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Abstract 
 
Background: The gearbox and machinery faults prediction are expensive both in terms of repair 

and loss output in production. These losses or faults may lead to complete machinery or plant 

breakdown.  

Objective: The goal of this study was to apply advanced machine learning techniques to avoid 

these losses and faults and replace them with predictive maintenance. To identify and predict the 

faults in industrial machinery using Machine Learning (ML)  and Deep Learning (DL) approaches.  

Methods: Our study was based on two types of datasets which includes gearbox and rotatory 

machinery dataset. These datasets were analyzed to predict the faults using machine learning and 

deep neural network models. The performance of the model was evaluated for both the datasets 

with binary and multi-classification problems using the different machine learning models and 

their statistics. 

Results: In the case of the gearbox fault dataset with a binary classification problem, we observed 

random forest and deep neural network models performed equally well, with the highest F1-score 

and AUC score of around 0.98 and with the least error rate of 7%.  In addition to this, in the case 

of the multi-classification rotatory machinery fault prediction dataset, the random forest model 

outperformed the deep neural network model with an AUC score of 0.98.  

Conclusions: In conclusion classification efficiency of the Machine Learning (ML) and Deep 

Neural Network (DNN) model were tested and evaluated. Our results show Random Forest (RF) 

and Deep Neural Network (DNN) models have better fault prediction ability to identify the 

different types of rotatory machinery and gearbox faults as compared to the decision tree and 

AdaBoost.  

Keywords: Machine Learning, Deep Learning, Big Data, Predictive Maintenance, Rotatory 

Machinery Fault Prediction, Gearbox Fault Prediction, Machinery Fault Database, Internet of 

Things (IoT), Spectra quest machinery fault simulator, Cloud Computing, Industry 4.0 
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1 Introduction 

1.1 Motivation 
The motivation for the study was to learn about the different types of industrial maintenance and 
their challenges. Furthermore, to learn and apply advanced analytics techniques and machine 
learning algorithms to predict the faults in industrial machinery. That will help the maintenance 
team to repair and schedule the maintenance ahead of problems to avoid any breakout in the plant 
or production line.  

1.2 Background 
Nowadays machines play a very important role in our daily lives. We rely on machines whether 
we can travel or fly from one place to another or construct houses, roads, or build infrastructure. 
Machines not only reduce time but also increase productivity.  

The automotive and manufacturing industries heavily rely on different types of machines. Few of 
the machines used in these industries are easy to use and operate and some of them are very 
complex and require regular maintenance to perform their daily operations. This maintenance 
reduced productivity and increased the maintenance cost [1].                                                 

With the current situation of the COVID19 pandemic, most of the industries have transformed 
towards digitization. There is a need to automate the manual maintenance process as well. Using 
the advanced analytics techniques, to ensure critical asset reliability, and support on-demand 
manufacturing requirements [1]. 

Predictive maintenance was originally used for the oil and gas industry [1], but now with the 
internet of things (IoT) and new technologies such as cloud computing, big data tools, artificial 
intelligence, machine learning, industry 4.0, and sensors have brought the cost-effective predictive 
analytics to other new domains as well [2][3]. Automotive industries are also moving from reactive 
to predictive maintenance. 

1.3 Problems Definition 
Gearbox and rotatory machines are the most essential components in industrial machinery and play 
an important role in different industrial applications. Some of the applications of these components 
are in automotive industries, oil and gas, wind turbines, manufacturing industries, hydropower, 
mining, recycling plant, and so on.  

The gearbox and rotatory machinery faults are expensive both in terms of repair and loss output in 
production. Sometimes these losses or faults may lead to complete machinery or plant breakdown. 
To avoid critical damage and sudden breakdown, the faults in these components should be detected 
as early as possible.  

1. The gearbox is a binary classification problem; we can avoid the loses by predicting the 
health condition of the gearbox such as  

• Normal 
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• Broken gearbox teeth 
2. Rotatory machinery is a multiclassification problem, we can avoid the rotatory machines 

losses by predicting the normal operations and faulty states of machinery such as 
• Normal  
• Imbalanced 
• Horizontal misalignment 
• Vertical misalignment 
• Underhang bearing faults 
• Overhang bearing faults 

1.4 Proposed Solutions 

The popularity of machine learning (ML) increases rapidly in industrial automation. Now it is 
affordable to get the data from sensors or IoT devices and store it in a database. The availability 
of this historical data makes it easier to build and train the ML models and predict the current and 
future state of industrial machines. It helps the technical team to avoid unscheduled maintenance. 

Our solution is based on ML and deep learning (DL) techniques such as decision tree, adaboost, 
random forest and deep neural network (DNN) to predict the different types of faults in these 
industrial components. This will help the maintenance team to repair or replace the components 
before the faults happen.  
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2. Related Work 
There are several studies published previously on the detection of faults in gearbox and the rotatory 
machinery by several groups using multiple techniques, as summarized below briefly.  

F. Ribeiro et al. have used non-machine learning techniques such as similarity-based models 
(SBM) to automatically classify the faults in rotatory machinery [4]. As a result, they classify the 
faults with an accuracy of 96.43 percent.  

In another study by A. Alzghoul et. al, the authors classified the rotatory faults with the accuracy 
of 97.1 percent using Artificial Neural Network (ANN) [5]. Like our study, MAFAULDA [6] 
machine fault database was used in both studies [4, 5]. 

Similarly, signal processing-based preprocessing algorithms and neural networks has been used to 
classify the gearboxes faults in another study by W.J. Staszewski et.al [7]. These models detect 
and classify the gearbox faults without any errors.  
 
Zhang Qiang et.al has shown to use self-organizing map-based fault models to detect the gearbox 
faults with an accuracy of 95 percent [8].  
 
With these emerging techniques and methodologies, there are still several challenges such as as 
computing resources and programming methods as discussed in detail in one of the study by  S. 
R. Saufi et al. in 2019 [29]. In this study, they highlighted the challenges of machinery fault 
detection using deep learning. The main challenges of implementing a deep learning-based system 
for machinery fault prediction required high performance resources such as a GPU-based system 
[29].  

Another challenge while performing this type of studies is at its architecture level to train the DL 
model. Selection of activation function and training the model required prior knowledge. Now a 
days different types of programming tools are using while implementing this type of system. Each 
programming environment have different coding styles. It might affect the fault diagnostic 
performance of the model. To build the DL model required huge amount of historical data to train 
and test the system [29]. 

In a more recent study published in 2021 by S. Ayva, comparative analysis and evaluation of 
several ML algorithms was performed by Serkan Ayva et al.[30] .Their results showed that random 
forest (RF) outperformed all the other algorithms studied. This enabled them to incorporate the 
best performing machine-learning model into the production system in the factory [30]. 
. 
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3 Industrial Maintenance and Machine Learning 

3.1 Maintenance 
The maintenance cost in many industries is higher than operational and production costs due to 
premature equipment failure [9]. The profitability of any industry generally depends on the 
maintenance process.  
Normally maintenance in industries happens when the equipment reaches a certain age or stops 
working [10]. It is good to do scheduled maintenance, but it doesn't provide any information about 
the equipment's health in the future.  To optimize the production lines and equipment reliability, 
different types of maintenance can be performed based on the resource. The most common types 
of industrial maintenance are Figure 3.1 

1. Reactive Maintenance 
2. Preventive Maintenance 
3. Predictive Maintenance 

 

 
Figure 3.1: Types of industrial maintenance 

 

3.1.1 Reactive Maintenance 
In this approach, maintenance can be performed when components or machinery have a problem 
or stop working. Normally maintenance will perform after the equipment failure as shown in 
Figure 3.2. Although the component or machine is used full lifespan, drawbacks of this approach 
are 

● Unscheduled maintenance 
● Downtime is increased 
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Figure 3.2: Reactive maintenance overview 

 

3.1.2 Preventive Maintenance 
In this approach, the machine or component is replaced in advance before it fails. It helps to 
avoid unscheduled maintenance. The maintenance will perform during the regular interval as 
shown in Figure 3.3. The drawback of this approach is [11,12,13] 

● The component or machine is not fully utilized 
● Over maintenance is performed  

 
Figure 3.3: Preventive maintenance overview 

The drawbacks of regular maintenance are  
● Breakdown time is increased 
● Productivity is reduced due to regular maintenance 
● Over maintenance of some equipment or machinery 
● Operation cost is an increase 
● The life span of a machine is decreased  
● More skilled labor is needed to maintain the equipment 
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3.1.3 Predictive Maintenance 
It predicts the fault and performs the maintenance on the machine or equipment before the fault or 
failure happens as shown in the Figure 3.4 . Only the components or machines can replace which 
is going to fail soon. It extends the life span of the equipment. There are several advantages of 
predictive maintenance [13,14,15] such as, 

● It can reduce the unplanned downtime 
● It can help to identify fault or equipment health by condition monitoring to avoid costly 

equipment failure 
● It decreased the planned downtime by reducing inspection and premature repair 

Predictive maintenance system is an IoT based system. The drawback of this approach is the  
initial cost to build such a system is very high. 
 

 
Figure 3.4: Predictive maintenance overview 

3.2 Machine Learning (ML) 
IoT and cloud computing make machine learning possible in manufacturing and other industries. 
Now it is much easier to get the data from the industrial equipment with IoT devices. These data 
from the industrial equipment will help us to build the ML models to predict the faults. ML 
transforms some of the tasks to a machine that was previously not possible with humans [16].  

3.2.1 Types of Machine Learning 
The ML is of three types 

● Supervised Learning 
● Unsupervised Learning 
● Reinforcement Learning (RL) 

1. Supervised Learning 
 Supervised learning techniques are easy to understand and implement. Labeled data is 
 provided to the ML models [17,18]. It means both training and validation data are labeled. 
 The training datasets comprise both inputs and target outputs in supervised learning as 
 shown in Figure 3.5, which allow the model to learn and improve over time. When the 
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 model is fully trained it will predict the new or unseen data with a good label. It can be 
 used for both classification and regression problems. The algorithms in supervised learning 
 are decision trees, random forest, support vector machine, navies byes, linear regression, 
 logistic regression, etc. 
 

 
Figure 3.5: Supervised learning 

2. Unsupervised Learning 
 In this approach the user does not need to provide the label data to the model, it works with 
 unlabeled data [19]. It allows the model to detect patterns and information on its own 
 Figure 2.6. It is useful to find the unknown patterns in the data. The algorithms in 
 unsupervised learning are clustering, K- Nearest Neighbors (KNN), anomaly detection, 
 Principal Component Analysis (PCA), etc. 
 

 
Figure 3.6: Unsupervised learning  

3. Reinforcement Learning 

 RL is a type of ML and does not require a lot of training data. Instead of environments 
 are given to the RL models, the agent learns from its environment by trial and error to 
 achieve goals and get rewards Figure 3.7.   
 

 
Figure 3.7: Reinforcement learning   
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4 Dataset and Faults 
Data is the core component of any ML/DL model. Quality data is required to perform these models 
efficiently. The performance of the ML/DL model can improve by integrating more data into the 
ML/DL system. The data can be of many forms, but the ML model mainly rely on  

● Numerical data 
● Text data 
● Categorical data 
● Time series data 

4.1 Experimental Setup 
Spectraquest provides different types of simulators for training and studying industrial machine 
behaviors. These simulators accelerate learning and help to understand the different types of fault 
in industrial machinery [20]. The data we used to train and test the ML model was taken from these 
simulators 

●      SpectraQuest’s Gearbox Fault Diagnostics Simulator 
●      SpectraQuest's Machinery Fault Simulator 

4.2 Gearbox Dataset 
The gearbox dataset used in this study is publicly available at OpenEi [21]. The data was recorded 
by OpenEi [21] with the four vibration sensors placed in different directions on spectra quests 
gearbox fault diagnostics simulator [20]. The dataset is recorded with a different load from 0 to 90 
percent and contains information about the health conditions of the gearbox based on the 
vibrational sensors reading. Gearbox dataset describes only two states of gearbox such as 

• Normal  
• Broken teeth 

4.3 Machinery Fault database 
The data from spectraQuest Machinery Fault Simulator (MFS) are collected by sensors and stored 
in the machinery fault database [6]. The database contains 1951 multivariate time series data 
comprised of six different simulated states such as  

● Normal 
● Horizontal misalignment 
● Vertical misalignment  
● Imbalance faults 
● Underhang bearing fault 
● Outer bearing faults 

The rotatory machinery faults database contains the following percentage of each category of data 
as shown in Figure 4.1. 
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Figure 4.1: Rotatory machinery data percentage in machine fault database (MAFAULDA) 

 
 
The rotatory machinery database contains the least amount of class normal data and maximum 
class underhang bearing faults data. The summary of the measurements is shown in Figure 4.2 
 

 
Figure 4.2: Summary of six states of rotatory machines measurement 

4.4 Rotatory machine states 
The data stored in the machinery fault database is acquired with the help of six accelerometers, a 
microphone, and a tachometer attached to the machine fault simulator [4]. It contains a total of 
1951 scenarios as shown in Figure 4.2. The data describe the normal and five faulty states of the 
rotatory machine. 
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4.4.1 Normal 
The normal sequence means without any fault. The 49 measurements of the normal sequence were 
used in this study as shown in Figure 4.2. These sequences have been recorded with fixed rotation 
speed (range 737-3686 rpm) [6]. 

4.4.2 Imbalance 
The total number of imbalance faults was 333 measurements [6]. The data was recorded with the   
load values (6g to 35g) as shown in Table 4.1 

Table 4.1: Summary of imbalance measurement with different load values 

Weights (g) 6 10 15 20 25 30 35 Total 

Measurements 49 48 48 49 47 47 45 333 

 

4.4.3 Horizontal misalignment 
The number of horizontal parallel misalignment was 197 which was induced by each horizontal 
shift by the motor shaft shifting horizontally 0.5mm,1.0mm,1.5mm, and 2.0mm into MFS Table 
4.2. 

Table 4.2: Summary of horizontal misalignment measurement with different values 

Misalignment (mm) 0.50 1.00 1.50 2 Total 

Measurements 50 49 49 49 197 

4.4.4 Vertical misalignment 
The number of vertical parallel misalignment was 301 which was induced by each vertical shift 
by the motor shaft shifting horizontally 0.51mm,0.63mm,1.27mm,1.40mm,17.8mm, and 1.90mm 
into MFS Table 4.3. 

Table 4.3: Summary of vertical misalignment measurement with different values 

Misalignment (mm) 0.51 0.63 1.27 1.40 1.78 1.90 Total 

Measurements 51 50 50 50 50 50 301 

4.4.5 Underhang bearing fault 
In rotating machinery bearing is one of the most complex elements. Bearing faults are primarily 
causing failures in rotating machinery. When the bearing is placed between the rotor and motor in 
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MFS. The underhang bearing fault has 558 total sequences with varying weights (0g, 6g, 20g, 
25g). 

4.4.6 Overhang bearing fault 
When the rotor is placed between the bearing and motor in MFS. The overhang-bearing fault has 
513 total sequences with varying weights (0g, 6g, 20g, 25g). 
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5 Methods 
Nowadays Artificial Intelligence (AI) has become popular in many other industries such as 
manufacturing and smart factories. The Internet of Things (IoT), Big Data (BD), and cloud 
computing make it more accessible to small industries as well. Machines in manufacturing 
industries have become smarter than before due to IoT, AI, and big data.  
In recent times most of the manufacturing industries are transferred from preventive to predictive 
maintenance. This not only increases their productivity but also reduces cost. ML plays a 
significant role in such innovations. It also helps them to improve decision-making and accelerate 
discovery processes in manufacturing sectors.  In the past different techniques have been used for 
industrial maintenance [4,5,7,8,22,23,24,25, 29,30].  
In our study, we have used both classical machine learning and deep learning approaches to predict 
the fault in industrial machines as shown in the Figure 5.1. We followed the design of the Cross 
Industry Standard Process for Data Mining  (CRISP-DM) model, which includes the 
following steps/processes; (i) Business understanding: which includes the understanding of the 
industrial maintenance and their challenges and proposed solution; (ii) Data understanding: 
includes information/knowledge of our datasets; (iii) Data preparation includes the preprocessing 
steps that helped to prepare the data for downstream analysis ;(iv) Modeling includes the steps 
where different analysis models and algorithm were applied; (v) Evaluation includes the step 
where we evaluated the performance of the different models; (vi) Deployment includes our 
final model that was selected and applied to the data for the solution.  
 

 
Figure 5.1: Machine learning and deep neural network pipeline for gearbox and rotatory 
machinery. 
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5.1 Raw data / Sensors reading 
The data from the gearbox have been collected by using four vibrations sensors as shown in Figure 
5.2. The operating frequency used by sensors is 30Hz. These readings from the sensors are taken 
by varying load 0 to 90 percent and stored in the database. The gearbox database contains 
information about the health condition of the gearbox such as 

● Broken teeth 
● Normal  

 

 
Figure 5.2: Gearbox data acquisition 

 
The data stored in the machinery fault database is acquired with the help of six accelerometers, a 
microphone, and a tachometer attached to the machine fault simulator [4] as shown in Figure 5.3. 
It contains a total of 1951 scenarios with different operating conditions and loads. The data 
describe the normal and five faulty states of the rotatory machine. 
 

 
Figure 5.3: Rotatory machinery data acquisition 

5.2 Preprocessing 
It is an important step in any kind of analysis. During the preprocessing step, raw data is quality 
checked, trimmed, or cleaned to remove any bias in the data. The data coming from the databases 
is pre-processed by first doing the quality check where we check the missing (NAN) values 
(Figure 5.4). If the missing values are found, it is imputed with the mean value. In the next step 
the standard deviation of the dataset is performed and then labelled the data by categories (binary 
or multi class) specific to that dataset. Finally, the labelled dataset is merged into the single file 
containing all the required information.The data preprocessing helps us to 

● Improve the quality of data 
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● Checking missing values 
● Clean the data 
● Normalized the data 
● Transforming the data into the required format 
● Find the outlier or noisy data before applying any ML or DNN model 

5.2.1 Standard Deviation 
It shows the spread of the data distribution by calculating the distance between each data point and 
the mean. It is typically had two forms 

● Population standard deviation  
● Sample standard deviation  

The only difference between these is in the case of population, the standard deviation for the 
whole population is calculated by dividing the data points by N, and in the case of the sample, 
standard deviation from the number of samples is calculated by dividing the number of data 
points in the sample i.e., N-1 [26].  
. 

𝑆! = #∑(	𝑋" 	− 	𝑋)
#

𝑁 − 1  

 

 
Figure 5.4: Preprocessing pipeline  

5.3 Machine Learning Pipeline 
In our study, we are dealing with the classification problem and our data are labeled so that is why 
we used supervised learning techniques. There are many supervised learning algorithms used to 
solve classification problems, but we used these algorithms 

● Decision Tree 
● Random Forest 
● Adaboost (Adaptive Boosting) 

When we applied the ML model to the gearbox and machinery faults study, our initial goal was to 
learn and test the different types of ML algorithms. Therefore, we selected only those algorithms 
that minimized the type 1 and type 2 errors as minimum as possible. Another reason for using 
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decision trees and random forests was that they can be used for classification and regression 
problems. 

5.3.1 Decision tree  
The decision tree has low bias and high variance. It means the model performs very well on the 
training dataset and its performance was drop-down on the test dataset. Sometimes it leads to the 
overfitting problem. Although it is simple and easy to implement. 

5.3.2 Random Forest 
It can be used for both classification and regression problems. To overcome the problem of high 
variance in the decision tree, it is good to have used multiple decision trees instead of a single tree.  
So that is why the random forest is used to overcome the overfitting problem in the decision tree.  
It is also easy to tune its hyperparameter such as the number of trees in the forest etc. The tree in 
the forest was created up to its complete depth.  

5.3.3 Ada-boost (Adaptive Boosting) 
It is an ensemble technique that uses an iterative learning approach to turn the weak learning 
classifier into the strong classifier by learning the mistakes of the previous model. It used a 
sequential learning approach instead of a parallel learning approach in a random forest. Stamps (a 
tree with a single depth) are used to create the decision tree.  

5.4 Deep Neural Network (DNN) Pipeline 
The goal of using  DNN pipeline is to improve the efficiency of the model on given datasets. Relu 
activation function is used at the input, and hidden layers and sigmoid is used at the output layer 
as shown in the Figure 5.5. Different neurons were used in each layer. This combination of 
neurons given us the desired results. 
 

 
Figure 5.5: DNN architecture for gearbox  

 
The DNN model of rotatory machines contains two hidden layers, one input and output layer. Relu 
activation function is used in the input, and hidden layers and softmax is used at the output layer 
as shown in Figure 5.5.  
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Figure 5.5: DNN architecture for rotatory machine 

 

5.4.1 Activation Function 
The activation function is a key element of neural networks; it determines whether to activate or 
not the neuron. All the hidden layers of neural network behave like a linear function without the 
activation function. Following activation functions are used in this study 

• ReLU 
• Sigmoid 
• Softmax 

The reason for using relu activation function was to avoid the vanishing and exploding gradient 
problem during backpropagation. Gearbox study is binary classification problem, that is why we 
used the sigmoid activation function at the output layer, and rotatory machinery fault study, we 
have a multi-classification problem, softmax was used at the output layer.  
 

1. ReLU 

It is the most popular non-linear activation function in MLP and DL. It transforms all the 
negative values to zero and the positive values remain the same.  

𝑓(𝑥) = .0, 𝑖𝑓	𝑥 ≤ 0
1, 𝑖𝑓	𝑥 > 0 

2. Sigmoid 
It will transform input between 0 and 1 and is a good choice for binary classification 
problems. 

𝑓(𝑥) =
1

1 + 𝑒$! 

3. Softmax 
It is used for multi-classification problems. Softmax assures that the total probabilities of all 
our outputs are equal to one.  

𝜎(𝑥𝑗) =
𝑒!!

∑ 𝑒"
!" 
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5.5 Performance Evaluation 
The performance of the models is evaluated by using the following techniques 

● Confusion matrix 
● Accuracy 
● Error Rate (ERR) 
● F1 Score 
● True Positive Rate (TPR) 
● False Positive Rate (FNR) 
● Area Under Curve (AUC) Score 
● Receiver Operating Characteristic (ROC) curve 
● Mean Squared Error 

5.5.1 Confusion matrix 
It is a simple method to evaluate the performance of the classification models. The matrix describes 
how many classes were predicted correctly and incorrectly predicted. It is used to evaluate the 
result of the predicted model with the class outcome to see the number of the classes that were 
correctly classified [27, 28]. These are the key term used in the confusion matrix Figure 5.6. 

● True Positive (TP): Correctly predicted the class as ‘positive’ when the actual class is also 
positive. 

● False Positive (FP): Incorrectly predicted the class as ‘positive’ when the actual class is 
negative. It is also called type I error 

● True Negative (TN): Correctly predicted the class as ‘negative’ when the actual class is 
also negative 

● False Negative (FN): Incorrectly predicted the class as ‘negative’ when the actual class is 
positive. It is also called a type II error. 

 
Figure 5.6: Confusion matrix 

5.5.2 Accuracy 
It is calculated by the number of correct predictions divided by the total number of the dataset. The 
higher the value of accuracy means better the performance of the model.  



 23 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

5.5.3 Error Rate (ERR) 
It is calculated by the number of incorrect predictions divided by the total number of the dataset. 
The value of ERR is between 0 and 1. The ‘0’ means the model has no error and ‘1’ means the 
worse model.  

𝐸𝑅𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
We can calculate the error rate also as 

𝐸𝑅𝑅 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

5.5.4 True Positive Rate (TPR) 
It is used to measure the ability of a model to detect true values. It is also called recall or sensitivity. 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃 

5.5.5 False Positive Rate (FPR) 
Negative cases were incorrectly identified as a positive case in FPR. The good model has an FPR 
very low.  

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 

5.5.6 Precision 
It is the ratio of predictive positive to true positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 
 

5.5.7 F1-Score 
In the case of balance class, accuracy is a suitable choice to evaluate the performance of the model, 
but for imbalance classes, this approach does not work. The F1 score is a better choice to evaluate 
the performance of imbalanced datasets. Higher the value of F1 the better the performance of the 
model. The value of the F1 score is between ‘0’ and ‘1’.  

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

 

5.5.8 Mean Squared Error (MSE) 
MSE error is the difference between the actual output and predicted output divided by the total 
number of data points as shown in the equation  
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5.5.9 AUC Score 
The higher the value of AUC, the better the model has separability. The minimum value of the 
AUC score is 0 and the maximum value is 1. The ideal condition is when TP and TN are separate 
from each other, and the AUC score is 1 as shown in Figure 5.7.  

 
Figure 5.7: AUC Score 

5.5.10 ROC Curve 
The ROC curve was plotted with FPR and TPR. The smothered the curve the better the model is 

 
Figure 5.8: ROC curve 
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6 Results 
Training and test data are required to build and validate the results of the machine learning (ML) 
and deep neural network (DNN) model. Here we have analyzed two datasets i.e., gearbox and 
machinery fault studies, which are further divided into training and test datasets to build and 
evaluate the performance of ML and DNN models. The models are learned from the training set 
and performance is evaluated on test data or unseen data. In both studies, seventy percent of the 
data is used for training and thirty percent is used for testing the models as shown in Figure 6.1.  

 
Figure 6.1: Ratio of training and test data to train and evaluate the performance of the ML 
and DNN model. 

6.1 Gearbox Fault Prediction  
The gearbox fault prediction dataset (n=4000000) consists of only two classes: normal and broken 
teeth. It is a binary classification problem. The training data contains 2800000 records (70 %) and 
the test data contains 120000 records (30 percent). The records are equally distributed among the 
classes. This means we have a balanced classification problem Figure 6.2. 

 
Figure 6.2: Data distribution among normal and broken gearbox classes. 
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The information from the descriptive features was obtained with the help of sensors. All the 
readings from the sensors were numerical. This is a binary classification problem, where 0 means 
normal class and 1 means broken gearbox teeth class. We have 5 descriptive and one target feature 
shown in table 6.1. 
 
     Table 6.1. Descriptive and target features. 

                                      Descriptive Features    Target Features 
             Class 

Vibration 
Sensor 1    
reading 

(S1) 

Vibration 
Sensor 2   
reading 

(S2) 

Vibration 
Sensor 3    
reading 

(S3) 

Vibration 
Sensor 4    
reading 

(S4) 

Load 
Variation 
(0 – 90)  
percent 

 

Binary Classification 
• Normal: 0 
• Broken: 1 

 

6.1.1 Performance Evaluation on raw data 
Table 6.2 and Figure 6.3 describes the results of ML and DLL models on the raw data of the 
gearbox dataset. We first evaluated and compared the performance of different machine learning 
models ML (Figure 6.3 (a-c)) and DL model (Figure 6.3d) using the gearbox raw data i.e without 
applying any normalization techniques. It means that models were first directly deployed on raw 
data.  
Our results showed that type 1 error was highest in the random forest (RF) (Figure 6.3c) and type 
II was lowest. The DNN model showed that the type 1 error was lowest while the type II error was 
highest (Figure 6.3d). 
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Figure 6.3. Performance evaluation of ML and DLL models on raw data. In each confusion 
matrix predicted class (x-axis) and true class (y-axis) representing the normal class with ‘0’ and 
broken gearbox tooth class ‘1’. Confusion matrix of (a) decision tree (b) AdaBoost (c) random 
forest (d) deep neural network. 
 
Overall performance of DNN and decision tree is better based on highest accuracy rate/precision 
rate and lowest error rate than the random forest and AdaBoost (Table 6.2). However, the F1-
score was best for the RF model.  
 
Table 6.2: Summary statistics of performance of ML and DLL models on raw data. 

Model Accuracy 
( % ) 

Precision Recall F1-score Error Rate 
( % ) 

MSE 

Decision Tree 60.06 0.6559 0.456 0.5380 39.94 0.229 
Random Forest 59.13 0.6005 0.557 0.5779 40.87 0.239 
Ada boost 58.51 0.6272 0.421 0.5096 41.49 0.415 
DNN 60.57 0.6574 0.444 0.5336 39.43 0.386 

 
We next compared the graphical description of the ML and DNN classifier performance on raw 
data using the ROC. Our results show that the area under the ROC curve of the DNN model is 
higher than the ML model (RF, DT, and AdaBoost) models (Figure 6.4). Based on the ROC curve 
and AUC score performance of DNN and Random Forest is much better than the decision tree and 
AdaBoost (Figure 6.4 a-d). 
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Figure 6.4. ROC curve and corresponding AUC score of both ML and DNN model on raw 
data (a) decision tree (b) AdaBoost (c) random forest (d) DNN. 

6.1.2 Performance Evaluation of normalized data  
The standard deviation with sample size (N=10,25,50,100 and 500) used to normalized the 
gearbox  and machinery fault datasets. The motivation for using these sample values was to reduce 
the error rate and  increase the performance of ML and DNN model.  

• Normalized data with sample size N=10 

We next evaluated the performance of different models using the normalized data by taking 
the sampling size of N=10. Here instead of directly taking the raw data from the sensor 
reading, we first take standard deviations for each of the sample sizes ‘N=10’, and then the 
models were deployed on this normalized dataset.  

Based on this approach, our results showed that the overall performance of all the models, 
both the ML and DNN was improved by approximately 10% as compared to the raw data 
(Figure 6.5 (a-d), Table 6.3). The accuracy rate of the DNN model was improved from 
60% in raw data to 73% in normalized data (Table 6.3). 

 
Figure 6.5. Performance evaluation of ML and DLL models with N=10. In each confusion 
matrix predicted class (x-axis) and true class (y-axis) representing the normal class with ‘0’ and 
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broken gearbox tooth class ‘1’. Confusion matrix of (a) decision tree (b) AdaBoost (c) random 
forest (d) DNN. 
 
Table 6.3. Summary statistics of performance of ML and DLL models on normalized data 
with N=10. 

Model Accuracy    
(% ) 

Precision Recall F1-score Error 
Rate 
(%) 

MSE 

Decision Tree 72.23 0.7215 0.7142 0.7178 27.76 0.182 
Random Forest 71.88 0.7108 0.7272 0.7189 28.12 0.182 
Ada boost 72.40 0.7056 0.7580 0.7309 27.60 0.276 
DNN 73.44 0.7215 0.7553 0.7380 26.56 0.265 

 
The ROC and AUC were significantly improved for all the models using the normalized data with 
the sampling size N=10 as compared to raw data (Figure 6.6(a-d)). Interestingly, we observed that 
the AUC for the DNN model improved to 0.82 in normalized data compared to raw which was 
0.65.    
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Figure 6.6. ROC curve and corresponding AUC score of both ML and DNN model with N=10 
(a) decision tree (b) AdaBoost (c) random forest (d) DNN 

• Normalized data with sample size N=25 

The performance of the ML and DNN models was evaluated by taking the normalized data 
with the sampling size of N=25.  Type 1 and type II were significantly reduced (Figure 
6.7(a-d)) as compared to raw data and normalized N=10. The performance of the DNN 
and RF model is much better as compared to the raw data and N=10 with the accuracy rate 
approaching 81% in the DNN model. 

 
Figure 6.7. Performance evaluation of ML and DLL models with N=25. In each confusion 
matrix predicted class (x-axis) and true class (y-axis) representing the normal class with ‘0’ and 
broken gearbox tooth class ‘1’. Confusion matrix of (a) decision tree (b) AdaBoost (c) random 
forest (d) DNN. 
 
Table 6.4. Summary statistics of performance of ML and DLL models on normalized data 
with N=25. 

Model Accurac
y (%) 

Precision Recall F1-score Error Rate 
(%) 

MSE 

Decision Tree 79.36 0.7897 0.7955 0.7926 20.64 0.144 
Random Forest 80.35 0.8021 0.8013 0.8017 19.65 0.134 
Ada boost 79.98 0.7888 0.8142 0.8013 20.02 0.200 
DNN 80.55 0.7936 0.8212 0.8072 19.45 0.192 
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The AUC of both the RF and DNN model further improved to 0.89 compared to the previous 
sample size (N=10). It means RF and DNN models' performance was very similar using this 
sample size N=25 (Figure 6.8).  
 

 
Figure 6.8. ROC curve and corresponding AUC score of both ML and DNN model with N=25 
(a) decision tree (b) AdaBoost (c) random forest (d) DNN 
 

• Normalized data with sample size N=50 

The performance of the ML and DNN models was further evaluated by taking the 
normalized data with the sampling size of N=50.  Figure 8 and Table 5 describe the results 
of ML and DLL models on the gearbox dataset. Overall performance of DNN and Random 
Forest on this is much better than decision tree and AdaBoost looking into the confusion 
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matrix (Figure 6.9). The accuracy rate of the DNN and RF model was approx. 86% with 
the highest precision and F1-scores and the lowest error rate of about 13 % (Table 6.5). 

 

 
Figure 6.9. Performance evaluation of ML and DLL models with N=50. In each confusion 
matrix predicted class (x-axis) and true class (y-axis) representing the normal class with ‘0’ and 
broken gearbox tooth class ‘1’. Confusion matrix of (a) decision tree (b) AdaBoost (c) random 
forest (d) DNN 
 
Table 6.5. Summary statistics of performance of ML and DLL models on normalized data 
with N=50. 

Model Accuracy 
( % ) 

Precisio
n 

Recall F1-score Error Rate 
( % ) 

MSE 

Decision Tree 84.93 0.8482 0.8508 0.8495 15.07 0.112 
Random Forest 86.67 0.8680 0.8648 0.8664 13.33 0.093 
Ada boost 85.64 0.8495 0.8663 0.8578 14.35 0.144 
DNN 86.54 0.8908 0.8485 0.8692 13.46 0.131 
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Figure 6.10. ROC curve and corresponding AUC score of both ML and DNN model with 
N=50 (a) decision tree (b) AdaBoost (c) random forest (d) DNN 
 
The AUC of both the RF and DNN models further improved to 0.94 compared to previously 
which was 0.89. As previously, the RF and DNN models' performance was very similar using 
sample size N=50 (Figure 6.10).  
 

• Normalized data with sample size N=100 

 The performance of the ML and DNN models was further evaluated by taking the 
 normalized data with the sampling size of N=100.  The overall performance of all models 
 improved remarkably, with the DNN and RF models showing the best results as can be 
 seen in the confusion matrixes (Figure 6.11). The accuracy rate of the DNN and RF model 
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 reached approx. 93% with the highest precision and F1-scores and the lowest error rate of 
 about 7% (Table 6.6). 

 
Figure 6.11. Performance evaluation of ML and DLL models with N=100. In each confusion 
matrix predicted class (x-axis) and true class (y-axis) representing the normal class with ‘0’ and 
broken gearbox tooth class ‘1’. Confusion matrix of (a) decision tree (b) AdaBoost (c) random 
forest (d) DNN 
 
Table 6.6. Summary statistics of performance of ML and DLL models on normalized data 
with N=100. 

Model Accuracy 
( % ) 

Precision Recall F1-score Error Rate 
( % ) 

MSE 

Decision Tree 91.11 0.9181 0.9023 0.910 8.89 0.074 
Random Forest 93.05 0.9331 0.9271 0.930 6.95 0.051 
Ada boost 91.76 0.9123 0.9235 0.917 8.24 0.082 
DNN 93.21 0.9424 0.9168 0.925 6.79 0.072 
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Figure 6.12. ROC curve and corresponding AUC score of both ML and DNN model with 
N=100 (a) decision tree (b) AdaBoost (c) random forest (d) DNN 
 
The ROC further improved for all models in this case and the AUC of both RF and DNN models 
was about 0.98. As previously, the RF and DNN models' performance was very similar using 
sample size N=100 (Figure 6.12).  
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6.2 Machinery Fault Prediction  
The second dataset that we analyzed here was the machinery fault prediction (MFP) dataset, which 
is a multi-classification problem. We have six classes such as normal, imbalance, horizontal 
misalignment, vertical misalignment, underhang, and overhang bearing faults in this study. The 
training data contains 6828550 records (70 %) and test data holds 292650 records (30 percent). 
The distribution of records among the multi-classes in the MFP dataset is shown in Figure 6.13.  

 
Figure 6.13. The number of records in each of the six classes in MFP. 

 
The records from the descriptive features were obtained with the help of sensors. All the readings 
from the sensors are numerical. This is a multi-classification problem, where ‘0’ represents normal 
class, ‘1’ represents imbalance fault class, ‘2’ represents horizontal misalignment, ‘3’ represents 
vertical misalignment, ‘4’ represents underhang bearing fault and, ‘5’ represents overhang bearing 
fault classes. We have 8 descriptive and one target feature (Table 6.7). 
§ 
Table 6.7: Descriptive and target features of rotatory machinery dataset. S1 represents reading from 
the tachometer, S2-S4 represents reading from the underhang bearing accelerometers, S5-S7 represent 
reading from overhang bearing accelerometers and S8 reading from the microphone. 
                                      Descriptive Features    Target Features 
S1 S2 S3 S4 S5 S6 

 
S7 S8 Multi classification  

• Normal: 0 
• Imbalance: 1 
• Horizontal misalignment: 2 
• Vertical misalignment: 3 
• Underhang bearing fault: 4 
• Overhang bearing fault: 5 
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The results of both ML and DNN models were evaluated and compared with each other. The 
performance of the models is evaluated by confusion matrix, accuracy, F1-score, AUC score, and 
ROC curve. The error was calculated by using MSE.  

6.2.1 Performance evaluation of ML model in MFP dataset 
This section describes the performance of the ML model on the given datasets. The algorithm we 
used in ML is random forest. The confusion matrix is shown in (Figure 6.14). summarizing the 
performance of the model. The correctly classified classes using this model were shown diagonally 
in the confusion matrix (Figure 6.14). While other elements (non-diagonal) of the confusion 
matrix indicate incorrectly classified records. Our results showed that 153 cases of class normal 
were incorrectly classified into other classes such as 11 records were classified as class imbalance, 
90 records in horizontal misalignment, 22 records in vertical misalignment, 13 records in 
underhang bearing fault, and 17 records in overhang bearing fault (Figure 6.14). The confusion 
matrix helps to analyze different types of errors in classification.  
 

 
Figure 6.14. Performance evaluation of RF of MFP using a confusion matrix. In confusion 
matrix predicted class (x-axis) and true class (y-axis) representing classes: normal with ‘0’, 
Imbalance with’1’, horizontal misalignment with ‘2’, vertical misalignment with ‘3’, underhang 
bearing fault with ‘4’ and overhang bearing fault ‘5’. 
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Figure 6.15 illustrates the predictive performance of RF models on multi-classification problems 
by using the ROC curve while plotting a false positive rate against the true positive rate. The area 
under the ROC curve of the normal class was 0.98 percent, which means the ML model 
distinguishes between the class normal with other classes with an accuracy of 98 percent. 

 
Figure 6.15: ROC curve and corresponding AUC score of RF model in MFP dataset.  

 

6.2.2 Performance evaluation of DNN model in MFP dataset 
This section describes the performance of the DNN model using the MFP dataset. The model 
correctly classified the multi-class using this approach as shown with diagonal numbers in 
Figure 6.16. Our results show that the number of correctly classified records by the DNN model 
is slightly decreased as compared to the RF model as shown in Figure 6.16. 
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Figure 6.16. Performance evaluation of DNN model in MFP dataset. In confusion matrix 
predicted class (x-axis) and true class (y-axis) representing multi classes: normal with ‘0’, 
Imbalance with’1’, horizontal misalignment with ‘2’, vertical misalignment with ‘3’, underhang 
bearing fault with ‘4’ and overhang bearing fault ‘5’. 

 
Figure 6.17: ROC curve and corresponding AUC score of DNN model in MFP dataset. 
The underhang bearing fault AUC score of 0.99 remained the same as in the RF model. While all 
other classes, AUC has slightly decreased compared to the RF model, showing that the RF model 
performed better than the DNN model for the MFP dataset (Figure 6.17). 
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In the DNN model, we have also compared the predicted output to the actual output. Here the error 
was calculated between actual and predicted output. During backpropagation of DNN model 
weights are updated with each iteration or epochs. The error is reduced, and accuracy is increased 
with each iteration as shown in Figure 6.18. 
 

 
Figure 6.18: Epoch vs Accuracy using the DNN model in MFP dataset. The training dataset 
“Train” is shown in blue color and the validation data is shown in orange as “Val”. 
 
The test loss was reduced, and the accuracy was improved when the number of epochs is increasing 
(Figure 6.19).  

 
Figure 6.19: Epoch vs Loss using the DNN model in MFP dataset. The training dataset “Train” 
is shown in blue color and the validation data is shown in orange as “Val”. 
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7 Discussion 

7.1 Gearbox Fault Prediction 
To predict the gearbox fault with ML/DNN is very challenging. As it requires a huge amount of 
historical data with varying equipment operating conditions to build these models. Once the data 
is taken from the equipment with the help of sensors and stored in the database. This data is used 
for training and testing the ML/DNN model. Sometimes these data required different types of 
preprocessing techniques before deploying the ML model. We compared the performance of our 
models with and without applying any preprocessing or normalization techniques on this dataset.  

In the case of the gearbox, we have a binary class problem with two classes: normal and broken 
teeth gearbox. The data among the classes were equally distributed. So, that the classes are 
balanced. It is a classification problem and data are labeled. We applied supervised machine 
learning techniques. This dataset has five descriptive and one target feature. Seventy percent of 
data is used for training and thirty percent is used for testing as shown in the figure.  

The performance of our ML/DLL models was not good on the raw gearbox dataset when we 
deployed the models on raw data without any preprocessing or normalization techniques. The 
accuracy, F1 score was very low. AUC score was below 0.65 and the models had difficulty 
differentiating between normal and broken gearbox classes.  Although we have tested different 
ML algorithms on the raw data, the result was not much improved. The MSE error was also high. 
The reason for very low accuracy, an F1 score, and a very high error rate of around 40 % could be 
due to noise and external environment from the sensor readings. The purpose of using these 
techniques was to get the desired results without applying any preprocessing or normalization 
techniques to reduce the computational cost.  

However, the performance of the ML and DNN models gradually improved when we took the 
sample standard deviation of sensor readings. In this case, we have used different sampling sizes 
such as N=10,25,50 and 100. When the sampling size has increased the accuracy, F1-score, AUC 
score was also increased, and the error rate was decreased. Overall, the performance of the models 
was significantly improved as compared to applying these models without any sampling.   

This helped in removing any noise and we got desired results by gradually increasing the sample 
size. The accuracy and F1-score were also improved at each preprocessing and normalization step. 
The overall AUC score was improved to 0.98 with an average accuracy of 93%. The model easily 
differentiated between normal and broken gearbox classes with an AUC score of 0.98. 

The algorithms were ranked based on their performance such as accuracy, error rate, F1-score, 
AUC score, and ROC curve. Overall performance of DNN model and random forest were very 
good as compared to decision tree and AdaBoost on this dataset. The ROC curves of these models 
became very smooth. AUC and F1 scores were also very high, and the error rates were very low. 
The DNN model was ranked first based on our results and the decision tree ranked last. Hence, I 
will suggest deploying DNN and random forest models on this type of dataset to get the desired 
results. 

One of the drawbacks of this gearbox fault dataset was that we have classified only two types of 
gearbox conditions such as normal and broken teeth, but we didn't have any data and information 
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about the other gearbox faults such as gearbox misalignment, backlash, etc.. Another limitation of 
this dataset was that the data taken from the simulator were recorded with predefined conditions 
instead of the fault occurring randomly.  

7.2 Machinery Fault Prediction 
Industrial machines are composed of both electrical and mechanical components. The prediction 
of fault in the mechanical components is challenging. Because in a single machine there are a lot 
of mechanical components such as gearbox, bearing, shaft, roter, etc. You will need different types 
of sensors to measure and observe the behavior of each mechanical component.  

In the case of the machinery fault prediction dataset, the data used to build the ML and DNN model 
to predict the machinery fault were from the spectra quest machinery fault simulator. Unlike 
gearbox fault prediction, here we have multi classes such as Normal, Imbalance, Horizontal 
misalignment, Vertical misalignment, Underhang bearing fault, Overhang bearing fault. 

The ML model is built with random forests and the performance was evaluated using the confusion 
matrix, accuracy, F1- score, and ROC in ML model on this dataset. The ratio of correct prediction 
was more than 90 percent. Accuracy, F1-score, AUC-score were also very high. MSE was very 
low.  

Once the data is acquired from the database. The quality of data was checked, and then sample 
standard deviation with sampling size (N=500) was applied to the sensor's reading. This helped us 
to minimize any error from the sensor reading and remove any noise. 

The performance of the ML and DNN models on machinery fault prediction datasets was almost 
the same for all the classes except the normal class. The area under the ROC curve of class normal 
is reduced from 0.98 to 0.95 in the DNN model. Both normal and horizontal misalignment classes 
are imbalanced data among other classes. So that is why their AUC scores are slightly low as 
compared to other classes.  

One of the drawbacks of the machinery fault prediction dataset was that the data taken from the 
simulator were recorded with predefined conditions. The normal and horizontal misalignment 
classes data was very small as compared to the different faults. Although we classified different 
types of machinery faults in this study, in the case of bearing faults we classified only two types 
such as underhang and overhang faults. It would have been nice to investigate the subtype of 
bearing faults such as ball, rolling, and outer faults as well. This would have helped the 
maintenance team to know the exact type of bearing fault instead of general faults.  Another 
limitation of this dataset was that there was a lack of data about the broken bearing and other 
mechanical components to build the model.  
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8 Conclusions  
In this study performance of machine learning (ML) and deep neural network (DNN) were 
compared and evaluated on gearbox and machinery fault datasets. In ML we used different 
algorithms such as decision tree, random forest (RF), and AdaBoost to build the model. Overall, 
the performance of the random forest is very good as compared to the decision tree and AdaBoost. 

The DNN model also performs well on both datasets, but the biggest challenges faced to build 
these models were the selection of hyperparameters, several hidden layers, activations functions, 
and loss functions to get the desired results.  

Classification efficiency of ML  and DNN were tested. Our results show RF and DNN models 
have better fault prediction ability to identify the different types of machinery and gearbox faults 
as compared to the decision tree and AdaBoost. 

In the future, we need to investigate statistical and recurrent neural network approaches as well. 
Especially we need to study autoregressive integrated moving average (ARIMA) and long short-
term memory (LSTM) models. The hybrid approach, which is a combination of statistical models 
with ML, DL, LSTM, RNN models will be very helpful in predicting missing data from the 
sensors. 

One of the challenges of predicting faults in industrial machinery is that you require a lot of 
historical data to build the ML models. Industrial machines are operated in different conditions 
and getting the data from each component of the machine is also tricky, you require a resource to 
record the data from the equipment and store it in a cloud or particular place.  

The biggest challenges of implementing these approaches in industries are currently IoT-based 
devices are only affordable for big companies and manufacturing units to monitor their equipment. 
We need to investigate how these ML-based predictive approaches can be transferred to small 
companies as well. So that they can benefit from artificial intelligence.  
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