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Abstract. Remote health monitoring is a trend for better health man-
agement which necessitates the need for secure monitoring and privacy-
preservation of patient data. Moreover, accurate and continuous mon-
itoring of personal health status may require expert validation in an
active learning strategy. As a result, this paper proposes a Federated
Interactive Learning IoT-based Health Monitoring Platform (FIL-IoT-
HMP) which incorporates multi-expert feedback as ‘Human-in-the-loop’
in an active learning strategy in order to improve the clients’ Machine
Learning (ML) models. The authors have proposed an architecture and
conducted an experiment as a proof of concept. Federated learning app-
roach has been preferred in this context given that it strengthens privacy
by allowing the global model to be trained while sensitive data is retained
at the local edge nodes. Also, each model’s accuracy is improved while
privacy and security of data has been upheld.
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1 Introduction

Continuous advancement of the Internet of Things (IoT) healthcare systems has
been experienced as a result of the sporadic technological changes, particularly
in IoT device proliferation, and the need to manage the ever-rising quantity
of patient data. Notably, these proliferation have allowed the usage of several
health devices like wearable sensors that are able to measure and monitor several
personal health parameters, which in some situations are able to create a trigger
mechanism in case of a potential health incident. In order to make an accurate
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prognosis using the data from IoT devices, most related healthcare systems cur-
rently leverages machine learning approaches for purposes of making decisions
automatically. While this has seen an improved diagnosis and efficient detection
of diseases [1], there have been several limitations such as lack of annotated data
used to train the ML models, which in this context makes IoT-health systems
unreliable and ineffective. Also, ineffective and malevolent coordination of ML
model may lead to potential attacks and data leakage. In particular cases, this
may lead to privacy infringement of patient data, which on similar situations
puts the security of data at risk, hence creating mistrust among different par-
ties. Indeed, in a recent study, Ponemon Institute identified that health data is
the most targeted by cybercriminals [2] and that attacks on IoT devices were
reported to be increasing by three-fold in 2018 [3].

Therefore, to improve both the ML model performance and accuracy in order
to make IoT-health systems reliable and effective, there is need to interactively
incorporate the expert’s domain knowledge as ‘human-in-the loop’ to help in
providing heuristic-based knowledge of the system while the IoT health system
learns, and the need to preserve privacy, security and trust. Hence, Federated
Machine Learning (FML) [4,5] will preserve data privacy by training the ML
model over the user data locally without moving the data. In this context, ML
model still can be adapted or contextualized locally which is more effective as
opposed to leveraging a single trained model. Moreover, all the edge nodes will
participate in training the ML model collaboratively using their data. Based on
that fact, all ML models will share their learned knowledge among all participant
nodes. To bring out the problem that is being addressed in this paper, we consider
the following scenario:

The number of elderly people is on the rise and quite a good number of the
them prefer to live in their homes (houses/apartments) devoid of privacy viola-
tions. However, in some cases, older people with chronic diseases are suscepti-
ble to other diseases like heart attacks or accidental falls etc. Monitoring their
health remotely without human intervention using an IoT-based devices offers a
suitable solution in this case. That notwithstanding, as the sensing data is mas-
sive and continuously generated, it may be impossible for humans to continually
and accurately monitor and explore this data. A suitable solution is to use ML
approaches to classify the sensed data into different events and let the domain
experts only to validate those data deemed to have important events, for example,
de-identification etc. Also, this kind of approach faces formidable challenges and
issues. For example, the ML model’s quality is paramount when it is required to
give accurate classifications. A wrong classification or misdiagnosis could lead to
serious consequences. Simultaneously, a good ML model needs massive data and
many medical experts, which is probably impossible or too costly for a company.
Additionally, enforcing the privacy and security of the data should be a priority
in this context.

The authors take a step in addressing the aforementioned scenario by apply-
ing an IoT-based health monitoring platform with federated learning and inter-
active learning strategy that allows the knowledge from ML models that is trig-
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gered by the domain experts to be shared, at the same time the clients are able
to reap the benefits of such domain knowledge given the accuracy of these ML
models.

The remainder of this paper is structured as follows: Related work is pre-
sented in Sect. 2, while the system architecture is presented in Sect. 3. This is
followed by experiments in Sect. 4 and a conclusion in Sect. 5.

2 Related Work

A thought that a human may instinctively outperform a machine learning algo-
rithm has been explored based on existing evidence on the diagnostic radiologic
image. This is represented as a suitable approach that solves the expert-in the
loop technique [6]. However, while it looks relevant, its effectiveness is rarely
investigated when it is mapped to the patients’ privacy. Also, an architecture
that acts as a remote human-in-the-loop named SENS-U allows health monitor-
ing for Wireless Body Sensor Network (WBSN) for patients. It is able to monitor
terminals of medical centers via four body vital signs for personal healthcare [7].
A cost-optimal multi-expert (Co-MEAL) approach that has machine learning
adaptability allows the machine learning model to be able to learn from a vari-
ety of experts, e.g., the human oracle or a digital device. The advantage of this
process is that it reduces the cost of labeling data while it capitalizes on the
collaboration among experts with the main aim of enriching the knowledge [8].
Based on the expert selection module of the Co-MEAL, a collaborative-multi-
expert architecture by [9] has been designed to be able to manage knowledge
from heterogeneous sources by incorporating a technique that allows experts to
collaborate in order to increase their knowledge. Additionally, this work, was able
to propose an expert selection algorithm that could be applied in a real world sce-
nario by utilising active and transfer learning strategy, while the expert selection
is executed as an expert unit in the Co-MEAL architecture. Also, a FedHealth
framework that utilises transfer learning has been able to build personalized
models through activity recognition experiments. Based on this study, accurate
healthcare is achieved by FedHealth while at the same time privacy and security
is upheld. When federated learning is used an accuracy of 99.4% is achieved as
opposed to 94.1% when it is not used [10].

While most of the aforementioned researches have a close inclination to the
research proposed in this paper, key aspects like privacy preservation of patient
data, security of data, use of active learning as human-in the loop is hardly
explored, however, they provide useful insights that are used to build our sug-
gested approaches.

3 System Architecture

A description of the proposed architecture is given in this section, where the
concentration is on the architecture components and the mode of operation.
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Fig. 1. The system architecture of federated collaborative health monitoring platform

3.1 Architecture Components

The proposed system architecture that is shown in Fig. 1 is composed of five
different components that work in a coordinated mechanism in order to achieve
the common objective and the role of each entity are shown as follows:

– Collective Learning (Global Model): The main role of the global model is
to facilitate the aggregation of knowledge that originates from the edge nodes.
For privacy concern, this platform will share only the learned knowledge that
is coordinated by the collective learning component, while the personal or
sensitive data are retained at the edge nodes. Since the nodes may have
different types of data and ML models, the Models Manager is responsible
for managing and coordinating the different models. The global model can
be updated by way of synchronization between the edge nodes and the global
model, which is managed by the Federated Learning Engine.
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– Edge nodes (Edge model): Each received ML model from the collective
learning component will be retrained over the personal local data. Then the
model performs an incremental training approach in order to capture any
new patterns or behavior. Moreover, the retrained edge models will be aggre-
gated by the collective learning to re-update the global model’s knowledge
and redistribute it again to the edge nodes for further retraining. The edge
nodes act as the clients of this platform who may belong to different stake-
holders. For example, one node could be a hospital, which uses IoT devices
to collect data from the patients and the hospital has its own local data and
ML model to monitor the patients. When the hospital utilises this platform,
it can increase the accuracy of its ML model by sharing learned knowledge
with other stakeholders, and get emergent notification based on the opinions
of the experts in the platform.

– Security control: Security control plays two major roles as follows: (1) Pre-
vents, adversarial attacks, particularly, poisoning attacks, by creating a cryp-
tographic hash during incremental training to retain the training data in its
original form, and (2) Making it hard for a potential attacker to decipher
the data contents as well as preventing malicious adversaries from accessing
data when it is transmitted over the network to the experts during the Active
learning process.

– Active learning: The edge nodes have their own strategies to send related
data to the platform to get diagnosis from the experts. The strategies are
managed by the Event Manager and the related data are sent via Event of
interest. The validation responses from the experts will not only be used
to give notifications to the related patients, but also gets annotated for the
purpose of incremental learning. The instance in the active learning module
that originates from any client is responsible for the related specific tasks from
the client. The Instance Manager and Privacy Control need to pre-process
the data, for example, by de-identification, before giving them to the experts.
All the pre-processed data will be formatted and transferred to the Task Pool,
which will assign the tasks to the experts. The expert validation responses,
which prior also does checks with the client will be sent back to the Instance
Manager where it can give the processed responses to the related clients.

– Scheduling Queue: Since there are many different types of experts with
different levels, the tasks in the Task Pool are assigned to the appropriate
expert based on the Matching Strategies. For example, the matching strategies
could be based on the experts’ reputation like specialty, experience of years
and feedback in the past.

3.2 Modus Operandi

The suggested federated interactive IoT-based health monitoring platform that
utilises domain experts (based on Fig. 1), is aimed at providing diagnose services
to a variety of stakeholders, who own devices to monitor the users’ health sta-
tus. Consequently, each stakeholder can federate its ML model with the global
model and create an instance in the active learning module in the platform to
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get feedback from many experts provided by the platform. Each created instance
in the Active Learning module is able to generate related tasks that are inclined
to the corresponding expert based on the requirements. All the tasks are pre-
processed to protect the users’ privacy and pushed to the task pool, so they
can be ready to be annotated by the experts. After the experts finish the tasks
assigned to them, the results will be sent back to the Instance Manager, and the
related instances will notify the respective stakeholders. Then the stakeholders
are poised to take actions and update their ML models based on the feedback
from the experts. Finally, the updated ML models (local nodes) in all the stake-
holders can improve the global model via a federated learning architecture by
way of transferring the extracted knowledge. Eventually, when the global model
is updated, it can also synchronize with all the related stakeholders’ ML models
to improve their models’ accuracy.

4 Experiment

This section details the experiment setting and performance analysis which is
aimed at providing proof of concept of the proposition that has been mentioned
in this paper. Furthermore, it is worth noting that the experiment’s focus is to
leverage federated learning to ensure data privacy is upheld while the ML models’
accuracy is improved at run-time through continuous learning by relying on the
multi-expert validations.

4.1 Experimental Setting

The study employs Continuous Ambient Sensors Dataset (CASA) human activ-
ity recognition dataset1. The contents of CASA were collected from 30 different
houses by using both ambient and PIR sensors. As listed in Table 1 each col-
lected pattern comprises 37 features linked to different sensors distributed in
those houses to monitor the user’s daily activities. However, data linked to four
houses were selected to conduct the experiment in order to evaluate the proposed
architecture’s behavior in terms of data privacy preservation by moving the ML
model to the data location, and the improvement of the ML models accuracy’s
through the continuous ’human-in-the loop’ learning.

To achieve this, Random-Forest classifier has been trained and tested over
the selected data in both global and edge nodes. Hence, the selected houses data
(csh105, csh108, csh111, and cthe sh123) have been associated to the global
model, node1, node2 and node3 respectively [11,12]. At this stage, multiple local
nodes (edge nodes) are trained over the local dataset’s n number of iterations
and the new learned knowledge is sent to the global node for aggregation.

1 http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+from+Cont
inuous+Ambient+Sensor+Data.

http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data
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Table 1. CASA dataset features characteristics

Index Features Types Index Features Types

1 lastSensorEventHours Discrete 20 areaTransitions Discrete

2 lastSensorEventSeconds Continuous 21 numDistinctSensors Discrete

3 lastSensorDayOfWeek Discrete 22 sensorCount-Bathroom Continuous

4 windowDuration Continuous 23 sensorCount-Bedroom Continuous

5 timeSinceLastSensorEvent Continuous 24 sensorCount-Chair Continuous

6 prevDominantSensor1 Discrete 25 sensorCount-DiningRoom Continuous

7 prevDominantSensor2 Discrete 26 sensorElTime-Ignore Continuous

8 lastSensorID Discrete 27 sensorCount-Hall Continuous

9 lastSensorLocation Discrete 28 sensorElTime-Kitchen Continuous

10 lastMotionLocation Discrete 29 sensorElTime-LivingRoom Continuous

11 complexity Continuous 30 sensorElTime-Office Continuous

12 activityChange Continuous 31 sensorElTime-OutsideDoor Continuous

13 sensorElTime-WorkArea Continuous 32 sensorElTime-Hall Continuous

14 sensorCount-Ignore Continuous 33 sensorCount-Kitchen Continuous

15 sensorCount-LivingRoom Continuous 34 sensorCount-Office Continuous

16 sensorCount-OutsideDoor Continuous 35 sensorCount-WorkArea Continuous

17 sensorElTime-Bathroom Continuous 36 sensorElTime-Bedroom Continuous

18 sensorElTime-Chair Continuous 37 activity Text (class label)

19 sensorElTime-DiningRoom Continuous

4.2 Performance Analysis

In our performance analysis, we evaluate the ultimate accuracy of the global
model after aggregating the knowledge from the local edge nodes (see Fig. 2a
and Fig. 2b). Observations from this analysis are presented as follows:

– In the first iteration the global and the edge nodes exhibited low accuracy.
– After aggregating the trained edge (distributed) models by taking the average

of the learned knowledge, the model’s learning behavior improved tremen-
dously.

– The learned knowledge has been used in the derivation of the new (current)
global model, which is then redistributed to the linked edge nodes for further
training.

– Interactive learning has successfully aided the edge ML model’s incremental
learning by utilising the new annotated data. This data has played a signifi-
cant role in the improvement of the model’s learning process.

From the Figs. 2a and 2b, we notice that the performance of the global model
is basically influenced by the availability of the linked edge nodes and the user-
feedback from the experts which has shown an improvement on the model accu-
racy and performance.

4.3 Security and Privacy Analysis

In our security and privacy analysis, we hypothesise the threat model, a variety
of possible attacks on the proposed IoT-Health platform and then an analysis is
given on the same.
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(a) Both federated learning model and participants nodes models accuracy

(b) Both federated learning model and participants nodes models Cohen’s kappa

Fig. 2. Experiments depicting the federated global model and the participants of local
nodes
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Threat Model. Our threat model makes the following assumptions on adver-
sarial perspectives: In the context of IoT-Health platform, there may exist mali-
cious content that may hinder the global and local models accuracy, and this
content may be channelled to the training data in an adversarial training attack
at the local nodes during incremental learning. Also, we assume that an attacker
may actively defeat the security of the platform by challenging the ciphertext in
order to eavesdrop all communication when data is sent over the network.

Attack Analysis. Based on the assumptions of the threat model (Sect. 4.3),
we analyse the security attacks as follows:

– Poisoning attack: An adversary may subject the training data to malicious
content, which may end up affecting the knowledge that is extracted from
the local nodes, thus affecting the accuracy of the global model: We have
suggested the use of cryptographic hashes to maintain the integrity of training
data at the local nodes.

– Ciphertext attack: Based on the security control technique in Fig. 1, we
assume the role of an adversary is to corrupt sensitive patient data. There-
fore, an adversary may obtain encrypted data or the secret keys to have a
direct access to the data. We suggest the use of strong encryption approaches
like homomorphic encryption and differential privacy.

– Eavesdropping attack: An adversary can attempt to eavesdrop on data that
is sent between the local node and the global model, which ultimately has an
impact on data privacy. We suggest maintaining strong privacy techniques
which are discussed next.

Privacy Analysis. In our approach towards privacy-preserving technique, we
have proposed an approach that utilises, federated learning and concepts of
interactive learning that collaboratively are able to build a global model without
sharing data whatsoever. Data is retained at the local nodes, where each node is
able to maintain its data (Fig. 1). From this, the new global model is only able
to learn from the knowledge from the local nodes which ensured that privacy
is preserved locally, owing to the fact that only knowledge is transferred to
the global model. Nonetheless, personal data of users for which the system was
trained on might still be revealed indirectly through privacy attacks on the
machine learning model. In particular, we identify the following attacks:

– Model inversion attack: An adversary having access to some data belonging
to specific patients included in the training data, can infer further data about
those same individuals by observing inputs/outputs of the machine learning
model. For example, given some demographic information an adversary could
infer genetic markers from the model despite having only partial access to the
underlying training data [13]. A common mitigation against model inversion
attacks is differential privacy.
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Table 2. Evaluation of identified security and privacy issues

Security & privacy issue Overview Mitigation approaches

Poisoning attack Contaminating training data

with malicious content. The

ultimate knowledge from the

training is falsified. Affects

the accuracy of the model

To retain the integrity,

cryptographic hashes are

preferred given that they are

deterministic, where same

input guarantees same output

the fact that they are

irreversible

Ciphertext attack It is possible to tamper with

encrypted data at the local

nodes, by obtaining the

public key used to encrypt

the data from a source

Not only using strong

encryption but employing

digital certificate during data

transmission

Eavesdropping attack An adversary or a malevolent

data labeler can listen to or

gain access to data being

transmitted with an elevated

privilege

During incremental training

and during the provision of

learning model updates to use

blockchain for it guarantees

secure data transmission

Model inversion attack An adversary making an

inference about the data in

possession

Use of differential privacy

Membership inference attack Trained models can be used

to leak information about a

patient’s record

Use of regularization

Model stealing attack Constructing surrogate

models from extracted model

parameters

Use of information laundering

– Membership inference attack: An adversary may deduce whether a given
patient is present in the training data of a machine learning model. For
instance, if hospital records are used to train a model which predicts when a
patient will be discharged from the hospital, adversaries could use that model
with other data to reveal whether an individual had visited one of the hospi-
tals that generated the training data during the period the data was collected.
The use of regularization, e.g., through L2 regularization, is identified as a
technique for reducing membership inference attacks.

– Model stealing attack: Adversaries may extract parameters from a target
model allowing them to reconstruct a surrogate model with similar perfor-
mance as the target model. While this attack is harder to conduct in a fed-
erated learning setup as is the case for FIL-IoT-HMP, where multiple decen-
tralized edge nodes are involved, in theory this attack may still be possible.
Model stealing may indirectly compromise privacy, but more so, the confi-
dentiality of the health platform users. Information laundering is a technique
that can be used to mitigate against model stealing attacks.

Based on how the FIL-IoT-HMP model has been positioned, we argue that
blockchain technology has been presented as a more suitable technique for
enhancing secure data sharing at the local nodes by providing tamper-free adver-
sarial attacks during incremental training [4]. Normally, adversarial attacks dur-
ing active learning are common occurrences based on existing learning threat
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landscape like targeted attacks, unusual propagation attacks, malicious logic
insertion and overall system manipulation [14].

Given that federated learning model is shared across the multiple nodes, we
also argue that the following aspects transpire as a result, however a summary
is given in Table 2:

– The data from the IoT health platform is regarded to be sensitive, as a result
privacy preservation is a key aspect of consideration in this context

– At the edge, blockchain integration gives an assurance of the following: Secure
data sharing during incremental learning process, resource location where
smart contracts can be used as a way of access control and management

– From a security perspective, existing vulnerabilities arising from the learn-
ing model, especially during data transmission may enable an attacker to
launch specific attacks that can lead to leakage of sensitive information. In
this perspective federated learning guarantees privacy protection and verifi-
cation through periodic updates during the transmission of learning models.

5 Conclusion

We have proposed a federated interactive IoT-based health monitoring platform
that utilizes (active, interactive and human-in-the loop) This platform has a
strong privacy-preserving feature and also its able to counter adversarial attacks
during incremental learning. The problem of data leakage has been analyzed
correctly by allowing the global model to only share the knowledge from local
nodes while the data is retained at the local nodes. For future work, we aim
to extend this work to incorporate multiple machine learning algorithms using
different datasets in order to study the effect of the expert validation.
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11. Alawadi, S., Delgado, M.F., Pérez, D.M.: Machine learning algorithms for pattern
visualization in classification tasks and for automatic indoor temperature predic-
tion. Ph.D. thesis, Universidade de Santiago de Compostela (2018)

12. Alkhabbas, F., Alawadi, S., Spalazzese, R., Davidsson, P.: Activity recognition
and user preference learning for automated configuration of IoT environments. In:
Proceedings of the 10th International Conference on the Internet of Things, pp.
1–8 (2020)

13. Veale, M., Binns, R., Edwards, L.: Algorithms that remember: model inversion
attacks and data protection law. Philos. Trans. Roy. Soc. A: Math. Phys. Eng. Sci.
376(2133), 20180083 (2018)

14. Kebande, V.R., Alawadi, S., Awaysheh, F.M., Persson, J.A.: Active machine learn-
ing adversarial attack detection in the user feedback process. IEEE Access 9,
36908–36923 (2021)


	A Federated Interactive Learning IoT-Based Health Monitoring Platform
	1 Introduction
	2 Related Work
	3 System Architecture
	3.1 Architecture Components
	3.2 Modus Operandi

	4 Experiment
	4.1 Experimental Setting
	4.2 Performance Analysis
	4.3 Security and Privacy Analysis

	5 Conclusion
	References




