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Abstract: Big Data applications have become increasingly popular with the emergence of cloud
computing and the explosion of artificial intelligence. The increasing adoption of data-intensive
machines and services is driving the need for more power to keep the data centers of the
world running. It has become crucial for large IT companies to monitor the energy efficiency of their
data-center facilities and to take actions on the optimization of these heavy electricity consumers.
This paper proposes a Belief Rule-Based Expert System (BRBES)-based predictive model to predict
the Power Usage Effectiveness (PUE) of a data center. The uniqueness of this model consists of the
integration of a novel learning mechanism consisting of parameter and structure optimization by
using BRBES-based adaptive Differential Evolution (BRBaDE), significantly improving the accuracy
of PUE prediction. This model has been evaluated by using real-world data collected from a Facebook
data center located in Luleå, Sweden. In addition, to prove the robustness of the predictive model,
it has been compared with other machine learning techniques, such as an Artificial Neural Network
(ANN) and an Adaptive Neuro Fuzzy Inference System (ANFIS), where it showed a better result.
Further, due to the flexibility of the BRBES-based predictive model, it can be used to capture the
nonlinear dependencies of many variables of a data center, allowing the prediction of PUE with
much accuracy. Consequently, this plays an important role to make data centers more energy-efficient.

Keywords: learning; differential evolution; belief rule-based expert systems; predictive modelling;
data center.

1. Introduction

By 2020, ICT industries will account for 3.5% of global carbon emissions, which are predicted
to grow by up to 14% by 2040 [1]. Data centers are becoming a predominant ICT industry due to
the rapid growth of Big Data applications, the Internet of Things (IoT), 5G, autonomous systems,
Blockchain, and artificial intelligence (AI) [2,3]. In addition, it has been predicted that demand for
data centers will rise exponentially by 2025, which would make data centers consume 33% of the total
global ICT electricity consumption [4]. Furthermore, it is also predicted that data centers will use
30% of the total world’s energy and, nevertheless, produce only 5.5% of the global carbon footprint
due to the adaptation of efficient energy sources and technologies. In addition, data centers will
produce 340 metric megatons of CO2 per year by 2030 [5]. All the above-mentioned statistics present
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an alarming growth rate of power usage and Greenhouse Gas (GHG) emissions by data centers in the
coming decades. These facts have inspired researchers to increase power-usage efficiency and lower the
environmental impact of data centers. The latest research work conducted by big IT companies in the
sector reveals that the adoption of predictive modeling in the capacity management of data centers is
the key to unlocking stranded capacity and identify practices for higher efficiency and reliability [6–8].

Gao [8] used a Neural Network to predict the Power Usage Effectiveness (PUE) [9] of a Google
data center using data from different sensors with the aim of increasing the energy efficiency of the data
center. However, this research does not address the different types of uncertainty caused by sensors [10].
Hossain et al. [7] used a trained Belief Rule-Based Expert System (BRBES) to predict PUE with
sensor-data uncertainty in a data center. BRBES consists of belief rules as knowledge base and evidential
reasoning as inference engine, which is capable of addressing different types of uncertainty such as
incompleteness, ignorance, vagueness, imprecision, and ambiguity. Different parameters of belief rules
such as, attribute weight, rule weights, and belief degrees are usually determined by domain experts.
However, the values set by experts are not always accurate. Therefore, Hossain et al. [7] used randomly
generated rules to learn about these parameters from the dataset. However, this method was not
suitable as the results were not reproducible. Yang et al. [11] proposed a learning mechanism for
BRBES using a sequential quadratic programming-based optimization technique. For this, they have
the fmincon function of the MATLAB optimization tool box. The proposed learning mechanism for
training the BRBES suffers from a local optimal problem where the algorithm finds the best solution
from the smallest number of candidates instead of all solutions to the problem. Therefore, a learning
mechanism is needed that can address the aforementioned problem and provide a better prediction.

The Differential Evolution (DE) algorithm is not prone to a local optimal problem due to its
randomness [12,13]. However, the control parameters of DE, such as the crossover (CR) and mutation
(F) factors, play an important role in the success of DE. The BRBES-based adaptive DE algorithm,
named BRBaDE [14], helps to identify the proper value of CR and F for DE. Furthermore, the learning
mechanism for BRBES can be considered as two types. One is parameter optimization and the other
one is structure optimization. In parameter optimization, the BRBES parameters are optimized, while
in structure optimization the structure of belief rules of the BRBES is optimized. Yang et al. [15]
proposed a parameter and structure optimization for BRBES using DE. However, their proposed
method has the inherent problem of determining the optimal values of F and CR for DE. Therefore,
BRBES accuracy can be improved by employing parameter and structure optimization using BRBaDE
as a learning technique.

In our previous work [7], two parameters, indoor and outdoor temperature, were used for
predicting PUE. To improve prediction accuracy in this research work, wind speed and direction were
also included, as these parameters also influence the environment. The accurate prediction of PUE
helps data-center operators to take necessary steps for making their data centers more energy-efficient.
This paper aims to demonstrate the employment of parameter and structure optimization using
BRBaDE as a learning technique for BRBES to predict the energy-efficiency metric, PUE, from existing
data generated within a data center. The raw data used for the experiments were sourced from
a Facebook data center in Luleå. The collected data were used to provide trends and predict data-center
energy efficiency.

The article is organized according to the following structure: Section 2 reviews related work, and
Sections 3 and 4 cover the methodology followed by the experimental part. Subsequently, Section 5
contains the implementation of the predictive models that forecast PUE, followed by Section 6, which
presents results and their analysis. Lastly, Section 7 outlines the conclusion and indicates our future work.

2. Related Work

Data centers are becoming a more integral part of our daily life. All major services, such as
telecommunications, transport, public health, and urban traffic, are now using data centers to deploy
IT services. Due to the importance of the above-mentioned facilities and increasing demand, the power
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consumption and operating cost of data centers are rapidly rising. Therefore, researchers are now
primarily focusing on optimizing data centers.

In recent years, significant research has been devoted to the development of appropriate matrices
for measuring data-center energy efficiency. First, the energy efficiency of a system is measured as the
ratio of useful work done by a system to the total energy delivered to the system. For a data center,
energy efficiency can be considered as useful work performed by different subsystems. According to
the Green Grid Association [16], PUE and Data Center Infrastructure Efficiency (DCiE), which are
shown by Equations (1) and (2), can help to better understand and improve the energy efficiency of
existing data centers. This also helps to support smarter managerial decision making for improving
data-center efficiency.

PUE =
TotalFacilityPower
ITEquipmentPower

; 1 ≤ PUE (1)

DCiE =
1

PUE
(2)

IT Equipment Power includes the load associated with all IT equipment, such as computing,
storage, and network devices.

Total Facility Power includes everything that supports the processing of IT equipment load
(e.g., mechanical and cooling systems).

However, the Green Grid Association also proposed metrics such as Carbon Usage Effectiveness
(CUE) [17], Water Usage Effectiveness (WUE) [18], and Electronics Disposal Efficiency (EDE) [19]
to measure the CO2 footprint, water consumption per year, and the disposal efficiency of data
centers, respectively. From all these matrices, PUE and DCiE are considered as the industry de
facto for measuring power efficiency.

Nowadays, data centers consist of numerous sensors that generate millions of data points every
day. These huge numbers of data are usually used for monitoring purposes. However, machine-learning
algorithms can exploit the use of these monitoring data to improve the energy efficiency of data
centers. In addition, machine-learning algorithms are capable of predicting PUE using these data
while considering the complexity of the components of the data centers. According to Belden Inc. [20],
one of the largest US-based manufacturers on networking, connectivity, and cable products: “It won’t be
long before Data Center Infrastructure Management (DCIM) systems will routinely contain an AI tool
that not only optimizes critical mechanical- and electrical-equipment performance, but also optimizes
compute and storage needs. AI will affect how data-center operations teams work and change what’s
involved with day-to-day tasks like fulfilling normal maintenance needs and monitoring networks.
They’ll become “automation engineers”, using the AI engine to optimize data centers”.

Furthermore, Vigilent [21] is another IT company that has succeeded in reducing data-center
cooling capacity by implementing real-time monitoring and machine learning to match cooling needs
with the exact cooling capacity. This frees up stranded capacity and allows to determine when cooling
infrastructure is at risk of failure, resulting in uptime improvement, and preventing unexpected
downtime and revenue loss.

Moreover, Rego [22] developed a set of software tools named Prognose that could be used for
the predictive modelling of energy and capacity planning within a data center. Their model analyzes
different metrics that go into building a data center and is intended to perform predictive modelling
throughout the life of the data center (not just during planning).

Shoukourian et al. [23] have used neural network based machine learning approach for modeling
the coefficient of performance of a high performance data center. Balanici et al. [24] used server traffic
flow to improve the power usage of a data center. They have used auto-regressive neural networks
to predict the server traffic flow. Furthermore, power usage of a data center can be improved by
optimizing the control policy of the cooling system. Li et al. [25] proposed a Reinforcement Learning
based control policy of the cooling system of a data center. The proposed model has been able to
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reduce 11% cooling cost in a simulation platform. Moreover, Haghshenas et al. [26] have also used
multi-agent based Reinforcement Learning algorithm to minimize energy consumption of a large-scale
data center.

Gao [8] conducted extensive work to predict the PUE metric of a Google data center. This work
aims to demonstrate that machine learning is an effective tool to leverage existing sensor data to model
data-center performance and improve energy efficiency. The model has been tested and validated at
Google’s data centers. In his work, a neural network was selected as the mathematical framework for
training data-center energy-efficiency models. Their training dataset contained 19 normalized input
variables and one normalized output, the data center PUE, each variable spanning 182,435 samples
(two years of operational data). This custom AI DCIM solution reduced overall data-center power
consumption by 15% and reduced cooling power by 40%. However, the data coming from sensors
contained different types of uncertainty, such as ignorance, incompleteness, ambiguity, vagueness,
and imprecision. Different kinds of uncertainty exist in sensor data due to malfunctions, and faulty
or duplicate sensor measurements [10]. A neural network uses forward propagation as an inferencing
procedure that does not have a mechanism to address data uncertainty. Therefore, BRBES can be used to
address these uncertainties by using a Belief Rule Base (BRB) as the knowledge base and Evidential
Reasoning (ER) as the inference engine.

Hossain et. al. [7] used trained BRBES to predict the PUE of a data center. BRBES has the
capability to address the uncertainties of sensor data [10]. Furthermore, Yang et al. [11] used a MATLAB
tool-based optimization technique fmincon as a learning methodology for training BRBES. However,
this gradient-based method does not always perform better due to local optima-related problems.
Furthermore, the above-mentioned research work used conjunctive BRB, which becomes computationally
costly as the number of rules grows with the increase of referential values and antecedent attributes.
Therefore, a better learning mechanism is needed for training the BRBES and effective BRB that is not
computationally costly.

Chang et al. [27] proposed an optimization model for disjunctive BRB where lower and upper
bounds are set for the utility values of the referential values of the antecedent attributes. These strict
constraints influence the optimized model to become stuck in local optima instead of finding a global
optimal solution. However, the disjunctive BRB does not grow exponentially with the increase of
referential values and it is computationally less costly.

Yang et al. [15] proposed a join optimization model for BRBES that consisted of parameter and
structure optimization. A heuristic strategy is used to optimize the structure of BRB, while a DE
algorithm is used to perform parameter optimization. Furthermore, the generalization capability
of BRBES is shown in this research work. This research work illustrates DE efficiency for BRBES
parameter optimization. However, there is a lack of finding optimal values for the control parameters
of DE, which may lead to better results.

In summary, the joint optimization of the parameters and structure for BRBES has shown better
results among the different optimization techniques as mentioned above. Among evolutionary
algorithms, DE is preferable for the joint optimization of BRBES, as it is better suited for multiple
local minima. However, there is a lack of determining optimal values for DE control parameters.
Furthermore, there should be a balance of exploration and exploitation of search space while finding
the optimal solution for using DE. Therefore, a hyperoptimized algorithm is required to find the
optimal values of the DE control parameters while ensuring the balanced exploration and exploitation
of the search space. In the next sections, BRBES and its learning mechanism are discussed in detail.

3. BRBES

In this section, a brief description of BRBES is discussed. BRBES is an integrated expert system
framework for handling different types of uncertainty with support for both qualitative and quantitative
data [28]. BRBES consists of a knowledge base and an inference mechanism. Expert knowledge is elicited
and represented in a knowledge base, using belief structure, incorporated with IF-THEN rules, which is
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named BRB. The inference mechanism uses ER for processing the input and generating output based on
BRB [29].

Each belief rule of BRB is formulated using an antecedent and consequent. The antecedent consists
of antecedent attributes with referential values to represent the inputs for the system. The consequent
has the consequent attribute with the associated belief degrees that represent the output of the system.
These rules can be prioritized using rule weights. An example of belief rule is given in Equation (3).

Rk :


IF (A1 is Vk

1 ) AND / OR (A2 is Vk
2 ) AND / OR

. . . AND / OR (ATk is Vk
Tk
)

THEN (C1, β1k), (C2, β2k), . . . , (CN , βNk)

(3)

where β jk ≥ 0,
N

∑
j=1

β jk ≤ 1 with rule weight θk,

and attribute weights δk1, δk2, . . . δkTk, k ∈ 1, . . . , L

where A1, A2, . . . , ATk are the antecedent attributes of the kth rule. Vk
i (i = 1, . . . , Tk, k = 1, . . . , L) is

the referential value of the ith antecedent attribute. Cj is the jth referential value of the consequent
attribute. β jk(j = 1, ..., N, k = 1, ..., L) is the degree of belief for the consequent reference value Cj.

If
N

∑
j=1

β jk ≤ 1, then the kth rule is considered as complete; otherwise, it is incomplete.

A belief rule can also be explained with linguistic terms as shown in the following example.

Rk :



IF X2 (External Temperature) is Medium
AND

X3 (Room Temperature) is High

THEN X1 (PUE) is
{(Critical, 0.2), (Moderate, 0.5), (Low, 0.3)}

(4)

In the above rule, External Temperature and Room Temperature have the following referential
values: “Medium" and “High", while PUE is the consequent attribute with referential values, “Critical",
“Moderate", and “Low". As the summation of belief degrees (0.2 + 0.5 + 0.3 = 1) is one, hence the rule
is considered complete.

Furthermore, this can also be represented as a tree structure with two leaf nodes and one parent as
shown in Figure 1. The logical connectives of the antecedent attributes in a belief rule can either be AND
or OR, which represent the conjunctive or the disjunctive assumptions of the rule, respectively. Based on
the logical connectivity of the BRB, a BRBES can be named either Conjunctive or Disjunctive BRB.

The inference procedures consist of four steps, namely, input transformation, rule activation,
belief update, and rule aggregation using an evidential-reasoning approach. The input data are
distributed over the referential values of the antecedent attributes, which is called the matching degree
during the input transformation. The belief rules are called packet antecedent, which are stored in
short-term memory. The activation weight of the rules are calculated using matching degrees.

Activation weight wk for the kth rule for conjunctive assumption can be generated using the
following equation:

wk =

θk

M

∏
i=1

αk
i

L

∑
l=1

(θk

M

∏
i=1

αl
i)

(5)
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Here, θk is the rule weight and αk is the matching degree of the kth rule. As in the conjunctive
assumption, all matching degrees are multiplied.

Figure 1. Sample representation of Belief Rule-Based (BRB) tree.

However, for disjunctive assumption, activation weight wk for the kth rule can be generated using
the following equation:

wk =

θk

M

∑
i=1

αk
i

L

∑
l=1

(θk

M

∑
i=1

αl
i)

(6)

Here, θk is the rule weight and αk is the matching degree of the kth rule. In the
disjunctive assumption, all matching degrees are summed.

Moreover, the belief degrees associated with each belief rule in the rule base should be updated
when input data for any of the antecedent attribute are ignored. The belief-degree update is calculated
using the method presented in [28]. Subsequently, rule aggregation is performed using a recursive
reasoning algorithm [30] due to its less computational cost by using Equation (7).

β j =
µ× [∏L

k=1(ωkβ jk + 1−ωk ∑N
j=1 β jk)−∏L

k=1(1−ωk ∑N
j=1 β jk)]

1− µ× [∏L
k=1 1−ωk]

(7)

where µ =

[ N

∑
j=1

L

∏
k=1

(ωkβ jk + 1−ωk

N

∑
j=1

β jk)− (N − 1)×
L

∏
k=1

(1−ωk

N

∑
j=1

β jk)

]−1

Here, ωk is the activation weight of the kth rule, while β j denotes the belief degree related to one
of the consequent reference values.

The fuzzy output of the rule-aggregation procedure is converted to a crisp value using the utility
values of the consequent attribute, which is considered as the final result, as shown in Equation (8).
The above-described BRBES execution procedure is shown in Figure 2.

zi =
N

∑
j=1

u(Oj)β j (8)
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Figure 2. Working process of BRB Expert System (BRBES).

4. Learning in BRBES Based on BRBaDE

Different parameters of BRBES, such as attribute weights, rule weights, and belief degrees
(θk, δi, and βk) play an important role in result accuracy. These parameters are usually known as
learning parameters, which are generally assigned by domain experts or they are randomly selected.
The antecedent attributes and belief rules are prioritized by consecutively using the attribute and
rule weights. Belief degrees of the consequent attribute are used to present the uncertainty of the output.
Hence, the learning parameters are important for a BRBES. Therefore, a suitable method is needed
to find the optimal values of the learning parameters. By training the BRBES with data, the optimal
values of the learning parameters could be discovered [11]. Different optimization techniques have
been proposed to discover the optimal values [11,31–35].

The learning parameters need to be trained to determine the optimal values by using an objective
function that considers linear equality and inequality constraints. The output from BRBES is
considered as a simulated output (zm), and the output from the system is named the observed
output (z̄m). Difference ξ(p) between a simulated and observed output needs to be minimized by the
optimization process, as shown in Figure 3. The training sample contained M data points, where the
input for BRBES was um, the observed output was z̄m, and the simulated output was zm (m = 1, . . . , M).
Error ξ(p) was measured by Equation (9).

ξ(p) =
1
M

M

∑
m=1

(zm − z̄m)
2 (9)

Figure 3. Learning process of BRBES.
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Optimization of the learning parameters was executed using the following equation:

min
p

ξ(p) (10)

P = P(µ(Oj), θk, δk, β jk)

The objective function for training the BRBES consists of Equations (7) and (8).
Additionally, the values of the attribute weights, rule weights, and belief degrees ranged between zero
and one. Henceforth, to enforce the above-mentioned criteria, the following constraints were considered:

• Utility values of consequent attributes µ(Oj)(j = 1, . . . , n):

µ(Oi) < µ(Oj); If i < j (11)

• Rule weights θk(k = 1, . . . , K):
1 ≥ θk ≥ 0; (12)

• Antecedent attribute weights δk, (k = 1, . . . , K):

1 ≥ δk ≥ 0; (13)

• Consequent belief degrees for the kth rule β jk, (j = 1, . . . , n, k = 1, . . . , L):

1 ≥ β jk ≥ 0;
n

∑
j=1

β jk ≤ 1; (14)

DE is highly influenced by mutation and crossover factors [36]. The mutation (F) and crossover
factor (CR) can be adapted to improve DE performance [37]. It was evident that F and CR may
change during each iteration of DE, which facilitates a more efficient way to find optimal values.
Most of the research on DE parameter adaptation considers the variation of parameter values based
on fitness values of an optimization function. However, previous researchers [38,39] have not
considered the different types of uncertainty related to DE approaches. Therefore, we propose
a BRBES-based DE parameter-adaptation algorithm, BRBaDE, which addresses different types
of uncertainty. Figure 4 depicts the system diagram of BRBaDE.

Figure 4. BRB adaptive Differential Evolution (BRBaDE).

In BRBaDE, the changes of population and objective-function values in each generation
are supplied to two BRBESs as input. Subsequently, based on the belief rule base and using
an evidential-reasoning approach, new F and CR values are selected for the next generation as
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shown in Figure 4. The BRBES helps to achieve the optimal exploration and exploitation of the search
space by considering the changes of population and objective-function values in each generation.

PC =

√√√√ 1
NP

NP

∑
i=1

D

∑
j=1

(xg
j,i − x(g−1)

j,i )2 (15)

FC =

√√√√ 1
NP

NP

∑
i=1

( f g
i − f (g−1)

i )2 (16)

d11 = 1− (1 + PC)e−PC (17)

d12 = 1− (1 + FC)e−FC (18)

d21 = 2d11 (19)

d22 = 2d12 (20)

Here, PC is the change in magnitude of a population vector during the last two generations,
and xg

j,i and xg−1
j,i are the population vectors on the gth generation and (g− 1)th, respectively. FC is

the change in magnitude of the objective function during the last two generations, while the f g
i and

f (g−1)
i are the function values for the ith population on gth generation and (g − 1)th respectively.

The values of PC and FC have been rescaled between 0 to 1 using Equations (17) and (18), where d11

and d12 contain the rescaled value of PC and FC, respectively. Similarly, using Equations (19) and
(20), the values of PC and FC were rescaled between 0 to 2 and assigned in d21 and d22, which were
subsequently used as inputs for BRBES for determining new values for F and CR. Tables 1 and 2 and
Figure 5 present the details of the BRBES used to predict the values of F and CR.

Figure 5. Two BRBESs used for BRBaDE.

Table 1. Details of Belief Rule-Based Expert System (BRBES)_CR.

Antecedent Attributes Consequent Attribute

d11 and d12 CR

Referential Values Big Medium Small Big Medium Small

Utility Values 1 0.5 0 1 0.75 0.1

Table 2. Details of BRBES_F

Antecedent Attributes Consequent Attribute

d21 and d22 F

Referential Values Big Medium Small Big Medium Small

Utility Values 2 1 0 2 1 0.1
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Therefore, the proposed BRBaDE provides a solution for addressing uncertainty in objective
functions by incorporating BRBES with DE. Furthermore, it facilitates optimal exploration and
exploitation of the search space, which leads to finding the optimal solution with fewer iterations.

Subsequently, structure optimization of the initial BRB was performed using the Structure
Optimisation-based on the Heuristic Strategy (SOHS) algorithm mentioned in [15]. These iterations
continue until the structure of the BRB remains unchanged for a certain number of iterations.
The above-described BRBaDE-based parameter and structure-optimization process are presented
in Figure 6.

Figure 6. Flowchart of BRBaDE-based learning.

In summary, parameter optimization (PO) using BRBaDE is performed with the initial BRB, while
structure optimization (SO) is performed using the SOHS algorithm. When the number of iterations
reaches the threshold value, the stop criterion is met and that is considered as an optimized BRB;
otherwise, the loop continues.

By incorporating BRBaDE as a parameter-optimization technique and performing structure
optimization of the BRB using SOHS, a better optimized BRB can be generated that subsequently helps
in producing results with higher accuracy. The next section presents the implementation of BRBES for
predicting the PUE of the Facebook data center.

5. Model Implementation

This section describes the process of predicting PUE for data centers using BRBES. Furthermore,
BRBaDE is a novel adaptive DE algorithm that is used as a learning methodology.

5.1. Use Case Scenario

Our previous work [7] used external and server-room temperature to predict PUE.
Furthermore, fmincon-based optimization was used for optimizing the learning parameters. The main
focus of this research work is to increase PUE accuracy of a data center by incorporating additional inputs,
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such as wind speed and direction. In addition, BRBaDE is used as a learning technique for BRBES
to improve the learning process. The Facebook data center situated in Luleå, Sweden was chosen as
a use case for this research work. The data center had sensors for measuring humidity and temperature.
We collected data from the data center for a three-month period from 1 December 2017 to 25 February
2018, where the data were sampled every seven hours. Furthermore, wind speed and direction for
the same period and location were collected from Weather Underground [40]. Preprocessing of the
raw data is an important step for conducting different types of analysis. The raw data from the
sensors were examined, and missing and abnormal data were removed. Wind-speed and direction
data for the corresponding date of the sensor data were collected from the Weather Underground site.
After preprocessing, the dataset contained around 298 data points. The dataset consisted of time
temperature, humidity, wind speed, wind direction, and PUE. Temperature, humidity, wind speed,
and wind direction were considered as input, while the PUE was considered as output. The dataset
was divided into a training and a testing set. The BRBES was trained using proposed PO and SO using
BRBaDE by the training dataset. Afterward, the testing dataset was used to evaluate the performance of
the trained BRBES, which is presented in Section 6 in detail.

5.2. BRBES for PUE

Based on the data from the data center, a BRBES system was developed to predict the PUE.
The system contained a knowledge base, a BRBES main module, a configuration module, a BRB
UI model, a training module, and an input module, as shown in Figure 7. The proposed system
is an extension of our earlier proposed Web-BRBES [41]. A brief description of the components is
given below.

Figure 7. BRBES system architecture.

5.2.1. BRBES Knowledge Base

The Knowledge Base Module maintains the belief rules. Belief rules are stored in a SQL or a NoSQL
database system. Usually, these systems have powerful software engines for efficiently querying and
storing large numbers of data. The initial and optimized learning parameters are also stored in
the database. Based on the fields of the dataset from the Facebook data center, a BRB framework
was created where antecedent attributes were temperature, humidity, wind speed, and direction,
while PUE was considered as the consequent attribute. Figure 8 depicts the BRB framework, while
Tables 3 and 4 represent the initial rule base for disjunctive and conjunctive BRBs, respectively.
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For Temperature (X2) (°F), referential and utility values are the following:

Temperature =


High (H) = 55.032
Medium (M) = 27.037
Low (L) = 0.959

(21)

For Humidity (X3) (%), referential and utility values are the following:

Humidity =


High (H) = 99.01
Medium (M) = 65.076
Low (L) = 31.068

(22)

For Wind Speed (X4) (km/h), referential and utility values are the following:

WindSpeed =


High (H) = 39.06 km/h
Medium (M) = 19.8 km/h
Low (L) = 0 km/h

(23)

For Wind Direction (X5) (°), referential and utility values are the following:

WindDirection =


High (H) = 338°
Medium (M) = 170°
Low (L) = 0°

(24)

For PUE (X1), referential and utility values are the following:

PUE =


High (H) = 1.25
Medium (M) = 1.13
Low (L) = 1

(25)

Figure 8. BRB framework for Power Usage Effectiveness (PUE).

Table 3. Initial BRB for disjunctive BRB.

Rule ID Rule Weight X2 X3 X4 X5 Belief Degrees

1 1 H H H H 1 0 0

2 1 M M M M 0 1 0

3 1 L L L L 0 0 1
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Table 4. Initial Belief Rule Base for conjunctive BRB.

Rule ID Rule Weight X2 X3 X4 X5 Belief Degrees

1 1 H H H H 1.000 0.000 0.000

2 1 H H H M 0.328 0.672 0.000

3 1 H H H L 0.000 0.647 0.353

4 1 H H M H 0.921 0.079 0.000

5 1 H H M M 0.248 0.752 0.000

6 1 H H M L 0.000 0.568 0.432
...

...
...

...
...

...
...

...
...

28 1 M H H H 0.888 0.112 0.000

29 1 M H H M 0.216 0.784 0.000

30 1 M H H L 0.000 0.535 0.465

31 1 M H M H 0.809 0.191 0.000
...

...
...

...
...

...
...

...
...

80 1 L L L M 0.000 0.680 0.320

81 1 L L L L 0.000 0.000 1.000

5.2.2. Knowledge-Base Driver Module

This module facilitates the storage and retrieval of data from the Knowledge Base Module based
on the requirements from the BRB Main Module. This module provides a generic interface to connect
with different kinds of SQL or NoSQL database systems. For this work, a mySQL database is used.

5.2.3. Input Module

The input module is used for providing inputs such as a BRB framework related data to
the system. It supports Comma Separated Value (CSV) files, RESTful API-based data sources [42],
sensors, and sensor platforms. The input module also offers a RESTful API for providing data [43].
After processing the data, the outcome is shared with BRB main module. A Python-based script was
used to parse json files with data and extract values corresponding to the respective timestamps.

5.2.4. BRB Main Module

This module is the core of our proposed system. It receives data from the input module and
subsequently sends the partial data and initial values of the learning parameters to the training
module to obtain the optimized values. These values are then stored in the knowledge-base module.
This module then uses the remaining data as testing data for prediction. Testing data are distributed
among the referential values of the antecedent attributes using the input-transformation process.
Next, the inference mechanism is triggered using the ER algorithm [28]. As part of the inference
mechanism, matching degrees and activation weights are calculated, while belief-degree updates are
performed due to presence of uncertainties. In the end, rule aggregation is performed to calculate the
predicted PUE value. However, the predicted fuzzy values are converted to crisp values using the
utility function.

5.2.5. Configuration Module

The configuration module is responsible for configuring the different parameters of the
other modules. To render the system dynamic, several different parameters (e.g., database URL, user
credentials, database sources, number of referential values of antecedent and consequent attributes,
and default values of attribute weights) are stored in a configuration file. This module checks the
format of the configuration parameters and then passes the values to the different relevant modules.
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5.2.6. BRB UI Module

This module provides a user interface to view PUE prediction. It also provides an option for
manual input to predict the PUE of single data points.

5.2.7. Training Module

The training module is responsible for incorporating learning in BRBES, as described in Section 4.
It fetches the initial values and training dataset from the BRB main module and returns the optimized
values of the learning parameters.

The training module performs learning by constructing an objective function using
Equations (7)–(10). Subsequently, the BRBaDE base parameter and structure optimization are performed
based on the objective function and constraints for the attribute weights, rule weights, and belief degrees.
Finally, the optimal values of the learning parameters are passed to the BRB main module that is used
for predicting the PUE of the data center.

6. Results

An accurate PUE prediction model is very useful for efficiently managing data centers. This allows
data-center operators to evaluate data-center PUE sensitivity with respect to its operational parameters.
Furthermore, a comparison of actual versus predicted PUE values provide invaluable insight into
real-time plan efficiency and generating performance alerts. Additionally, a data-center efficiency
model allows operators to simulate data-center operating configuration without making physical
changes—note that this is a challenging task due to the complexity of modern data centers and the
interactions among multiple control systems. Therefore, it is very important to verify the accuracy
of the predicted PUE. We used the Mean Square Error (MSE) metric, which is very commonly used
for measuring the error of predicted PUE. The PO and SO using BRBaDE were implemented using
MATLAB 2018b. All experiments were conducted on a MacBook Pro with Intel Core i7 processor,
2.2 GHz, and 16 GB RAM. The dataset was partitioned into a 80:20 ratio for training and testing with
fivefold cross-validation. The results of training and testing are shown in Tables 5 and 6. The second,
third, and fourth columns of the Tables 5 and 6 represent the MSE values for fmincon-based learning,
PO and SO using BRBaDE for Conjunctive and Disjunctive BRBs. From Table 5, it can be observed
that PO and SO using BRBaDE for Disjunctive BRB preformed better than the other methods with the
best value of 0.000230, and an average value of 0.000302 for the training dataset. Similar results were
also observed for the test datasets from Table 6. The best MSE obtained by the BRBES for the training
dataset after training it by PO for SO using BRBaDE for a disjunctive BRB was 0.0023, which is shown
on the last row of the fourth column of Table 5 . On the other hand, the best MSE obtained by the
BRBES while being trained by the fmincon-based learning mechanism was 0.000320, which can be
seen from the last row and second column of Table 5 . The fmincon-based learning mechanism was
only parameter optimization. Therefore, it can be concluded that result accuracy by BRBES could be
improved by employing parameter and structure optimization using BRBaDE as a learning technique.

In addition, the BRBES is compared with two other machine-learning techniques, namely, Artificial
Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) [44]. The ANN was
implemented using MATLAB. The ANN had one input layer, one hidden layer with three neurons,
and one output layer. Levenberg–Marquardt was used as the training algorithm for the ANN. The ANFIS
model was also developed in MATLAB. The "gaussmf" function of MATLAB was used as the membership
function for the inputs, and hybrid function was used for training the fuzzy interface function. The results
are presented in the fifth and sixth columns of Tables 5 and 6 for training and testing, respectively. For the
training dataset, it could be observed that the average MSE value of all cross-validation for PO and
SO using BRBaDE for Disjunctive BR qas 0.000302, while ANN and ANFIS had 0.001727 and 0.00346,
respectively. This clearly presents that PO and SO using BRBaDE for Disjunctive BRB performed better
than ANN and ANFIS for the training dataset. For the testing dataset, the average MSE value of PO and
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SO using BRBaDE for Disjunctive BRB performed better than ANFIS and ANN. However, the minimum
MSE value was achieved by PO and SO using BRBaDE for Disjunctive BRB compared with ANN
and ANFIS.

Table 5. Mean Square Error (MSE) for different kinds of BRBES using parameter optimization (PO) and
structure optimization (SO) using BRBES-based adaptive Differential Evolution (BRBaDE), Adaptive
Neuro Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and the fmincon of Facebook
training datasets.

MSE MSE MSE MSE MSE

Training Dataset fmincon BRBES PO and SO Using BRBaDE PO and SO Using BRBaDE ANN ANFISfor Conjunctive BRB for Disjunctive BRB

1st fold 0.000440 0.035870 0.000280 0.000790 0.000404
2nd fold 0.000730 0.003570 0.000230 0.000544 0.000251
3rd fold 0.000400 0.069020 0.000380 0.002400 0.000385
4th fold 0.000320 0.036594 0.000260 0.002400 0.000291
5th fold 0.000430 0.281800 0.000360 0.002500 0.000399
Average 0.000464 0.085371 0.000302 0.001727 0.000346

Best value 0.000320 0.003570 0.000230 0.000544 0.000251

Table 6. MSE for different kinds of BRBES using PO and SO using BRBaDE, ANFIS, ANN, and the
fmincon of testing datasets from Facebook.

MSE MSE MSE MSE MSE

Testing Dataset fmincon BRBES PO and SO Using BRBaDE PO and SO Using ANN ANFISfor Conjunctive BRB BRBaDE for Disjunctive BRB

1st fold 0.000080 0.003910 0.000080 0.001200 0.000087
2nd fold 0.000730 0.001140 0.000770 0.007600 0.000685
3rd fold 0.000280 0.001220 0.000290 0.000713 0.000197
4th fold 0.000600 0.001140 0.000610 0.000820 0.000577
5th fold 0.000160 0.004950 0.000200 0.000333 0.000140
Average 0.000370 0.002472 0.000390 0.002133 0.000337

Best value 0.000080 0.001140 0.000080 0.000333 0.000087

To have more detailed analysis of the results, the root mean square error (RMSE), mean absolute
percentage error (MAPE), and mean absolute error (MAE) were calculated on the test dataset as shown
in Table 7. From the table, it can be observed that PO and SO optimization using BRBaDE had better
results compared to fmincon, PO and SO using conjunctive BRB, ANN, and ANFIS. Regarding MAE
and MAPE values, similar phenomena can be seen.

Table 7. Comparison of root mean square error (RMSE), mean absolute percentage error (MAPE),
and mean absolute error (MAE) for different kinds of BRBES using PO and SO using BRBaDE, ANFIS,
ANN, and the fmincon of testing datasets from Facebook.

Evaluation Matrix fmincon BRBES PO and SO Using BRBaDE PO and SO Using BRBaDE ANN ANFISfor Disjunctive BRB for Conjunctive BRB

RMSE 0.0089 0.0089 0.0625 0.0346 0.0093
MAPE (%) 0.4115 0.3945 5.3671 0.1616 0.1234

MAE 0.00433 0.00415 0.0572 0.0086 0.0063

Furthermore, the receiver operating characteristic (ROC) curve provides detailed visualization and
comparative assessment of the different methods [45]. Therefore, it is used in different domains, such as
clinical applications [46], atmospheric science, and many other fields [47]. Additionally, the ROC curve
is used to assess the accuracy of trained disjunctive and conjunctive BRBs, ANN, and ANFIS for the
prediction of PUE. The area under curve (AUC) of the ROC curve is the measurement of the accuracy
of a result, where one is the highest value. Usually, ROC curves with a larger area and higher AUC
values are considered better in terms of performance.

Figure 9 illustrates the ROC curves of fmincon, Disjunctive BRB, Conjunctive BRB, ANN,
and ANFIS for predicting the PUE of the Facebook data center. The AUC and confidence-interval
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(CI) values of the aforementioned method are shown in Table 8. The AUC for fmincon, Disjunctive
BRB, Conjunctive BRB, ANN, and ANFIS was 0.50, 0.68, 0.29, 0.57, and 0.53, respectively. By taking
into account 95% CI, the lower and upper limit of AUC for Disjunctive BRB, Conjunctive BRB, ANN,
and ANFIS were 0.31–0.69, 0.46–0.90, 0.12–0.45, 0.36–0.79, and 0.32–0.75, respectively. Hence, it can
be argued that Disjunctive BRB trained by PO and SO optimization using BRBaDE performed better
than the other machine learning methods such as ANN, ANFIS, and fmincon-based optimization
method. The disjunctive BRB performed better than other methods not only in terms of AUC but
also in respect to other lower and upper limits with 95% CI. The PO and SO using BRBaDE helps to
uncover the optimal values of the learning parameters and the optimal BRB structure based on the
training dataset. The PO is enhanced by BRBaDE as the BRBES helps to find optimal values of F and
CR during each DE iteration while ensuring balanced exploration and exploitation of the search space
of the learning parameters. The Disjunctive BRB performed better than the Conjunctive BRB due to
the use of an OR logical operator in the belief rule, which helped in more accurately capturing the
relationship between the attributes for the mentioned use case scenario. Due to the strictness of the
AND logical operator, the Conjunctive BRB failed to capture the relationship beween the attributes
and performed poorly. ANFIS has the inherent problem of a fuzzy system that fails to address all types
of uncertainty. Due to this, ANFIS did not perform better than the Disjunctive BRB. ANN performed
better than the ANFIS but not the Disjunctive BRB. In ANN, there was only one learning parameter,
namely, weight, whereas BRBES had multiple learning parameters, such as attribute weights, rule
weights, and belief degrees. Hence, the lack of learning parameters hindered the performance of ANN.

Figure 9. Receiver operating characteristic (ROC) curve comparison of fmincon, Disjunctive BRB,
Conjunctive BRB, ANN, and ANFIS for predicting PUE of Facebook data center.

Table 8. Comparison of area under curve (AUC) of fmincon, Disjunctive BRB, Conjunctive BRB, ANN,
and ANFIS. CI: 95% confidence interval.

Results fmincon Disjunctive BRB Conjunctive BRB ANN ANFIS

AUC 0.50 0.68 0.29 0.57 0.53
CI 0.31–0.69 0.46–0.90 0.12–0.45 0.36–0.79 0.32–0.75

Furthermore, the complexity of the model influenced the results predicted by them. The Akaike
Information Criterium (AIC) [48] and Bayesian Information Criterium (BIC) [49] are commonly used
for comparison between different models’ complexity. AIC takes into account loss function (sum
squared error) and the number of parameters used for calibrating model complexity. BIC is closely
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related to AIC, which is also based on likelihood function. However, the penalty of the parameters is
comparatively higher for BIC. Therefore, AIC and BIC are used to compare the complexity between
fmincon-based BRBES optimization, PO, and SO using BRBaDE for disjunctive and conjunctive BRB,
ANN, and ANFIS. Table 9 shows the results of AIC and BIC comparisons among the methods.
Among the different methods, the Disjunctive BRB was preferable as it contained lesser values for AIC
and BIC. Thus, the model demonstrates its reliability compared to the other models.

Table 9. Model-complexity analysis for fmincon, Disjunctive BRB, Conjunctive BRB, ANFIS, and ANN.

Model Selection Methods fmincon BRBES
PO and SO Using BRBaDE PO and SO Using

ANN ANFIS
for Disjunctive BRB RBaDE for Conjunctive BRB

AIC −276.273 −352.307 −248.372 −194.379 −342.287

BIC −110.82 −270.628 −82.9185 −87.5673 −227.098

The convergence of PO and SO using BRBaDE for Conjunctive and Disjunctive BRB are depicted
in Figure 10. The solid blue line illustrates the decrease of the MSE for the Disjunctive BRB during
each iteration. The initial MSE was 4.111466, which decreased to 0.000281 after the 1000th iteration.
The dashed line represents convergence for the Conjunctive BRB. The initial MSE for the Conjunctive
BRB was 7.235699, which decreased to 0.003566 around the 499th iteration, after which it became fixed.
Even though the BRBaDE reached a steady state for the Conjunctive BRB in fewer iterations, it had
a more accurate result for the Disjunctive BRB. For better visualization of the convergence of the
BRBaDE, the MSE value was been converted to LOG scale as shown in Figure 10b. From Figure 10,
it can be concluded that PO and SO using BRBaDE performed better for the Disjunctive BRB than
the Conjunctive BRB. Figure 11 illustrates the learning time of the PO and SO using BRBaDE in
correspondence with different data sizes, where it can be observed that learning time grew linearly
with the increase of the data size.

(a) (b)

Figure 10. Convergence of PO and SO using BRBaDE for Conjunctive and Disjunctive BRB. (a) MSE;
(b) MSE (Converted to Log scale).

To further investigate the impact of BRBES PO and SO using BRBaDE, the initial and trained
structure of the disjunctive BRB is represented in Tables 10 and 11 respectively. The trained structure of
disjunctive BRB has four referential values for each antecedent attribute with optimized utility values
to improve the accuracy of predicting PUE, which is evident from Table 11. Furthermore, the attribute
weights of the antecedent attributes were also optimized based on training the dataset. The higher
values of the attribute weights demonstrate the importance of attributes. Similarly, the utility values of
the consequent attributes were also optimized, which is also shown in Table 11. The trained BRB for
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disjunctive BRB is presented in Table 12. It can be observed that the rule weights and belief degrees
changed in respect to the initial rule base (Table 3), improving prediction accuracy.

Figure 11. Data vs learning time for the disjunctive BRB.

Table 10. Initial structure of the disjunctive BRB for the Antecedent and Consequent part.

Antecedent Attributes Consequent Attribute
X2 X3 X4 X5 X1

Attribute Weights 1 1 1 1 X1
Referential Values H M L H M L H M L H M L H M L

Utility Values 55.032 27.037 0.959 99.010 65.076 31.068 39.060 19.80 0 338 170 0 1.25 1.13 1

Table 11. Trained structure of the disjunctive BRB for the Antecedent and Consequent part.

Antecedent Attributes Consequent Attribute
X2 X3 X4 X5 X1

Attribute Weights 0.24 0.23 0.99 0.84 X1
Referential Values H HM M L H HM M L H HM M L H HM M L H M L

Utility Values 54.57 31.45 14.11 0 99.08 76.25 33.07 31.07 36 36 36 0 337.50 292.12 146.44 0 1.07 1.07 0.90

Table 12. Trained BRB for disjunctive BRB.

Rule ID Rule Weight X2 X3 X4 X5 Belief Degrees

1 0.99 H H H H 1 0.000 0.000
2 0.08 HM HM HM HM 0.000 0.370 0.630
3 1.0 M M M M 0.001 0.090 0.910
4 0.28 L L L L 0.000 0.000 1.000

Furthermore, to evaluate the robustness of the proposed learning mechanism, we have used
another dataset from the Joint Information Systems Committee (JISC) funded project named Measuring
Data Center Efficiency [50,51]. The dataset contained outside temperature, server room temperature,
IT equipment energy consumption, and PUE from 26 October 2011 to 15 December 2011 with a sample
rate of 30 min. The dataset contained a total of 2400 data points, whereas in the Facebook dataset there
were 298 data points as mentioned in Section 5.1. Therefore, this dataset is significantly larger than the
previous one. Outside temperature, server room temperature, and IT equipment energy consumption
of this dataset were considered as input and PUE as output. The dataset was partitioned into a 80:20
ratio for training and testing. Disjunctive BRB with our proposed learning algorithm, named BRBaDE
(Section 4), ANN, and ANFIS were used for predicing the PUE . Table 13 presents the results of
predicting PUE by Disjunctive BRB with PO and SO using BRBaDE, ANN, and ANFIS for different
evaluation metrics (such as RMSE, MAPE, MAE) on the testing dataset. The RMSE values for PO and
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SO using BRBaDE, ANN, and ANFIS are 0.0139, 0.01418, and 0.0138 respectively. The MAPE values
for the above-mentioned algorithms are 0.0035, 0.0197, and 0.0074 respectively. Subsequently, 0.0111,
0.0115, and 0.0112 are the MAE values for PO and SO using BRBaDE, ANN, and ANFIS respectively.
For all the evaluation matrices, it can be observed that PO and SO using BRBaDE has the lowest value
than the other methods. Thus it can be concluded that Disjunctive BRB with PO and SO using BRBaDE
is performing better than ANN, and ANFIS.

Table 13. Comparison of root mean square error (RMSE), mean absolute percentage error (MAPE),
and mean absolute error (MAE) for Disjunctive BRB using PO and SO using BRBaDE, ANN, and ANFIS
of testing datasets from Measuring Data Centre Efficiency project.

Evaluation Matrix PO and SO Using BRBaDE ANN ANFISfor Disjunctive BRB

RMSE 0.0139 0.01418 0.0138
MAPE (%) 0.0035 0.0197 0.0074

MAE 0.0111 0.0115 0.0112

Thus from the above discussion it can be seen that PUE prediction using new learning algorithm
BRBaDE performed better than the ANN and ANFIS due to its capability of addressing all kinds of
uncertainties in data. Furthermore, new learning algorithm BRBaDE helps to find optimal values
better than the fmincon-based gradient algorithm used in MATLAB.

7. Conclusions

This study presented a BRBES-based learning system as a novel capacity-management technique
for data centers to automate the monitoring and forecasting of PUE. This helps data-center operators
to take necessary measures to ensure better PUE values and generate alarms in advance, while there is
the probability of exceeding the threshold value of PUE. Furthermore, an efficient PUE prediction
model helps to evaluate data-center sensitivity with respect to its operational parameters. All this
helps data centers to become more energy-efficient and sustainable. We provided real-life examples
from big IT companies in the industry, and demonstrated the importance of this technique to capture
and forecast dynamic nonlinearities of data-center variables. This has resulted in a significant increase
of energy efficiency for these energy-greedy facilities. Furthermore, it was also presented that PO and
SO using BRBaDE helped a disjunctive BRB-based BRBES to optimize its learning parameters and
the structure of BRB, which, in turn, helped to achieve a more accurate prediction of the PUE of data
centers. The prediction of disjunctive BRB-based BRBES was compared with other machine-learning
techniques such as ANN and ANFIS. The results showed that disjunctive BRB outperformed ANN and
ANFIS due to BRBES’s inherent capability of addressing a vast range of uncertainties, optimization
of learning parameters, and structure of the BRB. Furthermore, it was shown that the new PO and
SO using a BRBaDE-based learning mechanism performed better than the previous fmincon-based
learning mechanism of BRBES. Since our model has the flexibility to incorporate different parameters
found in diverse domains, this model has the capability to address the problem of those domains.
In this way, the generic capability of our model could be explored. In the future, this mode will be used
in different domains such as health informatics and disaster management to explore its capabilities.
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