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Abstract

Purpose – Simulation-based optimisation (SO) is a popular optimisation approach for building and civil
engineering construction planning. However, in the framework of SO, the simulation is continuously invoked
during the optimisation trajectory, which increases the computational loads to levels unrealistic for timely
construction decisions. Modification on the optimisation settings such as reducing searching ability is a
popular method to address this challenge, but the quality measurement of the obtained optimal decisions, also
termed as optimisation quality, is also reduced by this setting. Therefore, this study aims to develop an
optimisation approach for construction planning that reduces the high computational loads of SO and provides
reliable optimisation quality simultaneously.
Design/methodology/approach – This study proposes the optimisation approach by modifying the SO
framework through establishing an embedded connection between simulation and optimisation technologies.
This approach reduces the computational loads and ensures the optimisation quality associated with the
conventional SO approach by accurately learning the knowledge from construction simulations using
embedded ensemble learning algorithms, which automatically provides efficient and reliable fitness
evaluations for optimisation iterations.
Findings – A large-scale project application shows that the proposed approach was able to reduce
computational loads of SO by approximately 90%. Meanwhile, the proposed approach outperformed SO in
terms of optimisation quality when the optimisation has limited searching ability.
Originality/value – The core contribution of this research is to provide an innovative method that improves
efficiency and ensures effectiveness, simultaneously, of the well-known SO approach in construction
applications. The proposed method is an alternative approach to SO that can run on standard computing
platforms and support nearly real-time construction on-site decision-making.
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1. Introduction
Plenty of decisions concerning schedule, equipment, resources, labour, supply chains and
more need to be made in the construction planning of building and civil engineering projects.
An optimisation method is useful for finding the best solution from various combinations of
construction decisions (Wang et al., 2017). The simulation-based optimisation (SO)
framework, which integrates optimisation algorithms and simulation technologies, is a
popular optimisation approach. In this approach, the simulation technology evaluates the
performance, while optimisation such as meta-heuristic algorithm identifies the optimal
solution (AbouRizk and Shi, 1994). It is consistently recognised that SO has excellent
searching ability to identify the optimal solution from an extensive array of possible options
(Gosavi, 2015). The provided optimal solutions are valuable references for construction
planning (Feng et al., 2018).

It is important to consider that construction operations are performed in a dynamic
environment. This is because a construction project is a long-term endeavour in which the
design, on-site conditions and available resources can change at any point (Collyer and
Warren, 2009; Love et al., 2002). These changes then shape the construction process by
modifying the conditions for construction operations. Thus, the optimisation approach needs
to continuously, and efficiently, adjust the optimal plan to the current situation (Al Hattab
et al., 2017). However, SO may not be an ideal optimisation approach in this situation because
it is unable to provide a real-time response due to its high computational loads (Jun et al., 2010;
Nguyen et al., 2014). This is mainly a result of how the optimisation framework works.
Optimisation algorithms, especially the widely appliedmeta-heuristic algorithms, e.g. genetic
algorithm (GA), particle swarm optimisation (PSO) and ant colony optimisation (ACO),
normally leverage population advantage to reach the optimal solution (Magnier and
Haghighat, 2010). This requires thousands, and sometimes more, fitness evaluations during
optimisation. However, the simulation model will be invoked during every evaluation, which
will require significant computing power. The slow response of SO approach is also partly
explained by construction-specific features, with the most important being uncertainty
(Segerstedt and Olofsson, 2010). Integrating the uncertainties into an optimisation evaluation
usually requires repetitive simulation, which further increases computational loads of SO
approach (Jun et al., 2010; Lee et al., 2015). Therefore, the SO framework normally takes days,
and even possibly weeks, to provide a single optimisation result for construction decisions.
This computational issue of SO, i.e. high computational loads causing the delayed response
for every time need optimisation, makes it unsuitable tool to make frequent also timely
decision support during construction operations.

Modification on the optimisation settings such as reducing searching ability, e.g., fewer
particles or iterations are straightforward ways to address the computational load
challenge. However, the optimisation quality is also offset by these settings due to less
searching ability (Song and Gu, 2004). High-performance computing (HPC), including
large-scale, cloud and parallel computing, is also able to address these issues through
considerable computational capacity. But not all construction sites have the enabling
environment or required network service for the necessary equipment (Apostu et al., 2013).
Therefore, it is necessary to develop an alternative optimisation approach for construction
planning that can rapidly respond to changes but does not demand a high level of
computational capacity.

From a statistical perspective, machine learning is the technology that is able to learn from
data and make accurate predictions (Yan and Wang, 2014). The significant advantages are
the real-time and accurate learning abilities, the features of which may help overcome above
shortcomings of SO methods (Jun et al., 2010). Furthermore, ensemble learning (EL) is an
emerging machine learning mechanism that uses multiple learners for regression or
classification (Breiman, 1996). The application of EL is beneficial because there is a low

ECAM
30,1

260



likelihood of creating poor learning models for vastly different learning contexts (Zhang and
Ma, 2012). Therefore, the EL is a promising algorithm to provide a generalised purpose
learning method that can be applied to different construction projects that vary in scale,
category and/or technology (Feng, 2019).

Therefore, this study proposed an optimisation approach for construction planning by
embedding EL into the SO framework, i.e. EL embedded simulation optimisation (ESO), in
which ensemble learning algorithms will develop an embedded information connection
between simulation and optimisation technologies. The inherent real-time feedback ability
and learning stability of ensemble learning ensures that this connection is both efficient and
reliable. Specifically, the ensemble learning algorithm is trained, validated and tested by
discrete-event simulation (DES), and will be integrated into the particle swarm optimisation
algorithm (PSO) to be invoked during each fitness evaluation. This study investigates
whether the developed ESO approach can reduce the intensive computational loads and
ensure the optimisation quality for construction decision-makers with the both real-time and
reliable optimisation method. Furthermore, the presented research investigates how the
algorithm should be embedded and which settings are most appropriate in the context of
project construction.

2. Literature review
2.1 Construction planning and optimisation
Plenty of planning decisions need to be made in the progress of building and civil
construction. The optimisation method is a crucial tool for decision-makers to develop a
preferred construction planning (Wang et al., 2017). However, the construction is operated in a
dynamic environment in which the design, on-site conditions and available resources can
frequently change along with construction progress (Collyer and Warren, 2009; Love et al.,
2002). Thus, the decision-making in constructionmanagement should be adjusted frequently.
In addition, the decisions in each construction stage are usually time-constrained due to the
rushed schedule before executions (Yu et al., 2005). The decision feedback in a fast time frame
is greatly needed in this situation.

To provide timely support for the time-constrained construction decisions, it should
both rely on capturing real-time project information and techniques to support efficient
decision-making before activity execution (Tavakolan et al., 2019). The emerging data
collection technologies (e.g. Internet of things) make real-time information available.
However, efficient decision-making support is still required. The usually applied SO is not
an ideal approach because it has high computational loads that cannot provide timely
feedbacks (Nguyen et al., 2014), or unreliable optimisation quality at fewer computational
loads settings (Song and Gu, 2004). This background motivates this research to develop an
alternative approach with fewer computational loads for timely and reliable construction
decision-making.

2.2 Simulation-based optimisation for construction
Discrete-event simulation (DES) is a simulation technology that conceptualises the status of
target system changed after every occurrence of a discrete event (Cassandras and Lafortune,
2009). Construction processes are inherently complex due to their high degree of interaction,
interrelatedness and uncertainty (Lu andOlofsson, 2014). ThismakesDES especially suitable
for simulating construction operations and evaluating construction performance (Zhang and
Li, 2004; Larsson et al., 2016). Nevertheless, there are still only limited real-world applications
of DES in construction (Lu and Olofsson, 2014). Previous research has recognised that the
extensive computational loads of DES will impose limitations for its wide applications
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(Budgaga et al., 2016). In the construction context, the reason causing even higher
computational loads to DES are the large array of scenarios in construction. The accumulated
computational loads associated with the simulation of numerous scenarios makes DES
impractical to analyse all alternatives of construction decisions (Feng et al., 2018).

To avoid alternative enumeration in DES technology, SO is proposed (Cheng and Feng,
2003). The optimisation portion of the SO approach is used to identify optimal and near-
optimal solutions from a huge array of possible construction scenarios, whereas the
simulation is used to simulate and evaluate the construction performance of the identified
solutions (Cheng and Feng, 2003). The SO method has been applied to many aspects of
construction planning. AbouRizk and Shi (1994) performed one of the first SO investigations
to determine optimal construction resource allocation. In their research, DES was integrated
into optimisation iterations to identify the optimal resource allocation. Motivated by the
optimisation ability of metaheuristics, Shin et al. (2011) proposed a DES model which
incorporates a genetic algorithm (GA) to help contractors find the optimal hoist plans for
high-rise building construction. They reported that the proposed method provided hoist
plans that satisfied both the cost and time objectives.

2.3 Computational loads deficiency of simulation-based optimisation and potential benefits
of machine learning
Even though SO is benefitted from optimisation with high searching ability, it is criticised not
feasible for real-time decisions due to its still cumbersome computational loads (Nguyen et al.,
2014; Nini�c and Meschke, 2015). Based on the SO framework, the optimisation algorithm will
perform simulations during every fitness evaluation. The total computational load is affected
by the optimisation population (N) and the number of iterations (I) required for convergence.
This demonstrates why optimisation approaches that require simulation at every iteration
(N$I) are so time-consuming. Furthermore, a simulation will consume time (T) and require
simulation replication (M) to provide a reliable result in the stochastic construction
environments. Therefore, the total computational load of an SO method can be described as
N$I$M$T. As the processes associated with construction projects are complex and highly
interrelated, the simulation time (T) is relatively high, which increases the total computational
load (N$I$M$T) to a level that is not feasible for real-time decision of construction projects
(Nguyen et al., 2014).

Reduction on the size of population of optimisation algorithms can balance the
requirement of global optimisation and computational loads, which also indicates that
population reduction will offset the optimisation quality (Song and Gu, 2004). To address the
computational load challenge, several other valuable explorations have been conducted.
Zhang (2008) proposed reducing the simulation replication (M) for non-optimal solutions.
This was done by modifying a statistical method in SO that determines whether further
replications are necessary. Parallel computing is another solution for reducing the computing
time of SO. Yang et al. (2012) chose to run an optimisation in which simulations are computed
in parallel. Thus, the computational loads of simulation replication (M) were reduced. On the
contrary, Salimi et al. (2018) divided the population intomultiple and set the optimisation to be
paralleled in high-performance computing (HPC). This significantly decreased the population
(N) parameter of computational loads. The parallel computing requires multiple cores or
computers that act as platforms. As such, the computational loads stay the same, but the total
computing time can be reduced as the computational loads are spread over different
platforms. However, for some construction projects conducted under environments without
enabling facilities or required network service, it usually lacks the resources required for
parallel computing or other HPC. Therefore, it is valuable to explore the computational
reduction alternatives to the SO methods that are suitable for the construction contexts.
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The method presented in this study is motivated by the emergence of machine learning
technology, which is characterised by both real-time feedback ability and high prediction
accuracy (Colak and Qahwaji, 2009). A learning model could increase the efficiency of
optimisation at every fitness evaluation because it avoids simulation time (T) and replication
(M) by learning the construction performance from simulation dataset. It could therefore
significantly reduce the overall computational loads by converting the SO’s computational
loads N$I$M$T into N$I$t (the machine learning feedback time t is extremely smaller than
M$T). Moreover, this scale of machine learning does not require extensive computational
capacity for model training and operation. Similar examples have already been applied,
e.g. supply chain management (Jun et al., 2010) and engineering design (Nakayama et al.,
2002), to reduce computational loads. However, the difference from previous research is that
the interested parameters in construction contexts are both massive and changeable
according to dynamic construction situations. Therefore, the proposed approach did not
attempt to completely replace construction simulation, but rather embedded a machine
learning algorithm within the SO framework to reduce overall computational loads also to
provide reliable optimisation results.

2.4 Ensemble learning method
Machine learning comprises a set of algorithms that can learn from data to make real-time
predictions (Yan and Wang, 2014). In all types of algorithms, the main goal of ensemble
learning (EL) is to build a unified learning model that combines and takes advantage of
different learning algorithms. To this end, EL generates multiple learners that are based on
one (homogeneous approach) or different (heterogeneous approach) learning algorithms, and
then provides a regression or classification by combining the outputs of every learner.
Various studies have demonstrated that EL is more robust when applied to a problem in
which a single learning algorithm shows significant performance variation (Zhang and Ma,
2012; Jo~ao et al., 2012). In this case, the ensemble learning approach will create a stable and
generalised purpose learning model for ESO in the application of construction with different
scale, category and/or technology.

Although EL clearly benefits data learning, its use is still at an early stage in applications
related to AEC (architecture, engineering and construction). Only several researchers have
attempted to solve AEC problems with approaches including EL. One example is the pilot
study from Cao et al. (2018), in which EL was applied to predict highway project unit price
bids. The results demonstrated that EL provides more stable and efficient unit price
prediction thanmachine learning based on a single learning model. Wang et al. (2012) applied
ensemble ANN to predict the cost and schedule success of construction projects. The dataset,
which covered 92 projects, showed that ensemble ANN outperformed single ANN in terms of
prediction accuracy.

EL approaches for ensemble generation and combination which employ multiple learners
ensure more stable and generalised learning than approaches relying on the algorithm to
develop a single learner (Webb and Zheng, 2004). The present study investigated whether the
ability of real-time feedback, efficiency and generalisation of EL – when compared to the
relatively computationally intensive SO framework and single learning method – can be
harnessed in the context of a construction project.

3. Ensemble learning embedded simulation and optimisation
The ESO approach presented in the study comprises four modules: the modules of (1)
simulation dataset generation, (2) EL model establishment, (3) learning-based optimisation
and (4) Pareto solution refinement (see Figure 1). Themodule of simulation dataset generation
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uses a random scenario engine based on Latin Hypercube Sampling (LHS) to generate
construction scenarios in the scenario space. Then, the generated construction scenarios are
then subjected to DES, which simulates construction performance. A dataset of construction
plans, and the corresponding performance are thus built for embedded learning model
training, validation and testing. After that, in themodule of ELmodel establishment, multiple
learners are trained using the training dataset, and these learners are then combined into a
unifiedmodel using the validation dataset. The general performance of the ELmodel is tested
using the testing dataset. A judgement procedure then increases the size of the construction
dataset and re-builds the learning model until its accuracy is acceptable.

The established embedded learningmodel then integrateswith PSO-based optimisation to
perform a construction planning optimisation. The EL-based learning model enables a real-
time and accurate fitness evaluation during each optimisation iteration. Hence, the presented
ESO approach can theoretically reduce the extensive computational loads and ensure the
optimisation quality compared with SO approach. The optimisation algorithm explores a
wide range of construction scenarios until the defined stop criteria are reached and pseudo-
solutions are obtained. A replication mechanism is set in the optimisation to enable the
superior solutions without excessive increases in computational time. The Pareto solutions
are finally obtained by removing the dominant solutions from the identified pseudo-solutions
in the module of Pareto solution refinement. These solutions are timely and reliable
optimisation support for construction decisions.
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3.1 Simulation dataset generation
It is important to establish a specific and appropriate sampling method during the first stage
of ESO framework, as it both should ensure the accuracy and efficiency of EL model
development. A sampling engine majorly based on the LHS framework was employed to
generate construction scenarios. The proposed random scenario engine meets the
requirement of ESO, namely, it can generate a representative construction dataset with
only limited size of samples. Thus, this random scenario engine will not cost toomuch time on
sample generation and that may offset the advantage of efficiency. LHS samples various
construction parameters, including construction technique, crew size and equipment, among
others. Figure 2 demonstrates how LHS sampling can be applied to an example problemwith
two parameters and four samples. LHS sampling proceeds over two stages in this study.
First, LHS divides construction parameter values into various portions characterised by
equivalent probabilities, i.e. A1 to A4 and B1 to B4 in Figure 2. Then, the divided portions in
the first stage are selected, and each portion in related dimension will be selected only once
time. The parameter values in the selected portion are sampled by the original probability
distributions, i.e. as Fa(x) and Fb(x). Therefore, LHS ensures that each scenario satisfies the
original probability distribution and that the scenarios are not too centralised into a high
probability space. LHS is a very classical method especially suitable for situations in which a
limited number of samples are used to represent whole solution space (Eglajs and
Audze, 1977).

To properly evaluate the performance of various construction scenarios, the proposed
method simulated construction processes usingDES. This decisionwasmotivated by the fact
that DES provides detailed process data that supports the evaluation of various construction
aspects, such as cost, duration and greenhouse gas (GHG) emission estimations. The applied
DES used construction plans as an input and provided construction performance as the
output. These inputs and outputs are then used for ELmodel training, validation and testing.
The developed DESmodel is validated by input-output validation proposed by Banks (1998).
The DES model is considered valid if simulation results are statistically agreed with the
actual project. TheWilcoxon signed-rank test is applied to test the agreement asmany factors
in construction are non-normally distributed.

An appropriate number of simulation replication is required for DES to ensure a
satisfactory level of accuracy in the stochastic construction environments. To generate
reliable samples for the EL model, the present study used the method by Lorscheid et al.
(2012) to determine the number of simulation replications, which follows how the coefficient
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of variation (Cv5 standard deviation/mean value) changes as the number of replications (m)
increase. Thus, the appropriate number of replications (n*) that ensures a satisfactory level of
accuracy can be identified by finding the point (minimum replications) at which the variation
(Cv) across simulations becomes stable and below a specified threshold (E) (see Eq. (1)). Then,
the simulation replication can provide the reliable evaluation, e.g. with average performance
for construction dataset generation.

n* ¼ argmin njjCvn � Cvmj < E; ∀m > ngf (1)

3.2 EL model establishment
3.2.1 Ensemble generation. An ensemble learning model (F) takes advantage of the diversity
of multiple learners {f1($), . . ., fM($)} to improve the generalisation and stability of prediction.
The procedure for EL model development is depicted in Figure 3. The first step is the
generation of a set of learners, i.e. ensemble generation. Bootstrap aggregating, first proposed
by Breiman (1996), is the most widely used method for generating multiple learners in EL.
In this method, the training data sets for each leaner are formed by sampling from the total
training data set with replacement. Another method for ensemble generation is boosting,
which differs in the possibility of instance selection in training samples (Webb and Zheng,
2004). In boosting, instances with poor prediction have a higher possibility of being selected
as training samples. According to Zhang and Ma (2012), bootstrap aggregating is more
suitable for learning problems with limited training data. The present study applied
bootstrap aggregating to generate EL learners mainly to save time on training data
generation. It generates EL learners {f1($), . . ., fM($)} by providing the training subsamples
{S1($), . . ., SM($)}. The subsamples were generated by uniformly selecting samples from the
total training data with replacement. According to previous studies (Erdal and Karahanoglu,
2016; Kim et al., 2003), the size of each subsample for individual learners training was set as

RTELMBRBNN

Training samples

Subsample Subsample Subsample

BRBNN 
model_1

ELM 
model_1

RT
model_1

Neural network 
combina�on model

Ensemble learning 
model

... ...

Bootstrap aggrega�ng 
genera�on

...

Subsample

BRBNN 
model_2

Subsample

ELM 
model_2

Subsample

RT
model_2

Tes�ng samples

Accepted ? NO
re-train

YES

Valida�on samplesFigure 3.
Ensemble learning
development
procedure

ECAM
30,1

266



60% of the total training data. The appropriate number of learners depends on the problem
context (Htike, 2016). In this study, the number of learners for each learning algorithm was
preliminarily set at 20, and this number could be modified if learning accuracy was not
acceptable.

The generalisation ability of the ensemble learning originates from multiple learners
comprising it (Zhou, 2009). Hence, the selection of algorithms for multiple learners is critical
for an EL model. Krogh and Vedelsby, 1995 formally demonstrated that the diversity of
learners is a key factor for ensemble learning with a high degree of generalisability. The ESO
developed in the present study uses a heterogeneous approach, i.e. a set of multiple
algorithms, to integrate the ELmodel, as distinct algorithms inherently contribute to the total
diversity of the final model (Webb and Zheng, 2004). Additionally, artificial neural networks
and decision trees are two typical unstable algorithms that own high diversity, and they are
suitable for EL model development (Jo~ao et al., 2012). These algorithms are also especially
suitable for applied bootstrap aggregating as they show high sensitivity when trained with
diverse training subsamples. Therefore, artificial neural networks and decision trees were
selected as the machine learning algorithms for EL in this study.

When considering which specific algorithms from artificial neural networks and decisions
trees to build EL, it is valuable to consider empirical evidence of their accuracy and feasibility in
construction. Thus, they can both satisfy the diversity and the accuracy requirements for an
ensemble learning (Krogh andVedelsby, 1995). In the field of construction, the backpropagation
neural network is a powerful and commonly applied example of an artificial neural network
(Adeli, 2001). Rumelhart et al. (1985) claimed that the popularity of artificial neural networks
partly owes to the development of backpropagation neural networks. The accurate learning
ability of this method in the construction context has been validated by plenty of researchers
over the years, with the earliest results tracing back to a 1997 construction scheduling study
(Adeli and Karim, 1997). The application of Bayesian regularisation to backpropagation neural
networks further extended the generalisability of machine learning (Foresee and Hagan, 1997).
Extreme learning machine, unlike typical neural network algorithms, is an artificial neural
network that chooses hidden nodes at random without the need for time-consuming iterative
tuning (Huang et al., 2006). In the field of construction, this approach has the advantage of
acceptable learning accuracy with fast learning speed (Feng et al., 2019). Hence, this algorithm
could be especially suitable for building the large number of multiple learners required in
EL. Another approach, regression trees, uses structural mapping of binary splits decision trees
for regression problems (Breiman et al., 1984). This approach has also previously been applied
to construction projects, e.g., cost estimation of a project (Shin, 2015) and accident prediction
(Liao, 2012), and demonstrated satisfactory accuracy. Based on the characteristics and
advantages presented here, Bayesian regularisation backpropagation neural networks
(BRBNN), extreme learning machine (ELM) and regression trees (RT) were chosen as the
learning algorithms that would be integrated into the EL model presented in this study.

The basic idea underlying neural networks is represented in Eq. (2). BRBNN is based on
backpropagation, which fits a neural network by calculating the gradient of the loss function
and then iteratively tuning network parameters. The Bayesian regularisation of BRBNNuses
Bayes’ rules to infer the optimal regularisation parameters (Foresee and Hagan, 1997). On the
other hand, ELM is a one-layer neural network that can choose hidden nodes randomly
without the need for the time-consuming tuning of input weight w and bias b during each
iteration. This algorithm only tunes the output weight β during model training. Thus, the
main advantage of ELM is its fast learning ability.

by ¼ g

 XN
i

Wixi þ Bi

!
(2)
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where by represents the predictive values of neural networks, x is the input of training
samples, g($) is the activation function of neural networks (Sigmoid function in this study),
and W and B represent the network weight and bias vector, respectively.

RT initially establishes a tree that includes the full variable range found in the training
samples (xn, yn) (n 5 1, . . ., N). Then, it gradually splits into branches (t) in order to give a
prediction function f(x), such as the average of y (y∈ t) for each sample belonging to t Eq. (3).
Next, the splitting rule reduces prediction errors (S), as shown in Eq. (4), until the number of
samples in every branch is below the minimum limit (Breiman et al., 1984).by ¼ f

x∈t

ðxÞ; x∈ t (3)

S ¼ 1

N

XN
n¼1

½yn �byn�2 (4)

3.2.2 Ensemble combination. After learner generation, all of the learners should be combined
as a unified learning model to form the final ensemble model that complement the different
learning algorithms (i.e. ensemble combination). Applying the weight to each learner is the
most commonly applied combination method (Breiman, 1996). Despite that, a machine
learning based method has been proposed for ensemble combination (Yang and Browne,
2004). The present study used the machine learning based method – rather than the
weighting method – for ensemble combination because this approach has demonstrated
better results in problems in which there are complex, non-linear relationships between
factors (Cao et al., 2018), which may be suitable for construction performance modelling.

Previous EL research, as well as a prior pilot study in the construction field (Cao et al.,
2018), have validated neural networks as a good algorithm for ensemble combination. The
logic underlying ensemble combination by neural networks is used and shown in Figure 4.
The output of trained multiple learners based on training samples in ensemble generation
serves as the input for combination learning model creation. The actual construction
performances of the training samples are the output for the combination learning model.
Hence, the neural network will connect the output of the trained multiple learners with the
actual construction performance; in other words, this approach will combine multiple
ensemble learners into a uniform model.

3.2.3 Ensemble learning evaluation.As the ELmodel is also designed to accurately connect
simulation and optimisation, the proper indicators of its accuracy need to be established. The
developed EL model will then be re-built until satisfactory prediction accuracy is achieved.
Numerous indicators can be applied to evaluate the performance of a learning model, and a
rational strategy is to use comprehensive indicators that can overcome the shortcomings of
others. The coefficient of determination (R2), normalised root mean square error (NRMSE)
and mean average percentage error (MAPE) were utilised to evaluate EL model.

R2 measures the goodness of fitness Eq. (5), with a higher R2 value indicating that the EL
model provides a sound representation of the simulation model. NRMSE is the normalised
form of root-mean-square error Eq. (6), and measures the standard deviation between
predicted and observed values, expressed as residuals. It can be especially useful for
identifying significant deviation between the values predicted by the EL model and
observations from the simulation. The normalised form of RMSE also ensures accurate
comparison between models regardless of scale, which will be useful in evaluating how the
model performs across different construction objectives. MAPE Eq. (7) describes the
accuracy of prediction as a percentage.When compared to the other indicators, MAPE is easy
to understand because the accuracy of prediction is represented by relative error. This
indicator is widely applied in evaluations of regressions models developed by machine
learning algorithms.
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R2 ¼ 1�
Pn
t¼1

ðyt � yÞ2

Pn
t¼1

�
yt � �y

�2 (5)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
3
Pn
t¼1

ðyt � yÞ2
s
maxðytÞ �minðytÞ3 100% (6)

MAPE ¼ 1

n
3
Xn
t¼1

����y� yt

yt

����3 100% (7)

where n is the sample size, yt is the t-th observed value, y is the value predicted by the learning
model, and �y is the average value of yt. The maximum and minimum values of an observed
value are described by max(yt) and min(yt), respectively.

3.3 Learning-based optimisation
The developed EL model was then integrated into an optimisation algorithm to provide
efficient evaluations during optimisation iterations. In this study, the developed EL model
was integrated into a PSO algorithm to perform learning-based optimisation. PSO was
originally formulated by Kennedy and Eberhart (1995), and is a suitable tool for multi-
objective optimisation mainly due to fast convergence ability (Kennedy et al., 2006). Another
advantage of using PSO for multi-objective optimisation is that this algorithm can readily
achieve a non-weight multi-objective optimisation by defining multiple objectives as a vector
in a particle position. The Pareto solutions that are non-dominated with each other on all
objectives are obtained by PSO.

Based on the PSO mechanism, EL model will be invoked during each fitness evaluation.
Then, the particle swarm will refresh or keep the global and local best information based on
fitness results. The particle velocity will be updated, and particles will search new
construction scenarios. In this way, the particle swarmwill move to positions (scenarios) that
show better performance by using information from previous individual positions, as well as
the total swarm’s positions.

The ideal size of the PSO population depends on the problem that is being optimised
(Bratton and Kennedy, 2007). Rohler and Chen (2011) verified that a reasonable PSO
population ranges from 10 to 40. In this study, a sensitivity analysis was conducted to
identify the appropriate PSO population and performance tendency in the ESO framework.
According to a previous study (Feng et al., 2018), the 500 PSO iterations applied in this study
is an acceptable amount for construction planning optimisation when considering aspects of
quality and time. As the ESO approach provides efficient optimisation, a replication
mechanism can help the algorithm yield superior results with only limited computational
loads. For this reason, a replication mechanism was set for learning-based optimisation. The
optimisation quality is the measurement of searched Pareto solutions when compared with
other set of Pareto solutions. The acceleration constant and inertia weight values were
initially set based on previous construction applications (Wang et al., 2017), and will be
modified if necessary (see Table 1).

3.4 Pareto solution refinement
The Pareto solutions will be obtained by determining the exact performance of pseudo
solutions and removing solutions that are dominated by others. The inherent knowledge of
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the relationship between construction planning and project performance contained in the EL
model ensures that the searching trajectory of ESO converges to actual optimal solutions.
However, these searched solutions are still pseudo-solutions because the fitness evaluation is
based on a learning model. In order to determine the exact performance of pseudo solutions,
the inputs of these solutions, i.e. the considered construction parameters, are provided to the
DES model to simulate. Then, after an evaluation of the exact performances, the dominated
solutions are removed and the remaining solutions are Pareto solutions.

4. Optimisation evaluation, prototyping and application
4.1 Optimisation evaluation
Evaluation indicators will be used to evaluate and compare the proposed ESO approach with
the classical SO method. The ultimate objective of both of these methods is multi-objective
optimisation. Thus, the optimisation quality should be evaluated based on the identified
Pareto construction solutions. The hypervolume comparison method, proposed by Zitzler
et al. (2003) and described by Eq. (8), can quantitatively compare the performance of different
Pareto fronts. In this study, the method was used to evaluate the construction solutions
obtained through different optimisation methods. The hypervolumes for the solutions of two
optimisation approaches applied to a two-objective problem are illustrated as Figure 5. The
hypervolume indicator can detect the situation that one Pareto front (A) is not worse than
another front (B) when every solution in B is weakly dominated by at least one solution in A.
This means that the comparison is capable of evaluating the Pareto front regardless of the
number of solutions.

Parameter Value

Population of each generation (N) 10, 20, 30, 40
Maximum number of iterations 500
Acceleration constant (c1, c2) 0.8
Random number (r1 and r2) Uniform [0, 1]
Inertia weight (w) dynamic value wmax–(wmax–wmin) 3 t/T

wmin 5 0.1 and wmax 5 1.2

evitcejb
O

2

Objec�ve 1

Utopia
point

max

max

min

min

H1 H2Front A Front B

L1

L2

Table 1.
Parameters setting in

PSO-based
optimisation

Figure 5.
An illustration of the

hypervolume
comparison of Pareto

fronts provided by two
optimisation models

that were applied to a
two-objective problem
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NHi ¼ Hi=
Yobjective¼J

objective¼1
ðmaxj �minjÞ (8)

where i indicates the evaluated Pareto front, j is the specific evaluated objective, Hi is the
obtained hypervolume by i-th Pareto front and NHi is the normalised hypervolume indicator
that represents the optimisation quality of i-th Pareto front to the utopia point, whilemaxj and
minj represent the maximum and minimum values, respectively, of all evaluated Pareto
fronts on j-th objective.

4.2 Method prototyping
Aprototypewas developed based on the proposed ESO approach to validatemodel efficiency
and effectivity. The discrete-event simulation in ESO was developed within the SimioTM

platform (version 10; Simio LLC, Sewickley, PA), while the ELmodel andmulti-objective PSO
were programmed in MatlabR (version R2017a; Mathworks, Natick, MA). Data exchange
between simulation, optimisation and learning models was facilitated by programming an
API framework. Most importantly, all of the computing was performed on an office-level
laptop with an Intel(R) CPU i5-8300H, 2.30 GHz with 4 cores. Prototype will execute
automatically of ESO approach, and progressed from data generation, model training and
model testing to planning optimisation (Figure 6). The detail pseudocode for the ESO
framework can be found in Appendix 1.

4.3 Application of the developed ESO
The presented ESO approach was developed as a computational reduction approach
alternative to the conventional SOmethod. The decision to embed an ELmodel within the SO
framework wasmotivated by the need for an efficient connection between the simulation and
optimisation modules to reduce the computational loads associated with the conventional SO
framework (see Figure 7).

In order to apply the developed ESO approach to a construction project, the decision-
maker should start by developing the simulation model and programming the optimisation
algorithms, as is the case in the conventional SO framework. Next, an EL algorithm will be
programmed and embedded between the simulation and optimisation modules of the SO
framework, as shown in Figure 1. The decision-maker can select the preferred construction
alternatives for optimisation, and they should be defined and manipulated in the simulation
model just like SO framework along with the project progress. After these steps, the ESO is
ready to run the construction optimisation.

Ideally, the ESOwill provide a final Pareto front of solutions that compares to what would
be identified by SO, yet at noticeably lower computational loads. This means that ESO could
be run on the standard computing platforms already available at construction sites, i.e.
personal desktops and laptops. Therefore, the benefits of ESO are most obvious when real-
time optimisation support are required but HPC is not available.

5. Case application
5.1 Case information
The presented optimisation method and prototype were applied to a real-life large-scale
construction project located in Shenzhen, China, to test its performance to the construction
optimisation. The selected construction project includes three residential buildings (total area
64,050 m2, 30 floors) with a reinforced concrete framework. This project was chosen because,
on one hand, the project duration, estimated at more than two years. Thus, the project
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environment may vary multiple times during the project duration, which will influence the
optimality of the original plan determined at the planning stage. Moreover, the project
includes complex processes because the construction will use both precast (PC) and cast-in-
situ (CS) construction. The external walls, internal walls, beams, slabs, balconies and stairs
are PC components, while other components, including all of the columns and parts of beams
and slabs, will be constructed using CS method. The PC and CS activities cause interaction
with each other during construction; therefore, it is a challenge to identify the optimal
construction scenario. The above features make this case suitable to apply and compare the
proposed ESO with conventional SO method.

The processes involved in standard floor construction of the case building, depicted in
Figure 8, are surveyed according to construction planning documents and the on-site
manager. These processes include construction activities and involve the corresponding
supply chains of PC components and CS materials. As such, efficient floor construction must
consider the interaction between PC and CS construction, as well as the interactions between
construction and material supply logistics. Based on Figure 8, the PC components should
arrive at the construction site before they can be hoisted and installed. However, a certain
share of the PC components will be returned if they do not pass the quality check.
Furthermore, certain PC components need to be installed before other PC components.
According to the on-site manager’s expectation, the installation of PC components and
temporary supports needs to be adjusted based on project-specific circumstances, which
makes part of PC installation slower than predefined performance. To make the situation
even more complex, the concrete pump cannot be started until all PC components, CS rebar
and formwork of the floor have been installed, and the construction of the next floor will not
start before the CS concrete on this floor has been cured for 12 hours.

Dynamic factors of the construction, such as available equipment (R1) and crew (R2) could
change as construction progresses. Additional dynamic factors include the share of
unacceptable PC materials and installation productivity, while unexpected situations can
arise during the construction process. Thus, it can be expected that several optimisation runs
will be needed to adjust the previous optimal solution to the current project environment. The
frequency of adjustments will increase if the project occurs in a highly dynamic environment,
which is usually the case for construction projects. In the investigated case, the initial plan for
standard floor construction was based on managers’ experiences from previous project
environments. As such, the managers expected to have 100 and 60 workers available for PC
component installation and CS rebar processing, respectively. However, at the start of
standard floor construction, the managers only had 80 and 40 workers available for PC and
CS processes, respectively. This was the result of one of the labour firms cancelling the
contract with the project contractor due to cooperation failures. Therefore, the original
optimal plans needed to be immediately adjusted to the new project environments before
standard floor construction could be started.

The alternative plans for standard floor construction after the construction document
review and discussion with the on-site managers are listed in Table 2. The new number of on-
site workers can also influence the supply chains and equipment. Therefore, the alternatives
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Simula�on

2.2 
Op�misa�on

2.3
EL
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also include appropriate numbers of PC transport trucks, concrete pumps, construction lifts
and cranes, as well as the PC supply chainmode. All these alternatives can be adjusted before
the construction of standard floor begins. The supply chain has two modes, the first being
just-in-time (JIT) mode, in which the PC components are hoisted and installed immediately
after arrival on-site. In this mode the PC components cannot be stored at the construction site.
The othermode is the traditional on-site storagemode, inwhich the PC components are stored
at the construction site before they are hoisted. Theoretically, JIT mode provides savings in
terms of on-site re-transportation time, cost and emissions, while storage mode reduces the
risk of off-site transportation delays.

The productivity of equipment, along with rental cost and energy productivity, was
surveyed from equipment properties, a local Construction Engineering Quota database
(SCPCM, 2016b, 2016a), and contractors’ previous records. Whenever the project
environment changes, contractors need an efficient tool that will provide optimal plans for

Construction task Alternative scenario Remarks

PC components
installation

Up to 80 workers

CS rebar processing Up to 40 workers
PC wall transportation 8∼12 trucks 30 t, 12.3m3 2.5 m, 37 litre diesel/100 km, transport

Time ∼ Uniform(100–120) min
PC beam transportation 1∼2 trucks 30 t, 12.3 m 3 2.5 m, 37 litre diesel/100 km,

Time ∼ Uniform(100–120) min
PC slab transportation 3∼5 trucks 30 t, 12.3 m 3 2.5 m, 37 litre diesel/100 km,

Time ∼ Uniform(100–120) min
CS concrete pouring Concrete pump

(HBT6006A-5)
75 kW, 70 m3/h

1–3 pumps
Concrete pump
(HBT8016C-5)

132 kW, 85 m3/h

1∼3 pumps
Concrete pump
(HBT6013C-5)

90 kW, 65 m3/h

1∼3 pumps
CS rebar transportation 3∼5 Construction lifts

(SC200/200)
66 kW, 2 3 2 t

PC components hoisting 1 crane (XGT8039-25) Hoist time (min)
PC 5 Uniform(20.3, 21.8)
CS 5 Uniform(5.8, 8.5) hoist motors power(kW):
PC 5 58.1, CS 5 37.6

2 cranes
(XCP330HG7525-16)

Hoist time (min)
PC 5 Uniform(20.2, 22.3)
CS 5 Uniform(5.7, 9.1) hoist motors power (kW):
PC 5 49.8, CS 5 32.2

2 cranes (STT293) Hoist time (min)
PC 5 Uniform(20.3, 22.3)
CS 5 Uniform(5.8, 9) hoist motors power (kW):
PC 5 55.6, CS 5 36.0

1 crane (XGT500A8040-
25)

Hoist time (min): PC 5 Uniform(19.3, 21.4)
CS 5 Uniform(5.3, 8) hoist motors power (kW):
PC 5 74.7, CS 5 48.4

PC component supply
chain mode

Just-in-time (JIT) Supply chain without on-site storage
transportation-storage-
hoisting

Store one floor of PC component on-site

Total possible scenarios 20,736,000

Table 2.
The alternative
construction scenarios
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their on-site decisions. The presented ESO approach and conventional SO were applied and
compared in this case project.

Finding a balance between multi-objectives is a critical part of construction decisions
(Feng et al., 2018). Project duration and cost are two most commonly considered objectives in
construction optimisation (Eshtehardian et al., 2009; Zhang and Ng, 2012). However, the
negative effects of GHG emissions, i.e. global warming, have caused construction managers
to include environmental performance in their evaluations of construction operations (Kamali
and Hewage, 2017; Mao et al., 2013b). This case project will be the tallest high-rise building
with an integrated shear wall structure in southern China; therefore, including environmental
perspectives in the optimisation can serve as a benchmark for future construction projects. In
this case, the construction duration, the cost for labour and equipment, as well as
construction-associated GHG emissions were themulti-objective indicators. The productivity
and electrical/fuel consumption of the construction equipment and vehicles, along with the
productivity of labourers (see Table 2), were included in the developed DES model. Table 3
shows the GHG emissions and costs of the electricity and diesel consumed during the
construction operations.

5.2 Setup of ESO approach
The logic flow of the standard floor construction, including all tasks, associated resources
and efficiencies, are developed into a construction DESmodel (details see Table 4). The input-
output validation method is applied to validate the developed DES model. The input of
simulation is the original planning in construction documents. The output of the simulation is
the simulated results of the construction duration, the cost and GHG calculation, which are
compared with actual performances planned in documents and quantity calculation (i.e.
theoretical values). The DES model is validated, and the results are shown in Appendix 2.

And the appropriate simulation replication that ensures a satisfactory level of simulation
accuracy under uncertainty is determined by coefficient of variation (Cv) method of Lorscheid

Source GHG or cost factor Source(s) GHG or cost factor

electricity (kg CO2-e/kWh) 0.714 (NDRC, 2011) labour for joint grout (CNY/
8 h, the same hereafter)

159.62 (SCPCM,
2016b, 2016a)

diesel (kg CO2-e/kg) 3.153 (Mao et al.,
2013a)

labour for all CS transport 10005.194

cranes STT293 (CNY/day, the
same hereafter)

979.07 (SCPCM,
2016b, 2016a)

labour for PC stair hoist and
install

3583.56

cranes XCP330HG7525-16 845.88 labour for PC beam hoist and
install

2875.69

cranes XGT8039-25-16 1445.22 labour for PC slab hoist and
install

2342.88

cranes XGT500A8040-25 1445.22 labour for CS concrete
curving

475.077

concrete pump HBT6006A-5 1883.15 labour for PC internal wall
hoist and install

37.287

concrete pump HBT8016C-5 2,248.00 labour for PC balcony hoist
and install

9.508

concrete pump HBT6013C-5 1761.53 labour for PC external wall
hoist and install

118.821

construction lift SC200/200 431.13 labour for CSwall and column
rebar transport

4783.303

– – labour for CS beam and slab
rebar transport

5986.582
Table 3.

GHG emissions and
cost factors
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Task name Resource: Equipment (R1)/worker (R2) Unit Efficiency

PC external wall hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC internal wall hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC wall support install Crane (STT293) min/
pcs

Uniform(5.8, 9)y

Installation adjust PC worker min/
pcs

P{20} 5 20%
P{0} 5 80%y

Joint grout Rebar install
worker

min/
pcs

15.024*

PC beam hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC slab hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC stair hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC balcony hoist Crane (STT293) PC worker min/
pcs

Uniform(20.3, 22.3)y

PC beam support Crane (STT293) min/
pcs

Uniform(5.8, 9)y

PC slab support install Crane (STT293) min/
pcs

Uniform(5.8, 9)y

PC wall transportation Wall truck min/
batch

Uniform(100, 120)y

PC beam transportation Beam truck min/
batch

Uniform(100, 120)y

PC slab transportation Slab truck min/
batch

Uniform(100, 120)y

PC stairs and balcony
transportation

Stairs and
balcony truck

min/
batch

Uniform(100, 120)y

PC wall unload Crane (STT293) Wall truck min/
pcs

Uniform(7.3, 9.3)y

PC beam unload Crane (STT293) Beam truck min/
pcs

Uniform(7.3, 9.3)y

PC slab unload Crane (STT293) Slab truck min/
pcs

Uniform(7.3, 9.3)y

PC stairs and balcony unload Crane (STT293) Stairs and
balcony truck

min/
pcs

Uniform(7.3, 9.3)y

CS concrete pump Pump Concrete worker m3/h 70
CS beam and slab rebar install Rebar install

worker
min/m2 10.04*

CS wall and column rebar
install

Rebar install
worker

min/m2 11.63*

Post pouring joint formwork
install

Crane (STT293) min/
pcs

CS 5 Uniform(5.8, 9)y

CS wall and column and beam
formwork install

Formwork
worker

min/m2 13.85*

CS wall and column rebar
processing

Rebar processing
worker

min/m2 60.26*

CS wall and column rebar
transportation

Rebar processing
worker

Lift min/
batch

(Uniform(1, 2) 3 ht./
36 þ 6)/4*

CS beam and slab rebar
transportation

Rebar processing
worker

Lift min/
batch

(Uniform(1, 2) 3 ht./
36 þ 6)/4*

Note(s): * the value is calculated from local Construction EngineeringQuota database (SCPCM, 2016a, 2016b),
y the value is from on-site pre-experiments

Table 4.
The tasks, associated
resources and
efficiencies in
DES model
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et al. (2012), as Eq. (1). Figure 9 demonstrates that for the investigated case, the Cv of
construction time, cost and GHG stabilises (under 0.1% difference) when 26 or more
replications are performed. Thus, theminimumnumber of DES replications for the case study
was set at 26. The parameters in the proposed ESO include structure of multiple/combination
learners, number of samples and number of particles in PSO. And all of themwill be analysed
in following sections. The values for parameters in ESO are summarised in Table 5.

To test that the EL-based learning model can accurately extract construction information
from DES, firstly, 800 samples were used to train, validate and test the EL model. The
regression plots of actual versus predicted values for GHG emissions, time and cost of the
testing samples are shown in Figure 10. The R2 and coefficient a (y 5 ax þ b) for all three
objectives are close to 1. According to the standard presented inGilliland’s research (Gilliland,
2010), the MAPE results for all three construction objectives could be regarded as “good”
because all values fell below 20%. And as for NRMSE, no widely agreed standard exists for
the field of construction. However, based on Hall’s research (i.e. NRMSE < 5%), the time and
cost performance are both “reasonable”, while GHG performance is slightly below the
standard (Hall et al., 2014). These results demonstrate that the developed EL model can
accurately predict construction performances and, as such, can serve as an accurate
connection between the simulation and optimisation modules in developed ESO approach.

Parameter Value

Total number of learner (M) 20:20:20
Structure of multiple learners BRBNN: 10-3-3; ELM: 10-10-3

RT: min. leaf and parent are 1 and 10
Structure of combination learners Compare among 120-3-3 (default),

120-10-3 and 120-10-10-3
Number of samples Adapted increase from 50, 100, 200,

400 and 800
Rate of training sample 70%
Rate of testing sample 15%
Rate of validation sample 15%
Size of subsample for training in total training set 60%
Number of particles in PSO Compare among 10, 20, 30 and 40

Table 5.
Values for the

parameters in the
presented ensemble

learning model

Figure 9.
Coefficient of variation

(presented as %
difference) for the

number of simulation
replications
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Figure 10.
Regression plots of
actual vs predicted
values by ESO in (a)
time, (b) cost, (c) GHG
per floor construction
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6. Results and discussion
6.1 ESO parameter and SO comparative analysis
The applicability of the presented ESO framework to construction projects was tested by
analysing how changes in certain model parameters affect optimisation performance. The
normalised hypervolume indicator NH was used to represent the normalised optimisation
quality, with variation (Var.) and average improvement (AI) defined by Eqs. (9) and (10). The
results illustrated in Figure 11 imply that two features of ESO affect optimisation
performance. The first is the sample size used for model training, validation and testing; this
factor influences optimisation performance because it determines how similar the learning
model is to the actual optimisation space. The second feature affecting the optimisation
quality is the size of the particle swarm, which influences optimisation performance by
determining the searching ability of the optimisation algorithm.

Var: ¼ ½maxðNHiÞ �minðNHiÞ�=23 100% (9)

AI ¼
�

�NHjþ1 � �NHj

��
�NHjþ1 3 100% (10)

where Var. and AI describe variation and average improvement in optimisation quality,
respectively, and i and j describe the particle size and sample size indices, respectively. �NH is
the average value.

The results illustrated in Figure 11 show that ESO demonstrated distinct improvement in
terms of optimisation quality as the size of the sample increased to a satisfactory level, i.e.
from 50 to 100 in this case. The variation in optimisation quality also decreased substantially
when the sample size reached 100. At this point, the optimisation quality will marginally
improve (by less than 5%) as the sample size increases, while variation will stay at a stable
level of under 3%. Increasing the sample size from 800 to 4,000 shows average improvement
of 0.03%, which indicates that optimisation quality achieves a stable point at a sample size of
800. As for the size of the particle swarm, the results show that this feature can affect the
quality of ESO when sample size is held constant. However, the results did not reveal a
consistent trend regarding which particle swarm size is most suitable across different
sample sizes.

To substantiate the benefits of the proposed approach, the performances of ESO and
conventional SO were compared. The developed SO is from AbouRizk and Shi’s, (1994)

Figure 11.
Optimisation

performances of ESO
and SO with different

training and
optimisation settings
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previous works, and more details can be referred at Appendix 1. The results presented in
Figure 11 demonstrate that SO has reduced optimisation quality from 0.996 to 0.947 if the
particles are set from 40 to 10. But in this situation, ESO in 400 samples and more has
outperformed performance than SO, both in terms of optimisation quality and variation (see
Figure 12). As the sample size grew, i.e. with 800 samples and more, ESO has superior
optimisation performance relative to SO with 20 or 30 particles. The ESO with 40 particles is
slightly inferior to the SO with the best parameter setting. Therefore, these results
demonstrated that ESO outperforms SO when they have a low search ability, while ESO is
slightly inferior to SOwhen they have a high searching ability. These results are consist with
what has been presented in previous research, i.e. a learning model can outperform a SO
method in terms of optimisation quality when the learning model and optimisation algorithm
are well defined (Jun et al., 2010).

The key motivation for developing the ESO method was significantly reducing the
computational loads of SO and providing efficient optimisation that is practical for use at a
construction site. Figure 13 shows that ESO – under satisfactory conditions, i.e. 100 samples

Figure 13.
Computing time
observed for ESO and
SO with different
training and
optimisation settings

Figure 12.
Optimisation
performances of ESO
and SO with ten
particles and different
training
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and 40 particles – achieved significant reductions in the computing time associated with the
SOmethod; more specifically, when the particle size was kept constant (both methods had 40
particles), ESO reduced SO computing time by 96.75%. At larger sample sizes, this reduction
in computing time was not as significant, yet nevertheless obvious. For example, ESO with
800 samples and 40 particles reduced the computing time of SO under the same settings by
93.53%. However, the computing times of ESO and SO become more comparable at larger
sample sizes. For example, performing ESO with 4,000 samples with 40 particles took
3.72 3 104 seconds, which represents a 72.65% reduction in the computational loads of the
corresponding SOmethod. Therefore, applying a large sample size to the training, validation
and testing of ESO can partly offset the advantage of computing time reduction. In this case it
is important to consider the results depicted in Figure 11, namely, optimisation quality
improvements becomemarginal once the sample size exceeds a satisfactory point. Therefore,
applying the ESO approach using satisfied samples is able to noticeably reduce computing
time and provides optimisation quality that is comparable to what is observed for the SO
method, simultaneously. Sample sizes that exceed the satisfactory point will slightly offset
the computing time benefits of ESO without noticeably improving optimisation quality.

To further investigate the influence of sample size on different optimisation performances,
the learned optimisation spaces by ESO were compared for different sample sizes. A total of
1,000 random construction samples was used to investigate how the learned optimisation
space under different ESO settings compared to the actual optimisation space. The results
depicted in Figure 13 show that the learned optimisation space of ESOwith 200 samples is far
more similar to the actual optimisation space than the learned optimisation space of ESOwith
50 samples. In these situations, the ESO will explore the optimisation space in a way that is
similar to SO. Theoretically, ESO provides more stable optimisation quality with higher
sample size, which was already demonstrated in Figure 11. As the results illustrated in
Figure 14 (a, b, c, d) reveal, the learning model successfully interacted with the solution space
across all sample sizes. This is an important result, as it demonstrates that the developed
algorithm adopts the correct exploitation direction with all sample sizes. ESO trained with
more samples will show a learned optimisation space that closely resembles the actual
optimization space and, hence, will effectively mimic the conventional SO framework. On the
other hand, ESO trained with a limited number of samples will still adopt the correct
optimisation direction albeit with a loss in optimisation quality.

Figure 14.
Optimisation space

learning under
different ESO settings

Embedding
ensemble

learning into
SO

283



As the necessary number of optimisation particles should depend on the required searching
ability of a specific optimisation problem, more optimisation particles may be required in
various applications. Figure 15 shows the optimisation quality and computational loads
reduction (relative to SO) of ESO across different numbers of optimisation particles. The
presented results show that the computational loads reduction of ESO trained with 100
samples relative to SO is positively related to the number of particles, i.e. progressively
increases from 10 to 60 particles. More specifically, ESO reduced the computational loads
associated with SO by 91.6%–98.4% as the number of particles increased from 10 to 60. The
optimisation quality, on the other hand, of ESO exceeded theminimumvalue of SOwhenESO
was trained with 100 samples and 50 particles. ESO trained with 100 samples did not
outperform the optimisation quality provided by SO at other particle sizes. However, the
largest difference between ESO and SO in terms of performance was only 2.3%; thus, the
performances of ESO and SO were comparable when between 10 and 60 particles were
applied. To summarise, the computational loads reduction conferred by ESO was more
distinct as the increase of required searching ability. Furthermore, neither ESO nor SO
showed any consistent superiority in optimisation quality.

As the minimum amount of simulation replication depends on the degree of project
uncertainty, more replications are theoretically required for highly uncertain construction
projects. A previous construction simulation study (Krantz et al., 2019) reported that an
extensive number of replications (50) is required for the optimisation of road construction.
Thus, the proposed ESO and SO were also subjected to various amounts of replication to
gauge their respective computing time requirements. The number of iterations was set at 100
to minimise the influence of convergence uncertainty, while 100 training samples and 40
particles were used in the models. Figure 16 shows that the ESO approach provides large
reductions in computing time as the amount of replications increases. The observed time
reduction stabilised (around 90%) when the number of simulation replications surpassed 26,
while the net computing time reduction provided by ESO was positively related to the
number of simulation replications. Therefore, the results indicate that ESO does not need
significantly more computing time when higher simulation replication is required.

Therefore, the proposed ESO has several advantages over SO:

(1) A well-defined ESO significantly reduces computational loads when compared to SO,
yet provides similar optimisation quality (see Figures 11 and 13);

(2) When the optimisation has a low level of searching ability, ESO outperforms SO both
in terms of optimisation quality and variation (see Figure 12);

Figure 15.
Optimisation quality
and computing time of
ESO trained with 100
samples relative to SO
for various particle
swarm sizes
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(3) In situations that require higher searching ability or more simulation replications, ESO
can reduce more net computational time compared with SO (see Figures 15 and 16).

6.2 ESO learning method analysis
The chosen learning method is critical for the accuracy of EL. As such, it is necessary to
reveal how the training samples and structure of the combination model influence EL
accuracy. The performed analyses considered between 50 and 800 training samples, along
with combinationmodels with structures ranging from simple to complex, i.e. 120-3-3, 120-10-
3, 120-10-10-3 (two hidden layers), respectively. The results in Figure 17 show that the
accuracy of the EL model improves as the sample size increases, reaching a stable point at a
training sample size of 100. As for the combination model, ESO applying the 120-10-10-3
model showed exhaustive computing time when trained with a small number of samples (e.g.
50). This scenario yielded numerous pseudo solutions, 2,549 to be exact, so the algorithm
spent far too much computing time on Pareto solution refinement. Hence, the 120-10-10-3
combinationmodel is impractical for the construction context as the exhaustive identification
of a Pareto front offsets the benefits of a developing an approach that is more efficient than
conventional SO. The 120-10-3 and 120-3-3 combination models are more practical for
decision-makers in the specific case presented in this study. The results revealed that the 120-
3-3 network is most suitable in the EL model across sample sizes ranging from 50 to 800. As
illustrated in Figure 17, the more complex 120-10-3 structure results in slight overfitting at
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small sample sizes, which makes the machine learning model less accurate than the model
resulting from the 120-3-3 structure.

In order to measure the performance of ESO by EL model with multiple learners, the
performance of the ESO applying EL was compared to methods that applied single learning
model, including Bayesian regularization backpropagation neural networks (BRBNN),
extreme learning machine (ELM) and regression tree (RT). According to the aforementioned
analyses, 100 samples ensures satisfied optimisation quality, efficiency and stable results,
while a particle swarm size of 40 provides the best optimisation quality. Thus, these settings
were used to test how various learning algorithms affected ESO performance. Table 6
demonstrates that ESO applying EL outperformed the other single learning models in terms
of NH. In other words, integrating EL into the optimisation model provides the best
optimisation quality. The model that applied ELM demonstrated the shortest training time,
which is consistentwith previous evidence that ELM is a fast learning algorithm (Huang et al.,
2006). This study proposed a machine learning approach to combine multiple learners. The
utility of this approach was compared with the commonly applied weighting method, which
uses the average weight (AW) for every learner during model combination. Table 6 shows
that ELwith the proposedmachine learningmethod outperforms the usually applied average
weight method in terms of optimisation quality.

The constituent parts of the total running time for the proposed ESO were also revealed.
The proposed ESO approach includes three distinct parts of computing time: learning model
training, optimisation and Pareto solution refinement. Figure 18 illustrates that learning
model training accounts for one of major computing time, with the EL approach having the
longest computing time of all the tested learning algorithms. This is reasonable because
multiple learners need to be trained in EL.

6.3 Case application and results
The developed ESO approach was finally used to simulate and optimise the objectives (cost,
duration and environmental perspectives) of the case construction project. Based on the

ESO learning method Optimisation quality (NH) Total computing time (CPU-s)

EL 0.937 4.40 Eþ03
BRBNN 0.916 1.08 Eþ03
ELM 0.608 9.64 Eþ02
RT 0.854 1.68 Eþ03
EL_AW 0.878 1.44 Eþ03

Note(s): Italic numbers indicate the approach with the best performance in the respective aspect; AW
represents the average weight method

Table 6.
Performances of
different learning
algorithms in ESO

Figure 18.
Computing time
components of ESO
applying different
learning methods
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procedure depicted in Figure 7, the alternative construction scenarios listed in Table 2 were
defined in the developed DES simulation model. As in the previous analysis, the number of
particles in the PSO algorithm was set to 40, while the EL model was trained with 100
samples. After these steps, the ESO is able to provide an optimised construction solution.

As a result, nine Pareto construction solutions (see Table 7) were obtained after about
1.22 hours of computing time by ESO. In contrast, the SO method with 40 particles included
37.78 hours of computing time. Hence, the on-site manager was provided with a solution (the
proposed ESO approach) which yields alternatives that can support decision-making in just
over one hour as compared to over day and a half, representing a computing time reduction of
96.75%. As for the optimisation quality, the ESO approach was 6.02%, i.e. (0.996–0.936)/
0.996, worse than SO in terms of normalised optimisation quality NH.

As can be seen in Table 7, the proposed ESO approach yielded nine non-dominated Pareto
solutions (#1∼#9) according to the multiple objectives, and they all dominate a random, non-
Pareto solution. Pareto solutions #5, #1 and #9 represents the ideal solution for GHG
emissions, time and cost, respectively, while the other solutions provide trade-offs between
the various objectives. The contractor is then able to use the obtained Pareto solutions to
efficiently make a decision.

7. Conclusion
SO is unsuitable to be an on-site real-time decision support tool due to its extensive
computational loads. Previousways that use less searching abilitywill offset the optimisation
quality of decisions. In the application of a large-scale construction project, the SO method
took nearly two days to optimise the construction planning characterised by three objectives.
The optimisation quality was subsequently reduced when SO was set with fewer particles to
reduce the computing time. The present study designs ESO as both computational reduction
and quality ensured optimisation approach. The developed ESO was applied to the same
project, and the results showed that it can remarkably reduce the computing time associated
with SO from two days to one hour while still providing comparable optimisation quality.
When the optimisation has 30 or fewer particles, ESO also outperformed SO in terms of
optimisation quality both in average level and variation.

In actual construction practices, the dynamic environments in constructions projects
should be fulfilled by an efficient optimisation approach for decision-making. ESO can be this
approach by its both real-time and reliable optimisation results for supporting decision
makings of construction planning. ESO is an alternative to HPC technologies that does not

Scenario GHG/floor (kg CO2-e) Duration/floor (day) Cost/floor (CNY)

Pareto #1 9808.72 8.848 195,057
Pareto #2 8805.62 9.006 188,782
Pareto #3 8789.67 9.167 189,569
Pareto #4 9475.36 8.902 188,277
Pareto #5 8628.37 9.110 197,143
Pareto #6 9141.16 8.875 195,798
Pareto #7 9473.65 8.865 198,978
Pareto #8 8736.81 8.937 194,678
Pareto #9 9746.46 9.065 187,970
A non-Pareto solution 10649.50 15.875 248,205
GHG best scenario Pareto #5 – –
Duration best scenario – Pareto #1 –
Cost best scenario – – Pareto #9

Table 7.
Performances of nine
Pareto solutions and a

random non-Pareto
solution
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require extensive computational capacity and can be easily used in actual on-site
environments. The proposed method in this paper retains the simulation and optimisation
sections of SO, yet embeds an ensemble learning algorithm within the conventional SO
framework. As a result, the ESO approach can be run on a standard desktop and laptop,
providing optimisation results in a few hours.

Furthermore, ESO can reduce more computational loads associated with SO especially in
two situations. The one is the projects inherently having high levels of uncertainty, so they
require a substantial number of simulation replications to provide reliable optimisations. The
other is the projects have a wide range of construction plan scenarios, i.e. have wide
optimisation spaces, so they require high level of searching ability in the optimisation model.
The presented ESO showed more computational loads reductions compared with SO when
either the number of simulation replications or particles grew.

The proposed ESO is a promising tool for efficient construction optimisation, but it still
has certain limitations need to be addressed in further work. Simulation model maintenance
presents a problem in the construction setting which could reduce the utility of ESO
especially with the progress of construction. Inspired by the recent study of Shrestha and
Behzadan (2018), the application of a real-time data collection technology (e.g. Internet of
things) could be a promising solution to overcome this problem. Then, the proposed ESO that
connected with real-time data could enable automatic or semi-automatic construction
optimisation. In addition, although this study verified the benefits of ESO in a large-scale
building construction, it is also interesting to test present work in a civil engineering such as
bridges or roads construction due to their inherent large scales, wider range of scenarios and
long-term duration.
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Appendix 1
Pseudocode for ESO approach and conventional SO

A1: ENSEMBLE LEARNING EMBEDDED SIMULATION OPTIMISATION

Construction dataset generation

while sample i-th < required sample size I, do 
LHS sampling: Xi={x1~[x1min,x1max], x2~[x2min,x2max], … ]} 

divide parameters’ values into equal probability regions [xmin, xmax]=[(xmin, x2),

(x2, x3), … , xmax)]

sampling regions (xu, xu+1)

sampling value in regions xi~(xu, xu+1)

input Xi (i=1,…,I) into DES model

run DES model

i<--i+1

return S={Strain, Stest, Svalidate}

end

EL model establishment

Bagging Sm~Strain (m=1,2,…,M)

while learner fm m-th < learner size M, do
train learner fm with Sm

m<--m+1

end
train combination model with Stest

input the outputs of fm and use outputs in actual performances in Stest

F <-- combination model

validate EL model with Svalidate

return R2, NRMSE, MAPE

if Not accepted

do Construction dataset generation

do EL model establishment

else
finish EL model validate

end

Learning-based optimisation

initialisation iteration t=1, particle position P
PSO global best record gbestP, PSO individual best record pbestP

while optimisation criteria: t < maximum iteration T || optimisation convergence 

condition || replicated mechanism n < maximum replication N do
PSO searching:

V(t) <-- w(t)×V(t-1)+c1×r1×(pbestP(t-1)-P(t-1))+c2×r2×(gbestP(t-1)-P(t-1)) &&
P(t) <-- P(t-1)+V(t) 
while particle k-th < particle size K, do 

run EL model to evaluate particle k-th

return particle k-th fitness in “cost-time-GHG”

k<--k+1

end
update gbestP and pbestP
t<--t+1

end
return pseudo solutions

 

Pareto solution refinement 

Input pseudo solutions into DES model 

run DES model 

return “cost-time-GHG” 

remove solutions being dominated 

return timely Pareto solutions 
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Appendix 2
DES model validation

A2: SIMULATION-BASED OPTIMISATION

initialisation iteration t=1, particle position P
PSO global best record gbestP, PSO individual best record pbestP

while optimisation criteria: t < maximum iteration T || optimisation convergence 

condition || replicated mechanism n < maximum replication N do
PSO searching:

V(t) <-- w(t)×V(t-1)+c1×r1×(pbestP(t-1)-P(t-1))+c2×r2×(gbestP(t-1)-P(t-1)) &&
P(t) <-- P(t-1)+V(t) 
while particle k-th < particle size K, do 

run DES model directly for position of k-th particle

return particle k-th fitness in “cost-time-GHG”

k<--k+1

end
update gbestP and pbestP
t<--t+1

end
return Pareto solutions

Testing item Unit Document quantities Simulation

Cost of cranes CNY 965463.344 1,089,140
Cost of construction lifts CNY 1405916.4 1,405,920
Cost of concrete pumps CNY 502863.2 502,863
Labour for CS beam and slab rebar process CNY 185584.042 185,584
Labour for CS wall and column rebar process CNY 148282.393 148,282
Labour for PC external wall hoist and installation CNY 1175755.03 1,175,760
Labour for PC balcony hoist and installation CNY 91835.8134 91835.8
Labour for PC internal wall hoist and installation CNY 292757.501 292,758
Labour for CS concrete pump, vibration and curving CNY 997323.92 997,324
Labour for PC slab hoist and installation CNY 412919.246 412,919
Labour for PC beam hoist and installation CNY 140441.223 140,441
Labour for PC stair hoist and installation CNY 123976.842 123,977
Labour for CS wall and column rebar installation CNY 310161.014 310,161
Labour for joint grout CNY 614074.102 614,074
Labour for climbing formwork CNY 3,024,810 3,024,810
Diesel consumption of PC trucks kg 50775.386 50775.4
Power consumption of concrete pumps kWh 15025.5102 15,747
Power consumption of cranes kWh 486,623 491,892
Power consumption of construction lifts kWh 75113.775 75113.8

Null hypothesis Test Sig Decision

There is no difference between the median values for the
real construction data and the simulation

Wilcoxon signed-
rank test

0.231 Retain the null
hypothesis

Note(s): The nonparametric Wilcoxon signed-rank test was used when comparing the simulation and the
documents (see Table A1). The resulting statistic for the test was 0.231, which exceeds the 0.050 significance
level (see Table A2), and it means that the simulated and real data do not statistically differ at the 95%
confidence level

Table A1.
The outcome of the
simulation and the
construction
documents of a
typical floor

Table A2.
Wilcoxon signed-rank
test results
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