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Abstract

As space missions continue to increase in complexity, the operational capabilities and
amount of gathered data demand ever more advanced systems. Currently, mission
capabilities are often constrained by the link bandwidth as well as on-board process-
ing capabilities. A large number of commands and complex ground station systems
are required to allow spacecraft operations. Thus, methods to allow more efficient
use of the bandwidth, computing capacity and increased autonomous capabilities are
of strong research interest. Artificial Intelligence (AI), with its vast areas of applica-
tion scenarios, allows for these challenges and more to be tackled in the spacecraft
design. Particularly, the flexibility of Artificial Neural Networks as Machine Learn-
ing technology provides many possibilities. For example, Artificial Neural Networks
can be used for object detection and classification tasks. Unfortunately, the exe-
cution of current Machine Learning algorithms consumes a large amount of power
and memory resources. Additionally, the qualification of such algorithms remains
challenging, which limits their possible applications in space systems. Thus, an in-
crease in efficiency in all aspects is required to further enable these technologies for
space applications. The optimisation of the algorithm for System on Chip (SoC)
platforms allows it to benefit from the best of a generic processor and hardware ac-
celeration. This increased complexity of the processing system shall allow broader
and more flexible applications of these technologies with a minimum increase of
power consumption. As Commercial off-the-shelf embedded systems are commonly
used in NewSpace applications and such SoC are not yet available in a qualified
manner, the deployment of Machine Learning algorithms on such devices has been
evaluated. For deployment of machine learning on such devices, a Convolutional
Neural Network model was optimised on a workstation. Then, the neural network
is deployed with Xilinx’s Vitis AI onto a SoC which includes a powerful generic pro-
cessor as well as the hardware programming capabilities of an Field Programmable
Gate Array (FPGA). This result was evaluated based on relevant performance and
efficiency parameters and a summary is given in this thesis. Additionally, a tool
utilising a different approach was developed. With a high-level synthesis tool the
hardware description language of an accelerated linear algebra optimised network
is created and directly deployed into FPGA logic. The implementation of this tool
was started, and the proof of concept is presented. Furthermore, existing challenges
with the auto-generated code are outlined and future steps to automate and improve
the entire workflow are presented. As both workflows are very different and thus
aim for different usage scenarios, both workflows are outlined and the benefits and
disadvantages of both are outlined.
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1 Introduction

As the space industry reaches further with every mission, more experience is gained,
and more competencies are developed. Missions have become more reliable and the
budget available to the space industry has continued to increases over time. This lead
to more complex and sophisticated missions. New technologies is continuously being
be adapted to be applicable for space applications. Of course, it is always desirable
to have the most autonomous, capable, and reliable systems possible. This drives
down operational costs and extends the possible mission duration which is a good
reason to deploy Artificial Intelligence (AI) onboard spacecraft. Additionally, the
volume of data produced onboard spacecraft has increased over time. This is due
to the development of ever more complex sensor systems, advanced housekeeping
systems and data being produced by more and more subsystems. However, it is not
possible to downlink all this data as the downlink bandwidth is limited. Machine
Learning (ML) in space would, for example, enable the selection and prioritisation
of data, as well as new compression methods, to increase the amount of data being
downloaded. Especially, ML in the form of Deep Learning (DL) onboard space
systems is of high research interest. These processing methods, due to their recency
and complexity, require new deployment methods to ensure the highest possible
efficiency.

This thesis first introduces the required background on general ML, related op-
timisations, and space application scenarios. Then, the different embedded system
platforms are introduced with space applications in mind. This part also outlines
the technique of High-Level Synthesis (HLS) as well as an insight into energy effi-
ciency of different systems. Lastly, two deployment tools enabling machine learning
on embedded systems for space applications are described and evaluated. Both of
them vary drastically in their general approach and therefore in their preferred ap-
plication scenarios. The first tool is the Xilinx developed Vitis AI, which utilises
a full System on Chip (SoC) with at least a Central Processing Unit (CPU) and
Field Programmable Gate Array (FPGA). When using Vitis AI, the CPU controls
the system and the FPGA is used as coprocessor to accelerate computationally ex-
pensive tasks. This tool has an advanced state of technology readiness and is thus
interesting to study to be able to consider it for future missions. The second tool
relies on the TensorFlow (TF) Accelerated Linear Algebra (XLA) framework and
Vitis HLS to form an end-to-end toolchain for the deployment of ML models directly
into FPGA logic. This is a very different approach from Vitis AI as only an FPGA
is used and the model is directly implemented in hardware logic. This toolchain
is called XLA HLS and was developed within the scope of the thesis. However,
only a proof of concept has been achieved. Due to this and the vast differences in
the concepts, these tools are not directly comparable to each other. However, both
tools’ workflow benefits and disadvantages are discussed in the end of the thesis to
clarify the ideal application scenarios for each.
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2 Background

Generally application of AI for space applications is a quickly evolving topic of re-
search. Additionally, there also exists a high interest in achieving AI processing
capabilities onboard spacecraft. To provide sufficient foundation for this thesis all
relevant background topics are introduced in this chapter. The theory of ML is fun-
damental and includes nomenclature, basics of Artificial Neural Networkss (ANNs),
the most common frameworks, optimisations for ML, space applications of ML as
well as the related software qualification. Beyond the theory of machine learn-
ing it is important to understand, that for the application of ML in space certain
types of embedded systems are more suitable than others. To understand why
FPGAs as hardware acceleration platform was chosen as embedded system plat-
form for machine learning in space applications, different platforms are introduced.
Among those introduced platforms are CPUs, Graphics Processing Units (GPUs),
Application Specific Circuits (ASICs), FPGAs, and SoCs.

2.1 Introduction to Machine Learning

First the theory of machine learning is introduced. This is done to ensure a consistent
and understandable nomenclature as well as sufficient knowledge of ANNs, and the
required frameworks which enable the development of ANNs. Additionally, based
on this knowledge optimisations of ML, and specifically ANNs, are introduced in
subsubsection 2.1.4 as many of these optimisations are required to allow the efficient
use of ML for space applications. Lastly, existing and potential space applications
are introduced in subsubsection 2.1.5.

2.1.1 Nomenclature

In this section terms definition of certain terms and concepts related to ML are
introduced.

Generally, AI is a very broad term. For this thesis the definition of the European
Comission is followed according to European Comission (2018, p. 9):

Artificial intelligence (AI) refers to systems designed by humans that,
given a complex goal, act in the physical or digital world by perceiving
their environment, interpreting the collected structured or unstructured
data, reasoning on the knowledge derived from this data and deciding
the best action(s) to take (...) to achieve the given goal. AI systems can
also be designed to learn to adapt their behaviour by analysing how the
environment is affected by their previous actions. As a scientific disci-
pline, AI includes several approaches and techniques, such as machine
learning (of which deep learning and reinforcement learning are spe-
cific examples), machine reasoning (which includes planning, scheduling,
knowledge representation and reasoning, search, and optimization), and
robotics (which includes control, perception, sensors and actuators, as
well as the integration of all other techniques into cyber-physical sys-
tems)

The area of ML and especially the computational expensive ML method of DL
onboard spacecraft is the focus of this work. As this is also the method which
promises the most application scenarios many processing system vendors focus on
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efficient and simple deployment of such algorithms on their devices. DL describes
the machine learning methods which take ANNs as their foundation. ANNs will be
described in detail in the next section (2.1.2).

It is important to know that the term AI or ML is often incorrectly used for
deployment tools which actually only support the deployment of DL algorithms.
For example they often don’t support natively Support Vector Machines (SVMs) or
other ML methods. Very often if the term AI is used, only one or a few methods
are meant. However, the supported machine learning algorithms for deployment on
embedded systems is increasing and thus support of other ML algorithms beyond
only DL is to be expected in the future. In Russell & Norvig (2016) an extensive
introduction into AI, all its areas, and methods as well as further nomenclature can
be found.

2.1.2 Artificial Neural Networks

The signal processing in the human brain is done with the help of neurons The term
ANN describes any kind of neural network which tries to mimic the brain’s activity
with mathematical models. ANNs are composed of nodes or units connected by
directed links, where each link has a weight defining the importance and sign of
the connection. Furthermore, the link serves to propagate the activation function
between the two linked nodes. A visualisation of this concept, called a neuron, can
be found in Figure 1. By connecting several of the neurons a neural network can be

Figure 1: Simple Mathematical Model of a Neuron. Image credit: Russell & Norvig
(2016)

created (Russell & Norvig, 2016, pp.727).
According to (Russell & Norvig, 2016, pp.729) networks can be distinguished

into two kinds, namely feed-forward and recurrent neural networks. A feed-forward
neural network has only connections “forward” in the network and no loops or
”backwards” connections are possible. It represents a function of its current inputs
without internal state other than the weights themselves. A high level overview of
a simple example of a feed-forward neural network can be seen in Figure 2.

In a Recurrent Neural Network (RNN) neurons can have their own output as
their input. This makes the result dependent of the previous inputs which allows a
short-term memory. This is more similar to a brain like behaviour and is useful in
applications which have sequential data as input (Russell & Norvig, 2016, pp.729).
To ease understanding in Figure 3 is a simple example of a RNN given.

Especially feed-forward neural networks are usually organised in layers which
contain many neurons on the same level. The simplest form is a single layer feed-
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Figure 2: Simple example of a Feed-Forward Neural network. Each circle represents
a neuron and the arrows the connections between them. Image credit: Goodfellow
et al. (2016)

Figure 3: A simple RNN. The network receives information from input x and
then forwards it to the neuron h. The left diagram the overview where the black
box represents a one time step delay. The right diagram shows the network as an
unfolded throughout different different time steps, where each node represents one
time step. Image credit: Goodfellow et al. (2016)
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forward neural network which forwards its input directly as output. However, these
layers can only comprehend very simple applications. For more complex problems so
called multilayer feed-forward neural networks are required. These contain several
layers between input and output, which are called hidden layers. Every layer can
contain a different amount of neurons. The number of neurons defines the width of
a layer and the depth of a network is in turn defined by the number of layers. Neural
networks ultimately represent long and complex functions based on the initial input
and the weights, bias, and activation function of each layer. With one single, suffi-
ciently large layer, it is possible to embody any continuous function. Discontinuous
functions are enabled by adding another layer. However, it is difficult to characterise
exactly which functions can be created and which not with which particular network
(Russell & Norvig, 2016, pp.728).

As stated in (Goodfellow et al., 2016, pp.326) Convolutional Neural Networks
(CNNs) are a special type of neural network for the processing of known grid-like
structure data. For example, this data can be time-series with the possibility to ex-
press them in one dimension with samples at regular time intervals, or alternatively
image data in two or three dimensions. As the name indicates, a CNN is an ANN
which utilises, in at least one layer, the mathematical convolution operation as an
alternative to general matrix multiplication. CNNs often implement other layers
such as pooling. For the interested reader this and other operations are explained
in detail in (Goodfellow et al., 2016, pp. 335). Interestingly, CNNs require fewer
parameters for the same accuracy, which implies reduced memory requirements, im-
proves statistical efficiency, and minimises the required operations. Further details
can be found in (Goodfellow et al., 2016, pp. 329).

Nevertheless, it should be noted that mathematical operations such as matrix op-
erations, convolutions, pooling, activation functions in multiple dimensions are very
complex. Thus, they require extensive computational power not only for training of
networks, but also for their application.

After the initial model definition any kind of ANN needs to be trained to adjust
the model parameters to the appropriate data. Only a network trained on a suitable
dataset can provide the intended results as multiple parameters such as the weights,
are randomly initialised. However, it is important to note that this thesis focuses
on the inference of models which is the execution of trained models. The theory
and other considerations for the training, also referred to as learning, are of little
relevance for the deployment of ML on embedded systems. Thus, related topics
such as over- and underfitting, training methods, datasets, etc. are not covered,
but further details can be found in Russell & Norvig (2016) and Goodfellow et al.
(2016).

2.1.3 Frameworks

As previously introduced ML is based on different algorithms which quickly become
very complex. It takes an extensive effort to understand them and work efficiently
with them. So called ML frameworks ease the work with such algorithms. Generally
such a framework can be a tool, interface or library which eases the development
of ML models. Thus, it is not required to understand the underlying algorithms in
detail. There exist different frameworks for the different areas of ML. Examples for
the most common frameworks are TF, PyTorch, scikit-Learn, Spark ML, and Torch.
Also well known is the framework Caffe which was however merged with PyTorch
in 2018 (Facebook, 2018).
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For this thesis TF and PyTorch are the most relevant as they provide tools
for regression, classification, neural networks and similar. As can be seen on their
websites, TensorFlow (2021c) and PyTorch (2021), both tools provide similar capa-
bilities. The thesis, however, employs the TF framework.

2.1.4 Optimisations

Due to the high resource requirements of ML and especially DL, often heavy opti-
misations are performed and a significant amount of research is being conducted in
order to make additional improvements. In this section different optimisation meth-
ods are outlined. Special focus is set on optimisation methods used or considered
in this thesis. Optimisation of ML algorithms is possible on many levels. In this
thesis optimisation of algorithms refers to the resource utilisation after deployment.
This includes parameters such as memory, processing time, power consumption, and
other device specific parameters such as memory bandwidth, logic utilisation and
similar. Optimisation of these parameters can be achieved in many ways. Obviously
a smaller ANN is more efficient than a more complex one.

The reduction of the number of parameters is thus of high importance. As already
stated in section 2.1.2, classical fully connected feed-forward neural networks are in
many scenarios less efficient than CNNs as parameters are reduced by convolution
operations. Pruning is a well known technique in ML as links of minimal importance
are removed from the network which can reduce the parameter number significantly.
If possible, it is definitely a technique which should be applied to a model before
it is run on the final system. TF provides different tools for pruning for example
TensorFlow (2021b) as well as Vitis AI as introduced in 3.2.2.

Another common technique is to reduce computational complexity which can be
done, for example, by quantisation of the model. Quantisation describes the trans-
formation of a floating point model to a integer based model. Integer operations
in general, but especially 8-bit integer operations, are simpler and have a smaller
bit-width than usually used 32-bit floating point values. Thus, such models obvi-
ously require less memory, but floating point operations are generally more complex
operations independent of their bit-width. However, after quantisation of a floating
point model it often needs to be retrained as initially a performance loss is to be
expected. TF lite Jacob et al. (2018) as well as the Vitis AI tool (3.2.3) provide
different tools to achieve the quantisation of the model.

Significant optimisations can also be achieved on the low level by optimising
the algorithms implementation for specific systems. For example TF has a heavily
optimised backend for GPUs and provides extensive tools to optimise the perfor-
mance on such devices. This allows to reach a very high performance while still
working with a high level language such as Python and no required knowledge on
GPU optimisation in low level languages (TensorFlow, 2021a)

The TF developed XLA optimisation of models is especially interesting as it
is the basis for the XLA HLS tool introduced in section 4. XLA optimises the
network execution by fusing the highly optimised single operations of the standard
TF to combined sequence of computational kernels. These kernels are specific for
each model which allows to take benefit of model-specific information. Normally an
example like x + y ∗ z would require to separate kernels one for addition and one
for multiplication. As those kernels are fused by XLA one optimised operation is
created which also does not need to write any intermediate results into memory. For
the GPUs the results of an intermediate computation is kept in the GPU registers,
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which reduces the required limited memory bandwidth (XLA: Optimizing Compiler
for Machine Learning — TensorFlow , n.d.).

2.1.5 Space Applications

After understanding the theory of ML it is important to be aware of current and
future application such algorithms in space. This allows to evaluate the later in-
troduced tools with future applications in mind. In the following section different
examples for applications of ML in space are introduced. These examples can be
grouped into autonomy, bandwidth usage optimisation, and Fault Detection, Isola-
tion, and Recovery (FDIR) systems applications onboard spacecrafts.

Autonomy
In the area of autonomy, a significant effort is put into Guidance, Navigation, and
Control tasks. For example, advancements in ML techniques in the field of ma-
chine vision and pose estimation (Sharma et al., 2018, Comellini et al., 2021) have
allowed for fully autonomous spacecraft rendezvous, as used in the International
Space Station’s Automated Transfer Vehicle (European Space Agency, 2014). How-
ever, the algorithms required are limited in efficiency by limited onboard resources,
so studies are ongoing on how this process could be optimised using FPGAs (Cos-
mas & Kenichi, 2020). In the field of deep space exploration, there are also various
researched uses of ML to improve spacecraft autonomy, such as giving spacecraft
context awareness via deep learning powered object detection (Lim et al., 2020) or
improving onboard Random Access Memory (RAM) efficiency using FPGAs (Luo
et al., 2019). Such advancements bring flight software closer to fully autonomous
flight, for goals including allowing spacecraft to alter mission goals, trajectory and
rotation in response to scientific opportunities (Chien et al., 2014). The future of
manned space exploration is also being enhanced with ML, as communication delays
will make spacecraft autonomy from mission control vital, and ML is a technology
that will enhance this experience for mission success and human health (Smith et
al., 2021).

Bandwidth Usage Optimisation
ML methods dealing with space data are already in use and an ongoing topic of
research. As instruments onboard satellites become more sophisticated, the com-
plexity and quantity of data collected increases. The downlink bandwidth to send
data back to Earth has been a bottleneck, with valuable and time-critical data be-
ing obscured or lost amongst the large quantity of data transferred (Ireland et al.,
2021). With the use of ML on-board the satellite, raw data can be processed and
have relevant information extracted from it and processed on-board before down-
link, reducing the size of the data and eliminating the downlink bottleneck, as well
as improving the quality of data received (Ireland et al., 2021). An example of this
is the CloudScout deep neural network onboard the Phisat-1 mission, which will de-
tect and send only the hyperspectral images of Earth with less than 70% cloudiness
(Giuffrida et al., 2020). Further optimisation of onboard hardware for ML with the
use of FPGAs allows for smaller instruments to be launched with additional power
and downlink bandwidth limitations without compromising data quality (Furano et
al., 2020), as well as improving ML software robustness in case of single effect events
with increasing radiation-tolerance in hardware and fault aware training (Vidmar,
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2021, Fiethe et al., 2021). Data compression is also a field that is improving with
the advancement of both ML and hardware technology opening the door to new
compression algorithms and methods (Machairas & Kranitis, 2020).

FDIR systems
With increasingly efficient hardware, more sophisticated methods of anomaly detec-
tion can be deployed. This field has used rule-based systems, and statistical ML
methods such as Support Vector Machines, k-means clustering and tree-based anal-
ysis (Zetocha, 1999, Murphy et al., 2021, Yairi et al., 2006) to detect and classify
anomalies in space systems. Recently, research activities have moved towards using
neural network based anomaly detection, that use CNNs or Long Short Term Mem-
ory (LSTM) based networks, to more accurately detect faults with more context,
and sometimes without the need for supervised learning (Murphy et al., 2021, Lv et
al., 2016).

2.2 Introduction to Embedded Systems

According to Peter Marwedel (2021, p. 2) an embedded system is an “information
processing system embedded into enclosing products”. Relevant for this thesis are
products embedded into space systems, which constrains the suitability of existing
devices drastically. This is mainly due to the fact that only a limited amount of
devices is radiation tolerant. Radiation tolerance is required to mitigate the risk
system failures or erroneous computations due to the long term ionisation damages
or single effect upset, which not only can induce bit flips, but also shorts in the
system. Depending on the mission type such devices also need to be qualified for
space applications, which further reduces the available choices. In the following
sections different kinds of processing systems for embedded systems are introduced.
The application in space stands here in the focus and the information is based on
recent studies to different kinds of systems. Firstly, CPUs are introduced as they
are the traditional main processing unit of a space system. Secondly, embedded
GPUs evaluated and possible space applications are outlined. Subsequently, other
processing units such as ASICs and FPGAs are introduced for space applications.
Lastly, SoC embedded systems are discussed as they are getting increasingly more
important.

2.2.1 Central Processing Units

Commonly CPUs are used as their name indicates as central computation unit to
coordinate and control a system. However, also a different common name for a CPU
is the general purpose processing unit. This is also a suitable name, as the logic of
a CPU allows for a very wide range of applications. However, due to this general
purpose logic operations are not well optimised for ML tasks which leads to a lack
of efficiency. Traditional CPUs can only perform sequential tasks and can’t reduce
the execution time by utilising parallelisation.

Especially for space-graded CPUs the performance is lower than no space grade
processors. This is due to long qualification processes and risk averse design choices.
For space applications different architectures were implemented to allow perfor-
mance increase of onboard CPUs. For example the LEON3 and LEON4 processors
utilised the open standard SPARC V8 Reduced Instruction Set Computer (RISC)
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Instruction Set Architecture (ISA), but they were never used much outside the space
industry. Subsequently, the RISC-V ISA products such as the NOEL-V were de-
veloped and received interest from other industrial areas. Currently, a transition
to multi-core processors is occurring for processors dedicated for space applications.
For example, devices such as the GR740 is seen as as the next generation micro
processor system. It is in fact an ASIC featuring a quad-core LEON4 processor and
additional functionalities (Furano et al., 2020).

These recent developments increase the capabilities of space grade CPUs drasti-
cally. Parallelisation is possible to some extent due to the availability of multi-core
systems and the efficiency is increased by new architectures. There also exist various
inference tools to allow easy deployment on embedded processors. For example, XLA
allows high efficient deployment on CPUs through already existing backends. It can
also generate pure C++ code for microcontrollers allowing easy deployment. Also,
the TF Lite Application Programming Interface (API) allows execution depending
on the platform. For microcontrollers TF Lite for Microcontrollers was developed
and allows execution of models with the help of TF Lite for Microcontrollers C++
library. However, this library has to be adapted to be compatible with various
operating systems or architectures. For Advanced RISC Machines (ARM) devices
exist the ARM in house inference framework which is called ARM NN (ARM, n.d.).
To support space grade devices such as LEON processors the TFMin library was
developed by Blacker et al. (2019). It allows to convert a TF model into standard
C++ which eases integration significantly.

Nevertheless, a CPU is in most cases not the ideal choice for high efficiency and
performant ML deployment. However, for smaller networks and low performance
requirements it might still be the ideal choice due to its simplicity. For future
applications embedded processors are mostly considered to be used as control unit
for coprocessors on FPGA as in Vitis AI, which is introduced in Section 3.

2.2.2 Graphics Processing Units

The GPU was originally developed for optimized graphics tasks as co-processors
for personal computers. Recent GPUs are more adaptable as they utilise a high
number of concurrent tasks. This makes them powerful and more efficient than
CPUs. (Peter Marwedel, 2021) Thus, discrete GPUs are known to have a high
thermal design power output. Thus, they are rarely adopted for space application.
As space applications are not the only area potentially benefiting from embedded
GPU a push towards the development of such devices is happening by companies
such as ARM, AMD, and NVIDIA.(Steenari, 2021)

However, such devices still need to be evaluated for on-board pace applications.
Furthermore, generally GPUs do not reach the performance efficiency of ASIC or
FPGA devices. This is due to the lack of optimization of ML applications as GPUs
are not primarly developed for these kind of tasks Steenari (2021).

2.2.3 Application Specific Circuits

ASICs are very energy-efficient and within the considered scope of this thesis the
processing unit kind with the highest efficiency, as section 2.2.7 describes. Thus,
ASICs tackle the efficiency issue of CPUs and GPUs. They contain optimised cir-
cuits for the required applications. Thus, within each clock cycle, more complex
operations can be performed. However, the development effort is very high and is
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only valuable for “large market volumes, ultimate energy efficiency demands, spe-
cial voltage or temperature ranges, mixed analog/digital signals, or security-driven
signals.” (Peter Marwedel, 2021, p. 143)

The recent search for accelerators for ML lead to the development of dedicated
co-processors which are also ASICs. Google’s Tensor Product Unit (TPU) (Cass,
2019) and Intel’s Myriad (Ionice & Gregg, 2015) are examples of dedicated ASIC ML
accelerators. Due to their efficiency they are recently being evaluated. An example
of such an evaluation done for the Intel Myriad platform can be found in Furano et
al. (2020). Nonetheless, despite their high efficiency, they are rarely optimized for a
specific algorithm as they cannot be reconfigured after manufacturing. Additionally,
ASICs can have some further disadvantages as for example the TPU requires a
processor. The TPU is thus a co-processor which increases the system complexity.

2.2.4 Field Programmable Gate Arrays

FPGAs are reconfigurable hardware which are as the name indicates ”in the field”
reconfigurable arrays of processing elements. These processing elements can usu-
ally contain Input/Output (I/O) interfaces, clock devices, and/or RAM. Alterna-
tively, the configurable functions are enabled by configurable logic blocks, which are
supported by signal processing hardware, and RAM. Generally, FPGAs are very
adaptable and thus allow implementation of many hardware designs without creat-
ing actual new hardware. The resources available on an FPGA are often described
in different ways. For this thesis are mostly three parameters important. The first
parameter is the number look-up tables (LUTs) available in a system. These LUT
define the behaviour of the logic. Each logic cell contains one LUT and thus the
number of LUTs for a design defines how much logic is utilised (Peter Marwedel,
2021, pp.166). The second parameter is the number of Block RAM available. Block
RAMs are nothing else then memory blocks within the FPGA to store all kinds of
data. Lastly, FPGA contain Digital Signal Processors (DSPs) which allow fast signal
processing within the system. This is done by designing the system in a way that it
can encode in each iteration a single instruction (Peter Marwedel, 2021, pp. 151).

This means that also ML tasks can be deployed in a reconfigurable manner on
FPGAs. However, they usually have worse performance and higher power cost than
ASICs (Kuon & Rose, 2007). In the early days of FPGA development it was not
possible to reprogram FPGAs or it was only possible to reprogramm the devices a
few times. An example of such one-time programmable FPGAs is the RTAX family
by Microsemi. Especially, modern FPGAs can be reconfigured almost unlimited
times. This enables vast possibilities for high performing and efficient processing
systems. Also, many new FPGAs are being developed, released, and studied for
space applications. More kinds of reprogrammable and more powerful FPGAs are
reaching availability for all kinds of missions (Steenari, 2021).

As for almost any embedded systems, it remains that space-qualified FPGAs are
based on older technologies and additionally are more complex to allow radiation
mitigation concepts. Furthermore, compared to ASICs, such as the Myriad or TPU
devices, the radiation effects in FPGA are well known, which increases the reliability
and eases the qualification of more modern FPGAs.(Steenari, 2021)

According to Furano et al. (2020), DL deployment on FPGAs can be split into
two approaches. The first being direct deployment of the model into the FPGA
logic only , also called full on-chip designs. However, the resource utilisation of
this approach allows only the deployment of small-footprint models. The XLA-HLS
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tool developed within the scope of this thesis utilises this approach as explained in
Section 4. It also aims to automatise the workflow to easier deploy the models into
logic and utilise methods to reduce model complexity, which reduces the footprint
of models. The second approach is targeted at the deployment of bigger DL mod-
els where external resources have to be utilised to store all parameters efficiently.
Also starting at a certain model size, which depends on the FPGA, model type,
optimisations, and many other parameters, the available logic on an FPGA will run
out. Thus, other approaches have to be implemented utilising the logic for different
layers repeatedly. Vitis AI, which is evaluated in this thesis as well, relies on such
an approach as outlined in Section 3.

2.2.5 System on Chip

SoCs are, as the name indicates, devices which contain a system of different process-
ing units. In most scenarios such a device contains at least one CPU and function-
alities for memory management and peripheral device interfaces. In the case that
such a device contains multiple processors, it is known as Multiprocessor System on
chip (MPSoC). Such SoCs with increasingly complex designs are developed as ad-
vancements in semiconductor manufacturing is slowing down and SoCs still allow to
meet higher and higher performance requirements (Peter Marwedel, 2021, pp. 162).

For space application SoCs becoming increasingly interesting and evaluation of
such devices. On institutional missions first usages of the combination of CPUs
and FPGAs have occurred. There, however no SoC was utilised, but a combination
of CPU and FPGAs allowing the reconfiguration of at least some of the FPGAs
during the mission. This allows the execution of more complex algorithms, which
would not be feasible without reconfiguring the FPGA. The same team is evaluating
methods to ensure reliability of the reconfiguration in devices such as the Xilinx Zynq
Ultrascale+ series (Fiethe et al., 2021). In this thesis the Xilinx Zynq Ultrascale+
MPSoC XCZU9EG-2FFVB1156 on the ZCU102 was evaluated which proved to be
popular for in Low Earth Orbit (LEO) and microsatellite missions as it includes a
radiation hardened ARM (Steenari, 2021).

This device contains many processing systems. The main processor is a quad-
core ARM Cortex-A53 based application processing unit. It is supported by a
dual-core ARM Cortex-R5F Based Real-Time Processing Unit, on-chip memory,
an ARM Mali-400 Based GPU, and many different interfaces. Additionally, this
MPSoC provide an FPGA like programmable logic. Further details can be found in
the according datasheet from Xilinx Inc. (2021).

2.2.6 High-Level synthesis

As the concept of high-level synthesis is of special importance for this thesis, it is
briefly introduced in this section. Synthesis is defined in Peter Marwedel (2021,
p. 24) as:

Synthesis is the process of generating the description of a system in terms
of related lower-level component from some high-level description of the
expected behaviour.

Automatic synthesis performs this automatically, which avoids many time ex-
tensive manual steps.
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However, the traditional abstraction level of the behaviour description is still
quite low, especially due to the complexity of the task. In the late 1980s Hardware
Description Languages (HDLs) such as Verilog and Very high speed Hardware De-
scription Language (VHDL) enabled simulation of hardware designs. However, the
implementation effort still remained very high. Thus, HLS was introduced in the
1990 and several generation of such tools were released throughout the time each
time increasing the capabilities of HLS. HLS usually utilised C, C++ or SystemC
as language. These days, HLS can automatically generate a custom design in hard-
ware. This includes memory banks, communication interfaces, data paths, and a
controller (Coussy et al. (2009)).

Generally, HLS significantly lowers the design effort. Thus, the use and further
development of HLS tools is motivated by many points. Following are three selected
points of special significance, which are taken from (Cong et al., 2011):

1. Easier design choice: HLS allows to easily adapt the design or choose a dif-
ferent optimisation method.

2. High resource availability: SoCs but also FPGAs alone are becoming increas-
ingly more complex and thus allow the integration of more complex systems.
The design effort for such tasks would be too high as the code efficiency of C,
C++, or SystemC is a lot higher than the one of VHDL or others.

3. Behavioural IP reuse design productivity: Especially vendor specific HLS de-
sign tools often utilise highly optimised HLS Intellectual Property (IP) cores,
which can be configured for different design parameters. Traditional IP cores
are often fixed and can thus be not as much optimised as HLS IP cores.

2.2.7 Energy Efficiency

As final section of the background of this thesis, the energy efficiency of the different
introduced hardware components is outlined and discussed to further motivate the
choice of FPGA and SoC as embedded systems for ML in space applications.

Based on Peter Marwedel (2021, pp. 194) the following Figure 4 on different
hardware components is shown. In the graph the development of energy efficiency
as number of Giga-Operations Per Second per Joule (GOPS/J) from 1990 until 2010
is shown. Device types such as ASICs, FPGAs are shown, but also types such as
DSP are included, which are not considered in the scope of this thesis. Additionally,
many different CPU like processing units are visualised, such as RISC, cell processors
which were developed by IBM, Toshiba, and Sony as well as the ”MPU” entries
comprise x86 processor architectures which are mostly used in personal computers.

From the graph one can conclude that ASICs provide the highest GOPS/J, which
can be described as highest energy efficiency. The value for FPGAs is roughly one
order of magnitude lower. Not included in the graph is the efficiency of GPUs,
which is generally seen as lower than the one of FPGAs. Lastly, CPUs have the
lowest energy efficiency, but provide the highest flexibility. Also, modern GPUs
are quite flexible, especially for parallel processing. FPGAs provide some flexibility
as well, which is generally limited by the available logic (Peter Marwedel, 2021,
p. 192). Additionally, the flexibility is limited especially for space applications as
reconfiguration of FPGAs on-board spacecraft is just being deployed for the first
times (Fiethe et al., 2021). Conclusively, one can say that SoCs allow an ideal



2 Background 13

Figure 4: Hardware efficiency of different devices according to Peter Marwedel (2021)

combination for maximum efficiency, but still high flexibility, which is why a MPSoC
was chosen as primary platform for this thesis.
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3 Implemented Tool: Vitis AI

Vitis AI (Xilinx Inc., 2020) is a framework to deploy accelerated DL inference onto
Xilinx hardware platforms. The tool aims to ease the workflow for non hardware
experts when deploying DL inference applications onto edge devices. It was evalu-
ated as part of the thesis and as example of a system which utilises an FPGA as
coprocessor for acceleration of ML operations.

3.1 Concept

In this section the overall concept of Vitis AI and the different parts of the system
are introduced. Also, the model and other system parts used in this thesis are
presented.

On the host device the tool consists of an adaptable Deep-Learning Process-
ing Unit (DPU) IP core, tools, libraries, and example models. A Docker image is
available, which provides in one environment the elementary required functionali-
ties. Additionally, a Secure Digital (SD) card image for Vitis AI is available for the
ZCU102. It contains all required libraries and FPGA configurations. Thus, for basic
use of Vitis AI, no additional software needs to be installed onto the host computer
besides the provided Docker image. Within this Docker image, several Anaconda
environments for the different frameworks can be found. For each of these frame-
works exist a quantiser, optimiser tools, compiler, and example models. Several DL
development frameworks are supported, such as TF, Caffe and PyTorch. The TF
2 framework was used as the basis of this evaluation. The ANN model used was
composed of convolutional layers, Rectified Linear Unit (ReLU) activation layers,
batch normalisation layers, and fully connected layers. The exact structure used for
evaluation in this thesis can be seen in Figure 5. This model has been developed in
a previous study to detect coronal mass ejections based on Valsesia et al. (2020).

Complementary to the host device software tools, certain Xilinx runtime libraries
are needed on the edge device. This includes the availability of Petalinux, the Xilinx
Intermediate Representation (XIR) library, as well as the Vitis AI runtime (VART)
library. These are, however, installed on the Xilinx provided image used in this
thesis. For hardware, at least one FPGA from Xilinx is required. The preferred
choice is an SoC composed of at least a CPU and an FPGA. The CPU coordinates
all required tasks and executes the model with the help of XIR and VART tools. It is
also possible to utilise pure FPGA systems and implement a so-called softcore CPU,
such as Xilinx’s MicroBlaze, in the FPGA logic. However, such implementation
requires hardware expertise and some effort, as well as it increases the logic resource
utilisation on the FPGA (Vidmar, 2021).

The hardware accelerating component of the system is the DPU integrated into
the FPGA. Different architectures for different devices are available. It is also
possible to define an individual architecture with only the layers supported which
are required for the planned usage scenario. The DPU architecture consists of
several blocks, which are needed to buffer the data and instructions, and to control
the system, and consists of the actual computation kernels such as for example Bias,
ReLU, and pooling calculations. These components allow to accelerate any model
layer supported by the hardware acceleration. A small number of additional layers
may be supported by the Vitis AI toolchain in the Docker environment. To ensure
full acceleration of the model, one needs to ensure that all layers are compatible with
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Figure 5: CNN structure used for Vitis AI evaluation

all parts of Vitis AI. If a layer is not supported, warnings can occur that this layer
will not be executed on the DPU. This can lead to significant performance loss, as
not only will the unsupported layers require execution on the CPU, but also any
following layer after the first unsupported layer. This is because, for an incompatible
layer, the data is not sent forth and back between the CPU and DPU. Thus, the
data is just sent back to the CPU and awaits the remaining computations. To
enable early mitigation of such issues, any incompatibility will be indicated within
the software workflow on the host device.

3.2 Workflow

The Vitis AI workflow was extensively studied to understand compatibility, adapt-
ability, and opportunities for own adaptations. In Figure 6 one can see an overview
of the entire workflow, which is needed to run a model on an embedded system. The
flow diagram shows that after training and other preparations (Section 3.2.1) it is
optional to optimise the model as described in Section 3.2.2. Subsequently in Sec-
tion 3.2.3 the quantisation of the network is described after which the compilation
for the edge device is explained in Section 3.2.4. As last step before the execution it
is required to create a deployment script and runtime scripts which are explained in
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Section 3.2.5 Finally, follows the model deployment to the edge where the runtime
script is executed. After execution of the model it can be evaluated and profiled, in
order to retrieve the final performance of the system.

Figure 6: Vitis AI Workflow

3.2.1 Getting Started

The starting point for using Vitis AI is detailed in this section. The broad environ-
ment is detailed for this purpose. In addition, concerns for the baseline model are
discussed.
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Environment
As previously mentioned, the two basic required tools are the Docker image available
from Xilinx as well as an SD card image, which is integrated onto the edge device.
Different versions of the Docker image are available for processing on the host CPU
or GPU. If a GPU is available this allows to significantly decrease the processing
time for steps such as the quantisation (Section 3.2.3). Within the Docker image
different anaconda environments are available which contain the different supported
Python frameworks and the related tools.

For more experienced users with hardware expertise it is possible to adapt the
SD card image or FPGA design with other Xilinx tools. The Vivado Design Suite
for example allows the integration of the DPU on other non supported devices. This,
however, requires significant effort and hardware design understanding. To enable
Vitis AI on a pure FPGA it is always required to implement a supported softcore
processor and the DPU into the FPGA logic. The Vitis Unified Software Platform
on the other hand provides a different approach to design and adapt the Vitis AI
SD card image. For example it is possible to adapt the DPU configuration based on
different parameters. With this different layer supports, different DPU architectures,
and other features can be integrated, adapted or removed. With these tools it is
possible to achieve a good flexibility of the Vitis AI framework.

Baseline Model
As previously mentioned, a model needs to be compatible with the Vitis AI frame-
work. The requirements and constraints are outlined here. Vitis AI supports several
different ML development frameworks such as TF, PyTorch, Caffee, and more. The
requirements and constraints for developed model which shall be deployed with Vitis
AI are generally very similar between the different frameworks, but still vary and
need to be considered in detail. To remain within the scope of this thesis the focus
is set on the TF 2 framework.

Firstly, it is important that the model is designed with the supported layers
in mind. For example for TF 2 only some tf.keras.layers are supported in
the studied Vitis AI 1.3 version. The exact supported layers can vary between
the quantiser and the compiler for the targeted unit. Thus, it is important to
check the compatibility for all parts of the workflow. If a layer is not supported
the quantisation or compilation may fail. However, it is also possible that just a
warning occurs, which then means that the erroneous and every following layer will
be executed on the CPU. Furthermore, it is important that the model does not
exceed the supported model width the DPU can support. Otherwise, a warning will
occur and the layer exceeding the maximum width and every following layer will
need to be executed on the CPU. After the model has been trained it should be
saved in the frozen ”.h5” format so it does not have to be retrained for each run of
the Vitis AI workflow.

3.2.2 Optimiser

After obtaining a good model in terms of performance, the Vitis AI environment
can be used to optimise the model performance by pruning the network. In contrast
to the rest of Vitis AI, the optimiser tools need to be procured additionally and are
not freely available.
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The optimiser mostly utilises pruning to improve model performance. Pruning
removes unnecessary neurons, reduces model complexity making the model more
efficient, using fewer powerful platforms than an unpruned network.

The Vitis AI Optimizer (Xilinx, 2021) follows four steps to achieve maximum
performance with minimal performance loss:

1. Analysis: The model is analysed regarding its sensitivity, which allows to
determine the ideal pruning approach. It determines how much pruning is
possible without loosing too much accuracy.

2. Pruning: Reduces the number of computation required for the model output.

3. Fine-Tuning: The pruned model needs to be retrained as the removal of neu-
rons also removes information and thus accuracy of the model.

4. Transformation: In this step Vitis AI creates a dense model with the reduced
weights. The pruned sparse model is transformed into a final dense model.

The last step is the step which gains ultimately all the performance. Other
pruning tools also perform the steps 1-3 or similar. However, the Vitis AI optimizer
also removes the neurons from the actual model, reducing the model size which in
turn safes required memory and computational operations.

It was also evaluated if it is possible to use alternative optimiser tools. However,
the evaluated pruning tools from TensorFlow Lite where not compatible with the
Vitis AI quantiser which made it impossible to perform pruning and other tasks
without the Vitis AI optimiser.

3.2.3 Quantiser

The next step is mandatory for a successful deployment, as it is necessary to have
a Vitis AI quantised model to be compatible with the 8-bit DPU architecture The
Vitis AI quantisation converts 32-bit floating-point weights and activations into 8-
bit integer format. This requires less memory bandwidth, which increases speed and
power efficiency. In this work, two of the Vitis AI provided quantisation methods
were evaluated.

Quantize Calibration (post-training quantization)
Quantize Calibration quantises the model after training and tries to achieve high
accuracy by calibrating the model after quantisation with the help of a small data
subset. The data subset only requires 100-1000 items which also leads to a very fast
calibration process. The accuracy of this process can be very similar to the original
accuracy but depending on the model a significant drop in accuracy can be detected.
This method is fast and computationally inexpensive.

Quantize Finetuning (Quantize-aware Training)
The Quantize Finetuning is also described as Quantize-aware Training as the
process performs an actual training of the network, but with fixed point integer
values and not floating point values. The process is similar to the commonly used
finetuning of networks. It is also possible to use this method on an untrained model,
allowing a model to be trained directly as a quantised model. Independent of the
models’ training status, the entire training and validation set is required for this
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method. Due to the quantisation approach and the required data the process can
take some time and is computationally very expensive compared to the Quantize

Calibration. The achieved accuracy is comparable to the original baseline model
and is higher than the accuracy achieved by the Quantize Calibration.

3.2.4 Compiler

After successful quantisation, the model is also compatible with the Vitis AI com-
piler. This compiler is part of the Vitis AI Docker image and generates some meta-
data as well as the required model file, which is needed to run the model on the
edge device. For a successful compilation the quantised model which was previously
retrieved is required. Additionally, the targeted DPU architecture needs to be spec-
ified. The required .json file for this can be produced by Vivado or Vitis for a
custom DPU configuration. The compiler model file contains all the information
about weights and all layers as well as which layer is executed on the DPU and
which on the CPU.

3.2.5 Deployment

To perform successful operations the model and the dataset are to be transferred
to the edge device. To ease this usually a deployment script is created. This script
performs required preprocessing on the data which is to be transferred to the edge
device. Additionally, it gathers all the data, the model, and the runtime application
into a folder, which eases the transfer to the edge device.

Now the DL inference can be performed on the edge device. This is done by
executing a previously created runtime application. This runtime application utilises
the XIR and VART libraries required to execute the compiled model and utilise the
DPU successfully. The application can be written in C++ or Python. It is very
important that the application is written in an efficient manner. Especially when
utilising Python, one should take care of the memory handling on the CPU as
it can lead to very low performance of the model execution. Depending on the
implementation the data through put rate can vary by a factor of 10. For optimal
resource utilisation, it is advisable to create a C++ application. Generally, the
runtime application is critical as it is run on the CPU which coordinates the DPU
usage. If this script is not efficiently written and cannot utilise the DPU properly,
one suffers from significant performance losses.

3.2.6 Evaluation Tools

Finally, Vitis AI provides tools to evaluate the performance of the model deployment.
The most important tool for this is the Vitis AI provided vai trace tool which allows
in combination with the Vitis AI profiler an extensive analysis of the performance.
It allows to analyse the memory access times and communication times between the
DPU and CPU. Figure 7 shows an example of such an evaluation which was done as
analysis of Vitis AI. The first graph in the figure shows the DPU data throughput
in Frames Per Second (FPS) which is in this example around 60FPS on average.
The second graph shows the different Double Data Rate (DDR) memory read rates
for each port. Each port has its own plot in a dedicated colour in the graph. The
third graph shows the different DDR memory write rates for each port. Each port
has its own plot in a dedicated colour in the graph.
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Figure 7: Vitis AI Profiler results of DPU throughput and memory read and write
speeds

Additionally, it is very useful to log the predictions for each image to be able
to calculate the model metrics after execution. This way it is very easy to see if
the model was deployed correctly. Furthermore, it allows to evaluate differences
between the baseline model and the deployed model.

3.3 Evaluation

In this thesis, the Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC, also referred
to as ZU9, was utilised with the standard Xilinx provide SD card image and the
therein included DPU. In this section the evaluation of the accuracy metrics, logic
utilisation and further parameters are outlined. Firstly, The final metrics of this
deployment are defined in Table 1. In the table it is seen that for the model used
for this thesis the metrics are very similar between the baseline model and the
deployed model. It also shows that, after the quantisation, the accuracy is not set
and the compiler transforms the model further. In the case of the thesis the compiler
increased the accuracy, however it is also possible that after the quantisation the
accuracy is further reduced by the compiler. The accuracy increase is induced by
the graph changes done during the compilation. Normally, graph changes lead to
a loss of accuracy since the model is not anymore exactly the same as the trained
model. However, as the changes impact on the model behaviour are unpredictable
it is possible that those changes lead to an improvement of the model metrics.
Thus, it is very important to perform the evaluation of the deployment as described
in Section 3.2.6. Only this way the final model performance can be evaluated.
Generally, Vitis AI allows for easier deployment of DL inference on the edge. As the

Table 1: Model accuracy metrics determined according to ScikitLearn (2021)
throughout the Vitis AI Workflow when deployed on the ZU9

Parameter Baseline Model Quantized
Calibrated Model

Deployed Model

Accuracy 92% 91% 92%
Precision 95% 95% 95%

Recall 88% 86% 89%
F1 Score 92% 90% 92%
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DPU acts as accelerator for different network layers, the FPGA resource utilisation
is independent on the model size. However, only a limited layer width is allowed
and must be considered in the network design to ensure successful deployment. The
DPU can also be configured depending on the required layers which can safe further
resources. However, the base resource profile of the system is high as an entire
system to operate the different layers needs to be implemented. A direct model
implementation would be more efficient for small networks, but as soon as layer
types would be used several times Vitis AI gets more efficient as the DPU size is
constant. Of course, it is possible to implement smaller DPUs if required, but this
also reduces the performance. However, a smaller DPU is generally also more power
efficient as less logic is utilised. The resource utilisation in the Table 2 is cited
from Lui (2018), where data for more devices can also be found. In this thesis,
similar utilisation ratios were found during the deployment process. Admittedly
the Dual B4096 is one of the most powerful DPUs, but the ZU9 is also one of the
more powerful FPGA devices. For example, a Dual B4096 DPU on a ZU9 platform
requires more than half of most available resources. For the smaller Zynq 7000, the
utilisation ratio was even higher as seen in Table 2. Generally one can say, that
Vitis AI gets more efficient with deeper networks. This means, that bigger DPUs
only become viable if the network to be deployed exceeds a certain size. Otherwise,
it is suggested to use a smaller DPU or a generally different approach.

Table 2: Resource Utilisation of DPUs on Zynq7020 and ZU9
Device LUT Block RAM DSPs

All logic 53200 140 220
DPU 45535 110.5 220

Single
B1152 on
Zynq 7020 Utilisation ratio 85.59% 78.93% 100.00%

All logic 274080 912 2520
DPU 156744 501 2048Dual 4095

on ZU9 Utilisation ratio 57.19% 54.93% 81.27%

For the previously introduced model, the performance varied a lot during the
execution with Python. However, with optimisations, it was possible to reach up
to 77 FPS. The time required for each frame was 0.0131s. This includes send-
ing the data to the DPU, processing it, and sending it back to the CPU. This is
comparable with performances of 114 FPS for the ResNet networks from the Vitis
AI model zoo as this model utilises a smaller input, which reduces the required
data bandwidth. Unfortunately, powerful FPGAs are not radiation tolerant and
European Cooperation for Space Standardisation (ECSS) or United States Military
Standard (MIL-STD) qualified components are even more limited. Furthermore,
an SoC is beneficial for Vitis AI. However, there is no fully space-qualified SoC
available as a look into Steenari (2021) unveils. A proposed solution is the space
DPU developed by Xilinx. It implements a Triple Modular Redundancy (TMR)
MicroBlaze system as softcore on the qualified XQRKU060 FPGA. Important to
note as for any tool is that the hardware qualification does not mean the software is
qualified. This is for example the case for the operating system ”petalinux” where
Vitis AI runs on. Due to limited access to this operating system a qualification is
very difficult and it is being searched for alternative tools and approaches to be able
to qualify the entire system. To increase the reliability of predictions in space the
deployed neural network is retrained with the fault aware training method. Detailed
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results of this study can be found in Vidmar (2021). Note that, due to the lack of a
processor on the XQRKU060, the addition of a softcore processor on the FPGA is
required, which increases the resource requirements of the system significantly. This
further limits the left resources on the FPGA for compression, data encoding and
other algorithms usually deployed on an FPGA in space. Furthermore, look into
the performance with the Vitis AI Profile unveiled, that the Vitis AI system perfor-
mance is limited by the communication bottleneck between CPU and the DPU on
the FPGA. All data needs to be transferred through this connection, slowing the
system down significantly, especially if the network input is large. However, Vitis AI
can be very viable for applications requiring the switch between multiple networks
during runtime. This is again possible due to the nature of the DPU working as
hardware acceleration coprocessor. It just accelerates the layers by utilising stan-
dardised layer implementations on the FPGA. Thus, the logic remains the same and
no reprogramming of the FPGA is required. Only the CPU which coordinates the
system needs to switch the model and a different DL inference is possible. In com-
bination with high efficiency for large networks with many layers, Vitis AI reaches
for complex machine learning applications in space very high performance.
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4 Proposed Tool: XLA HLS

To provide an alternative to Vitis AI the XLA HLS toolchain is proposed. This
approach aims to deploy the DL model directly into the FPGA logic without the
need of a processor or similar. It also aims to provide full open-source access to ease
qualification for space mission as well as high adaptability. Furthermore, a wide
variety of layers compatibility is targeted. This is a different approach than utilised
by Vitis AI, which also leads to different application scenarios as well as benefits
and disadvantages. In this section previous related work will be outlined as well as
the workflow explained. Also, issues during the development are outlined and an
evaluation was done.

4.1 Concept

The overall concept is to optimise the network on all levels and then directly deploy
into the FPGA logic. For XLA different backends for CPUs and GPUs exist. These
backends are the basis for most needed backends as it is easy to use the existing
open-source CPU or GPU backends to adapt it to a new device. Essentially, only the
deployment of the optimised operations needs to be adapted to be compatible with
the target platform. TF XLA provides different Intermediate Representation (IR)
dumps to achieve this. The proposed tool utilises these IR dumps to synthesise an
FPGA design out of this with the help of HLS.

Generally, HLS is used to generate HDL out of C, C++ or similar. Some HLS
tools utilise Low Level Virtual Machine (LLVM) in their backends. Note, that the
acronym definition of LLVM is not anymore directly applicable or fitting and thus
rather confusing. Thus, it is usually left unexplained and LLVM is not an actual
acronym. One of the IR dumps of TF XLA is a LLVM IR dump. This allows to
load the TF XLA model dump into the HLS tool.

With the strong optimisations of XLA and HLS it would be possible to deploy any
model directly without required hardware knowledge onto an FPGA. Additionally,
it would be very power efficient and high performant and the high level optimisations
lead to a very logic resource efficient deployment. This allows to deploy models with
a smaller footprint which leaves more space for other computations. Alternatively,
it would be possible to deploy a bigger model into the same FPGA compared to
other deployment approaches.

4.2 Previous Work

The in Section 4.1 described concept and motivation is based on studies of the
system and previous work.

Generally, there exist various CPU and GPU tools which lead to a significant
increase in performance compared to execution of the same model without XLA.
According to Kanwar et al. (2020) XLA optimisation achieved approximately a
training throughput increase of the factor seven compared to without XLA.

The tool LeFlow by Noronha et al. (2018) also uses XLA and aims to develop a
tool with full open-source availability allowing the deployment of ML onto FPGAs.
It was one of the first tools deploying ML onto FPGAs. The performance of the
LeFlow tool is promising according to the publication itself.

However, it is based on old tools such as the original TF 1.x and LegUp 4.0.
TF 2 was released in 2019, and LegUp 4.0 is no longer available. Thus, an entire
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redesign of the workflow is required, but the idea to use XLA and its LLVM IR dump
remains the same. Based on this heritage, the new development of XLA HLS was
assumed to be viable. Additionally, significant optimisations based on the LeFlow
work can be implemented allowing high performance and efficiency. Beyond these
further optimisations, advanced compatibility with network layers as well as the
implementation of design considerations to optimise the tool for space applications
is possible. Furthermore, the goal is to have the entire workflow open source to allow
easy development continuation as well as qualification of this tool for any kind of
mission.

4.3 Workflow

Figure 8 shows the implemented workflow which the XLA HLS tool provides to
create and verify the needed HDL to deploy a TF model on an FPGA.

On a high level the workflow is split into four parts and two tools are required.
The two tools are TF 2 XLA and the Vitis HLS open-source frontend release. TF
2 XLA allows to generate the optimised LLVM IR dump and Vitis HLS allows to
utilise it and generate a FPGA hardware design from it. The use of Vitis HLS
of course makes this tool constrained to Xilinx FPGAs. However the workflow is
general and most optimisations as well as adaptations of the LLVM IR will be be
needed for any HLS which may be supported in the future.

The workflow starts in TF 2 XLA where the model is created and the dump
generated. In parallel the Vitis HLS open-source frontend is used to create the
LLVM IR providing the utilities to run the model. Subsequently, the XLA dump
needs to be integrated into the Vitis HLS dump, which is the most complex step of
this thesis. Finally, the LLVM IR is passed to the Vitis HLS backend where it is
synthesised to a full FPGA design. In this step the design is cosimulated to ensure
the correct functionality of the model. The result is a design in the form of HDL
which allows easy integration into any FPGA system.

In the following subsections the workflow of this tool is described in more detail
to explain the concept in depth.

4.3.1 Loading of Model and Data

The flow starts in TF 2, where the model is created and trained. For this process no
special constraints exist as the XLA is part of TF. However, it is beneficial to load
the previously trained model from a file to ensure the reproducibility of the tool’s
execution. Otherwise the LLVM IR dump will vary every time, as the model has
changed.

Besides the model, a data example is also required for two purposes. First of
all it is needed to execute the model in TF XLA which creates the dump. It is
also needed as a test data file to be able to verify the correct functionality of the
deployed model with the help of cosimulation. The data for the cosimulation needs
to be provided in the .csv file format and thus will be exported in this step in
the .csv format After everything is loaded, the model is run with the XLA just in
time (jit) compiler. Additionally, the XLA dump flags are set which leads to the
creation of the dump files among which the LLVM IR dump can be found.
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Figure 8: XLA HLS overview workflow

4.3.2 HLS Frontend

As backend of the XLA HLS tool the Vitis HLS backend is used. However, to
provide the right format of IR to the backend it is required to utilise the Vitis HLS
frontend. The Vitis HLS tool allows highly optimised HLS for Xilinx devices. Also,
the frontend is accessible in an open-source manner which allows the adaptation or
replacement of the C, C++, etc. front end.

In this workflow the Vitis HLS open-source frontend is used to provide the LLVM
IR basis to integrate the model code generated by TF XLA. This model basis allows
to load the input data and pass it to the model as well as allowing it to pass the
result of the model further to other functions.

The LLVM IR is generated from a provided C++ template. This template calls
the function and provides the function inputs and outputs. In the current version
of this tool it is necessary to adapt the C++ code in a way, that the input data
of model can be passed to the function and also the output data can be utilised.
The template provides an example for this, but the format of the input data varies
of course between the different applications and models. Also, the C++ top level
function of the template contains some operations to avoid automatic reduction of
the function. If this function would be empty, Vitis HLS would perform an automatic
reduction and not create the function in HDL and therefore not in LLVM IR.

It is useful to keep the testing of the system in mind when adapting the C++
template. This will allow easy testing of the functionality of the model in the end
of the workflow.
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4.3.3 LLVM IR Merge

In this step, the two generated LLVM IR are merged. This is done with several
small steps to ensure full compatibility of the final IR with the Vitis HLS backend.

The Vitis HLS LLVM is retrieved in bitcode format and thus needs to be con-
verted in to LLVM IR. Then the content of the top function from the template,
unneeded global variables, debug information, and further content of the file are
removed to avoid interference issues later in the workflow.

Subsequently, the function input parameters are adapted if required and the
main function of the XLA LLVM IR is added into the Vitis HLS LLVM IR. In
this step it is also necessary to make the merged LLVM IRs compatible with Vitis
HLS input. This requires the adaptation of the LLVM 9.0 IR from XLA as it is
incompatible with the LLVM 6.0 IR, which the Vitis HLS LLVM IR is based on.
Additionally, the XLA LLVM IR needs to be adapted to be compatible with the
FPGAs design. Generally, these adaptations are related to undefined functions and
parameters in the earlier LLVM IR version. Difficulties within this part of the thesis
are outlined in more detail in Section 4.4.

This LLVM IR merging step is also the intend place to implement code op-
timisations on a low level. The LeFlow tool makes use of several low level code
optimisations, which are generally applicable to improve the performance of the
code on FPGAs. Currently, this part of the tool needs to be run manually as too
many issues are unresolved and the automatisation will be a complex task that is
beyond the scope of this thesis. However, as seen in the LeFlow tool this is possible
and is a future goal for this thesis overarching project.

4.3.4 HLS Backend

The backend is the part of the system where the HDL design is synthesised. To
run synthesis, the LLVM IR needs to be converted back into LLVM bit code. A tcl
script is created which is executed by Vitis HLS. In this script parameters defining
the clock speed, target FPGA and similar are specified as well as the path to the
LLVM bitcode of the merged LLVM IR.

During the script execution after the parameters have been set, the bit code is
passed through the Vitis HLS frontend to the backend, which synthesises automat-
ically the design generating HDL. To ensure successful synthesis the merging of the
LLVM IRs needs to resolve all FPGA incompatibilities.

After successful synthesis the design can be cosimulated with the previously
adapted C++ testbench. Usually simulation of the hardware design requires a
testbench in a HDL. However, cosimulation describes a simulation type which does
not require a testbench in a HDL, but does a simulation based on the hardware
design and a C/C++ testbench, which eases verification of correct functionality
significantly. After verification of functionality, the HDL can be retrieved allowing
it to be integrated as any other FPGA design block. Until the integration of the IP
core into the FPGA designs, the final implementation of the tool will not require any
hardware design expertise. Thus, a Python familiar engineer can create a module
for their model, which can be verified on the same level without further expertise.
After the HDL is proven to be functional and provides the intended results, it can
be integrated into the rest of the system by an engineer with FPGA experience.
It would also be possible to directly load the IP core into an FPGA, which would
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require almost no hardware design knowledge, but would the system constrain to
pure input and output of the model.

4.4 Implementation Difficulties

As previously pointed out the merging of the different LLVM IR versions is quite
challenging. Beyond the version incompatibilities, FPGAs have certain limits com-
pared to CPUs or GPUs. Theses limitations need to be considered when merging
the LLVM code. Additionally, the XLA LLVM IR dump is incomplete as some
functions are left undefined. These and other issues are outlined below and split
into resolved, not implemented solutions and issues without solutions.

The following issues are only examples and do not represent all issues which
might occur in the future development. This is mostly due to the reason, that not
all kinds of networks and layers have been tested and more unsupported parameters
might be encountered.

4.4.1 Implemented Solutions

In this subsection examples of solved issues are described, if possible the background
explained and the solution presented.

Non existence of Fneg function
The appearance of the Fneg function lead to a failure of the conversion of the LLVM
IR to bitcode with the message that the Fneg function is undefined.

In fact the Fneg function was only introduced after LLVM IR 6.0. Thus it is used
in the XLA LLVM IR dump, but is not compatible with LLVM IR, which makes it
possible to be converted into the bitcode format for Vitis HLS.

The Fneg function simply negates an operation or variable. Thus, it is easily
possible to solve this issue by replacing Fneg with a 0-Fsub operation. This subtracts
the parameter from 0 which is equal to a negation.

Undefined attributes
Use of some attributes lead to undefined attribute error. For example the function
attribute nofree leads to an error in the workflow.

In LLVM IR different attributes can be set for a function. However, the number
of available attributes increased with each new LLVM IR version release. Thus some
attributes are not existing for the Vitis HLS LLVM IR version.

This issue can be resolved by either replacing or removing the incompatible
attributes.

Constant definition
Vitis HLS gives an error message stating that constant should be dso local.

The XLA dump provides the model constants as private unnamed addr constant,
however this constant is not compatible with the Vitis HLS input. It is required
that constants are marked as dso local.

With dso local the compiler assumes that the function or variable will resolve
to a symbol within the same linkage unit. The compiler will grant direct access even
in the case that it is defined outside the this compilation unit (LLVM, 2021)
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The issues is resolved by adding the dso local runtime preemption specifier in
front of the constants. With this the constants are accepted without issues.

4.4.2 Not in Implemented Solutions

During the development and proof of concept of this tool several issues where found
and solutions where found for the specific scenarios. However, it is not certain if
and how these solution can be generalised .

Pointer-to-Pointer is not supported
Use of pointer-to-pointer (i8** buffer) is not accepted by Vitis HLS.

This issue points to a general problem when utilising a CPU or GPU LLVM
IR project for FPGA. The memory handling between FPGA and other processing
systems is quite different as no in time memory allocation is possible. Thus, it is
also not possible to perform pointer-to-pointer operations. These operations need
to be replaced by alternatives, which is very possible as long as it is clear what the
pointer-to-pointer from the XLA LLVM is supposed to contain.

A example of problematic code is shown in the Listing 1 below.

1 define void @_Z3topPA28_A28_f(i8* nocapture readnone %retval , i8*

noalias nocapture readnone %run_options , i8** noalias nocapture

readnone %params , i8** noalias nocapture readonly %buffer_table ,

i64* noalias nocapture readnone %prof_counters)

local_unnamed_addr #0 {

2 entry:

3 %0 = getelementptr inbounds i8*, i8** %buffer_table , i64 1

4 %1 = bitcast i8** %0 to float**

5 %2 = load float*, float** %1, align 8, !invariant.load !0, !

dereferenceable !1, !align !2

6 .

7 .

8 .

Listing 1: Pointer-to-Pointer XLA code example

For this example is known that the input image data which is contained in the
%buffer table has a size of 28x28. Also, all other variable defined in the function
beginning are unused in the entire IR and can thus be deleted. With this follows
the solution code as in Listing 2.

1 define float @_Z3topPA28_A28_f ([28 x [28 x float ]]* "fpga.decayed.

dim.hint "="2" %arg1) #0{

2 entry:

3 %0 = bitcast [28 x [28 x float ]]* %arg1 to float*

4 .

5 .

6 .

Listing 2: Pointer-to-Pointer solution code

This solution is always dependent on the actual model on hand. Also, while
working on more complex model deployments more parameters were stored within
the %buffer table variable, which makes it very difficult to resolve this issue auto-
matically and is thus beyond the scope of the thesis.
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Layer result storing
Within the scope of this thesis it was not possible to deploy multilayer neural net-
works due to memory allocation and variable storing issues. The XLA dump utilises
storage allocated with the %buffer table variable. However, it was not yet possible
to find a way to allocate the storage before compilation on the FPGA and store the
layer results within the assigned area.

This issue is listed here as the problem is understood, but it was not possible
to generate the code which would achieve the successful storing of the layer results
until they are used for the next operation.

Incomplete XLA LLVM IR dump
When implementing more complex network which utilise convolutions and parallel
operations it was found that within the XLA IR certain functions are just called,
but never defined within the generated code.

Thus these function would need to be created and auto-generated and integrated
automatically into the LLVM IR before it can be passed on to the Vitis HLS backend.
However, the definition of these function has been found in C++ within the TF
framework. Thus it may be possible to auto-generate the needed LLVM IR from
the the C++ function.

This issues seems quite complex, but is ultimately only a matter of time as the
code for these functions needs to be written. It does, however, not influence the
proof of concept of this tool.

Return of multiple parameters
During the proof of concept experiments where done on returning results of a model
which provides multiple outputs. These experiments where partly successful as it
was possible to return all results separately when returning them as single float
value. However, it it was not possible to return with the same synthesis all output
values at once.

This was not further investigated in the scope of the thesis. A solution would
be to analyse how it would be possible to return several values with C++ in Vitis
HLS. If this is functional the Vitis HLS LLVM IR could be investigated to integrate
such a functionality.

4.4.3 Missing Solution

Ultimately, not every issue was resolved or has a feasible solution. Within this
thesis only one LLVM to Vitis HLS incompatibility was found, which was not fully
understood. It was not the focus of the studies as it was not relevant for the proof
of concept. The issue is a combination of operations. The combination of the
select reassoc leads to an error in the synthesis. This is not a LLVM version
incompatibility, but more a constraint from the Vitis HLS side for FPGA. Further
studies and investigation of this issue need to be done to resolve it.

4.5 Proof of Concept and Evaluation

Even though it was not yet possible to automate the workflow and issues were en-
countered with more complex networks, it was possible to manually deploy a network
and verify its functionality by simulation. For this a network was trained with the
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Modified National Institute of Standards and Technology (MNIST) database. The
MNIST database is often used for benchmarks or as example database for research
projects. The database consists of 10.000 handwritten images and the usual purpose
of networks created on this database is to recognise handwritten numbers.

The deployment of the created one layer network yielded good parallelisation
of operations as well as acceptable logic utilisation, especially considering that any
optimisations are yet to be integrated. The scheduler results can be seen in Figure 9.
A detailed insight into the resource profile of this example can be found in Figure 10.
Unfortunately, an extensive performance evaluation of this tool is not possible, as it
was not possible yet to deploy more complex networks. Thus it was also not possible
to directly compare Vitis AI with XLA HLS.

Figure 9: XLA HLS MNIST scheduling evaluation in Vitis HLS scheduler viewer

Figure 10: XLA HLS MNIST resource evaluation in Vitis HLS resource profile viewer

Ultimately, the goal for XLA HLS is to have fully automatic workflow, which
provides directly from the execution of a python script a deployable hardware design.
Within the thesis it was shown that if the previously mentioned issues are resolved
it would only takes a few inputs such as model, target device, clock frequency and
similar to get the HDL.

Additionally, the basic concept is already very performant due to the direct
implementation into FPGA logic. The logic resource utilisation is not yet optimised
and hard to evaluate at this point in time. However, it is certain that with first
optimisations the efficiency will increase significantly as LeFlow already applies some
optimisations which yield promising results. Also, other high level optimisation
similar to the ones used by Vitis AI are planned to be implemented.

As all parts of this system are also open-source this part of the objectives is also
achieved as well as the full TF layer compatibility. Only minor layer compatibility
constraints are to be expected until the mentioned functions are defined and there
functionality verified.
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5 Discussion

After both tools were introduced and evaluated, the opportunities and limitations of
Vitis AI and XLA HLS will be outlined separately. This is due to the vast difference
in concept and application scenarios, but also due to the lack of technology readiness
of XLA HLS.

5.1 Opportunities and Limitations of Vitis AI

As mentioned before, Vitis AI achieves especially for deep networks very high per-
formance. Despite having a high initial resource utilisation, it pays off for deep
networks as it does not depend on the network. The depth of supported networks is
also nearly unlimited without any impact on logic or power consumption. Of course,
for small networks, other approaches directly running on the FPGA can reach higher
performance and efficiency. This is mostly because the DPU does implement further
functionalities which are not required for small networks and are only beneficial for
larger networks. The threshold to decide which concept would be more beneficial
depends on the application and needs further study of the tools. Furthermore, one
must be aware of the bottleneck between DPU and CPU as transferring data requires
time in any system. This is a general downside of utilising the FPGA as coprocessor
as any data needs to be transferred between the main system and the coprocessor.
Vitis AI provides flexibility for the developer of new models as many frameworks
are supported. However, due to the systems concept, only a limited number of
functionalities per framework are supported. The extension of this requires a high
effort as it needs to be supported throughout the entire tool-chain which includes
the quantiser, compiler, and the DPU itself. Nevertheless, this is a constant change
of subject as currently, with every new release of Vitis AI, new layer compatibilities
and other functionalities are introduced. Generally, the system is complex and re-
quires many hardware and software components, which can increase the complexity
of a space system which could be simpler.

Beyond this, much effort is spent into support of Vitis AI for space applications,
which allows the tool applications for NewSpace missions (Vidmar, 2021). However,
as currently only Petalinux is supported, integration into certain systems is not
possible, constraining usage scenarios. Lastly, one is of course vendor dependent
with Vitis AI. However, vendor independent tools are evolving as well as other
vendors released their own tools for their devices. The later of course would mean
further vendor dependence, but at least one has more device options available.

5.2 Opportunities and Limitations of XLA HLS

The proposed XLA HLS tool will allow in the future a very simple creation of
a TF model in form of an FPGA module without required FPGA knowledge or
similar. Only for final integration FPGA expertise is required. This however is
not seen as an issue, because the XLA HLS generated module is supposed to be
integrated side by side with other modules on an FPGA. Additionally, due to its
open-source availability, it will be possible to add individual optimisations for the
required application scenario. The open-source approach and the independence of
additional software, which needs to be run onboard the spacecraft, would ease a
potential qualification of this tool. Conveniently, this approach, due to its pure
implementation on FPGA without requiring any additional processing systems, can
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achieve very high speeds with minimal power consumption. Additionally, with the
ability to reprogram FPGAs in space it becomes feasible to switch between different
neural networks or update models if the link budget allows. A limitation of the
current XLA HLS is the use of Vitis HLS. This means that only Xilinx FPGAs are
supported and this part of the tool is not entirely open-source. However, this was
also not of concern, as it is possible to utilise other HLS tools within this workflow.
Another limiting factor is that the FPGA resource utilisation can become very high
as every layer is implemented individually in logic. Thus, a big network will require
a large amount of logic resources. As already done for other algorithms such as
in Fiethe et al. (2021), it would be feasible to reprogram the FPGA for different
sections of an ANN. This of course is challenging, but it would be possible and
enable the flexibility and utilisation of different networks for different situations
during the mission. Lastly, it is uncertain in this state of development how difficult
it will be to ensure the compatibility of all kinds of TF 2 functions, as they need
to be supported by XLA and need to be implemented in FPGA logic. As already
indicated, the lack of some functions in the LLVM IR of XLA can lead to major
issues when a layer is not supported.
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6 Conclusion

In this thesis two different approaches were studied and also evaluated regarding
their performance, adaptability and workflow complexity.

Generally, one can say that Vitis AI has a good maturity level. It provides a
complete and powerful tool to get a DL model to the edge. The support for com-
mon network kinds exist and allows the deployment of the most used networks.
Nevertheless, the amount of different hardware supported layer types still needs to
be extended to allow more kinds of applications especially in the area of LSTMs.
Also, one is quite constrained by the methods supported. A fair amount of layers is
supported, but only from certain libraries which can constrain the developer signifi-
cantly. Thus, further optimisations and additional support of layers are still needed.
However, it can be seen that this is slowly solved by active development and every
additional release provides more hardware supported layers, additional supported
libraries and the hardware design efficiency also increases steadily. A great benefit
of Vitis AI is that it is possible to vastly improve the efficiency of the network on
a high level by means of pruning and quantisation. This outperforms any possible
low level performance improve as it just reduces the basic model footprint and opti-
mises it exactly towards the DPU architecture. Thus, the performance and resource
efficiency are high, especially for deep networks where all layers are supported. Due
to the support of all major ML development frameworks and its runtime flexibility
it simplifies the development of ML inference on FPGAs significantly. Also, a lot
of effort is spent to make Vitis AI applicable for space missions with high qualifi-
cation standards (Vidmar, 2021). However, major hurdles need to be overcome as
the access to some parts of Vitis AI is difficult or not possible. Thus, a qualifica-
tion without more insight into key parts of the system such as petalinux is very
challenging.

XLA HLS, on the other hand, can compete in many factors according to the
proof of concept in this thesis. Its potential minimal resource requirements and
maximum performance, combined with new embedded systems concepts, enable
new concepts for space systems. Its open-source availability eases qualification of
the tool and ensures the continuation of the tool’s development into the future. This
provides opportunities for high in-space application flexibility and room for massive
resource profile optimisations compared to the current state. However, XLA HLS is
in a very early development stage and still has to overcome many challenges. The
issues outlined in this thesis will eventually be resolved, but the automatisation of
this tool is another big challenge. Additionally, as no optimisations besides the XLA
optimisations are implemented, it will be necessary to go beyond the automatisation
of the current workflow toward automatised optimisations of the design for FPGA.
Also, the final performance of the tool is yet to be determined. Furthermore, full
vendor independence and the possibility of runtime flexibility is yet to be achieved.
However, the proof of concept shows the feasibility and the potential of this tool.
In combination with the results of previous studies, it promises high potential for
various kinds of mission while allowing full accessibility and independence of certain
FPGA suppliers.

Both tools will continue to evolve and ultimately will reach technology readiness
as well as potential qualification for any kind of mission, concurrently, other tools
are being developed which utilises different concepts with other advantages and
disadvantages. This will enable ultimately ML in space for all kinds of missions.
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Additionally, many new devices and chip technologies are being developed and
qualified. Already now these devices enable the start executions of ML tasks in space.
Further development of these technologies will allow to deploy even more complex
ML algorithms as well as other AI technologies. As presented in the introduction
and the background sections of this thesis it will be possible to increase autonomy
of systems gradually. Furthermore, missions will be able to become more complex
and operation of more complex sensor systems is enabled by selective downlink and
other ML enabled technologies.

ML for embedded systems in space provides the basis for the feasibility of new
kinds of missions, more reliable missions, and an increase in the scientific outcome
of research missions.
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