
Figure 3. Example of 40 O+ varied trajectories (different colours) from the plasma mantle on 11.06.2011 between 01:24UT - 01:29UT .

The crosses denote the starting positions, whereas the asterisks denote the ending positions in the magnetosphere.

However, such cases are rare because for a total of 1751 trajectories having a X minimum distance beyond -50Re only 79

trajectories �nish their route close to Earth (R < 10 Re). The 1672 remaining are roughly equally spread between 10Re and

66Re. The average minimum X distance is around -10Re, which corresponds to the plasma mantle region if |Z| > 5Re (see220

also on Fig. 5).

Fig. 5 shows the start (left panel) and stop (right panel) positions of all trajectories in cylindrical coordinates (Rcyl =
p

Y 2 + Z 2). The colour bar represents the numbers of trajectories. In the left panel, we clearly see that particles are launched in

the plasma mantle/cusp region, while on the right panel, the ending positions are spread at highRcyl . O+ ions from the plasma
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Figure 4. (a) Length of the 27200 O+ trajectories in our sample. Note the logarithmic scale. (b) Final positions expressed in the geocentric

distance R given in Re (see text for definition). (c) Minimum X distance for each trajectory.

mantle do not necessarily escape in the distant tail as we suggested in Slapak et al. (2017); Schillings et al. (2019), but they225

are escaping almost directly through the magnetopause because of their high velocities in these regions. The magnetopause is

identified by abrupt changes in the tracing of the magnetic field lines, once the magnetopause is crossed, the field lines become

straight and follow the IMF direction. Similarly, we observe 20% of the ions are escaping in the dayside (X > 0 Re). Note that

the vertical line of ions at -60 Re have been stopped tracing due to the limit of our code.

The associated scaled O+ flux (defined as the net outward flux mapped to an ionospheric reference altitude of 1000 km with230

a magnetic strength of 50 000 nT) is about 1013 m−2s−1 in average (not shown). The highest O+ scaled flux, 1014 m−2s−1,

is observed around Earth (-3 Re < X < 3 Re) at Rcyl = 23 Re. In contrast, the lower scaled flux is observed below Rcyl = 10

Re and between 15 Re < Rcyl < 20 Re for X lower than -20 Re.

5 Discussion

In our 136 events based on Cluster-CODIF observations, the parallel and perpendicular components of the velocities during235

the events are taken as inputs to our forward tracing model (see Section 3.2 and Fig. 2). From these observations, we found

that O+ ions observed in the plasma mantle or higher altitude cusp have a parallel velocity which is twice the perpendicular

component in 93% of the events. More precisely, the ratio between the velocity components (|v‖|/v⊥) is 2.06 ± 0.83. If we

considered that perpendicular velocities measured by CODIF is mainly E×B drifts, these observations show that O+ ions

at high altitude are not subject to a strong convective electric field anymore. However, Haaland et al. (2007) reported a high240

plasma convection strongly dependent on the IMF direction and magnitude. In the lobes and for southward IMF, the convection

velocities towards the plasma sheet are around 10 km/s (Haaland et al., 2008). In contrast, the 7% of the our events with higher

convection velocity have a corresponding Dst index between -5 nT and 5 nT and IMF Bz component between -2 nT and 2 nT.

The highest parallel to perpendicular ratios are found for strong southward IMF (53% of the cases) and strong geomagnetic

disturbances (46% for Dst < -20 nT) (not shown).245
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Figure 5. Cylindrical coordinates of the starting and ending positions of the launched O+ ions. The colour bar represents the number of

trajectories in each bin (1 Re x 1 Re).

We do not find any strong correlation between geomagnetic activity (Dst) and the final positions. For the IMF direction, we

identify 47% of the events are associated with northward IMF and the final positions of these ions to be mainly spread between

Rgeoc = 10 Re and Rgeoc = 35 Re (82% of the events with northward IMF). A similar trend is observed for the remaining 53%

events associated with southward IMF. Thus, the direction of the IMF do not influence in which magnetospheric region the ions

end up. However, if we consider only the ions with their ending positions in Rgeoc < 10 Re, they occur during northward IMF250

(63%). This result can be compared to the cold ion outflow observed in the lobes during southward IMF. Haaland et al. (2012)

found that for southward IMF the cold ion outflow is convected toward the plasma sheet due to strong convection, whereas for

IMF directed northward convection is stagnant, so that cold ion outflow reach the far tail.

Slapak et al. (2012) suggested three main routes for ion outflow; (1) cold ion that will end up mainly in the plasma sheet

(Mouikis et al., 2010; Haaland et al., 2012; Liao et al., 2015), (2) energised ions from the cusp to the plasma mantle (Liao255

et al., 2010; Slapak et al., 2017; Schillings et al., 2019), (3) energised ions from to cusp going directly to the magnetosheath

(Slapak et al., 2017). Slapak et al. (2017); Slapak and Nilsson (2018); Schillings et al. (2019) suggested that ions observed in

the plasma mantle have sufficient energy and velocity to escape in the distant tail. However, our results show that very few

ions reach the distant tail but instead escape directly through the magnetopause after a few minutes (∼ 22 min). These O+

ions have short or middle length trajectories in our model (less than 2000 steps, see also Section 4) and represent 89% of260

our sample. Most (99.3%) of these O+ ions reach a point where the tracing is stopped at a geocentric distance higher than

10 Re and escape the magnetosphere. For ions with trajectories longer than 2000 steps (11% of the total trajectories), 32%

is earthward flow due to its interaction with the plasma sheet. Most of these ions do not return to the ionosphere. Some will
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instead experience charge exchange, become neutral and be lost from the magnetosphere. This assumption is supported by

Ebihara et al. (2006), who modelled O+ trajectories and introduce a charge exchange process in their model. They estimated265

that 2% of the total outflow became neutral due to charge exchange with the hydrogen geocorona. Other particles will drift

to the magnetopause (magnetopause shadowing) and be lost. We note that ion precipitation recorded by the DMSP spacecraft

(Newell et al., 2007) indicates a total precipitation of ions (H+ and O+) of the order 1024 s−1, which is most of the time

dominated by cusp precipitation, not return flow precipitation. This is even less than the return flow estimated by Slapak and

Nilsson (2018), indicating that most return flow indeed does not precipitate to the ionosphere. However, we do not study the270

fate of this earthward ions flow and therefore they are not considered as escaping ions in this study.

Under quiet magnetospheric conditions (Dst ≥ -20 nT), it was found that 6% of the final positions of the trajectories is

within a geocentric distance of 10 Re (return flow), whereas during disturbed conditions we observe only 1.5% return flow.

This result agrees with Ebihara et al. (2006), who found that under quiet time 4% to 7% of the outflowing ions return to Earth.

Under disturbed conditions, the authors estimated a smaller return of 0.6% to 0.8%.275

Finally, since O+ ions are launched from the plasma mantle, the particles observed by CODIF already went through trans-

verse heating and centrifugal acceleration. Thus this model includes most of the energisation and acceleration compared to

other models. Moreover, the model does not include wave-particles interaction after the oxygen ion has been launched.

6 Summary and conclusions

Based on previous suggestions that O+ ions from the plasma mantle are escaping (Slapak et al., 2017; Slapak and Nilsson,280

2018; Schillings et al., 2019), we investigate the fate of ions by tracing the particles forward in time in the magnetospshere.

The magnetospshere is represented by the Tsyganenko T96 model for the magnetic field and the Weimer 2001 model for the

electric field (ionospheric potential). We analyse 136 plasma mantle and cusp events detected automatically in the Cluster data

during 2001 and 2007. For each event, 200 O+ ions with an initial parallel and perpendicular velocity are launched from the

plasma mantle or high-latitude cusp. The initial velocities and positions are determined by Cluster observations and are used285

as inputs for the forward tracing. Our results are summarised in the following points:

1. The O+ ions observed in the plasma mantle and high-latitude cusp have an initial parallel velocity that is twice the

perpendicular velocity for 93% of the event. Thus, the parallel velocity dominates from the start, and through high

perpendicular temperatures, the mirror force will increase the parallel velocity further downstream of the observation

point.290

2. The highest ratios between parallel and perpendicular velocities are found for southward IMF (53%) and strong geomag-

netic disturbances (46% for Dst < -20 nT).

3. 96% of the final positions (out of 27200) are located beyond a geocentric distance of 10 Re. These particles escape and

are lost into the solar wind. 20% of the ions escape directly through the high-latitude dayside magnetopause.
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4. 3.5% of the total trajectories lead back towards earth, i.e. they constitute return flow. Some of these O+ ions have295

interacted with the plasma sheet in the distant tail and eventually end up between the Earth and a geocentric distance of

10 Re.

5. Under disturbed magnetospheric conditions (Dst < -20 nT), we observe 1.5 % return flow, whereas during quiet time the

return flow increases to 6%.

6. We do not find any correlation between the IMF direction, the geomagnetic disturbances and the final positions of O+ in300

our tracing model. However, the ions ending up close to the Earth (geocentric distance smaller than 10 Re) are for 63%

of the time associated with northward IMF.
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