance does not affect the process performance 

critically. The underlying assignable cause(s) will jeopardize neither the production plan 

nor the production plant, as the manipulated variables fully counteract the effect of the 

disturbance on the controlled variables. Hence, the control strategy is working properly but 

the elimination of the assignable cause might still be relevant to reduce the cost of 

continuous corrective adjustments. 
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 It is worth emphasizing that the approach to analyze all the process variables in the 

same multivariate chart(s) still allows detecting out-of-control process conditions but at the 

expense of gaining deeper process insight. By contrast, the two-step monitoring procedure 

allows for knowledge discovery and deeper process understanding but with some added 

complexity in the analysis process. In the first step of the suggested procedure, experts’ 

knowledge might play a crucial role, as the existing causal relationships among the process 

variables must be known or estimated. Furthermore, the second step of the procedure 

requires the concurrent building and monitoring of several control charts compared to the 

approach of monitoring the variables all together in one multivariate chart. However, when 

an out-of-control situation occurs, knowing on which group of variables (controlled, 

manipulated, and/or measured variables) the disturbances manifest themselves provides the 

analyst with a hint of the severity of the out-of-control situation and hence of the degree of 

urgency to search and remove the assignable cause of the disturbance. Moreover, the fault 

isolation task might be easier, as the analyst will need to analyze contribution plots for 

groups of variables rather than for all the variables together. Finally, the choice regarding 

the most suitable approach for monitoring a multivariate process should be left to the 

analyst who understands the process features and the consequences of frequently occurring 

disturbances on the process under study.  

 Future research on the topic should explore multivariate processes under feedback 

control to understand the ‘signatures’ or ‘signals’ that different disturbances (e.g. step and 

ramp disturbances) leave on the controlled, manipulated, and measured variables.  
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