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Abstract

Galactic core-collapse supernovae is a once-in-a-lifetime event which
could carry with it information about new physics. In this work a
method for estimating the progenitor mass and distance using the
IceCube Neutrino Observatory is presented. The mass is expressed
through an intermediate parameter called compactness. For a super-
nova with a progenitor mass less than 10 solar masses all stars with
a mass over 15 solar masses in the galaxy can be excluded using the
method developed in this work. At 10 kpc the distance to the super-
nova can be estimated to within 8.5% taken into account the strength
of the neutrino signal and the uncertainty in the method used. This
shows promising results of estimating parameters such as distance and
mass using neutrinos.
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1 Introduction

This work is done in the context of supernova (SN) neutrinos and the experi-
ment IceCube. The focus is on aspects related to multi-messenger follow-up
from the next galactic core-collapse supernova. The rate of core-collapse
supernovae in our galaxy is estimated to be 2-3 per century. For such a
once in a lifetime event it is of utmost importance to maximize the physics
that can be extracted. It would therefore be of great value to identify the
location of the SN in order to catch the first light from the supernova using
electromagnetic observatories at earth. For a galactic core-collapse super-
nova, neutrinos arrive hours to days before the photons, providing an early
warning to astronomers. Using neutrinos to determine the distance to the
supernova, as well as an estimate of the progenitor mass, will enable quick
follow up of this once in a lifetime event. This would be useful for the
SuperNovae Early Warning System (SNEWS) [1] which is an international
network working with real time supernova detection. The aim of this work
is then to examine the possibilities to estimate SN parameters in particular
distance and progenitor mass based on the neutrino signal seen on IceCube.
This thesis could then feed into SNEWS by providing vital information such
as distance to and mass of the supernova, helping to further narrow down
the potential star that has undergone core-collapse.

1.1 Supernovae

Supernovae are categorized into two main categories depending on their
spectroscopic properties at maximum luminosity and the properties of the
light curve. The two main categories called type I and type II are categorized
depending on the presence or absence of hydrogen lines in the spectra. The
type Ia is distinguished from the rest of the supernovas by the mechanics
of the explosion. The type Ia is the only one that does not undergo core
collapse. Type Ia SN have a well defined width-luminosity relation which
makes it possible to use them as a standard candle for distance measurements
[2].

Type II SNe are from giant starts with a mass between 8-9 and 40-60 solar
masses which can be subdivided into different categories also dependent on
their spectroscopic characteristics. SNe are type IIb if the spectra is helium
dominated. SNe are type IIL if the decrease of luminosity is linear in time,
or type IIP if the luminosity shows a plateau in time, IIF if it is faint, IIn if
it shows narrow line emissions, and IIpec if it shows peculiar characteristics.
These classifications are shown in Fig.1.
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Figure 1: Supernova categorization type I and type II. All except SN Ia are core-
collapse.

Type Ib, Ic and type II supernovae undergo what is called a core-collapse.
This produces a large flux of neutrinos making them interesting for neutrino
physics and this thesis. Core-collapse supernovae are created by large stars,
(M & 8M�). Approximately 99% of the gravitational energy is carried away
with the neutrino during the collapse. The emitted neutrinos have a energy
in the order of 10 MeV [2].

Core-collapse SNe happens when the iron core of a massive star col-
lapses. The explosion is driven by a shock wave created when the star turns
into a proto-neutron star. This happens because the iron nucleus is the
most tightly bound nucleus and therefore energy can not be released from
fusing iron nucleus together to create heavier elements. Hence, the out-
ward pressure created by the fusion reaction will lead to the core shrinking.
Then this will be followed by a rapid increase in the temperature, causing
photodissociation to occur.

γ +56 Fe→ 13α+ 4n (1)

The photodissociation reaction absorbs energy and reduces the kinetic en-
ergy of the electrons leading to electron capture.

e− +N (Z,A)→ N (Z − 1, A) + νe (2)
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e− + p→ n+ νe (3)

These processes decreases the electron pressure even more leading to an
acceleration of Eq.1-3. In the beginning the neutrinos are free to leave the
star. But when the density becomes large enough the neutrinos can not
escape the star any more, about 1011 g/cm3.

About 1 second after the end of stability the core of the star reaches the
density of nuclear matter, 1014 g/cm3. The collapse overshoots its new equi-
librium point that then creates a shock-wave travelling outwards through the
iron core. When this happens the collapse of the core stops, forming a proto-
neutron star. The star now has an unshocked core and a shocked mantle.
When the shock travels outwards through the star the energy is dissipated
by photodissociation creating free protons and neutron. The free photons
undergoes electron capture which creates a large flux of electron neutrinos
that can still not escape the star because of the large matter density. When
the shock reaches a density where the neutrinos can escape, all the neutrinos
piled up behind the shock are released in a few milliseconds. This is called
the neutronization burst. This shock is also what drives the SN explosion.
After the collapse, a neutron star is left and the gravitational energy has
mostly been released as neutrino flux. Neutrinos of all flavours are created
in the hot core of the proto-neutron star through a multitude of different
processes. Here are a few of the relevant processes.

e− + e+ → ν + ν̄ (4)

e± +N → e± +N + ν + ν̄ (5)

N +N → N +N + ν + ν̄ (6)

γ → ν + ν̄ (7)

γ + e± → e± + ν + ν̄ (8)

In Fig.2 the neutrino luminosity and average energy curves for an 8.8 M�
star can be seen [3]. The simulation was run to late time making it possible
to see both the accretion phase , t < 1 s, and the cooling phase, t > 1 s. At
t = 30 ms the neutronization burst is clearly visible.

The neutrino energy spectrum of a supernova can be described by a sim-
ple fit [4], Eq.9. Eν is the neutrino energy for the chosen neutrino flavour,
φ is the spectrum. α is the fitted parameter called the pinching parame-
ter and Γ is the gamma function. The pinching parameter determines the
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Figure 2: The luminosity and average energy for an 8.8 M� 1D supernova simula-
tion called the Garching model. The peak in luminosity at 30 ms is the neutroniza-
tion burst. The smaller peak at 20 ms is located at the core bounce in time. The
left interval is called the accretion phase and the right is called the cooling phase.
Data is from Hüdepohl, et al [3].

shape of the spectrum. Lastly N0 is a normalization constant related to the
luminosity.

φ(Eν) = N0
(α+ 1)α+1

〈Eν〉Γ(α+ 1)

(
Eν
〈Eν〉

)α
exp

[
−(α+ 1)

Eν
〈Eν〉

]
(9)

The pinching parameter α can be expressed as.〈
E2
ν

〉
〈Eν〉2

=
2 + α

1 + α
(10)

This method of expressing the neutrino spectra is useful as it means that
the energy spectrum as a function of time and and energy can be expressed

4



simply by the luminosity, the mean energy and the root mean squared energy
as a function of time.

1.2 Compactness

Compactness,ξM , will be defined following O’Connor and Ott [5]. Here M is
the chosen mass scale (2.5 M� will be used in this work). Other mass scales
could be used instead of 2.5 M� but 2.5 was used as it gave good results
and it is commonly used, see [5]. R(Mbary = M) is the radial coordinate
encloses baryonic mass equal to M . Baryonic mass is all matter consisting
of baryons.

ξM =
M/M�

R(Mbary = M)/1000 km

∣∣∣∣
t=tcollapse

(11)

ξ2.5 =
2.5

R(Mbary = 2.5 M�)/1000 km

∣∣∣∣
t=tcollapse

(12)

Compactness is a dimensionless quantity that can be interpreted as a sort of
dimensionless density of the core at the time of collapse. It has been shown
that the compactness is to a great significance correlated to the neutrino
spectrum evolution after core-collapse [6, 7]. Though it should be noted
that it is not feasible to expect to characterise an entire core-collapse from
a single parameter. How the progenitor mass relates to the compactness at
core collapse for the models used in this work can be seen in Fig.3.

10 15 20 25 30
0

0.2

0.4

0.6

ξ 2
.5

40 80 120

ZAMS Mass [M�]

Figure 3: Compactness vs progenitor mass for the models used.
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Table 1: The fermions in the standard model

1 2 3
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1.3 Neutrinos

νe

νµ

ντ

νe

νµ

ντ

νµ

ντ

ν1 ν2 ν3

(a) Flavour content in mass eigenstates

ν3

ν2
ν1

ν2
ν1

ν3

Normal Inverted

(b) Mass hierarchy

Figure 4: a) Illustration of the how the different mass states contains the different
flavour states. b) illustrates the mass hierarchy.

The neutrino is the most abundant massive particle in the universe. The
neutrino was hypothesized to exist by Wolfgang Pauli in 1930 in order to
explain the violation of conservation of energy and angular momentum of
β-decay. It was discovered in 1956 by C.Cowan, et.al by the use of a large
nuclear reactor as the source of the neutrinos [8]. Neutrinos do not have any
electric or color charge. When excluding gravitation the neutrinos can only
interact with regular matter through the weak interaction by the exchange
of W and Z bosons. In the standard model there are 6 flavours (variants),
(νe, νµ, ντ ) and (ν̄e, ν̄µ, ν̄τ ) [9]. They are massless in the standard model
something that we know today to not be true.

Today it is well known that neutrinos can change flavour as they prop-
agate. This is explained as each neutrino is a superposition of its mass
eigenstates conveniently called (ν1, ν2, ν3). In other words the favour eigen-
state is not the same as the mass eigenstate. It is known that two of the
mass states are close in mass to each other and one of the mass state further
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from the other two. In conclusion there will exists two possible configura-
tions of the mass states called the normal and the inverted mass hierarchy.
Illustrations of this can be seen in Fig.4.

There are two distinct oscillation properties: the vacuum oscillation and
the matter oscillation (the so-called Mikheyev–Smirnov–Wolfenstein (MSW)
effect). In 1985 S.P. Mikheyen and A.Yu. Smirnov showed that when neu-
trinos propagates through matter with varying density there can arise res-
onance for specific flavour transitions [10, 11]. This quickly gained traction
as it could explain the missing electron neutrinos from the expected amount
of solar neutrinos. This effect of matter oscillation will also take place in a
core-collapse SN and will therefore have be taken into consideration in this
work. A conceptual description will be presented in the next section.

1.4 Two flavour mixing

A brief introduction into two flavour mixing that can later be expanded into
the full three flavour mixing is necessary in order to understand part of the
methods used in this thesis. As explained earlier the flavour eigenstates can
be expressed as linear combinations of the mass eigenstates, see Eq.13. Here
θ is the mixing angle and the matrix Uli is the mixing matrix. The mixing
angle describes the mass contents of the flavour states. Here νa is a mixture
of νµ and ντ . νe

νa

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)


ν1

ν2

 (13)

It is obvious that this relation can be inverted to express the mass eigenstates
in terms of flavour states.ν1

ν2

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


νe
νa

 (14)

When the neutrino is created the mass states has equal and opposite phase
cancelling out the other flavour state. Hence, the flavour states are orthog-
onal as expected. Therefore, the mixing matrix U is unitary. But during
propagation the phase difference will change and the flavour parts will not
cancel out. This is the property of neutrino oscillations.

Vacuum oscillation is the simpler to understand compared to matter
effects. In vacuum the mixing angle θ is constant making the oscillation
only possible as a result of a phase change between the mass states. Due
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to difference in masses the phase velocity is different for ν1 and ν2 this then
gives rise to the flavour oscillation during propagation.

By contrast in matter the oscillation is affected by interaction with the
matter in which the neutrinos propagates through. This leads to changes in
mass eigenstates and eigenvalues.

ν1, ν2 → ν1m, ν2m (15)

m2
1

2E
,

m2
2

2E
→ H1m, H2m (16)

Similarly to the vacuum the flavour states is then expressed as linear
combinations of the matter mass eigenstates with corresponding mixing an-
gles. νe

νa

 =

 cos(θm) sin(θm)

− sin(θm) cos(θm)


ν1m

ν2m

 (17)

In matter the eigenstates and the the eigenvalues depends both on the
matter and the energy of the neutrinos. An increased number in degrees
of freedom leading to new effects. This is what is called the MSW effect.
The flavour composition of the mass eigenstates changes as they propagate
because the composition are determined by the mixing angle θm(t). This
is the adiabatic MSW effect. If the change in matter is smoothly varying,
matter transitions between mass eigenstates will not occur. This effect can
be seen in the solar neutrinos where νe are created in almost a pure ν2

mass state where they then propagates out of the sun adiabatically, i.e.
no mass eigenstate transition. This explains why only one third of the
expected electron neutrino flux are measured at the earth, see Fig.4. ν2 is
approximately one third electron neutrino and the rest νµ and ντ [12]. The
formulation of two flavour mixing can without too much effort be extended
to the full three flavour mixing. Though for the solar neutrinos this in not
necessary as the contribution of ντ are negligible.

One might ask why is this then important to know for this work. Because
of the extreme density in a SNe, the third mass eigenstate becomes relevant
to describe the behaviour of neutrinos under MSW mixing. This will also
make it possible to use a core collapse SNe to probe the mass hierarchy of
the neutrino mass states [13]. Because the neutrino exits the SN mostly as
a single mass state the vacuum oscillation effect will be negligible as it is for
solar neutrinos.
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For the normal hierarchy the ν̄e will lead to a mixing with heavy lepton
anti-neutrinos ν̄x. Whereas in the Inverted neutrino hierarchy the ν̄e will
entirely be composed of ν̄x [14].

LNH
ν̄e = cos(θ12)2Lν̄e,SN + sin(θ12)2Lν̄x,SN (18)

LIH
ν̄e = Lν̄x,SN (19)

In a water Cherenkov detector the neutrino mass hierarchy will manifest
as a higher rise-time for the inverted hierarchy than for the normal at early
times of the SN [14]. Because we do not know if the neutrinos follows a
normal or inverted mass hierarchy both hierarchies will be considered in
this work.

1.5 SNEWS

The low rate of galactic core-collapse SNe makes it of vital importance that
when it happens we are prepared to extract as much physics as possible from
it. The SNEWS is an international network of neutrino detectors whose
aim is to provide astronomers with early warnings in the event of a galactic
supernova. Currently seven neutrino experiments are involved: Super-K
(Japan), LVD (Italy), IceCube (South Pole), KamLAND (Japan), Borexino
(Italy), Daya Bay (China), and HALO (Canada). The network also tries
to optimize global sensitivity by coordinating downtimes between different
detectors. Today the SNEWS is mostly a collaboration between neutrino
detectors but there are plans to include gravitational wave detectors like
Laser Interferometer Gravitational-Wave Observatory (LIGO) in the future.

Coordinating the work between different detectors will allow for the sig-
nal threshold to be lowered compared to having individual thresholds for
each detector. The likelihood of multiple detectors having false positives at
the same time is rather unlikely [1].

1.6 IceCube

IceCube is a long string water Cherenkov detector located at the geograph-
ical south pole, see Fig.5 for an illustration. The detector is approximately
one cubic kilometre of ice at a depth of 1450 m to 2450 m. The construction
of the detector was largely finished 2011. A Cherenkov detector uses the
phenomena of when a charge particle travels faster than the phase velocity
of light in a medium Cherenkov light is emitted and this light can then be
detected. Because of the small interaction cross-section for neutrinos the
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Figure 5: Diagram of the IceCube neutrino observatory. Credit: IceCube Science
Team - Francis Halzen, Department of Physics, University of Wisconsin

extreamly large detector volume is required [15]. The detector consist of
5160 light sensors called Digital Optical Modules (DOMs).

The detector was originally designed to detect neutrinos with energies
greater than 100 GeV. But thanks to the low noise large volume of the
detector a burst number of low energy neutrinos can be detected. The low
energy neutrinos are only detected by a single DOM. A SN would then
be seen as a rise in the total noise rate of the detector above the normal
noise rate. The noise rate of the DOMs are 540 Hz which can be lowered
to 286 Hz by introducing an artificial dead time after a detection at the
cost of some signal dead time. The photomultiplier tubes have a region
of correlated noise after a detection. A dead time of 250 µs gives a good
compromise between signal dead time and noise rate [16]. The background
has a spread that is wider then a pure Poissonian as a result of correlated
noise that is not taken care of by the muon corrected signal. This widening
can be expressed as σ = A

√
Total noise rate where A can be between 1.3

and 1.7, slightly dependent on the binning. In this work a factor of 1.3 will
be used.

IceCube’s sensitivity for low energy neutrinos are dominated by the in-
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verse beta decay process. This means that IceCube has its largest sensitivity
to the time evolution of the anti-electron neutrinos for most core-collapse
SN in the galaxy.

2 Method

2.1 Dataset of simulations

The dataset of simulations used in this thesis are 1D core collapse supernova
simulations with progenitors between 9 and 120 M� provided by Warren et
al. [6]. They are all solar metallicity stars created by the KEPLER stel-
lar evolution code from Sukhbold et al. [17]. The FLASH multiphysics
simulation framework was used to run the simulations with the Supernova
Turbulence In Reduced-dimensionality (STIR) model. This model aims to
simulate the turbulence seen in multi dimensional simulation to artificially
drive the explosion. It has been seen that turbulence is a crucial component
in the mechanics of core-collapse SN that can not be achieved in a 1D sim-
ulation without artificially adding extra terms. By adding these terms the
simulation then reproduces the results seen in multidimensional simulations.
These progenitor mass studies are limited to 1D simulations because of the
large computational resources necessary for multi dimensional simulations.
This data set provides neutrino signals over a wide span of mass rages which
is suitable for my work.

2.2 SNOwGLoBES

SuperNovaObservatories with GLoBES (SNOwGLoBES) [18] is an open
source software developed to easy and quickly calculate neutrino event rates
for different types of detectors. A multitude of detectors and fluxes are
provided and it is simple to add new fluxes yourself. A method for MSW
neutrino oscillation is also included in the software using the formulae from
[19, 20]. IceCube is one of the detectors already included in the software
[21]. SNOwGLoBES uses 200 equally spaced bins of 0.2 MeV as input flux
between 0 and 100 MeV. The output is binned events as a funtion of energy
with 0.5 MeV binns for the different interaction channels provided by the
experimental configuration.

When calculating the event rate for a given interaction channel I of an
experiment with a given flux, Φm(t), for IceCube the event rate can be
expressed in the form of an integral, see Eq.20. For an explaination of all
varables see Table.2.
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Figure 6: The neutrino luminosity and average energy for the Warren, et.al, models
[6] used in this project for the different flavours. νx is the luminosity of a single
heavy fermion flavour neutrino (νµ, ν̄µ, ντ , ν̄τ ).

The only thing that scales with distance is the flux and that is propor-
tional to the inverse distance squared, the rate will have the same scaling
of inverse distance squared. This means that when you want to compare
different distances you can do that after the calculations by scaling the rate
of detections.

rI(t) = NDOM εdeadtime(t)ntargetnweitght,I

∫
dE

DΦm(t)

dE

∫
dE′

dσI(E
′, E)

dE′
veff,±(E′)

(20)
When using SNOwGLoBES the flux files are already integrated in each

time bin [t, t+ 1], giving a fluence file. This will give the rate as the number
of events in each time bin. The event rate can then be approximated by
dividing by the size of the time bin. The energy is then split up into the
200 energy bins and lastly summed over all bins in order to get the total
number of events in each time bin. Eq.21 is then the equation that is solved
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Table 2: SNOwGLoBES variables

rI(t) Rate of DOM hits for the given interaction channel.

Φm(t) The neutrino flux

σI(E
′, E) The cross-section for the specific interaction channel.

ntarget The density of targets for a given reaction

nweitght,I The number of interaction targets per reference target

NDOM Number of active DOMs

εdeadtime Dead-time set in the DOMs as described in the IceCube section

veff,±(E) The average effective volume per DOM

RI,n The number of DOM hits in each time bin for the given inter-
action channel.

Fn(Ej) The neutrino fluence in the time bin

kI(Ek, Ej) The energy distribution function describing the proportion of
interaction products produced with energy Ek

in SNOwGLoBES software.

RI,n =

∫ t+1

t
rIt

=NDOM εdeadtime(t)ntargetnweitght,I(∆E)2

200∑
j,k=1

Fn(Ej)σI(Ej)kI(Ek, Ej)veff,±(Ek)

(21)

In Table.3 the relevant interaction channels for a water/ice detector such
as IceCube is shown.

The SN models used in this project after being run through SNOwGLoBES
can be seen in Fig.7. Slight differences between the normal and the inverted
neutrino hierarchy can be seen showing the necessity to consider both hierar-
chy when developing a method to estimate parameters from a core-collapse
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Table 3: Relevant interaction channels for a water detector

Channel Reaction Neutrino flavor

IBD ν̄e + p→ n+ e+ ν̄e

ES ν + e− → ν + e− νe, ν̄e, νx

νe − 16O ν16
e O→ e− +16 F νe

ν̄e − 16O ν̄16
e O→ e+ +16 N ν̄e

NC ν16O→ ν +16 O νe, ν̄e, νx

supernova. As expected the νe is suppressed because of IceCubes main sen-
sitivity to ν̄e.

2.3 Definitions and Uncertainties estimations

The method presented by Horiuchi et al [7] will be used with its definition
of ∆f . The idea is that you compare the ratio of DOM hits in different
time slices after core collapse. The number of DOM hits is a reflection of
the strength of the neutrino signal. The neutrino signal is then indirectly
measured by the number of DOM hits. Horiuchi, et.al. shows that this
parameter ∆f can be used to get an estimation of the SN compactness.
Here ∆t is a time interval for example 50-100 ms after core collapse.

∆f =
N(∆t)

N(0− 50 ms)
(22)

In order to estimate how well such parameters as distance and mass can
be estimated, uncertainties has to be estimated. In this work ”statistical”
uncertainties which is the uncertainty dependent on the strength of the
signal, i.e. how many DOM hits are registered, and the fit uncertainties
which is the error estimation of how well the dataset fits the method.

The number of DOM hits in each time slice is assumed to be a Poissonian
distribution where the standard deviation is equal to the sqare root of the
signal. IceCube also has a background which is assumed to be independent
and can then simply be added to get the statistical uncertainty for each time
slice.

σ2
slice = Nsignal + σ2

noise, σbackground = 1.3
√

mean total detector noise (23)
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Figure 7: The estimated number of DOM hits at IceCube for a SN at 10 kpc
binned in 1.6 ms as estimated by SNOwGLoBES for normal and inverted neutrino
hierarchy.

The statistical uncertainty for the parameter ∆f can then be defined as.

σ2
statistical =

(
1

N(0 − 50 ms)

)2

σ2
slice(∆t)+

(
N(∆t)

(N(0 − 50 ms))2

)2

σ2
slice(0 − 50 ms)

(24)
All models are fitted with the least square method. Because the regres-

sion model is the mean response of the provided data to the fitted model
an estimation off the error of this fit is needed. This uncertainty will be
distinctly different from the statistical uncertainty and can therefore be as-
sumed to be independent. The fit uncertainty will be defined as the root
mean squared error of the fit, see Eq.25. Here yi is the predicted value from
the fit and ŷi is the real value. Given an Gaussian distribution of the fit
uncertainty this definition will give an estimation of the standard deviation
of the uncertainty.

σ2
fit ≈ s2

fit =
∑
i

(yi − ŷi)2

n− p (25)

The compactness will be fitted with a line to the parameter ∆f . The
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total error will then be the statistical error, Eq.24, and the fit error.

σ2
total = σ2

statistical + σ2
fit (26)

For the uncertainty estimation in distance the same definition for sta-
tistical uncertainty will be used propagated through the distance formula
using standard error propagation. The fit error is then also defined in the
same way as the root mean squared error of the predicted value to the real
value.

3 Results

In Fig.8 the number of DOM hits per 50 ms bins after core bounce can be
seen. Because the number of hits are almost linear in compactness makes
it possible to use the method presented in Horiuchi et al. [7]. Because
the N(0 − 50 ms) time slice is flat in compactness it can be used as a
compactness-independent normalization factor. When choosing N(∆t) both
the slope of the line and how well the data-points fits the line has to be con-
sidered. The advantage to using a ratio between the number of hits in
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Figure 8: The number of DOM hits at different time slices post core bounce. Here
it can be seen that the number of hits is almost linear as function of the core
compactness for both the normal and inverted hierarchy.
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different time bins are that uncertainties that affects the different time bins
the same will cancel out. The distance to the SN that scales proportionally
to the inverse distance squared, ∝ d−2, and for example some efficiency of
the detector will cancel out decreasing the systemic uncertainty.

3.1 Compactness estimation

In Fig.9 ∆f is plotted for different time bins. The error bars are statistical
uncertainties. All models have similar statistical uncertainties because the
signal is large compared to the differences in each individual model giving
similar uncertainties for all models. The statistical uncertainty gets smaller
for later time bins as they have more hits but the mapping to compactness
have a tendency to be better for earlier time bins.
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Figure 9: The ∆f for different time slices vs the compactness of the model. The up-
per row is for normal neutrino mass hierarchy and the lower is for the inverted mass
hierarchy. The error bars the statistical error expected from a 10 kpc supernova
measured at IceCube.

When considering which time interval that is optimal for estimating the
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compactness from the ratio , ∆f , in a real measurement both the error to the
linear fit and the slope of the graph giving the sensitivity to statistical errors
should be considered. The small slope of the 50-100 ms interval makes it
unsuitable to determine compactness. The plots showing the statistical and
the fit error can be seen in Fig.10. As explained earlier because the difference
in statistical uncertainty between different models are small compared to the
fit uncertainty, though this will not be true for large distances. The time
intervals of interest for further studies are the 100-150 ms and the 150-200 ms
as the slope of the 50-100 ms time slice is small leading to a large sensitivity
to statistical errors.
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Figure 10: Error in compactness for the different time slices at 10 kpc. The upper
row is for normal neutrino mass hierarchy and the lower is for the inverted mass
hierarchy.

When comparing the two time intervals for different distances, see Fig.11,
it can be seen that at short distances, under 15 kpc, the 100-250 ms time bin
is better but at larger distances the 150-200 ms is the better one. This can
be seen for both the normal and inverted neutrino mass hierarchy. This is
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because the 100-150 ms one has a better prediction limit then the 150-200 ms
one. But at larger distances the bigger slope seen in Fig.9 contributes to
smaller statistical error.
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Figure 11: Total error in compactness as a function of distance. The solid line is for
100-150 ms and the dashed line is for 150-200 ms. Same behaviour is seen for both
normal and inverted mass hierarchy, same conclusions can be drawn from both.

3.2 Distance estimation

When estimating the distance to a SN the easiest way is to just look at the
total number of DOM hits and compare that to how many hits an average
SN would result in. The advantage to this method is that it will result in
a large number of hits giving small statistical error event at comparatively
large distances. Here statistical uncertainty is defined as σstatistical from
Eq.24 propagated through each methods equation. This can be seen in the
left column in Fig.12 using the equation below.

d =
10 kpc√
N(0−200 ms)

Nmean expected(0−200 ms)

(27)

In this report a method for estimating compactness has been presented,
and this method can then be used to improve the estimation or prediction
interval compared to just using the total count. It has been shown is this
work that the compactness is correlated to the number of DOM hits and
then the total luminosity of a SN ∆f can be used to improve the estimation
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limit. Though because this method splits up the spectrum into smaller bins,
the statistical error will be significantly larger. This method can then be
seen in the right column in Fig.12. The equation can be seen in Eq.28. Here
K and C are two parameters fitted using linear least squared method of the
map ∆f → N(0− 200 ms) for all SNe models.

d =
10 kpc√
N(0−200 ms)
K∆f+C

, ∆f =
N(150− 200 ms)

N(0− 50 ms)
(28)

When comparing these two methods, the method of using just the number of
DOM hits is better at distances larger than 25 kpc but at smaller distances
that method reaches its prediction interval i.e. a stronger signal will no result
in an improved estimation. The method of using ∆f is better at distances
smaller than 25 kpc as a result of the improved prediction interval. This is
excellent as the improved distance estimation can be used for galactic SNe
where an improved distance estimation can be a significant help in narrowing
down potential SN candidates in SNEWS. For distances closer than 25 kpc
the distance estimation can be improved thanks to the improvements in
estimation limits. At distances larger than 25 kpc simply using expected
from an average supernova gives better results thanks to lower statistical
errors.
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Figure 12: Comparing two methods of estimating distance. The simple method
of only looking at number of DOM hits and using the same method as used to
estimate compactness in addition to the number of DOM hits. The black region is
the prediction interval and the gray region is the total error. The upper row is for
normal neutrino mass hierarchy and the lower is for the inverted mass hierarchy.
At distances smaller than 25 kpc using ∆f parameter gives an improvements in
results.
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4 Summary and conclusions

It has been shown in this work that, through a simple parameter comparing
the number of DOM hits in different time slices after core collapse, the SN
compactness can be estimated. At a distance of 10 kpc the compactness can
be estimated to an accuracy of ±0.055, 12% of maximum compactness, and
within 0.15 for the entire galaxy, 25% of maximum compactness. N(100 −
150 ms) is better for close distances and N(150−200 ms) is better for further
distances. I would recommend using the N(150 − 200 ms) for best overall
accuracy for a galactic supernova. For stars of smaller mass, ∼ 10 M�,
this method can then rule out a large number of super massive stars, >
15 M�. Because this is a method for estimating compactness, there will be
degeneracy when mapping to ZAMS mass. A probability density map from
∆f to mass through compactness could be used as future work.

Both the naive method of looking at total number of DOM hits and the
more refined method of using ∆f can be used to estimate the distance to
the supernova. At 10 kpc the distance can be determined to within 8.5%
with the refined method, improved from 11% using only total number of
DOM hits.

Further work would be needed into estimating the simulation model
dependence by using different SN simulation models. An estimation of the
confidence of the parameters of the fitted line with respect to simulation
uncertainties has not been proposed in this work and would be needed for
it to be used in SNEWS. Detailed detector responses has also not ether
been included. Even with these caveats method shows promising results
and further studies would be justified.
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