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Abstract—Massive wildfires not only in Australia, but also
worldwide are burning millions of hectares of forests and green
land affecting the social, ecological, and economical situation.
Widely used indices-based threshold methods like Normalized
Burned Ratio (NBR) require a huge amount of data pre-
processing and are specific to the data capturing source. State-of-
the-art deep learning models, on the other hand, are supervised
and require domain experts knowledge for labeling the data in
huge quantity. These limitations make the existing models difficult
to be adaptable to new variations in the data and capturing
sources. In this work, we have proposed an unsupervised deep
learning based architecture to map the burnt regions of forests
by learning features progressively. The model considers small
patches of satellite imagery and classifies them into burnt and not
burnt. These small patches are concatenated into binary masks
to segment out the burnt region of the forests. The proposed
system is composed of two modules: 1) a state-of-the-art deep
learning architecture for feature extraction and 2) a clustering
algorithm for the generation of pseudo labels to train the deep
learning architecture. The proposed method is capable of learning
the features progressively in an unsupervised fashion from the
data with pseudo labels, reducing the exhausting efforts of data
labeling that requires expert knowledge. We have used the real-
time data of Sentinel-2 for training the model and mapping the
burnt regions. The obtained F1-Score of 0.87 demonstrates the
effectiveness of the proposed model.
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I. INTRODUCTION

Australia is, more than any other, a fire continent [1]. It has
faced an annihilating beginning of a gigantic fire within the
last quarter of 2019, which burnt over 5.8 million hectares of
forests, mostly in Victoria(VIC) and New South Wales (NSW).
In general, the number of fire alerts in Australia has increased
in the past two decades due to an increase in humidity, drought,
record heat, and high winds [2]. Similar to Australia, forests in
other continents have historically burned up to approximately
5% in the previous decade [3] essentially devastating biodiver-
sity, timberland riches, and human settlements [4].

Considering the severity of the circumstances and disad-
vantages of the furious blaze [5], the research community has
actively worked on the issue. Many methods and solutions

have been designed for detecting and monitoring the woodland
fire by different sources like Radio Detection and Ranging
(RADAR), Light Detection and Ranging (LiDAR), and optical
imagery [6]. The primary sources of remote optical imagery
are Unmanned Aerial Vehicles (UAV) and satellites. Satellite
imagery, captured through multispectral sensors, is particularly
used worldwide for forest fire detection and assessment.

Satellite imagery-based burnt area classification algorithms
can be generally divided into two major categories; rule-
based methods and machine learning methods. Rule-based
methods are a combination of the spectral response of burnt
region mostly in short wave infrared (SWIR) and near-infrared
(NIR) bands of the satellite imagery. This is because fire has
a significant reflectance in the SWIR and NIR bands. The
spectral responses in these bands are pretty helpful in detecting
sound vegetation and burned regions. In burning areas, a
significant drop in values is observed in NIR reflectance and
a rise in SWIR reflectance after burning. This response is
because of the sensitivity of the NIR band to chlorophyll
substance of healthy plants, and SWIR captures the moisture
of soil and vegetation [7]. These multispectral bands, along
with visual bands (red, green, and blue), are commonly used
in the indices applied to detect burnt regions in satellite
imagery. The most commonly used indices for the purpose
are Normalized Burned Ratio (NBR) [8], the Mid-InfraRed
Burn Index (MIRBI) [9], and the Modified Burned Area Index
(BAIM) [10]. For detection of burnt areas from an aerial view,
mostly pre-event imagery of the scene is used along with the
post-event to detect the changes with the help of empirically
calculated thresholds. Here, an insufficient choice of a pre-
event scene may lead to misclassifications. Additionally, these
traditional rule-based approaches are sensitive to noise, like
cloud cover, and require exhaustive preprocessing of a massive
corpus of data–thereby making the task more challenging.

In the recent past, several machine learning-based tech-
niques have been designed to map burnt regions using remotely
sensed imagery. The lately designed algorithms MCD64AI
at 500 m resolution [11] and FIRECCI51 at 250-meter res-
olution [12] create temporal composites for capturing the
lasting changes, sift low-quality pixels, and combine these
processed pixels with active blaze identified using the MOD-
erate resolution Imaging Spectroradiometer sensor (MODIS).



For FireCCI51, initially, some candidate pixels for the burnt
area are detected. Later the neighboring burnt pixels of the
candidate pixels are identified using a pixel growing algorithm.
For MCD64A1C6, steps in series are followed, including the
region growing procedure. The use of the region growing tech-
nique is a very common practice in traditional approaches for
mapping burnt regions [13], [14], [15]. Many other algorithms
have been presented and used at regional levels. For instance,
One-Class Support Vector Machine [16] is used for reducing
the omission error produced by the omission of the active
blaze. It has minimized the requirement of using the region
growing technique to make the approach comparatively easier.
However, the proposed method used temporal composite for
avoiding cloud cover and cloud shadows leading to discarding
some information that could be useful. Furthermore, sensors
vary from each other in characteristics. Most of the traditional
approaches are sensitive to the particular sensors they are
designed and refined for, and adaptation of these algorithms to
different sensors becomes a challenging task. Despite improve-
ments over the years in the algorithms for burnt area mapping,
there are still some facets that need improvements and/or are
outside the limitations of the traditional methods. Specifically,
the burnt zone mapping tools would be more useful for larger
and steady time-series data, better uncertainty estimation, and
mapping blaze areas and combustion completeness [17]. It
raises the need to have a method that is scalable as well
as adaptable to variations. Deep learning (DL) is capable of
addressing the above-stated limitations [18].

Today Deep Learning (DL) techniques are rapidly becom-
ing state-of-the art for learning variant and complex features
across various domains [19]. Computer-vision problems of
object detection, localization, and recognition are thrived by
Convolutional Neural Networks (CNN) [20]. In the domain
of remote sensing, CNNs are used in emerging applications
of land-cover classification [21], segmentation of buildings,
roads [22] and small objects [23], reconstruction of missing
information in the data [24], cloud-cover detection [25] and
cloud shadows and effective utilization of Spatio-temporal
satellite data [26], [27], [28], [29]. On a similar note, burnt
land mapping and dating have also been addressed by using
deep learning [30]. Pinto et al. [31] combined CNNs and Long-
Short-Term-Memory (LSTM) with U-Net based architecture
for mapping and dating burnt regions using multispectral
imagery. Similarly, Knopp et al. [32] have segmented burnt
land from mono-temporal Sentinel-2 using U-Net based archi-
tecture.

Even though the deep learning methods are becoming state-
of-the-art, they carry a few limitations. 1) They are generally
supervised and require a huge amount of labeled data for
training the model. Data labeling is time-consuming and an
exhaustive task. Furthermore, in many instances, it requires
expert knowledge, which is hardly available at scale. 2) They
are domain-specific. Their performance diminishes radically
when applied to a diverse dataset of the same problem. To
bargain with these issues, the concept of Curriculum Learn-
ing [33] has been used by a few researchers [34]. In this paper,
we have also used a similar concept. We performed burnt
forest estimation by combining the state-of-the-art machine
learning and computer vision methods with the concept of
CL using Sentinel-2 Imagery of Australia. We have performed
unsupervised patch-based classification of burnt and unburnt

patches in satellite imagery. The process itself covers three
stages, including the selection of training examples, computing
the discriminative features, and classify the burnt and unburnt
regions.

The proposed unsupervised method is composed of a deep
learning architecture, a clustering algorithm, and a selection
operation based upon curriculum learning for burnt region
classification. The model takes satellite image patches as input
and classifies them into ”burnt” and ”not burnt” class. It is
assumed that the input patch is not labeled. Therefore, a clus-
tering algorithm is used to tackle the issue of labeling. Firstly,
pre-trained deep learning architecture is used to extract feature
vectors of patches. Secondly, these feature vectors are clustered
into two categories using state-of-the-art clustering techniques
to generate pseudo-labels, assuming them to be burnt and
not burnt. The pseudo-labels are used as a new identity of
the patch. Initially, the pre-trained deep learning model is
trained on the ImageNet dataset, which does not contain aerial
imagery. Hence, the pre-trained model may not extract good
feature vectors resembling burnt and not burnt region of aerial
imagery, resulting in loose clusters in the feature space. Our
hypothesis is that clustering will give better distribution of
burnt and non-burnt patches than random division. The main
idea of the approach is to iteratively improve the feature extrac-
tor by fine-tuning the deep learning model on representative
samples from each cluster. A selection operation is used for
selecting the samples from generated clusters for fine-tuning.
The selection operation selects the samples present near the
centroids of the clusters. These samples indicate the prominent
features of the respective cluster. Fine-tuning of the model with
selected samples and respective pseudo-labels makes the model
learn the discriminative features between the two clusters. As a
result, better discrimination is achieved between burnt and not
burnt regions. When the model converges, one of the clusters
will belong to the ”burnt” and the other to the ”not burnt”
class. The major contributions of our work include:

1) A progressive deep learning model for burnt region
classification from multispectral aerial imagery.

2) An unsupervised architecture removes the need for
data labeling, which is a primary requirement of state-
of-the-art supervised deep learning based methods.

3) A patch-based Sentinel-2 imagery dataset of burnt
Australian regions from the 2020 fire incident has
been developed and will be publicly available.

II. MATERIALS AND METHODS

A. Study Area

In this study, different regions of Victoria (VIC) and New
South Wales (NSW) have been considered for analyzing the
wild bushfire. Figure 1 graphically shows the regions selected
for this analysis while Table I lists down the precise geo-
graphical locations in the standard latitude/longitude (WGS84)
coordinates and surrounding cities. The NSW and Victoria re-
gions are chosen as these were the worst-hit states of Australia
affected by the massive fire of 2019-2020. It has burnt more
than 5 million hectares of bush, forests, and parks across the
state and destroyed more than 2,000 houses. The wildfire was
mostly located at the coast of the Tasman Sea in NSW. The
windy conditions and hot weather added fuel to the fire and



Fig. 1: An illustration of the regions of New South Wales (NSW) and Victoria is considered in this study for analyzing and
training the deep learning model. The rectangular regions indicate the area of early 2019 and are considered as not burnt. Whereas
the other polygons in NSW and Victoria are of the 1st quarter of 2020 and considered as burnt regions as a result of the massive
fire.

Class Region Latitude Longitude Cities
East West North South

Not Burnt
2019

Mymagee -32.14 146.72
Crowdy

Head
Broken

Hill Gowang
Mount
Hope

Balrang -34.70 143.64 Maude Rabinvale Corrong Winlatin

Burnt
2020

- -35.76 148.43
Yarran-
gobily Buddong - Cabramurra

Torn
Groggin -36.53 1447.92

Murray
Gorge -

Nariel
Vally -

East-South
Coast NSW -36.40 149.59 Narooma - Bundanoon Tamboon

TABLE I: The table shows the details of the considered NSW regions of 2019 and 2020. Two polygons are considered from
2019 for ”Not Burnt” class, whereas three polygons are considered from 2020 for ”Burnt” class. These regions are used for
training and testing the unsupervised deep learning model.

resulted in an uncontrollable situation. The massive bushfire
raged the area, including the Australian capital Canberra, for
weeks and months. In Victoria, the fire affected 1.2 million
hectares by early January 2020 [35]. The generated smoke had
drastically polluted the environment, air quality, and satellite
imagery. According to Swiss-based group AirVisual [36], the
quality of the polluted air in Canberra (capital) was rated as
the 3rd worst of all major global cities on January 3, 2020. The
satellite images from early January 2020 manifested significant
dissemination of smoke from firestorms in NSW and Victoria
and spread far away to New Zealand as reported in the BBC
report [37].

B. Data and Pre-Processing

The Sentinel-2 multispectral imagery of the selected re-
gions of NSW and Victoria is used to generate the required
dataset. We have visualized the Sentinel-2 imagery and ac-
cordingly labeled the unaffected and affected regions from fire.
The rectangular regions, as shown in Figure 1, belong to the

1st quarter of 2019 and are considered as unaffected from the
wildfire. Whereas the randomly shaped polygon corresponds
to the 1st quarter of 2020 and is the affected burnt regions.
We have extracted the respective bundle of images considering
only equal to or less than 1% of the clouds. From both bundles,
the two respective median images are computed. The 2019
median image of the rectangular region is used as an unaffected
class, whereas the 2020 median image of irregular polygon
regions is used as the burnt forest class. These two images are
divided into small patches of size 64x64. We have considered
the 12 bands of Sentinel-2, that are, Band 1 – Coastal aerosol,
Band 2 – Blue, Band 3 – Green, Band 4 – Red, Band 5 to 7 –
Vegetation red edge, Band 8 – NIR, Band 8A – Narrow NIR,
Band 9 – Water vapor, Band 11 – SWIR, Band 12 – SWIR
(i.e., all the bands are used except the Band – SWIR – Cirrus
– 10 as it does not provide the surface information).

These bands are concatenated to make them suitable to
feed as input to the deep learning network. The four of these
bands are concatenated together to form one channel of size



Fig. 2: Shows the considered 12 bands of multispectral satellite
imagery of Sentinel-2 into three-channel input. Each channel
contains four bands, 1 in each quarter. Each of the red,
green, and blue bands is kept in each channel, considering
the input configuration of the CNN model. All the patches are
preprocessed in this way to make them suitable for the input
of the deep learning model.

Fig. 3: Shows the visuals of 10 samples of burnt and not burnt
from the dataset where each sample is composed of 12 bands
of Sentinel-2 imagery concatenated into three channels.

(128x128). Similarly, three-channel sample size (128x128x3)
is created out of the chosen twelve bands. Figure 2 graphically
shows the bands concatenation. Among the generated data,
we have randomly selected 12,000 samples for training and
evaluating the employed unsupervised deep learning model.
The considered dataset of 12,000 samples includes 6,000
affected (i.e., burnt forest) and 6,000 not affected regions‘
samples, out of which 8,000 were used for training and 4,000
for testing. Some affected and unaffected samples from the
generated dataset are shown in Figure 3.

C. Deep Unsupervised Burnt Forest Learning Scheme

The proposed methodology essentially frames the burnt for-
est monitoring process in an unsupervised learning manner. It
does so by adopting a two-phase procedure: In the first phase,
a base deep convolutional neural network (CNN) is patch-
wise trained (as an initializer for the subsequent phase) on
the relevant dataset to learn robust and distinctive burnt forest
features. Subsequently, in the second phase, these features are
then input to an unsupervised clustering scheme to perform
the grouping of image patches that share similar appearance
characteristics. The fundamental underlying idea is to itera-
tively fine-tune this whole feature extraction and clustering
scheme in an unsupervised way. The idea has been adopted
from computer vision (e.g., [38] [39] [40]) which combines the
strengths of transfer learning and latent space representation
to enable cross-domain adaptation. The clustering results are
treated as pseudo labels and are fed back to the network to
further fine-tune the base model. The process then continues

with increasingly growing training samples with pseudo labels
until convergence. Following are the individual steps outlined
in a sequential manner:

1) Perform feature extraction using a pre-trained base
model to extract robust burnt forest feature represen-
tations;

2) Feed the extracted feature representations to an un-
supervised clustering to cluster burnt forests from the
rest image patches;

3) Refine the obtained clusters to probabilistically retain
the representative image patches;

4) The cluster IDs are used to assign pseudo labels to
the unlabeled refined image patches;

5) Retrain (i.e., fine-tune) the deep learning module with
each refined image patch of every cluster;

6) Extract features of the whole unlabeled training cor-
pus using the fine-tuned model obtained from Step
5.

7) Repeat Step 2 to 6 until the deep learning model is
converged.

For Step 1, the adopted base model is the VGG16 model
pre-trained on a large-scale ImageNet dataset which is em-
ployed for extracting features from the training input image
patches. The output of the last convolutional layer is extracted
to get feature maps of each sample in the dataset. The extracted
features are flattened to get the feature vectors. To cluster these
feature representations, a well-known unsupervised k-means
clustering algorithm is adopted. The input layer of the VGG-
16 is adapted according to remote sensing image patch size and
the output layer to the number of clusters that are generated.
If we suppose that the features extracted from the training
image patches {xi}Ni=1 are represented by {fi}Ni=1, then in
Step 2, these features are clustered using k-means objective
function: {yi}Ni=1 ← min

∑N
i=1

∑2
k=1 |fi − ck| where each

feature vector is assigned a cluster label {yi}Ni=1 on the basis
of its minimum distance from the particular centroid ck, where
c is the centroid of the kth cluster. In the current scenario, we
have set the value of k to be two so that all the image patches
are clustered into two groups, namely burnt forest and the other
category. In Step 3 and 4, the obtained clustering IDs are used
to assign the pseudo labels that are later used for fine-tuning
the CNN model.

Since the employed VGG16 model use model weights
that have been trained on a completely irrelevant (natural)
dataset, therefore the obtained clusters are quite noisy and
cannot be directly used to fine-tune remote sensing images
to recognize burnt forest image patches. To cope with this
issue, the obtained clusters are passed through a filtering
mechanism to prune individual clusters. For this purpose, only
those features are retained whose distance to the centroid of the
pixel is less than a certain threshold. The refinement process
keeps only the feature points near the cluster centroids and
thus restricts the CNN to learn only the prominent features
and avoid unnecessary noisiness. The image patches belonging
to the refined clusters are then subsequently used to retrain
the whole network in an unsupervised manner, i.e., with the
cluster IDs as pseudo labels, in Step 5. In the next iteration, the
updated (fine-tuned) model is used to extract the features from
the image patches. With every iteration, the model learns the
image features using the pseudo labels of clusters resulting



Fig. 4: Shows the three prominent steps of the technique; 1) Deep learning model (VGG-16) to learn and extract the features,
2) Clustering to generate pseudo labels, and 3) Thresholding the samples present near the centroids of the clusters and declaring
them as reliable samples.

in comparatively better clusters than the previous iteration.
The process thus iterates until the loss of the deep model is
converged. See Figure 4 for model visualization.

III. RESULTS AND DISCUSSION

A. Clustering

Initially, the clusters are generated out of features extracted
from a pre-trained deep learning model. The model is trained
on an irrelevant domain (ImageNet) which does not contain the
satellite imagery, more specifically, burnt forests in Sentinel-2
Imagery. As a result, the clusters are not compact and loosely
packed for our input of Sentinel-2 imagery. To evaluate the
compactness of the clusters, purity and the Silhouette Score
are computed (see Figure 5). Purity is a supervised measure
that calculates the ratio of correctly classified samples to the
total number of samples for all clusters. Silhouette Score is
an unsupervised measure that calculates the ratio on the basis
of the distance between each sample within-cluster and the
neighboring clusters.

It can be seen in the graph that, in the beginning, the
Silhouette Score is a small number, which is 0.07, indicating
the lack of compactness in the clusters. With every iteration
of fine-tuning of the model, the compactness in the clusters
increases (at max to 0.64 at the 7th iteration). After a few
iterations, the compactness is saturated. Whereas purity re-
mains consistent throughout between the interval (0.75 - 0.85),
indicating the ratio of correctly classified samples. Though the
purity stays around 80%, but saturation increases with fine-
tuning leading to better cluster segregation.

For further analysis, the Sum of Squared Error (SSE) is
calculated, which is also the objective function of K-Means

Fig. 5: Graph showing the purity and Silhouette Score of
generated clusters for burnt forest and other regions over every
iteration of fine-tuning of VGG16.

clustering. It can be seen in Figure 6. Initially, the value of
SSE was quite high when clustering was done using pre-trained
VGG16. As soon as the model is fine-tuned on a few images of
Sentinel-2, the SSE decreased significantly by the one-degree
exponent. After that it remains consistent at mean 3.9xe8.

As the clusters are loosely packed in the beginning, it is
better to use those samples present near the centroids of the
clusters for fine-tuning of VGG16. It restricts the model from
learning random features and ignores the noisy samples from
the clusters. To do so, the dot product is used to find the
similarity of every sample within a cluster with its respective
centroid. Its value ranges from 0 to 1. If the dot product is
greater than or equal to a pre-defined threshold, it is counted as



Fig. 6: Graph showing Sum of Squared Error of generated
clusters for burnt forest and other regions over every iteration
of fine-tuning of VGG16.

Fig. 7: Graph showing the count of reliable samples over every
iteration of fine-tuning of VGG16.

the sample present near the centroid and declared as a reliable
sample.

It can be seen in Figure 7 that at the start, only a few, i.e., 22
reliable samples, are extracted using the pre-trained VGG16.
It indicates that the clusters are loosely packed. As the VGG-
16 gets fine-tuned iteratively, the count of a reliable sample
grows. The growth of reliable samples gets saturated after
some iterations. After the 7th iteration, the graph remains quite
consistent, with a count close to 8,000. It indicates that the
clusters contain the majority of the samples from the training
corpus of 9,000 samples as a reliable set and declaring only a
small fraction of about 1,000 as the noisy ones.

Considering the purity, Silhouette Score and SSE measures,
and count of reliable samples, it can be seen that the clusters
generated at the 7th and 10th iteration are the best ones.
We have fine-tuned the model for 20 interactions. After this,
no more improvement in the clustering and fine-tuning is
observed.

B. Fine-tuning VGG16

VGG16 is a supervised deep learning architecture that
requires labels along with images to train the model. The
pseudo labels of generated clusters are used to train VGG16.
It can be seen in Figure 8 that the model is reporting almost

a very small cross-validation loss on every iteration of fine-
tuning VGG-16, considering the pseudo labels as the labels
of the patches. It shows that the model is effectively learning

Fig. 8: Graph showing the training and cross-validation loss
with pseudo labels over every iteration of fine-tuning of
VGG16.

the generated labels of the patches. The model is fine-tuned
end-to-end till the classification layer. This fine-tuned model
is used for feature extraction in the next iteration, where the
last max-pooling layer’s output is used to generate the feature
vectors for the clustering step.

Fig. 9: Graph showing F1-Score on the test corpus over every
iteration of fine-tuning of VGG16.

The fine-tuned models generated over 20 iterations are
evaluated on a real-time dataset. Figure 9 shows the calculated
F1-Score. It can be seen that the model at 1st, 2nd, 3rd, 10th,
and 13th iteration gave the top 5 F1-Scores. Considering the
top 5 results on test corpus over the 20 iterations, a mean
of precision, recall, F1-Score, and accuracy are reported in
Table II.

C. Analysis on Sentinel-2 Imagery

We have considered the median Sentinel-2 imagery of three
months (Feb 2020 - Apr 2020) for the region, Australian
Capital Territory, and South of it, see Figure 10-(a). This
area is the worst affected region by the massive wildfire.
The top 5 iterations of fine-tuning the model reporting the
highest performance on test corpus were deployed to analyze
their performance on the considered region. The results can



Fig. 10: (a) Shows the region considered, covering Australian Capital Territory and South of it in an orange polygon, for testing
the fine-tuned models on Sentinel-2 median image of three months (Feb 2020 - Apr 2020). (b) Shows the prediction results for
the fine-tune iteration of the deep learning model, reporting the highest accuracy on test corpus. (c) Shows the prediction results
for iteration reporting the 2nd highest accuracy on test corpus. (d) Shows the prediction results for iteration reporting the 3rd
highest accuracy on test corpus.. (e) Shows the prediction results for iteration reporting the 4th highest accuracy on test corpus.
(f) Shows the prediction results for iteration reporting the 5th highest accuracy on test corpus.

Precision Recall F1-Score

Class 0 0.86 0.83 0.84
Class 1 0.83 0.86 0.85

Accuracy - - 0.85
Macro Avg 0.85 0.85 0.85

Weighted Avg 0.85 0.85 0.85

TABLE II: The table shows the average precision, recall, F1-
Score and accuracy for best 5 iterations on the test corpus.

be seen in Figure 10-(b-f). Image (b) of the figure shows the
result of 1st fine-tune iteration, reporting the highest accuracy
of 0.87 on the test corpus. Similarly, (c) shows the result
of the 3rd iteration reporting the 0.85 accuracy, (d) shows
the result of 2nd iteration reporting 0.84 accuracy, and (e-
f) results of 10th and 13th iterations, each reporting 0.83
accuracy. The accuracy on the test corpus for 1st, 2nd, and
3rd is comparatively higher, but the generated clusters are
loosely packed compared to later iterations of fine-tuning,
and the count of reliable samples is less than 50 (see sub-
section III-A). Considering the compactness and good count
of reliable samples, the models at iteration 10 and 13 generate

better clusters but performance decreases on the test set. This
might be because of multiple iterations of fine-tuning, leading
the models towards overfitting.

IV. CONCLUSIONS

In this paper, we have proposed an unsupervised deep
learning technique for mapping the burnt regions of Australia.
The method is capable of learning the features progressively
from the data without expert knowledge. The proposed solution
provides the advantages of supervised deep learning models
along with removing the tedious step of data labeling. We
are able to achieve the F1-Score of 0.85 with the progressive
learning behavior of the model in an unsupervised manner.
The real-time Sentinel-2 Imagery is used for training the deep
learning architecture and mapping the burnt region of Aus-
tralia. The method can be applied without any modifications
to estimate the burnt forest region in any other region of the
world due to its unsupervised nature.
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