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There’s no predicting the future.
Ironically though, I earn my living by making predictions. There’s no predicting the

future that my thesis would be what it is and I would be where I am today.
I dedicate this work to the All in all!
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Abstract

This thesis presents resources capable of enhancing solutions of some Natural Lan-
guage Processing (NLP) tasks, demonstrates the learning of abstractions by deep models
through cross-lingual transferability, and shows how deep learning models trained on id-
ioms can enhance open-domain conversational systems. The challenges of open-domain
conversational systems are many and include bland repetitive utterances, lack of utter-
ance diversity, lack of training data for low-resource languages, shallow world-knowledge
and non-empathetic responses, among others. These challenges contribute to the non-
human-like utterances that open-domain conversational systems suffer from. They, hence,
have motivated the active research in Natural Language Understanding (NLU) and Nat-
ural Language Generation (NLG), considering the very important role conversations (or
dialogues) play in human lives.

The methodology employed in this thesis involves an iterative set of scientific meth-
ods. First, it conducts a systematic literature review to identify the state-of-the-art
(SoTA) and gaps, such as the challenges mentioned earlier, in current research. Subse-
quently, it follows the seven stages of the Machine Learning (ML) life-cycle, which are
data gathering (or acquisition), data preparation, model selection, training, evaluation
with hyperparameter tuning, prediction and model deployment.

For data acquisition, relevant datasets are acquired or created, using benchmark
datasets as references, and their data statements are included. Specific contributions
of this thesis are the creation of the Swedish analogy test set for evaluating word embed-
dings and the Potential Idiomatic Expression (PIE)-English idioms corpus for training
models in idiom identification and classification. In order to create a benchmark, this
thesis performs human evaluation on the generated predictions of some SoTA ML models,
including DialoGPT. As different individuals may not agree on all the predictions, the
Inter-Annotator Agreement (IAA) is measured. A typical method for measuring IAA is
Fleiss Kappa, however, it has a number of shortcomings, including high sensitivity to the
number of categories being evaluated. Therefore, this thesis introduces the Credibility
unanimous score (CUS), which is more intuitive, easier to calculate and seemingly less
sensitive to changes in the number of categories being evaluated. The results of human
evaluation and comments from evaluators provide valuable feedback on the existing chal-
lenges within the models. These create the opportunity for addressing such challenges in
future work.

The experiments in this thesis test two hypotheses; 1) an open-domain conversational
system that is idiom-aware generates more fitting responses to prompts containing id-
ioms, and 2) deep monolingual models learn some abstractions that generalise across
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languages. To investigate the first hypothesis, this thesis trains English models on the
PIE-English idioms corpus for classification and generation. For the second hypoth-
esis, it explores cross-lingual transferability from English models to Swedish, Yorùbá,
Swahili, Wolof, Hausa, Nigerian Pidgin English and Kinyarwanda. From the results, the
thesis’ additional contributions mainly lie in 1) confirmation of the hypothesis that an
open-domain conversational system that is idiom-aware generates more fitting responses
to prompts containing idioms, 2) confirmation of the hypothesis that deep monolingual
models learn some abstractions that generalise across languages, 3) introduction of CUS
and its benefits, 4) insight into the energy-saving and time-saving benefits of more opti-
mal embeddings from relatively smaller corpora, and 5) provision of public access to the
model checkpoints that were developed from this work. We further discuss the ethical
issues involved in developing robust, open-domain conversational systems. Parts of this
thesis are already published in the form of peer-reviewed journal and conference articles.
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Chapter 1

Introduction

“It is the beginning of the end of the bland
chatterbox."

(Paradox)

A major measure of human intelligence is the ability to communicate in natural language
(Adiwardana et al., 2020). The more colourful1 the language of expression, the more
culturally rich a society may be counted to be. NLP is the study of the modes of human
language for scientific purposes. It is an intersection of the fields of linguistics and
computer science (Jurafsky and Martin, 2020). Some of the main goals of NLP are to
understand and generate natural language from data (Jurafsky and Martin, 2020). The
increasingly dominant approach to achieve these goals is to use neural NLP, which has
succeeded statistical NLP (Zhou et al., 2020b). Statistical NLP purely uses information
from a training dataset to establish possible events, such as which characters are most
likely to form words (Indurkhya and Damerau, 2010) while neural NLP is centred on
using artificial neural network (ANN), in addition to data, for the goals and tasks of
NLP. NLP itself is a part of Machine Learning (ML), which, according to Mitchell et al.
(1997), is the use of a program, say M, to possibly learn from experience E with regards
to a task or class of tasks T and performance metric P, so that the performance at tasks
in T, as measured by P, improves with experience E (Hackeling, 2017).

This chapter gives a gentle introduction to some of the concepts, philosophy, and the
scientific method this work uses. The chapter introduces conversational systems and the
ways of evaluating them, especially using some version of the Turing test. In addition, it
discusses the benefits and challenges of conversational systems and the contributions of
this work. The chapter concludes with ethical considerations when conducting research
generally, but specifically for conversational systems, and highlights some related work
in the field.

1colourful here means "rich" - dictionary.com
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2 Introduction

1.1 Background
Historically, work in NLP began as soon as the early days of the computer (Jurafsky and
Martin, 2020). Some notable contributions came from the work of Turing et al. (1936),
the work of McCulloch and Pitts (1943) on the neuron, Kleene et al. (1956), and Chomsky
(1956). Their early work birthed the field of formal language theory. A formal language
consists of sequences of symbols or words that are well-formed according to a specific set
of rules (Jurafsky and Martin, 2020). They can be defined using set theory or algebra
(Chomsky, 1956). Shannon’s contribution gave rise to the development of probabilistic
models to automata for language (Shannon, 1948). The development witnessed in speech
recognition in those early periods came about through the stochastic approach (Jurafsky
and Martin, 2020). The return of empiricism around the 1980s and early 1990s witnessed
the rise of probabilistic methods, increasing use of data-driven techniques for various NLP
tasks, new direction on model evaluation by using held-out data, emphasis on comparison
of performance with previously published work, and increased volume of work on NLG.

Chatbots are systems with the ability to mimick the unstructured conversations that
are typical of human-human chats by communicating in natural language with users (Ju-
rafsky and Martin, 2020). They can be designed for different purposes, such as making
task-oriented agents more natural or for entertainment. Chatbots, conversational sys-
tems and dialogue systems are used interchangeably in this work. A chatbot may be
designed as a simple rule-based template system or may involve more complex ANN ar-
chitectures that are trained on large datasets to generate responses. The first acclaimed
conversational system was ELIZA (Weizenbaum, 1969). The example conversations of
the system, as demonstrated by Weizenbaum (1969), show how therapeutic the responses
can be. People reportedly became so engrossed with the program and were possibly hav-
ing private conversations with it (Jurafsky and Martin, 2020). Some modern systems are
still architectured in the rule-based fashion of ELIZA (Jurafsky and Martin, 2020). An
example is PARRY (Colby et al., 1971). Besides having a regular chat, conversational
systems can be designed to express emotions. PARRY, for example, was designed to
express fear and anger, depending on the topic of conversation (Colby et al., 1971). The
method of evaluating conversational systems varies, depending on the type of system at
hand. For open-domain conversational systems, human evaluation of how human-like
the responses or conversations are is usually common (Zhang et al., 2020). This type of
evaluation usually resembles the Turing test format.

1.1.1 The Turing test

The Turing test (or indistinguishability test) is possibly the ultimate test of human-like
conversation such that a human is not able to distinguish if the responses or conversa-
tions are from another human or a machine. Two systems, Sa and Sb, are input-output
equivalent in a particular scenario, when their input-output pairs are not distinguishable
in respect to specified dimensions (Colby et al., 1971). It is important to note that the
output for our reference system for a given input, in many cases, is actually a set of
possible candidate outputs. These candidate outputs are referred to as the reference for
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evaluating the performance of NLG systems (the imitation) for some metrics, such as
the BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) score. More is discussed about
such metrics in Section 4.4.

Turing (1950) proposed, originally, to consider the question “Can machines think?",
which some considered baseless. He replaced such a formulation with a relatively un-
ambiguous one, which is designed as the ‘imitation game’. The reformulated question
is “Are there imaginable digital computers which would do well in the imitation game?"
(Turing, 1950). A man, a woman, and an interrogator of either sex, who is in a separate
room from the man and the woman, are players of the game. The objective for the in-
terrogator is to determine who is the man and who is the woman. The interrogator does
this by posing questions to the man and woman, which are answered in some written
format. The objective of the man is to trick the interrogator into believing he’s a woman
while the objective of the woman is to convince the interrogator she’s a woman. When a
machine (or digital computer) replaces the man, the test seeks to know if the interrogator
will decide wrongly as often as when it was played with a man (Turing, 1950). Figure 1.1
depicts the ‘imitation game’ for Man/Woman (top) and Machine/Woman (bottom).

Figure 1.1: Depiction of the Turing test (The ‘imitation game’)



4 Introduction

One should note that there are objections to the concept of a machine thinking (Colby
et al., 1972; Shieber, 1994; Turing, 1950). They include the incompleteness theorem,
which argues that there are limits to questions that a machine based on logic can answer
(Gödel, 1931; Turing, 1950). Also, the assertion that the analytical engine does not
presume to originate anything by Ada Lovelace2 (Fuegi and Francis, 2003) is viewed as a
strong objection (Turing, 1950). Other objections include the theological objection, which
he found fault with; the ‘heads in the sand’ objection, which dreads the consequences of
machines being able to think but for which Turing offers consolation; the argument from
consciousness, which emphasises thoughts and emotions as what should be the source
of the machines ability (Turing, 1950). The Turing test has different versions (Traiger,
2003). Indeed, at some point in the same paper by Turing (1950), after replacing the
man with a machine, the woman is also replaced by a man. Turing’s formulation of the
imitation game does not precisely match modern versions of the test (Saygin and Cicekli,
2002). Despite the objections to the main question of machines thinking, the fact that
the Turing test provides a means to measure performance is a good thing.

This test was applied to PARRY, a chatbot designed to imitate aggressive emotions,
like a paranoid person (Colby et al., 1972). Most psychiatrists (23 out of 25) couldn’t
distinguish between text transcripts of PARRY and real paranoids, so it is the first system
to pass this test, at least, the early version of the test (Colby et al., 1971; Jurafsky and
Martin, 2020). However, this is disputed by some, since ELIZA was able to fool many
of its users as well (Mauldin, 1994; Jurafsky and Martin, 2020). Also, the example of
PARRY can be argued to be an edge case since the comparison was made with paranoids
instead of rational human beings (Mauldin, 1994). A restricted version of the Turing
test was introduced in 1991, alongside the unrestricted version, in what is called the
Loebner Prize competition (Mauldin, 1994). Prizes have been awarded every year to
conversational systems that pass the restricted version of the competition (Bradeško and
Mladenić, 2012). The Loebner Prize competition has its share of criticisms. It is viewed
as rewarding tricks instead of furthering the course of AI (Shieber, 1994; Mauldin, 1994).
Shieber (1994) recommended an alternative approach that would involve a different award
methodology, which is based on a different set of assessment, that is done on an occasional
basis.

1.1.2 Assumptions

Certain assumptions are essential when solving certain tasks (Elkner et al., 2010). Adewumi
et al. (2019) argue that, in line with the assumptions alluded to by Kuhn (1970), the sci-
entific community holds on to some assumptions about our world. These assumptions are
essential for us to understand the way the world works and how we perceive things. We
approach this work from a Naturalist philosophical point of view (Creath, 2011; Javed
et al., 2021). Central to the Naturalist philosophical point of view are a collection of
beliefs and values, which are untested by the scientific processes but give legitimacy to
the scientific systems. They also set the boundaries of investigations. The type of as-

2fourmilab.ch/babbage/sketch.html
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sumptions we refer to are stable and not the quickly-evolving postulations that Longino
(2020) describe as lacking in objectivity. In the field of NLP some of the assumptions we
make are identified below:

• Random sampling is representative for an entire population (Kazmier, 2004).

• The probability distribution of samples from a population follow the normal distri-
bution, for a minimum sample size of 30. This is based on the central limit theorem
(Kwak and Kim, 2017)

• Idioms are often language specific (Alm-Arvius, 2003). This implies many idioms
have unique meanings within the cultural language they evolve in.

• Language processing is incremental. (Clark et al., 2012). This implies each newly
encountered word is integrated immediately into the interpretation of what has
been read.

• Models use left to right decomposition of the text probability to compute the prob-
ability of generating a complete sequence (Holtzman et al., 2020). It should be
noted that there are languages that function from right to left. Examples include
Hebrew and Arabic.

1.1.3 Natural Language Processing (NLP) Tasks

There are many tasks within NLP, including downstream tasks (Gatt and Krahmer, 2018;
Gehrmann et al., 2021). Downstream tasks are the end-tasks of importance to users of
NLP systems (Gatt and Krahmer, 2018). NLP tasks are focused around NLU, NLG,
and other auxiliary tasks that support the former two areas. Some NLP tasks are briefly
discussed below.

• Text Classification (TC) is a general term for the many types of classification tasks
that exist in NLP. It mainly involves categorising tokens of sequences or blocks of
text, in what may also be document categorisation (Kowsari et al., 2019), into the
different categories that may be defined (Aggarwal and Zhai, 2012). Classification
variants that exist include: binary, multiclass, multilabel, open-class (where the
labels are not defined in advance), and sequence classification (where a set of inputs
are jointly classified) (Bird et al., 2009). Examples of specific TC include Sentiment
Analysis (SA), hate speech (Sabry et al., 2022), and Patronising and Condescending
Language (PCL) (Pérez-Almendros et al., 2022; Adewumi et al., 2022b).

• Named Entity Recognition (NER) involves the classification of specific entities.
It’s a task of sequence tagging that is useful in Information Retrieval (IR), con-
versational systems, and other applications (Adewumi et al., 2022d; Adelani et al.,
2021).
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• Sentiment Analysis (SA) is a type of TC that involves classification of sentences/text
according to sentiments or opinion (Aggarwal and Zhai, 2012; Medhat et al., 2014;
Zhang et al., 2018a).

• Text Summarisation involves summarising relevant points within a large text. Sum-
marisation requires NLP systems to generate human-readable summaries of long
sequences of text (Aggarwal and Zhai, 2012; Gatt and Krahmer, 2018).

• Machine Translation (MT) involves translating text from one language to a second,
target language (Vaswani et al., 2017). The use of parallel corpora is common for
this task. Large quantities of parallel texts (or corpora) from news and government
website that publish in multiple languages are often used. Before feeding a model,
text alignment may be carried out to pair up sentences, given a pair of documents
in two languages (Bird et al., 2009). N-gram-based automatic metrics are the
dominant metrics for evaluating MT systems (Sammons et al., 2012).

• Recognizing Textual Entailment (RTE) focuses on general text inference capabil-
ities (Sammons et al., 2012). It is an NLU task where systems are required to
find evidence to support a hypothesis (Bird et al., 2009). It has the potential to
benefit other NLP tasks. A sequence of text entails a hypothesis if the meaning of
the hypothesis can be deduced from the meaning of the text sequence (Sammons
et al., 2012). It is a directional relationship between the pair of texts. The point
is whether conclusion can be drawn that a piece of text contains reasonable evi-
dence for describing a hypothesis to be true, as a human would, rather than based
on logical entailment (Bird et al., 2009). Since there’s the existing challenge with
systems not being able to reason, a key objective in NLP research is to understand
language by using strong techniques instead of unrestricted knowledge or reasoning
capabilities (Bird et al., 2009). Lexical matching is probably the simplest way of
solving the task of RTE but this approach is too simplistic for more challenging
situations.

• Word Sense Disambiguation (WSD) finds the intended sense of a word within a
context. One way of identifying what a pronoun or noun refers to in a sentence
is through anaphora (pronoun) resolution. Semantic role labeling is another tech-
nique, which identifies how a noun phrase relates to the verb (as agent, patient,
etc) (Bird et al., 2009).

• Information Retrieval (IR), which is a more general case of information extraction,
recognises instances of a fixed set of relations in a set of documents (Sammons
et al., 2012).

• Question Answering (QA) requires NLP systems to deduce candidate answers to a
question from areas of a fixed document (Sammons et al., 2012).

• Question Generation (QG) involves a system generating a relevant question from
a block of text, such as sentences or paragraphs (Rus et al., 2011).
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• Co-reference resolution involves settling if an entity mentioned in one place refers to
another entity mentioned in another place within a given sequence of text (Sammons
et al., 2012).

• Natural Language Generation (NLG), which is the main focus of this thesis, com-
prises some of the above-mentioned tasks (QA, QG) and some additional tasks
focusing on generating text from text or other kinds of data (Gatt and Krahmer,
2018; Gehrmann et al., 2021; Reiter and Dale, 1997, 2000). These tasks are usually
base on three stages, as shown in Figure 1.2: document planning, microplanning,
and realisation. Those stages are further divided into the following sub-stages (Re-
iter and Dale, 2000; Reiter, 2010)

– Content Determination - this involves determining the information to be com-
municated.

– Text Structuring - this involves determining the order of presentation of texts.

– Lexical choice - this involves determining words or phrases for expression.

– Referring Expression - this involves selecting words to identify entities within
a domain.

– Syntactic choice - this determines the syntax construction

– Aggregation - this involves grouping of related messages.

– Overgeneration - this involves generating the right morphological forms.

– Selection - selecting the most probable text from the generated set.

1.1.4 Natural Language Generation (NLG) and conversational
systems

Human conversation can be complicated, though we may take them for granted because
we are accustomed to them. Section 4.1 describes some of the characteristics of human
conversation. Making conversational systems learn the intricacies of side sequence (or
sub-dialogue) within a main dialogue (Jefferson, 1972), clarification question or prese-
quences (before a main request) can be a challenging effort. Furthermore, in natural
conversations, initiative can shift between two speakers and this is a challenge in con-
versational systems, as they are usually designed to be passive responders (Jurafsky and
Martin, 2020).

Of the various architectures for conversational systems, frame-based architecture (or
Genial Understander System (GUS)) is common with task-oriented systems (Bobrow
et al., 1977) while rule-based and data-driven architectures are the common architectures
with open-domain systems. Section 4.2 discusses more about this. A modern, sophis-
ticated frame-based architecture is called a dialogue-state (Jurafsky and Martin, 2020).
The GUS architecture for frame-based dialog system is used in Siri, Alexa, and Google
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Figure 1.2: Depiction of the NLG pipeline, based on Reiter (2010)

Assistant. It is a production rule system because different types of inputs cause differ-
ent productions to fire. It also has condition-action rules attached to slots (Chowdhary,
2020). Frame-based system’s language generation module uses template-based genera-
tion, where all or most of the utterances to the user are hand-crafted by the dialogue
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designer (Chowdhary, 2020).
Examples of data-driven architectures include Information Retrieval and encoder-

decoder architectures. Data-driven conversational systems are data-intensive, as they
require a lot of data for training the system (Jurafsky and Martin, 2020). One approach
that has gained popularity in usage is to pretrain on large datasets of text or conversations
from Reddit, Twitter or other social media data before finetuning on a specific dataset
(Jurafsky and Martin, 2020; Zhang et al., 2020). Examples of NLG systems include
SumTime, which involves weather forecast, and SkillSum, which involves educational
assessment (Reiter, 2010). Such can be extended to have continual output based on user
input in order to have a conversation with the user. In Figure 1.2, the final realisation
stage seems to be the most understood part of the pipeline and probably receives the
most attention in terms of implementation (Reiter, 2010). It is noteworthy that not all
the stages of the pipeline are used in all NLG systems.

1.2 Benefits of conversational systems

The marginal benefit or value a thing holds over the possible risks usually determines
whether it is worthwhile to pursue investments in such a thing. Research in conversa-
tional systems have been growing since the early days of ELIZA because of the apparent
benefits (Jurafsky and Martin, 2020). These benefits have led to huge investments in
conversational systems technology by many organisations. Some of those benefits are
highlighted below.

• The provision of psychological or psychiatric treatment for humans based on favourable
behaviour determined from experiments designed to modify input-output behaviour
in models (Colby et al., 1971).

• The support of users that have disabilities, such as blindness (Reiter, 2010).

• The seamless accomplishment of specific tasks, such as airline bookings and hotel
reservations (Jurafsky and Martin, 2020).

• Provision of therapeutic company.

• Conduit of world/domain knowledge (Reiter, 2010).

• Provision of educational content in a concise mode (Kerry et al., 2008).

• Automated generation of quality data for low-resource languages (Adewumi et al.,
2022a).
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1.3 The challenges of open-domain conversational sys-
tems

The road to a human-like conversational AI system is fraught with challenges. These
challenges contribute to the non-human-like utterances which open-domain conversa-
tional systems tend to have but they also motivate active research in NLP, considering
the very important role conversations play in our lives. Progress has been noticeable in
some areas, however, other areas have witnessed little advancement. Some of the chal-
lenges are highlighted below. The last three items in the list form part of the important
research questions in this work and are discussed a little more in the next section.

• Lack of coherence in sequence of text or across multiple turns of generated turns
of conversation (Jurafsky and Martin, 2020; Welleck et al., 2019).

• Non-empathetic responses from conversational systems (Rashkin et al., 2019).

• Lack of utterance diversity (Holtzman et al., 2020).

• Lack of memory to personalise user experiences.

• Bland repetitive utterances (Holtzman et al., 2020)

• Initiative coordination (Jurafsky and Martin, 2020)

• Poor inference and implicature during conversation.

• Lack of training data for low-resource languages (Adewumi et al., 2020a).

• Shallow world-knowledge in conversational systems.

• Developing ethical and robust conversational systems.

• Utilising figures of speech (idioms) in models to enhance NLP.

• Gaining robust assistance or performance from models trained on figures of speech
(idioms) to enhance open-domain conversational systems.

1.4 Research questions
The main goal of this thesis is to generate conversations that are more fitting for contexts
where idioms are present. After conducting a systematic literature review and identifying
gaps, the following four research questions (RQ) arose. Addressing these questions to
some meaningful point will contribute to the furtherance of open-domain conversational
systems, some of which are mentioned in Section 1.5. The general approach that is used
to address these questions is described in Section 1.8.

RQ1 How importantly do hyper-parameters influence word embeddings’ performance?



1.5. Hypotheses and contributions 11

RQ2 What factors are important for developing ethical and robust conversational sys-
tems?

RQ3 To what extent can models trained on figures of speech (idioms) enhance NLP?

RQ4 How can models trained on figures of speech (idioms) enhance open-domain, data-
driven chatbots for robust assistance?

1.5 Hypotheses and contributions
This work investigates the four RQs mentioned earlier. It tests the following two hy-
potheses (H):

H1 An open-domain conversational system that is idiom-aware generates more fitting
responses to prompts containing idioms. This is investigated in controlled ex-
periments by comparing similar models whereby one is exposed by training to a
dedicated idioms data (in this case, the PIE-English corpus) and the other is not.

H2 Deep monolingual models learn some abstractions that generalise across languages
(Artetxe et al., 2020). This is investigated by exploring cross-lingual transferabil-
ity for seven languages from English models to Swedish, Yorùbá, Swahili, Wolof,
Hausa, Nigerian Pidgin English, and Kinyarwanda, most of which are low-resource
languages.

As a result of the conclusions from various empirical studies carried out, the following
are the contributions of this thesis.

1. We created and publicly provide, under the Creative Commons Attribution 4.0
(CC-BY4) licence, the Swedish analogy test set for evaluating Swedish word em-
beddings (Adewumi et al., 2020b). This addresses RQ1. The resource was verified
by Språkbanken and is hosted on the Swedish Språkbanken website3.

2. We created and publicly provide the Potential Idiomatic Expression (PIE)-English
idioms corpus, under the CC-BY4 licence, for training models in idiom identification
and classification (Adewumi et al., 2021). This addresses RQ3 and RQ4. The
resource is hosted on the International Conference on Language Resources and
Evaluation (LREC) platform4.

3. We created and publicly provide the AfriWOZ dialogue dataset of parallel corpora of
6 African languages under the CC-BY4 licence, primarily for training open-domain
conversational systems (Adewumi et al., 2022a). The dataset may be adapted for
other relevant NLP tasks, like MT. This addresses RQ2. The resource is hosted
online5.

3spraakbanken.gu.se/en/resources/analogy
4lrec2022.lrec-conf.org/en/
5github.com/masakhane-io/chatbots-african-languages
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4. We confirm the hypothesis that an open-domain conversational system that is
idiom-aware generates more fitting responses to prompts containing idioms. We
make the conversational models idiom-aware by training on the PIE-English id-
ioms corpus. This, therefore, enhances open-domain conversational systems and
addresses RQ3 and RQ4.

5. We confirm the hypothesis that deep monolingual models (in this case, English)
learn some abstractions that generalise across languages (Adewumi et al., 2022c,a).
This contributes to addressing RQ2. We show from human evaluations of the tran-
scripts of the conversational models that six out of the seven target languages are
transferable to. The only language that seems not transferable to, in a conver-
sational setup, is the Yorùbá language. To the best of our knowledge, this work
may be the first work exploring crosslingual transferability from deep monolingual
English models to low-resource languages for open-domain conversational systems.

6. We introduce the Credibility unanimous score (CUS). This is an Inter-Annotator
Agreement (IAA) metric that is based on homogeneous samples in the transcript
or data for which IAA is to be determined. It contributes to addressing RQ2. The
score is based on the simple percentage of the unanimous votes of the annotators
over the homogeneous samples. The homogeneous samples serve two additional
purposes, besides providing a basis for IAA. These are 1) to test the credibility of
the annotators, and 2) to determine majority agreement on the transcript; in this
case, agreement on human-human conversations.

7. We provide insight into the energy-saving and time-saving benefits of more opti-
mal embeddings from better hyperparameter combinations and relatively smaller
corpora (Adewumi et al., 2022d). This addresses RQ1 and also contributes to RQ2.

8. We created and publicly provide access to a selected set of word embeddings in
English, Swedish and Yorùbá (Adewumi et al., 2022d, 2020a,b).

9. We open-source all the codes used in this work and host them on Github6, under
the CC-BY4 licence. It also contributes to addressing RQ2.

10. We provide public, free access to all the model checkpoints that were developed in
the course of this work on the HuggingFace hub7 (Adewumi et al., 2022c; Adelani
et al., 2021; Adewumi et al., 2022a). This also contributes to addressing RQ2.

11. We develop the philosophical argument for developing robust and ethical conversa-
tional systems (Adewumi et al., 2019; Javed et al., 2021). It addresses RQ2. This
may serve as a springboard for further helpful discussions around the subject.

6github.com/tosingithub
7huggingface.co/tosin
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1.6 Basics of artificial neural network (ANN)

There are three components that describe an artificial neural network or model, according
to Bird et al. (2009). These are the model’s architecture or topology, the activation
function, and the weights’ learning algorithm. While this work does not focus on the
mathematical exposition of ANN and other concepts, we provide brief plain descriptions.
The number of neurons determine the number of parameters in an ANN, which determine
the complexity of the network. An ANN may contain connected neurons at different
depths. The NN is termed shallow when the depth is only a few layers (say, two or
three). The objective with ANN is to find the weights which minimise the value of a
cost function while approximating or solving a particular function (Hackeling, 2017).
Information in the NN is processed collectively in parallel throughout a network of nodes
(or neurons) and the output of the neuron is generated by passing its processed (or
summed) inputs through an activation function (Shiffman et al., 2012).

Parameters refer to weights, bias, and other properties of an NN, which are trained
by some optimisation method. A neuron requires the additional input, called bias, which
has a constant value of 1 or some other constant. This helps to avoid null processed
input from the original inputs (Shiffman et al., 2012). The cost function is also called
the loss function and it is used to define and measure the error of a model. Training
or test errors are differences between the prediction and observed values of the training
data or test data, respectively (Hackeling, 2017). If the number of neurons in a neural
net is too large, it will likely overfit the training data. Unlimited data makes overfitting
unlikely. The problem of overfitting implies the network is not able to know the true
function in the regions where there is no data, making it an error of interpolation (Bird
et al., 2009). A model that memorises (by overfitting) the dataset may not perform well
generally when tested. It is very likely to memorise structures that are noise within the
data (Hackeling, 2017). The dev (or validation) set is used to tune hyperparameters,
which control how models learn.

Prediction error may arise because of two main reasons: the bias of a model or its
variance (Hackeling, 2017). Overfitting and underfitting occur in models with high vari-
ance and high bias, respectively. It is usually preferred to have bias-variance trade-off so
that we have low bias and low variance. Unfortunately, efforts to keep one low increases
the other (Hackeling, 2017). To reduce overfitting, some of the methods available are the
following: early stopping, drop out, and regularisation. Early stopping is when we stop
the training as soon as performance on the validation set starts to deteriorate, which
will be apparent from a rising validation loss. Drop out implies a certain percentage of
the neurons are dropped in the network; dropping out 20% of the input and 50% of the
hidden units is usually found to be optimal, however, a disadvantage of dropout is that
it may take two or three times longer to train (Srivastava et al., 2014). Regularisation,
which is applied to reduce overfitting, is a collection of techniques for preventing overfit-
ting (Hackeling, 2017). It penalises complexity, in line with the principle of parsimony
(or Ockham’s razo). The penalty could be L1 or L2 regularisation. The principle of
parsimony suggests that entities need not be multiplied unnecessarily or a simpler model
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(with fewer parameters) should be preferred over a complex one for explaining obser-
vations. The use of the principle reduces the possibility of errors (Hagan et al., 1997).
It, therefore, finds the simplest model that explains the data. Least absolute shrinkage
and selection operator (LASSO) and ridge regression are special cases of regularisation
techniques. In these, the hyperparameters for L1 or L2 penalty are set equal to zero.
Hyperparameters, unlike model weights, are parameters that are not learned automat-
ically during training but set manually, usually before training. They are user-tuned
and examples are the number of neurons, layers, learning rate, regularisation penalty,
momentum, number of epochs, batch size, dropout rate, etc (Hackeling, 2017).

Backpropagation is used to update model weights so that the model can learn how
to map arbitrary inputs to outputs (Rumelhart et al., 1985; Clark et al., 2012). It is
a gradient descent method for obtaining the weights that minimise the system’s perfor-
mance error (Rumelhart et al., 1985). It solves the problem of the analytical approach by
estimating the optimal parameters. The analytical approach is undesireable, especially
when there are hundreds of thousands of inputs, which create a computational menace of
inverting the derived square matrix while trying to obtain the weights (Hackeling, 2017).
Gradient descent is slow in practice and two main approaches to its implementation are
heuristic techniques (such as learning rate variation) and standard numerical optimisa-
tion techniques (Hackeling, 2017). Their derivatives are used to update the weights of
the model differently. The use of momentum implies application of a momentum filter
to backpropagation by using a coefficient between 0 and 1. This helps to accelerate
convergence of the algorithm as the trajectory moves in a consistent direction. There is
more momentum in the trajectory when there is a larger momentum assigned (Hagan
et al., 1997). It is important to point out that we may not be sure that the algorithm
converges at an optimum solution, hence, it is best to try a number of different initial
conditions in order to ensure that an optimum solution is obtained. The learning rate is
a crucial hyperparameter of gradient descent. In addition, increasing the learning rate
when the surfaces are flat but decreasing the rate when the slope increases will speed up
convergence (Hagan et al., 1997).

ANN models may be trained as classifiers through supervised learning with annotated
data. These may then be used to make predictions on unseen data (or test set). Typically,
there are two types of model classifiers: generative model classifiers, which predict based
on the joint probability of input-label pair, and conditional (discriminative) classifiers,
which perform better by predicting based on the conditional probability of a label, given
an input (Bird et al., 2009). The conditional probability is also calculated from the joint
probability for the generative models. Error analysis is useful in refining the featureset
(model inputs) as it provides the opportunity to know where the classifier excels and
where it struggles.

1.7 Idioms

An idiom is a Multi-Word Expression (MWE) that has a different meaning from the
constituent words that make it up (Quinn and Quinn, 1993; Drew and Holt, 1998). It
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may also be a word used in an abstract form instead of the literal sense. Not every
MWE is an idiom, however. A compositional MWE gives away its meaning through the
meaning of its composite words (Diab and Bhutada, 2009). Idioms are part of figures
of speech, though some hold a different view, preferring to distinguish between the two
(Grant and Bauer, 2004). Their usage is quite common in speech and written text (Lakoff
and Johnson, 2008; Diab and Bhutada, 2009). They are culture-centric and may not
always be universal. This can make it challenging for people from a different background
to understand some idioms from other cultures. Idioms, sometimes, may not be well-
defined, leading to difficulty in classification (Grant and Bauer, 2004; Alm-Arvius, 2003).
A single word, at times, may be expressed as a metaphor (Lakoff and Johnson, 2008; Birke
and Sarkar, 2006). This further complicates figure of speech (or idiom) identification
(Quinn and Quinn, 1993). Since we recognise that idioms are a subset of figures of
speech, we use figures of speech and idioms interchangeably, in this work. Examples of
idioms are “the nick of time", “a laugh a minute",“out of the blue", and “dyed-in-the-
wood", which are all metaphors. The examples mean “just before the last moment", “very
funny", “unexpectedly", and “unchanging in a particular belief", respectively. Idioms pose
challenges in various NLP tasks, including NLU, WSD, IR, conversational systems, and
MT (Korkontzelos et al., 2013; Mao et al., 2018). Below are six examples of the difficulty
the Google MT system experienced while translating sentences that have idioms from
English to Swedish and then back again to English.

1. "but when we get to the end of the month, it’s crunch time, " she says
Translation ->
"men när vi kommer till slutet av månaden är det dags för kris", säger hon
Back-Translation->
"but when we get to the end of the month, it’s time for crisis," she says

2. ’You have come in the nick of time,’ Alexandra told him
Translation ->
"Du har kommit i snäppet", sa Alexandra till honom
Back-Translation->
"You’ve been caught," Alexandra told him

3. I’m just a laugh a minute, Moses. You should keep me around and find out.
Translation ->
Jag är bara ett litet skratt, Moses. Du borde hålla mig runt och ta reda på det
Back-Translation->
I’m just a little laugh, Moses. You should keep me around and find out.

4. she arrived at lunch time, out of the blue to us
Translation ->
hon anlände vid lunchtid, direkt till oss
Back-Translation->
she arrived at lunchtime, directly to us
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5. Stahl belongs to that dyed-in-the-wool amateur breed
Translation ->
Stahl tillhör den infärgade amatörrasen
Back-Translation->
Stahl belongs to the colored amateur breed

6. The business I’ve just bought is on the rocks
Translation ->
Verksamheten jag just har köpt är on the rocks
Back-Translation->
The business I just bought is on the rocks

In conversational systems, a user may appreciate a chatbot that identifies and gener-
ates an appropriate and better response based on the the idiom in a prompt than one that
does not. For example, "My wife kicked the bucket" should have different responses from
a conversational system, depending on the identification of the MWE as a literal usage
or a specific idiom type, in this case, euphemism (a polite form of a hard expression).
Correctly identifying the specific type of idiom instead of a general identification may
elicit an empathetic response from the conversational system for the euphemism example.
In addition, such classification has the potential benefit of automatic substitution of the
idioms with the literal meaning for MT for the target language.

Idiom classification

Attempts at classifying idioms fall into different approaches like semantic, syntactic,
and functional classification (Grant and Bauer, 2004; Cowie and Mackin, 1983). As de-
picted in Figure 1.3, classification of idioms can sometimes overlap (Grant and Bauer,
2004; Alm-Arvius, 2003). Classification of a case as euphemism also fulfills classification
as metaphor. This is also the case with apostrophe. Therefore, two annotators with
such different annotations may not imply they are wrong but that one is more specific.
Metaphor uses a type of experience to outline something that is more abstract (Alm-
Arvius, 2003; Lakoff and Johnson, 2008). It describes an entity by comparing it with
another dissimilar thing in an implicit manner. Simile, on the other hand, compares in an
explicit manner. Personification ascribes human attributes to inanimate things. Apos-
trophe denotes direct, vocative addresses to things which may not be factually present
(Alm-Arvius, 2003). Contradictory combination of words or phrases is an Oxymoron.
They are paradoxically meaningful and may appear hyperbolic (Alm-Arvius, 2003). Hy-
perbole is an overstatement and it has the effect of startling or amusing the hearer.
Section 2.4 discusses about additional examples of idioms and the PIE-English idioms
corpus (Adewumi et al., 2021). Figure 1.3 is a schematic representation of the relation-
ships among some common idioms, based on the authors’ perception of the description
by Alm-Arvius (2003).
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Figure 1.3: Relationship among some classes of idioms (Adewumi et al., 2021).

1.8 Scientific method

The scientific approach is based on evidence through experiments or empiricism for ac-
quiring knowledge. It consists of an iterative sequence of principles that is applicable to
all scientific endeavours. The basic, general components are shown in Figure 1.4. It starts
off with careful observation, which requires rigorous skepticism through questions, then
hypotheses formulation through induction (based on what has been observed), testing by
experimentation, analysis of findings and, lastly, refinement of the hypotheses, as a result
of the findings from the experiments (Newton, 1833). There are slightly different versions
of the approach, especially as it concerns different scientific endeavours. According to
Galilei (1954), the scientific approach also includes other components that are required
even when all the stages identified in Figure 1.4 have been completed. These components
are replication, external review, data recording, and sharing. The last one is essential
for the first one (Fleck, 2012). The more specific process for this work is depicted in
Figure 1.5.

The scientific method requires that the hypothesis is tested in controlled conditions
whenever possible. Experimental control and reproducibility have the effect of reducing
the misleading effect of circumstance and personal bias, to a certain degree, as (confirma-
tion) bias can alter the interpretation of results (Javed et al., 2021; Snyder, 1984; Suresh
and Guttag, 2021). The confirmation bias acts as some heuristic that leads someone to
find things that reinforce their beliefs though another person may objectively observe
otherwise (Snyder, 1984). We use models to simulate experiences. When such simulation
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of a model is assessed as similar to its actual counterpart in certain dimensions, it is
considered successful (Colby et al., 1972).

Figure 1.4: The general scientific approach

For a hypothesis to be considered scientific, it should be falsifiable (Popper, 2005;
Adewumi et al., 2019). This means there should be an identification of a possible outcome
of the experiment that conflicts with predictions from the experiment, based on the
hypothesis. If this is not the case, then the hypothesis cannot be tested meaningfully.
From the conjecture (or hypothesis), after an observation, we usually construct the null
hypothesis and an alternative hypothesis (Du Prel et al., 2009). The null hypothesis
assumes the relationship or the effect being examined is not really there, i.e., it is zero
(Frick, 1995). It assumes sampling error is the reason for experiencing any difference in
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Figure 1.5: Methodology of this study

the data. However, the alternative hypothesis assumes there is truly a relationship or
a nonzero effect or difference. Analysis of the data may be carried out using tools like
regression, comparison of means using t-test, and analysis of variance. We may test the
condition that if the null hypothesis is true, can one get an observed effect since we can
not test if the null hypothesis itself is true. P-value is the probability of getting a result
with observed effect if the results are due to chance or the null hypothesis is true. In
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other words, p-value = P (data|nullhypothesis = true). Therefore, a high p-value means
the result is easily due to chance and is statistically insignificant while a sufficiently low
p-value, against the chosen alpha value, means the result is not easily due to chance and
is statistically significant (Du Prel et al., 2009; Nickerson, 2000).

The alpha value sets a threshold for the types of errors that may occur. The type
I error occurs when one detects an effect or relationship when actually there is none,
resulting in false positives, while type II error occurs when no effect is detected though
actually there is, resulting in false negatives. It must be noted that a low p-value does not
mean we have proven a case. Rather, a low p-value implies the data or the null hypothesis
is likely wrong because they are incompatible so we choose to trust our data and reject
the null hypothesis. Noteworthy that there are several objections to hypothesis testing
(Frick, 1996; Nickerson, 2000). Nickerson (2000) found that when there are no estimates
of mean or the effect size, then null hypothesis testing is of no value. They further assert
that null hypotheses testing have relatively little utility and are not part of the scientific
approach. They, therefore, recommended data analysis that is based on Kullback-Leibler
information instead of null hypothesis testing, though they pointed out that this is not
perfect either.

Another statistical approach is to use confidence interval (CI) . This has the advantage
of providing more information about the result than the p-value (Du Prel et al., 2009).
It gives a range of the differences or the effect. In statistical tests, in order to draw valid
conclusions, it is crucial to consider “power" and not filter out non-significant findings.
It is also important to determine the “power" of an experiment or observation early on.
It is dependent on the effect size and the size of the sample (Brysbaert and Stevens,
2018). It reflects the number of times the null hypothesis may be rejected or the ability
to reject the null hypothesis. A large effect size with a relatively small sample size or a
large sample size with a minimal effect size will result in good “power" (Brysbaert and
Stevens, 2018).

The importance and difference between reliability, which is to rightly measure some-
thing, and validity, which is to measure the right thing, should be kept in mind. For
results to be reliable, one should minimise errors that are due to survey measurement,
which are errors captured with what is being measured and is common with latent mea-
surements, such as sentiments, that have to be inferred. Latent measurement is different
from manifest measurement that are measured directly, such as height or sales (Skrondal
and Rabe-Hesketh, 2007).

Methodology

The specific methodology employed in this thesis involves an iterative set of scientific
methods. As depicted in Figure 1.5, a systematic literature review is conducted to
identify the state-of-the-art (SoTA) and gaps in current research. We acquire or create
relevant datasets using benchmark datasets as references, as the need may be. Their data
statements are documented as well. The seven stages of the machine learning life-cycle are
followed as the datasets are used to train model architectures for predictions. The stages
include data acquisition, data preparation, model selection, training, evaluation with
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hyperparameter tuning, prediction, and model deployment (Suresh and Guttag, 2021).
We conduct human evaluation on the generated predictions of some of the conversational
models. The results of such evaluation and comments from evaluators provide valuable
feedback on challenges that may still exist within the system. Saygin and Cicekli (2002)
show that when conducting tests (or evaluation), similar to the Turing test, knowledge
of whether a machine is one of the respondents makes a difference in the evaluation
by the judges. However, during the evaluation of PARRY, this information was not
considered important (Colby et al., 1972). The knowledge works against the machines
during evaluation by judges as shown by Saygin and Cicekli (2002).

Details of the implementation of the experiments to determine the status of the hy-
potheses of this work (Section 1.5) are provided in the various sections that follow this
chapter. Experiments were run on a shared cluster running the Ubuntu operating system
with multiple V100 GPUs, each having 32G memory. Preprocessing, such as removal of
punctuation marks and lowering of cases, where appropriate, is applied to data before
training. We perform multiple runs of each experiment and then report the average val-
ues. For tuning hyperparameters, grid search may be used. It is an exhaustive search that
explores all possible combinations of the values supplied. The values may be computed
in parallel to reduce the computational cost involved (Hackeling, 2017).

1.9 Performance metrics

We have to measure a system to ascertain the performance of such a system. There
are a wide variety of metrics for NLP systems (Aggarwal and Zhai, 2012; Gehrmann
et al., 2021; Reiter, 2010) but different metrics may be suitable for different systems,
depending on the characteristics of the system. For example, IR systems may use F1,
precision, and recall (Aggarwal and Zhai, 2012). We shall only mention a few of the
possible NLP metrics here, some of which are used in this work. Human evaluation
is the gold standard when it comes to the evaluation of conversational systems. It is,
however, time-intensive and laborious. Consequently, automatic metrics serve as timely
proxies for estimating performance though they may not correlate adequately with human
evaluation (Gehrmann et al., 2021; Gangal et al., 2021; Jhamtani et al., 2021). Two
methods of human evaluation may be conducted on open-domain conversational systems:
observer and participant evaluation (Jurafsky and Martin, 2020). Observer evaluation
involves reading and scoring a transcript of human-chatbot conversation while participant
evaluation directly interacts with the chatbot in a dialogue (Jurafsky and Martin, 2020).

An open-domain conversational system may be evaluated for different qualities, such
as humanness (or human-likeness), engagingness, fluency, making sense, interestingness,
avoiding repetition, and more. The use of automatic metrics, such as the BLEU or
ROUGE (Lin, 2004; Papineni et al., 2002), for evaluation of chatbots is sometimes viewed
as inappropriate (Liu et al., 2016). This is because BLEU and similar metrics do poorly
in measuring response generation, as they do not correlate well with human assessment,
especially as they do not take lexical or syntactic variation into consideration (Reiter,
2010). Dependency-based evaluation metrics allow for such variation in evaluation. An-
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other common metric for conversational systems is perplexity (Adiwardana et al., 2020).
It measures how well a probability model predicts a sample and corresponds to the ef-
fective size of the vocabulary (Aggarwal and Zhai, 2012). Therefore, smaller values show
that a model fits the data better. More is discussed about this in Section 4.4. Perplexity
correlates with entropy (information gain). Entropy measures the amount of information
in a random variable. It is the average uncertainty of a single random variable. The
more we know about a variable, the lower the entropy, as we become less surprised by
the outcome of a trial (Aggarwal and Zhai, 2012).

Evaluation of NLP systems may be achieved at two levels: intrinsic and extrinsic levels
(Reiter, 2010). Unlike extrinsic metrics, intrinsic metrics do not capture the usefulness of
a system in the real world but act as possible proxies (Reiter, 2010). Extrinsic evaluation
methods focus on the usefulness of models with regards to downstream NLP tasks, such as
Named Entity Recognition (NER) (Wang et al., 2019). The common metrics for extrinsic
evaluation include accuracy, precision, recall, and the F1 score (Gatt and Krahmer,
2018). They are represented mathematically in Equations 1.1, 1.2, 1.3, and 1.4,
respectively, using the concepts of true positive (TP), which is the number of items
correctly classified as positive instances, true negative (TN), which is the number of
items correctly classified as negative instances, false negative (FN), which is the number
of items incorrectly classified as negative instances, and false positive (FP), which is the
number of items incorrectly classified as positive instances. Precision tells us how often
the system is correct when the system predicts the positive result. Recall tells us how
often the system predicts correctly when it is actually the positive result. The F1 score
is the harmonic mean of both the precision and recall (Aggarwal and Zhai, 2012; Powers,
2020). Accuracy can be misleading when used for search tasks, since a model that labels
every irrelevant document in a retrieval system would be close to 100% (Bird et al., 2009).
The visualisation metric receiver operating characteristics (ROC) - area under the curve
(AUC) also depend on the concepts of true positives, true negatives, false positives, and
false negatives. The confusion matrix presents a good visualisation of tagging errors by
charting gold standard tags against actual tags generated by the tagger (Bird et al., 2009;
Hackeling, 2017).

TP + TN

TP + TN + FP + FN
(1.1)

TP

TP + FP
(1.2)

TP

TP + FN
(1.3)

2TP

2TP + FP + FN
(1.4)
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1.10 Ethical consideration

From the viewpoint of deontological ethics, it is important to be objective in research
(Javed et al., 2021; White, 2009). Deontological ethics is a philosophy that emphasis
responsibility or duty over the ends achieved in decision-making (Alexander and Moore,
2007; Paquette et al., 2015). It has the advantage of accounting for moral intuitions than
other viewpoints, like consequentialism, however, it has its disadvantages, such as the
possibility of conflict of duties (Paquette et al., 2015). The Foundation and Academies
(2017) identifies four guiding principles of research: reliability, honesty, respect, and
accountability. This work adheres to those four principles, the good research practices
that they prescribe, and the General Data Protection Regulation (GDPR). The GDPR is
a regulation that protects natural persons with regards to the processing of their personal
data and on the free movement of such data (Voigt and Von dem Bussche, 2017).

Ethical issues are of importance in open-domain conversational systems. Some of the
issues that should be considered are privacy concerns arising from personally identifiable
information (PII), toxic/offensive/hateful messages that may surface as a result of the
training data and bias (be it gender, racial, or other forms of bias) (Jurafsky and Martin,
2020). The data used for pretraining the deep models or embeddings in this work are
from online public sources that are known to contain all kinds of views and they suffer
from the risks identified. Therefore, we note that there are risks with using the produced
model checkpoints or embeddings, as they may show such biases or offensive language
(Zhang et al., 2020).

1.11 Delimitation

This work is the intersection of multilingual NLP, idioms, and open-domain conversa-
tional systems. The thesis does not go into the details of the philosophy of language
and linguistics, especially as described by Bach and Harnish (1979). It also does not
discuss the details of conversational analysis (Sacks et al., 1978). We do not cover all
possible combinations of hyperparameters for a given ANN and we cover only a few NLP
downstream tasks. It is not practical to cover all possible hyperparameter combinations,
as the combination increases faster than linearly with each additional hyperparameter
factor. Also, this work does not experiment with all shallow neural networks for embed-
dings; it does not explore all deep models for conversational systems nor does it cover
all NLP downstream tasks. Also, we acknowledge that figures of speech or idioms are so
diverse that a detailed evaluation is out of the scope of this work. Finally, the discussion
about open-domain conversational systems only prepares the ground for ongoing and fu-
ture work. It highlights factors, which are important for ethical and robust open-domain
conversational systems from the point of view of the philosophy of science (Adewumi
et al., 2019).
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1.12 Related work

Jhamtani et al. (2021) observed huge performance drop, with regards to figurative lan-
guage, when they evaluated some deep models on two open-domain dialogue datasets:
DailyDialog and PersonaChat (Li et al., 2017; Zhang et al., 2018b). Generative Pre-
trained Transformer (GPT)-2 was compared to four other models over the datasets and
considerable drop in performance was observed in most. Their approach of transforming
figurative language (including idioms) to their literal form before feeding the model may
not adequately address the challenge since this implies the models still are incapable
of understanding the figurative language and because some idioms have more than one
literal form.

Zhang et al. (2020) pretrained the deep model, DialoGPT, on conversational data from
Reddit conversations of 147M exchanges. The model, which comes in three different
flavours, achieved performance close to that of humans in open-domain dialogues of
single-turn conversations. DialoGPT is based on GPT-2 (Radford et al., 2019). Hu
et al. (2018), Olabiyi and Mueller (2019), Adiwardana et al. (2020), and Roller et al.
(2021) pretrained their models, Texar, DLGnet, Meena, and BlenderBot respectively, on
dialogue datasets also. Some architectures are pretrained on large, semi-structured (or
unstructured) text and adapted for conversational systems. These include T5 (Raffel
et al., 2020) and BART (Lewis et al., 2020). Xu et al. (2017) found that a deep LSTM-
based model outperformed a standard IR baseline for response generation to customer
requests for about sixty brands on social media but achieved similar performance as
humans in handling emotional situations.

Different methods have been employed in past efforts for creating idioms corpora.
Some of the labelled idioms datasets available only focus on two categories (or senses
of expressions): the literal and general idioms classification (Li and Sporleder, 2009;
Cook et al., 2007). Sporleder et al. (2010a) presented the IDIX corpus, which has 78
idioms in 5,836 sentence samples. They identify five categories for labelling the samples:
literal, non-literal, both, meta-linguistic, undecided. To create the corpus, they pick
selections in idiom dictionaries and use Google to know how frequent each idiom is.
Then, they search the BNC online to determine examples of literal and non-literal. They
went in favour of expressions that are frequent online, that are in the BNC and have
idiomatic and literal meanings. Instead of manually curating the expressions, a perl
script was used to automatically extract all occurrences of desired expressions from the
BNC and erroneous extractions manually filtered out during annotation (Sporleder et al.,
2010a). Meanwhile, Cook et al. (2007) selected 60 verb-noun construct (VNC) token
expressions and extracted 100 sentences for each from the BNC. These were annotated
using two native English speakers (Cook et al., 2007). Saxena and Paul (2020) introduced
English Possible Idiomatic Expressions (EPIE) corpus, which has 25,206 samples of 717
idiom cases. Haagsma et al. (2020) generated potential idiomatic expressions (MAGPIE)
and annotated the dataset using only two main classes (idiomatic or literal), through
crowdsourcing. The samples of idioms are 2.5 times more frequent than the literals.
It has 1,756 idiom types, an average of 32 samples per type, 126 types with only one
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instance and 372 cases with less than 6 instances.
Two approaches are common for idiom detection: type-based and tokens-in-context

(or token-based) (Peng et al., 2015b; Cook et al., 2007; Li and Sporleder, 2009; Sporleder
et al., 2010b). The type-based approach attempts to distinguish if an expression is an
idiom, possibly through automatic compilation of an idiom list from a corpus (Sporleder
et al., 2010a), while the token-based approach relies on context for disambiguation of
idioms (Korkontzelos et al., 2013; Sporleder et al., 2010b). Non-contextual word embed-
dings (like word2vec) are used for identifying metaphors (Mao et al., 2018), which may
then be used for additional downstream tasks, like MT. Such approaches are likely to
underperform, however (Mao et al., 2018). Peng et al. (2015a) use word2vec to obtain
vectors from text8 corpus with a vector dimension of 200. Their algorithm uses inner
product of context word vectors with vector representing target expression. This is based
on the assumption that literal vectors are distinguished from idiom vectors by the larger
inner product they produce. The scatter matrices represent context distributions, which
can be measured using Frobenius norm. Bizzoni et al. (2017a) employ word2vec and an
ANN with 1 hidden layer for detecting metaphors. The corpus that the work is based
on eliminated all adjective-noun (AN) phrases that require a longer context for their in-
terpretation. Diab and Bhutada (2009) used support vector machine (SVM) to perform
binary classification into literal and idiomatic expressions on a subset of the VNC-Token.
In addition, Shutova et al. (2016) describe using textual and visual clues for metaphor
identification.

In evaluating the performance of open-domain chatbots, it has been shown that au-
tomatic metrics, like the BLEU score, can be poor but they are still used in some cases
(Lundell Vinkler and Yu, 2020). Conversation turns per session is another metric of
interest (Zhou et al., 2020a). Perplexity is also widely used for intrinsic evaluation of
language models and its theoretical minimum, which is its best value, is 1 (Adiwardana
et al., 2020). Gangal et al. (2021) reiterated that previous work reveals the importance of
having multiple valid responses as reference for meaningful and robust automated eval-
uations. Perhaps the best evaluation is done by humans though this can be subjective.
Human judgment is seen as very important, since humans are usually the end-users of
such systems (Zhang et al., 2020).

1.13 Thesis Outline

The remaining five chapters cover data, vector space, open-domain conversational sys-
tems, learning deep abstractions, and conclusion and future work. Chapter two is ded-
icated to data. We discuss in detail the datasets we created, their methodology, and
their data statements. These include the Swedish analogy test set and the PIE-English
idioms corpus. In addition, it discusses the AfriWOZ dataset, which are translations
of the multi-domian MultiWOZ dataset. The chapter ends by describing the results of
experiments on classifiers used for the PIE-English idioms corpus.

Chapter three, which discusses vector space, provides details of experiments on word
vectors, contextual versus non-contextual representation, and evaluation of embeddings.



26 Introduction

Chapter four discusses the differences between open-domain and task-based systems, deep
models for open-domain chatbots, evaluation of conversational systems, and the ethics of
building dialogue systems. It also discusses the new Credibility unanimous score (CUS)
for calculating IAA. Chapter five, which is learning deep abstractions, highlights some
commonalities in human languages, discusses the issue of pretraining, looks at the pros
and cons of multi-lingual deep models, and the experimental results on cross-lingual
transferability for the various languages tested. The final chapter concludes this work by
reiterating important points, contributions, and possible future work. Figure 1.6 gives a
depiction of the structure of this thesis.

Figure 1.6: Schema of the structure of this thesis



Chapter 2

Data

“Data is the new oil."

(Metaphor)

Data is, perhaps, the most important ingredient in the ML life-cycle. In order to train
ANN we need data. If data can be scarce, quality data can be more scarce, especially,
quality labelled data (Crawford et al., 2015). This is more so for low-resource languages,
such as Yorùbá, Igbo, Hausa, Wolof, and many more. Textual data can be in many for-
mats and may be available in different media. The type of data and size that is available
can determine the type of training and the architecture that such data may be used with.
Large, unstructured or semi-structured textual data may be used in the pretraining of
deep ANNs (Devlin et al., 2018a; Raffel et al., 2020). Typically, a task-specific dataset,
which may be labelled, is first divided into 2 main categories: the development (dev) and
test sets. The development set is then further divided into the training set and the final
dev (or validation set). The final ratio of the split is based on a tradeoff. The test set
should not be too small, as it may be unrepresentative of the training set, so it should
be large enough to give statistical power. Meanwhile, we want the training set to be
as much as possible for the model to learn from as many samples as possible (Jurafsky
and Martin, 2020). The final ratio might be around 80:10:10, such that the dev set is
representative of the test set. The dev set is used to perform error analysis after each
epoch of training, which is very useful for refining the featureset (Bird et al., 2009).

A shuffling of the training and dev sets is important each time error analysis is re-
peated to avoid overfitting (Bird et al., 2009). The method of cross validation, where
multiple evaluations are conducted on various test set splits from the same dataset and
the results combined, has two advantages: it is useful for cases when the entire dataset
is small and allows assessment of how widely performance varies across the different
test sets used. With good similarity in the scores of the number of sets used, there’s
confidence in the accuracy of the score (Bird et al., 2009). Furthermore, the test set
is recommended to have, at least, fifty instances of the infrequent label, if a corpus (or
dataset) for a classification task has infrequent labels. Usually, it can be difficult for a
model to generalise to other datasets when the training and test sets are very similar.

27
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However, using a more stringent evaluation set, sometimes referred to as a challenge set
(Gehrmann et al., 2021), the test set may be transformed or drawn from a different cate-
gory of documents slightly less related to the training set. Some of the datasets available
for training classifiers include the Internet Movie Database (IMDB) (Maas et al., 2011),
CoNNL-2003 (Aggarwal and Zhai, 2012), and the Groningen Meaning Bank (GMB) (Bos
et al., 2017) while examples of those available for training conversational systems include
the BlendedSkillTalk (BST) (Smith et al., 2020), and MultiWOZ (Budzianowski et al.,
2018).

In dataset creation, it is unlikely that one covers every possible scenario or instances
with every possible attribute. TheWizard-of-Oz (WOZ) approach to data creation, where
participants interact with a presumed automated system, which in reality is simulated by
an unseen human participant, appears to be common (Byrne et al., 2019; Budzianowski
et al., 2018; Jurafsky and Martin, 2020). It is an imperfect approach that may not capture
the real limitations or constraints of the system being simulated but provides a useful
step towards data acquisition (Jurafsky and Martin, 2020). In cases where there is a
lack of diversity or imbalance in the dataset, it is better to take measures to increase the
dataset so as to avoid a skewed dataset and evaluation. Datasets may be annotated for
several properties. For example, a speech dataset may be annotated for phonetic while
a sentiment dataset may be annotated for positive and negative sentiments (Bird et al.,
2009).

The rest of this chapter is organised as follows: Section 2.1 discusses how data ac-
quisition may be carried out. Section 2.2 discusses the issues around IAA. Section 2.2
gives details about the Swedish analogy test set, one of the contributions of this thesis.
Section 2.4 gives details of the PIE-English idioms corpus, another contribution of this
thesis. Section 2.5 discusses details of the six datasets combined as AfriWOZ, which is an-
other contribution of this thesis. Section 2.6 discusses the importance of data statements.
Section 2.7 shows results from experiments conducted on idiom classification.

2.1 Methodology of data acquisition

Building a dataset requires time and careful preparation. Depending on the type of data
and the task it is meant for, different stages may be involved in the dataset acquisition
process. The process may involve (automatic or manual) annotation and post-editing.
(Bird et al., 2009) Figure 2.1 shows a depiction of the possible stages of data acquisition.
The stages in the figure are by no means exhaustive and may be refined as the application
warrants. The three common approaches for data acquisition are data discovery, data
augmentation, and data generation (Roh et al., 2019). Data discovery is applicable
when there’s data available on the web or other sources from which one may search and
acquire the dataset. When data is acquired through data discovery, one might augment
the existing data in order to complement it. For example, the subsequent MultiWOZ
datasets (Eric et al., 2019) that built on the original by Budzianowski et al. (2018) are
examples of this approach. The third approach of data acquisition involves the manual
(through crowdsourcing or otherwise) or synthetic means of generating data when it is



2.2. Inter-Annotator Agreement (IAA) 29

not available (Roh et al., 2019). The first MultiWOZ dataset by Budzianowski et al.
(2018) is an example of this.

Figure 2.1: Stages of data acquisition (Roh et al., 2019).

Uncertainty with some samples during annotation may require adjudication, when la-
belling or augmenting data. Having a documentation to accompany the dataset, training
of the workers involved in the dataset acquisition and procedure for the data acquisition
will impact on the quality of the dataset. Versioning is an important part of the process
of data acquisition (Bird et al., 2009). If the data acquisition involved annotation, best
practice requires that the IAA be reported. This IAA is usually perceived as the upper
bound on the expected performance of ML models that are trained on the corpus (Bird
et al., 2009; Clark et al., 2012).

2.2 Inter-Annotator Agreement (IAA)
As humans, we have subjective views, which may influence our decisions, even when
annotating or labelling data, though there may be an annotation guide (or document).
This is why it is good practice to have more than one person labelling such data and
to calculate their IAA. This agreement score is a requirement after the process of an-
notation (Peng et al., 2015b). In general, one might expect that with more annotators
the consistency of annotation increases - and this is sometimes the case. However, if
there are experts and non-experts involved, problems may arise. Another situation that
may arise during annotation is a tie (deadlock), i.e., when an item is labelled differently
by the same amount of annotators (Bird et al., 2009). Using odd number of annota-
tors usually resolves the deadlock problem. A typical measure to improve annotation
consistency is to provide annotators with an annotation guide. The annotation guide,
which will detail the rules for the task of annotation should be simple enough for many
to follow and be objective. This will help to reduce instances of confabulation among
annotators, when people make up false reasons unintentionally for doing something or
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making certain choices, and increase the chances of high IAA. The task of annotation is
either too difficult or poorly defined (possibly from the guide) if the annotators are not
able to achieve good enough agreement on the correct annotations (Clark et al., 2012).

A simple way of measuring IAA agreement among annotators is to measure their
observed percentage agreement over the data samples. However, this method may be
an inaccurate reflection of the actual difficulty or upper bound on the task, as some
agreement may be due to chance (Clark et al., 2012). Cohen’s kappa and Fleiss kappa
(k) are widely-used methods for calculating IAA. However, both have limitations, scope,
and interpretation difficulties (Clark et al., 2012; Gwet, 2014; Landis and Koch, 1977).
Fleiss (k) scores are lower when the number of classes or categories under consideration
increases (Sim and Wright, 2005). A contribution of this thesis is the introduction of
CUS for measuring IAA in open-domain conversational transcripts and this is discussed
further in Section 2.2

Credibility unanimous score (CUS)

Raw percentages of observed agreement on a sample of annotated entities for measuring
IAA has been shown to be weak since some agreements may be due to chance (Clark et al.,
2012). Fleiss Kappa (k), another common IAA metric, has been shown to be restrictive
in its interpretation, depending on the number of categories (Landis and Koch, 1977),
as Kappa is lower when the categories are more (Sim and Wright, 2005). CUS is more
intuitive, easier to calculate (as it’s quite similar to raw percentages) and seemingly less
sensitive to changes in the number of categories being evaluated, compared to Flies Kappa
(k). The assumption behind CUS is that if homogeneous samples that are introduced
can be used for establishing the credibility of the annotators for evaluating the dialogue
transcript, then they may be used for establishing their agreement. This agreement is
based on unanimous votes across the homogeneous samples. The homogeneous samples
may be viewed as a significant subset of the full transcript, especially when it fulfils the
central limit theorem by having a minimum of 30 samples. The probability of obtaining
high CUS rises when the benchmark score for annotator credibility is raised. For example,
if the benchmark scores for accepting annotators’ work in two different jobs are 51% and
71%, then the probability of getting a higher CUS is higher in the latter. This gives CUS
an advantage over using raw percentages over the actual samples, due to the weakness
identified earlier.

2.3 Swedish analogy test set

Following the format of the original English analogy test set by Mikolov et al. (2013b),
this thesis introduces the Swedish analogy test set (Adewumi et al., 2020c), with two main
categories and their corresponding sub-categories: the semantic and syntactic sections.
The task is to predict, per line, the forth item based on the third, given the similarity
between the first and the second, as given in Figure 2.2. Many examples in the Swedish
version are drawn from the English version. New entries were also added. The test
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set was constructed with the help of tools dedicated to Swedish dictionary/translation1

and was proof-read for corrections by two Swedish native/L1 speakers (with an inter-
annotator agreement score of 98.93%). Not all the words in the English version could
be easily translated to Swedish, as similarly observed by Venekoski and Vankka (2017),
while working on a smaller Finnish version. The English version has over 1,500 more
syntactic samples than the semantic samples, however, the Swedish version is balanced
across the two major sections and has more total samples, as shown in Table 2.1.

Table 2.1: The Swedish analogy test set statistics (Adewumi et al., 2020c)
Semantic Syntactic

capital-common-countries (342) gram2-opposite (2,652)
capital-world (7,832) gram3-comparative (2,162)

currency (42) gram4-superlative (1,980)
city-in-state (1,892) gram6-nationality-adjective (12)

family (272) gram7-past-tense (1,891)
gram8-plural (1,560)

It has a total of 20,637 samples, made up of 10,380 semantic and 10,257 syntac-
tic samples. The capital-world sub-category has the largest proportion of samples in
the semantic subsection while the gram6-nationality-adjective sub-category has the least
number of samples. Overall, there are 5 semantic subsections and 6 syntactic subsections.
Table 2.2 provides some examples from some sub-categories of the dataset.

2.4 PIE-English idioms corpus

Figures of speech, which idioms are part of, become part of a language when members
of the community repeatedly use it. The principles of idioms are similar across many
languages but actual examples are not identical across languages (Alm-Arvius, 2003).
The PIE-English idioms corpus has about 1,200 cases of idioms (with their meanings)
(e.g. carry the day, add insult to injury, etc), 10 classes (or senses/categories, including
literal), and over 20,100 samples from the British National Corpus (BNC)2 , with 96.9%,
and about 3.1% from UK-based web pages UKWaC (Ferraresi et al., 2008). The BNC
has 100M words while the UKWaC has 2B words. This is possibly the first idioms
corpus with classes of idioms beyond the typical literal and general idioms classification.
Tables 2.3 and 2.4 show the distribution of the classes in the dataset and the annotation
agreement, respectively. The total IAA score is 88.89%. Adjudication for the remaining
11.11% cases for the corpus was to accept the classification based on Alm-Arvius (2003).
Table 2.5 shows some examples of sentences containing idioms in the corpus.

1https://bab.la & https://en.wiktionary.org/wiki/
2english-corpora.org/bnc
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Table 2.2: Samples from some subsections in the Swedish analogy test set (Adewumi et al.,
2020c). The task is to predict, per line, the forth item based on the third, given the similarity
between the first & second.

:capital-common-
countries
Nassau Bahamas Havanna Kuba
Nassau Bahamas Berlin Tyskland
Nassau Bahamas Aten Grekland
Nassau Bahamas Jakarta Indonesien
Nassau Bahamas Jerusalem Israel
Nassau Bahamas Rom Italien
Nassau Bahamas Tokyo Japan
Nassau Bahamas Nairobi Kenya
:family
pojke flicka bror syster
pojke flicka far mor
pojke flicka han hon
pojke flicka hans hennes
pojke flicka kung drottning
pojke flicka farfar farmor
pojke flicka man kvinna
pojke flicka son dotter
:gram2-opposite
medveten omedveten lycklig olycklig
medveten omedveten artig oartig
medveten omedveten härlig förfärlig
medveten omedveten bekväm obekväm
medveten omedveten konsekvent inkonsekvent
medveten omedveten effektiv ineffektiv
medveten omedveten moralisk omoralisk
medveten omedveten känd okänd
:gram3-comparative
dålig sämre stor större
dålig sämre billig billigare
dålig sämre kylig kyligare
dålig sämre lätt lättare
dålig sämre snabb snabbare
dålig sämre bra bättre

The idioms were selected alphabetically from the dictionary by Easy Pace Learning3

3easypacelearning.com
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Table 2.3: Distribution of samples of idioms/literals in the corpus (Adewumi et al., 2021).
Classes % of Samples Samples

Euphemism 11.82 2,384
Literal 5.65 1,140

Metaphor 72.7 14,666
Personification 2.22 448

Simile 6.11 1,232
Parallelism 0.32 64
Paradox 0.56 112
Hyperbole 0.24 48
Oxymoron 0.24 48

Irony 0.16 32
Overall 100 20,174

Table 2.4: Annotation of classes of idioms in the corpus (Adewumi et al., 2021).
Classes Annotation 1 % Annotation 2 %

Euphemism 148 12.36 75 6.27
Metaphor 921 76.94 877 73.27

Personification 28 2.34 66 5.51
Simile 82 6.85 66 5.51

Parallelism 3 0.25 9 0.75
Paradox 6 0.5 19 1.59
Hyperbole 3 0.25 57 4.76
Oxymoron 4 0.33 9 0.75

Irony 2 0.17 19 1.59
Overall 1197 100 1197 100

and proverbs were excluded, since they are not the subject of the corpus. Samples of
sentences were then extracted from the BNC and UKWaC, based on the first to appear in
each corpora. Four contributors, who are second/L2 (but dominant) speakers of English,
extracted sample sentences of idioms and literals (where applicable) from the BNC, based
on identified idioms in the dictionary. The corpus was reviewed by a near-native speaker,
as a form of quality control. This approach avoided common problems noticeable with
crowd-sourcing methods or automatic extraction (Haagsma et al., 2020; Roh et al., 2019;
Saxena and Paul, 2020). There are 2 sentences, at most, for each sample, though the
majority of them contain only 1 sentence. Using one or two sentences minimises the
possibility of having several different classes in one sample, which will make it difficult
for annotation or classifiers to learn. The design involved having, for each idiom case, 15
samples and 21 for cases that have literal usage also, where 6 samples are literal for the
cases that have literal usage. Six was chosen as the number of literal samples because
the BNC and UKWaC sometimes have fewer or more literal samples, depending on the
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Table 2.5: Samples from the PIE-English idioms corpus (Adewumi et al., 2021).
No Samples Class
1 Carry the day Metaphor
2 Does the will of the Kuwaiti parliament transcend the will

of the Emir and does parliament carry the day?
Metaphor

3 The anti Hunt campaigners believe they have enough to
carry the day tomorrow

Metaphor

4 The pack particularly that controls the ball and makes fewer
mistakes could carry the day

Metaphor

5 Time flies Personification
6 Eighty-four!’ she giggled.’ How time flies Personification
7 Think how time flies in periods of intense, purposeful activ-

ity
Personification

8 How time flies! We were at our stewardess’s mercy Personification
9 As clear as a bell Simile
10 It sounds as clear as a bell Simile
11 What you get is a sound as clear as a bell Simile
12 It will make it as clear as a bell Simile
13 Go belly up Euphemism
14 If several clubs do go belly up, as Adam Pearson predicts. Euphemism
15 That Blogger could go belly up in the near future Euphemism
16 The laptop went belly up Euphemism
17 The back of beyond Hyperbole
18 There’d be no one about at all in the back of beyond. Hyperbole
19 "Why couldn’t you just stay in the back of beyond?" she

said.
Hyperbole

case.

The BNC is a common choice for text extraction. It is, however, relatively small, hence
we relied also on UKWaC for further extraction when search results were less than the
requirements. Hence, there are 22 samples for each case that has literal usage, in addition
to the original idiom while there are 16 for cases without literal usage. Metaphors,
as expected, are the dominant cases in the PIE-English idioms corpus, which seems
inevitable because metaphors are the most common figures of speech (Alm-Arvius, 2003;
Bizzoni et al., 2017b; Grant and Bauer, 2004; Jhamtani et al., 2021). Part-of-speech
tags are included for tokens in the corpus and this was performed by using the NLTK
(Bird et al., 2009). The corpus may also be extended by researchers to meet specific
needs. Table 2.6 compares the PIE-English idioms corpus with some other publicly
available idioms datasets. The PIE-English idioms corpus has the largest number of
classes, differentiating the many types of figurative speech that exist. It is also the third
largest corpus, in terms of samples, and the second largest, in terms of cases.
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Table 2.6: Some datasets compared (*NA: not available) (Adewumi et al., 2021).
Dataset Cases Classes Samples

PIE-English (ours) 1,197 10 20,174
IDIX 78 NA* 5,836

Li & Sporleder 17 2 3,964
MAGPIE 1,756 2 56,192
EPIE 717 NA* 25,206

2.5 MultiWOZ to AfriWOZ
The MultiWOZ dataset has several versions, with each new one bringing improvements
(Budzianowski et al., 2018; Eric et al., 2020). It is a fairly large, human-human, multi-
domain, and multi-task benchmark conversational dataset. It has more than 10,000 dia-
logues distributed between multi-domain and single-domain dialogues. Domains covered
include hospital, restaurant, police, attraction, hotel, taxi, train, and booking. AfriWOZ
is a collection of conversational datasets in some African languages, based on translation
of the Englsih MultiWOZ dataset. This data acquisition approach for AfriWOZ is needed
because of the scarcity or non-existent conversational data for many African languages.
The MultiWOZ seems better suited, as the source data, instead of alternatives like Red-
dit4 because of the high probability of toxic content (Henderson et al., 2018; Roller et al.,
2021). Solaiman and Dennison (2021) advocated for the careful curation of datasets as a
safe approach to the adjustment of a model’s behaviour to address the challenge of toxic
comments. Such curation approach was used for the AfriWOZ. The first 1,000 turns
from the training set and the first 250 turns each from the validation and test sets were
translated from MultiWOZ to the 6 target languages: Swahili, Wolof, Hausa, Nigerian
Pidgin English, Kinyarwanda & Yorùbá. Only 200 turns from the MultiWOZ training
set were added to make up the 1,000 turns for the Yorùbá data because it has a small
collection of conversational data online, which are a mix of short dialogues in different
scenarios including the market, home and school. The two online sources5 are used for
Yorùbá because of the local entities in them.

Translation quality and challenges

The translators were recruited from Slack6 and they are native/L1 speakers of the target
languages and second/L2 (but dominant) speakers of English. Human translation was
employed for all the languages except Hausa, which used Google MT. Review of all trans-
lations is then conducted for quality control (QC). The use of native speakers mitigated
the risk of translating English conversations into unnatural conversations in the target
languages. The two main human translation challenges encountered are how to handle
English entities and how to reframe English conversations for cultural relevance in the

4reddit.com/
5YorubaYeMi-textbook.pdf & theyorubablog.com
6slack.com/
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target languages. The entities in the data were retained since this may facilitate MT
task. The cultural background of the native speakers made it relatively simple to frame
the English conversations into seemingly natural conversations in the target languages.

2.6 Importance of data statements

Bender and Friedman (2018) advocates for data statements to be part of NLP systems
by including them in papers that present new datasets or report work with datasets. A
data statement (or card) is a structured set of statements describing the characteristics
of a dataset, just as a model card is a structured set of statements describing the char-
acteristics of a model. Model cards are discussed in Section 4.3.8. Data statements may
be more important than model cards because ML models are, probably, useless without
data. Failure to include data statements has possible consequences. Some of these con-
sequences are poor generalisability of results, harmful predictions, and failure of NLP
systems for certain groups. The failure can result from lack of representation or bias
against such groups in the training data. Bias here refers to unwanted, systematic, and
unfair discrimination (Adewumi et al., 2019; Bender and Friedman, 2018). These may
be pre-existing biases in the society or technical biases (Bender and Friedman, 2018).

It is beneficial to have a short version and a long, detailed version, which may be
linked from the short version (Bender and Friedman, 2018). The long version may contain
details about a) curation rationale, b) language variety, c) demographics (including age,
gender, race, etc), d) data characteristics, e) data quality, and other possible details that
may be relevant. The short version of the data statement may be included in any use of
the data and can be a summary of the details in the long version (Bender and Friedman,
2018). The short versions of the Swedish analogy test set, the PIE-English idioms corpus,
and the AfriWOZ are given below. The long versions can be found in the appendices.

Short data statement for the Swedish analogy test set.
This is the Swedish analogy test set for evaluating Swedish word embeddings.
The licence for using this dataset comes under CC-BY 4.0.
Total samples: 20,637
Semantic samples: 10,380 (5 sections- capital-common-countries (342), capital-
world (7.832), currency (42), city-in-state (1,892), family (272))
Syntactic samples: 10,257 (6 sections - gram2-opposite (2,652), gram3-comparative
(2,162 ), gram4-superlative (1,980), gram6-nationality-adjective (12), gram7-
past-tense (1,891), gram8-plural (1,560))
The long version of this data statement is in Appendix A.

Short data statement for the PIE-English idioms corpus.
This is the Potential Idiomatic Expression (PIE)-English idioms corpus for
training and evaluating models in idiom identification.
The licence for using this dataset comes under CC-BY 4.0.
Total samples: 20,174
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There are 1,197 total cases of idioms and 10 classes.
Total samples of euphemism (2,384), literal (1,140), metaphor (14,666), per-
sonification (448), simile (1,232), parallelism (64), paradox (112), hyperbole
(48), oxymoron (48), and irony (32).
The long version of this data statement is in Appendix B.

Short data statement for the AfriWOZ dataset.
This is the AfriWOZ dataset for training and evaluating open-domain dia-
logue models.
The licence for using this dataset comes under CC-BY 4.0.
Total natural languages: 6 (Swahili, Wolof, Hausa, Nigerian Pidgin English,
Kinyarwanda & Yorùbá)
Total turns in the training set per language: 1,000
Total turns in the validation set per language: 250
Total turns in the test set per language: 250
Domains covered in the data include hotel, restaurant, taxi and booking.
The long version of this data statement is in Appendix C.

2.7 Experiments & Evaluation: Idioms classification

The PIE-English idioms corpus was split in the ratio 80:10:10 and trained on the BERT
(Devlin et al., 2018a) and T5 (Raffel et al., 2020) pretrained models from the HuggingFace
hub (Wolf et al., 2020). The base version of both models are used. The pre-processing
involved lowering all cases and removal of all html tags, though none was found since the
data was extracted manually and verified. Special characters and numbers were removed
also. Shuffling of the training set is carried out before training. Batch sizes of 64 and 16
were used for BERT and T5, respectively. The total training epochs for both was 6. All
experiments were performed on a shared cluster with 8 Tesla V100 GPUs, though only
one GPU was used in training the models. Ubuntu 18 is the OS version of the cluster.
From the results in Table 2.7, we observe that the T5 model outperforms the BERT
model. It appears that the dataset is not overly challenging and this may be due to the
choice of keeping the length of each sample at a maximum of 2 sentences. The p-value
(p < 0.0001) of the two-sample t-test for the difference of two means (of the macro F1)
is smaller than alpha (0.05), hence the results are statistically significant.

Table 2.7: Average accuracy & F1 results (sd - standard deviation)
Model Accuracy weighted F1 macro F1

dev (sd) test (sd) dev (sd) test (sd) dev (sd) test (sd)
BERT 0.96 (0) 0.96 (0) 0.96 (0) 0.96 (0) 0.75 (0.04) 0.73 (0.01)
T5 0.99 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.97 (0) 0.98 (0)
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Error analysis

Figure 2.2 shows the confusion matrix of the predictions against the true labels for the
test set, using the T5 model. We observe that the model performs quite well even for
classes that have few samples in the training set, such as irony and hyperbole. It struggles
mostly in correctly classifying the literals, as it misclassified 9.3% of them as metaphor,
possibly because it is the largest class in the dataset.

Figure 2.2: Confusion matrix for T5 model on the PIE-English test set.



Chapter 3

Vector Space

“The literature voices different approaches to
vector representation."

(Personification)

Generally, a vector space model (VSM) represents each document, word or entity as
a point (or vector) in a common space such that points that are close together are
semantically similar. The converse is also true that points that are distant from one
another are semantically distant (Manning et al., 2010; Turney and Pantel, 2010). The
training corpus is divided into units, such as words or sentences, each of which is described
by d-dimensional real-valued feature vector (Indurkhya and Damerau, 2010).

In this chapter, after discussing some background about VSM, Section 3.2 presents
the curse of dimensionality. Thereafter, results from experiments using shallow neural
networks in four experimental setups are presented in Section 3.3. Contextual versus
non-contextual representation will then follow in Section 3.4 and the chapter will end
with some more experiments on NER task for African languages.

3.1 Background

The VSM derives from the distributional hypothesis. The hypothesis describes how
words that occur in a similar context tend to have similar or related meaning. It entails
segmenting the words and ascertaining their similarity grouping (Harris, 1954; Firth,
1957). Hence, in a word-context matrix, words that have similar row vectors tend to have
similar or related meaning (Turney and Pantel, 2010). VSM, based on linear algebra,
underlie IR and treatment of word semantics, which is a search through a common space
of states that represent hypotheses about an input (Jurafsky and Martin, 2020).

In Information Retrieval, the similarity of a set of documents and a query or another
document determines the order of the result that is returned. These documents are sorted
in order of increasing distance to the query (Salton et al., 1975). The maximum similarity
is achieved when the angle between them is zero. The VSM relies on frequencies in the
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corpus for identifying semantic information. This practicality is based on the bag of
words hypothesis (Salton et al., 1975). The hypothesis informs us that the relevance of a
document to a query is indicated by the frequencies of words in that document. In a term-
document matrix, when a document and the query have similar column vectors, there’s
the tendency they have similar meaning (Turney and Pantel, 2010). For term–document
matrices, the term frequency-inverse document frequency (tf-idf) weighting functions
formalise the idea that a surprising element has higher information content than an
expected one (Shannon, 1948). When the corresponding term of an element is frequent
in a document but scarce in other documents in the corpus, the element gets a high
weight, as both the tf and idf will be high. TF-IDF weighting gives improvement over
raw frequency. It’s important to consider lengths of documents in IR to mitigate the
bias which favours longer documents by performing length normalisation (Turney and
Pantel, 2010). Performance in IR systems is usually measured by precision and recall
(Manning et al., 2010). Apache Lucene1 is an example of an open-source indexing and
search software based on term-document matrix and provides additional features like
spell-checking and analysis/tokenisation capabilities, which is used by Wikipedia and
CNET (Turney and Pantel, 2010).

Prior to generating term-document or word-document matrix, application of some
linguistic processing to the text is usually beneficial. Tokenisation is the first step, such
that entities, words or subwords are extracted from the raw text (Harris, 1954), based
on some algorithm. Normalisation may then follow. This process converts cases in one
form to another (case folding), typically to lower case, and stems inflected words to their
root form. In addition, it converts superficially different characters or entities to the
same thing. For example, normalisation may involve replacing ö in öl with o, for the
Swedish language, and bá in bábá with a, for the Yorùbá language. It is obvious that
normalisation can distort original languages and may cause problems since case does
have semantic significance in NER. The system finds it relatively easier to recognise
similarities with normalisation, so recall increases while precision falls because of the
error of variations. The final step may involve (automatically or manually) annotating
entities in the text with additional information, such as parts of speech (Turney and
Pantel, 2010).

The tokenisation step may appear simple for English text but an adequate tokeniser
should also handle punctuation, hyphenation (such as state-of-the-art) and MWE (Man-
ning et al., 2010). There are languages, such as Chinese, whose words are not separated
by spaces. Hence, tokenisers specifically designed for English will not be adequate for
such. In the tokenisation step, removal of "stop" words, which are frequently-occurring
but relatively non-informative words, can be very good. Examples of "stop" words are
‘the’, ‘of’, and ‘in’. The natural language toolkit (NLTK) by Bird et al. (2009) provides
a list of "stop" words for English and some other languages. Obtaining highly accu-
rate tokenisation is currently challenging for many human languages, as native speakers
sometimes do not agree with the automatic segmentation produced (Turney and Pan-
tel, 2010). Unlike normalisation, annotation adds additional information to entities in

1lucene.apache.org/
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the data, hence, it may be viewed as the inverse of normalisation. It, therefore, has
the reverse effects on precision and recall, and can provide better search results for a
given query. This is useful for tokens with identical characters but which have different
meaning (Turney and Pantel, 2010).

A very common way of ascertaining the similarity of two or more entities in VSM is
through the cosine of the angle between them. It is the inner product of the vectors (say,
x and y) after normalisation to unit length, thereby making the length of the vectors
irrelevant (Turney and Pantel, 2010). This is depicted in Equation 3.1.
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Its lower bound is -1, suggesting the vectors point in opposite directions in VS and
its upper bound is +1, suggesting they point in the same direction. The cosine value is
zero when the vectors are orthogonal. This measure of distance between vectors becomes
a measure of similarity by subtraction or inversion, as given in Equations 3.2 and 3.3,
respectively (Turney and Pantel, 2010). Although some classification and clustering
algorithms can use cosine as a metric of similarity (Dasarathy, 1991; Jain et al., 1999),
many ML algorithms work directly with the vectors in VSM (Turney and Pantel, 2010).
A different approach to measuring similarity is by using information theoretic measure,
like cross entropy, after a document is represented with a probability distribution over
words (i.e. unigram language models) (Aggarwal and Zhai, 2012).

sim(x,y) = 1− dist(x,y) (3.2)

sim(x,y) =
1

dist(x,y)
(3.3)

3.2 The curse of dimensionality
One of the early approaches of word representation was a bag-of-words (BoW), which ac-
counts for the frequency of each term but is indifferent to the word order in a document,
though it’s simple (Aggarwal and Zhai, 2012; Mikolov et al., 2013b). Table 3.1 gives an
example of this representation for the example sentence ‘pat let the cat out of the bag’.
This method suffers from the large amount of components in the vector representation,
thereby making it computationally relatively expensive. The representation retains doc-
ument content and can be analysed with mathematical and ML techniques. However,
the dimensionality of representation is usually very high, as each dimension corresponds
to one term (Aggarwal and Zhai, 2012).

This large number of dimensions creates a problem for the task of analysis of concepts
in documents. Typically, a low-dimensional space is preferred, where each dimension
corresponds to one concept or feature. The ML technique of dimension reduction can
be used to find the semantic space that reveals the preserved important properties of
the corpus more clearly. It begins with a representation of the entities (usually using
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a BoW) and then finds a lower dimensional representation, which is considered faithful
to the original representation. This feature transformation makes the features a linear
combination of the features in the original data and removes noisy dimensions (such
as synonymy and polysemy), which hamper similarity-based applications. Variances
along the dimensions removed are small and the relative behaviour of the data points is
minimally affected by removing them (Aggarwal and Zhai, 2012). The feature vectors
represent different aspects of a word and the number of features is smaller compared to
the vocabulary size (Bengio et al., 2003). Latent Semantic Indexing (LSI) is based on this
feature transformation principle (Aggarwal and Zhai, 2012). Other useful applications
based on the principle are Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD). The standard matrix factorisation technique used by the earlier
examples is different from the probabilistic framework for dimensionality reduction used
by, say, Latent Dirichlet Allocation (LDA) and Probabilistic Latent Semantic indexing
(PLSI).

Table 3.1: Example of bag-of-words (BoW)
Term: pat let the cat out of bag

Frequency: 1 1 2 1 1 1 1

The use of low-dimensional, distributed vectors (or embeddings) give more efficient
representations (Mikolov et al., 2013b) compared to one-hot encoding or BoW, which
represents each unique word as a single dimension. Tables 3.2 and 3.3 use the same
example sentence provided earlier to show how the terms may be represented with one-
hot encoding and low-dimensional representation, respectively. The one-hot encoding
suffers from some of the issues BoW suffers from. These are data sparsity, poor semantic
generalisation, low accuracy, and overfitting. Distributed representations derive from
the distributional hypothesis, though the two words (distributed and distributional) are
usually misunderstood or used interchangeably (Turian et al., 2010). Distributional word
representation is the more general term, which is based on a co-occurence matrix F of size
W xD, where W is the vocabulary size and D is the total dimension with some context.
The choice of dimensionality being as large as the vocabuary, W, can be too large to
use as features in a supervised model. However, mapping the initial matrix to a smaller
one through a function such that the dimensionality of the new matrix is d«D is usually
preferred (Turian et al., 2010).

Distributed representations provide a-priori knowledge to the input representation.
The embeddings from such representations are dense and generalise easily. They serve
as inputs for downstream NLP tasks. From a mathematical perspective, they serve as a
dimensionality-reduction technique, where each dimension is a latent factor that encodes
some information about the word (Mikolov et al., 2013b,a). They provide the advantage
of some mitigation to the challenge of the curse of dimensionality (Bengio et al., 2003).
Word2Vec is a shallow linear example of distributed representation. It trains quickly
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and has two arhcitectures for training: continuous Bag-of-Words (CBoW) and continu-
ous Skip-gram, as depicted in Figure 3.1 (Mikolov et al., 2013b,a). Joulin et al. (2016)
introduced fastText, which is an extension of word2vec. Subword vectors in fastText
addressed morphology (the structure of words) by treating each word as the sum of a
bag of character n-grams (Bojanowski et al., 2017), thereby addressing out-of-vocabulary
(OOV) words by building vectors for words that are not in the training data (Bojanowski
et al., 2017). The n-gram method differs and achieves less significant results when com-
pared with the NN method (Bengio et al., 2003). Improving the results of NLP tasks
using NN can involve the introduction of a-priori knowledge (Bengio et al., 2003). Such
knowledge may include semantic information from WordNet and grammatical informa-
tion from PoS. Indeed, the distributional context does not need to be textual alone. Texts
are often illustrated with images and some approaches combine these, representing an
image as a bag of keypoint features, giving rise to mixed visual and textual dimensions
(Erk, 2012).

Table 3.2: Example of one-hot encoding
1 2 3 4 5 6 7 8

pat 1 0 0 0 0 0 0 0
let 0 1 0 0 0 0 0 0
the 0 0 1 0 0 0 0 0
cat 0 0 0 1 0 0 0 0
out 0 0 0 0 1 0 0 0
of 0 0 0 0 0 1 0 0
the 0 0 0 0 0 0 1 0
bag 0 0 0 0 0 0 0 1

Table 3.3: Example of low-dimensional, distributed representation
1 2 3 4

pat 0.023 0.011 -0.013 0.201
let 0.11 -0.23 0.132 -0.221
the 0.312 0.033 0.078 0.091
cat -0.165 0.099 0.076 0.045
out 0.088 0.109 0.076 0.023
of 0.156 -0.066 0.231 0.002
bag 0.002 0.014 -0.055 0.311

The continuous Skip-gram architecture selects pairs of target (or center) and context
words and trains to predict whether the context word appears in the context window of
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the center word through an unsupervised process. An embedding layer is then added
to serve as a lookup table. A similarity score that uses the dot product operator is
calculated between the one-hot encoded context and center words. Negative sampling
(Gutmann and Hyvärinen, 2012) is then applied, such that (center, context) pairs that
do not occur in the sentences are assigned low similarity scores. The continuous Skip-
gram is expressed in Equation 3.4 formally (Mikolov et al., 2013b), where the aim is to
maximise the average log probability; the context size and center word are given by c and
wt, respectively. The other architecture, CBoW, considers simultaneously all words (or
subwords) on both sides of the center word and trains to predict the center word (Mikolov
et al., 2013a). The mean (or sum or any form of merger) of the context embedding is
calculated and a softmax activation is attached for selecting the one-hot encoded context
word (Mikolov et al., 2013b). The hierarchical softmax (Morin and Bengio, 2005) is
an alternative function that may be applied, instead of negative sampling, to either
of the architectures in word2vec. Additionally, subsampling of frequent words may be
used to counter imbalance of rare and frequent words (Mikolov et al., 2013a). Another
distributed representation: Glove, introduced by Pennington et al. (2014a), combines
global matrix factorisation and local context window by training on non-zero elements
of the co-occurrence matrix instead of the entire document.

Figure 3.1: The CBoW and continuous Skip-gram model architectures (Mikolov et al., 2013a)

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt) (3.4)
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3.3 Experiments & Evaluation: Shallow neural net-
work (NN)

Levy et al. (2015) argued that choices about certain system design and hyperparameter
optimisations are responsible for the differences that have been observed in the perfor-
mance of word embeddings between NN-based and count-based (BoW) methods. This
suggests that the choice of the combination of hyperparameters has significant impact
on the performance of a given model. Also, Mikolov et al. (2013b) explained that the
choice of hyperparameters is task-specific, as different tasks perform well under differ-
ent combination of hyperparameters (Zhuang et al., 2021). The model architecture, the
training window, subsampling rate and the dimension size of the vector were considered
as the most important in their work. In order to explore the role of hyperparameters
for word2vec embeddings, we conducted different sets of experiments with the following
setup (Adewumi et al., 2022d). The Gensim (3.8.1) (Řehůřek and Sojka, 2010) Python
(3.6.9) library implementation of word2vec was utilised to create word embeddings and
to evaluate them on the analogy test sets. It should be noted that Faruqui et al. (2016)
explains that there are problems with evaluation of embeddings by using word similarity
tasks, which are part of analogy test. One of the problems is overfitting, which large
datasets tend to alleviate (Stevens et al., 2020).

Multiple runs were conducted for some of the embeddings to validate if there is any
significant difference in the evaluations between the runs, as it was prohibitively time-
consuming to run every model multiple times. This is because the Python library takes
several hours, on average, for most of the embeddings, given that it’s an interpreted lan-
guage (Adewumi, 2018). The Python implementation is slower than the original word2vec
implementation. Raffel et al. (2020) made a similar assumption in their experiments be-
cause of the prohibitive cost of running experiments for each of their variant models
multiple times. We extended work on embedding size to 3,000 dimensions and epochs
of 5 and 10 (Adewumi et al., 2022d). Words with frequency less than 5 times in the
datasets were dropped to form the vocabulary for the embeddings and stop words were
also removed using the natural language toolkit (NLTK) (Bird et al., 2009).

In a second setup, the fastText original implementation in C++ was utilised (Grave
et al., 2018). Although the programming language of this second setup was faster, the size
of the datasets in this setup are still large, so a few hours were also needed to train each
embedding. Hence, a similar approach in the first setup was adopted. The analogy test
set by Mikolov et al. (2013b) is used to evaluate the embeddings, in a reasoning task, by
running the evaluations in Gensim (3.8.1). It contains semantic and syntactic similarity
tasks (Mikolov et al., 2013a). This is in addition to the WordSimilarity-353 (with Spear-
man correlation) by Finkelstein et al. (2002). The Swedish embeddings were evaluated
using the same programs and the Swedish analogy test set (Adewumi et al., 2020c,b).
Certain default hyperparameter settings were retained, as described by Bojanowski et al.
(2017). In a third experimental setup (Adewumi et al., 2020b), involving the compari-
son of Swedish embeddings from two different corpora: the Swedish Wikipedia and the
Gigaword corpora, the embeddings have 300 dimensions and are trained for 10 epochs.
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Pytorch framework was used for the downstream tasks. As discussed in the previ-
ous chapter, data shuffling is carried out for the downstream tasks and the split ratio
is 70:15:15 for the training, dev, and test sets, respectively. Multiple runs (four) per
experiment are conducted and the averages taken. Given that a definite, useful evalua-
tion of embeddings is best done when used for relevant downstream tasks (Chiu et al.,
2016; Faruqui et al., 2016; Faruqui and Dyer, 2014; Lu et al., 2015; Gatt and Krahmer,
2018), two tasks are selected: NER and SA. The LSTM and the biLSTM are used for
the tasks of NER and SA, respectively. These are depicted in Figures 3.2 and 3.3. The
downstream experiments were run on a Tesla GPU on a shared DGX cluster running
Ubuntu 18 while the embeddings are trained on a shared cluster running Ubuntu 16 with
32 CPU cores of 32x Intel Xeon 4110 at 2.1GHz. The biLSTM architecture includes
an additional hidden linear layer before the output layer, when compared to the LSTM
architecture that is used. Adam optimiser is utilised and a batch size of 64.

Datasets

The 2019 English Wiki news abstract of about 15M by Wikipedia (2019c), the 2019
English Simple Wiki (SW) articles of about 711M by Wikipedia (2019d) and the Billion
Word (BW) corpus of 3.9G by Chelba et al. (2013) are used to train the models to create
the embeddings in the first experimental setup. In other work, examples of training data
that have been used in generating word embeddings include Google News (Mikolov et al.,
2013a), Common Crawl, Gigaword (Mikolov et al., 2018; Pennington et al., 2014b) and
Wikipedia (Bojanowski et al., 2017). The English Wikipedia in the second experimental
setup is the 2019 Wikipedia dump of 27G (4.86B tokens) after preprocessing (Wikipedia,
2019a). The benchmark corpus, IMDB, by Maas et al. (2011) is used for SA. The original
training set is what was available with the ground truth. from the data source. The set
has 25,000 sentences with half having positive sentiments and the other half having
negative sentiments. The Groningen Meaning Bank (GMB) by Bos et al. (2017) is used
for NER. It contains 47,959 samples and 17 unique labels.

The Swedish Gigaword corpus that is used in the third experimental setup was gener-
ated as described by Rødven Eide et al. (2016) and theWikipedia corpus was preprocessed
using the script by Grave et al. (2018). The Gigaword corpus contains Wikipedia, among
other sources, but appears to be limited to the science genre and year 2015 (Rødven Eide
et al., 2016). The Wikipedia corpus that is compared in this experimental setup is the
full version (containing all genres), serving as a kind of ablation study. It covers topics,
including those of the Swedish Gigaword corpus, and in addition, entertainment, art,
politics, and more, and spans several years. The recommended script that is used to
preprocess the Wikipedia corpus returned all text as lowercase and did not retain non-
ascii characters, which distorted some of the Swedish words. Apparently, the script is
only best for English data. Despite this noise in the preprocessed data, a portion of it
was tested for coherence on Google Translate and the English translation returned was
largely meaningful. It appears the noise issue was not serious enough to adversely affect
the models created. A better alternative, however, would have been to test the Swedish
corpus as is (despite portions of English content) or use another Swedish Wikipedia cor-
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Figure 3.2: Network architecture for NER

Figure 3.3: Network architecture for SA (Adewumi et al., 2022d).

pus that retained the peculiarities of the language, even after preprocessing. Hengchen
and Tahmasebi (2021) produced such data at a later point when they introduced the
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Supersim evaluation dataset for Swedish. The Gigaword corpus has a file size of 5.9G
and contains 1.08B tokens while the Swedish Wikipedia has a file size of 4.2G and con-
tains 767M tokens (Wikipedia, 2019b). They were pre-processed using the recommended
script by Grave et al. (2018).

The cleaned 2020 Yorùbá Wikipedia dump (182M) (Wikipedia, 2020) containing di-
acritics (tonal marks) to different degrees across the articles and a normalised (undia-
critised) version is used in the fourth experimental setup (Adewumi et al., 2020a). In
addtion, the largest, diacritised data used by Alabi et al. (2020) is used to compare the
performance of embeddings in this work. The original Yorùbá Wikipedia dump was very
unsuitable for training and required large manual cleanup. We also created two Yorùbá
analogy test sets: one with diacritics and an exact copy without diacritics Adewumi et al.
(2020a). Evaluation is done with only the diacritised version of the analogy set and the
Yorùbá WordSim by Alabi et al. (2020). Performance on the Yorùbá analogy test sets
were very poor and may not be very important.

3.3.1 Hyperparameter exploration for word2vec

We chose grid search to explore the hyperparameters, based on the literature (Mikolov
et al., 2013b). The hyperparameters are given in Table 3.4. Eighty runs per dataset were
conducted for the Wiki news abstract and the Simple Wiki. Experiments for all combi-
nations for 300 dimensions were conducted on the Billion Word corpus, plus additional
runs for the window size 8 + Skip-gram (s1) + hierarchical softmax (h1) combination.
This is to establish the behaviour of quality of word vectors as dimensions are increased
without increasing the data size. Table 3.5 shows the hyperparameter choices for the
two networks for the downstream tasks. The metrics for extrinsic evaluation include F1,
precision, recall and accuracy (for SA).

Table 3.4: Embeddings hyperparameter choices (Adewumi et al., 2022d). (notations based on
Gensim library convention)

Hyper-parameter Values
Dimension size 300, 1200, 1800, 2400, 3000
Window size (w) 4, 8
Architecture Skipgram (s1), CBoW (s0)
Algorithm H. Softmax (h1), N. Sampling (h0)
Epochs 5, 10

Results show a major advantage of training with relatively smaller corpora, as de-
picted in Table 3.6. The training time and average loading time for our embeddings
into the downstream model are considerably shorter. This is representative of similar
embeddings. The Gensim WordSim output file always has more than one evaluation
score reported, including the Spearman correlation, as given in Table 3.7. The first value
from the program is a cosine similarity variant and is reported as WordSim score1 in
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Table 3.5: Downstream network hyperparameters (Adewumi et al., 2022d).
Archi Epochs Hidden Dim LR Loss
LSTM 40 128 0.01 Cross Entropy
BiLSTM 20 128 * 2 0.0001 BCELoss

the above-mentioned table. It summarises results from the intrinsic evaluations for 300
dimensions. The smallest dataset (Wiki news abstract) results are so poor that they are
not required. This outcome should be because of the tiny file size (15M).

Table 3.6: Embedding training & loading time (Adewumi et al., 2022d). (w: window size, s1:
skipgram, h1: hierarchical softmax, h0: negative sampling)

Model Training (hours) Loading Time (s)
SW w8s1h0 5.44 1.93
BW w8s1h1 27.22 4.89

GoogleNews (Mikolov et al., 2013a) NA 97.73

As can be observed from Table 3.7, the combination of skipgram-negative sampling
(s1h0) generally performs better. The embedding by Mikolov et al. (2013a) achieves the
highest analogy score, however, the skipgram-negative sampling embedding of window
size 8 of the SW achieves the highest WordSim score1 and Spearman correlation. It is
noteworthy that the GoogleNews embedding is based on a vocabulary size of 3M, a large
figure when compared to recent SoTA embeddings (Devlin et al., 2018a). The SW has a
vocabulary size of 368K while the BW has 469K. Figure 3.4 gives similar trend for the
two datasets depicted, SW and BW, where scores improve but start to drop after over
300 dimensions. This observation is true for all the combinations and is also confirmed
by Mikolov et al. (2013a).

For the downstream tasks, comparable performance in accuracy is achieved in SA
to that by Maas et al. (2011), though less than half of the dataset for training is used.
Notably also, evaluation is on a smaller different size. Tables 3.8 and 3.9 summarise key
results for the NER and SA tasks, respectively. The BW Skip-gram-negative sampling
(w4s1h0) embedding performs best in F1 score for the NER task. Interestingly, the same
embedding has the best analogy score among the models generated. The default Pytorch
embedding trails behind most of the pretrained embeddings by a small amount. However,
it outperforms the pretrained embeddings in accuracy and F1 scores in the SA task. The
CBoW-negative sampling of the SW performs relatively well in both the downstream
tasks. For power of 1 and alpha of 0.05, significance tests of the difference of two means
of the two-sample t-test for the F1 scores give p-values < 0.0001 in the two cases, i.e.,
the 100B and the skipgram-negative sampling (w4s1h0) of the BW embedding for NER,
and the CBoW-negative sampling (w8s0h0) for the SW for SA.
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Table 3.7: Scores for 300 dimensions for 10 epochs for SW, BW & GoogleNews corpora
(Adewumi et al., 2022d). (w: window size, s1: skipgram, s0: CBoW, h1: hierarchical softmax,
h0: negative sampling | notations are based on the Gensim convention)

w8s1h1 w8s0h1 w8s0h0 w8s1h0 w4s1h1 w4s0h1 w4s0h0 w4s1h0
Simple Wiki (SW)

Analogy 0.461 0.269 0.502 0.439 0.446 0.243 0.478 0.407
WordSim score1 0.636 0.611 0.654 0.655 0.635 0.608 0.620 0.635

Spearman 0.670 0.648 0.667 0.695 0.668 0.648 0.629 0.682
Billion Word (BW)

Analogy 0.587 0.376 0.638 0.681 0.556 0.363 0.629 0.684
WordSim score1 0.614 0.511 0.599 0.644 0.593 0.508 0.597 0.635

Spearman 0.653 0.535 0.618 0.681 0.629 0.527 0.615 0.677
GoogleNews - 100B (s1h0)

Analogy: 0.740 WordSim score1: 0.624 Spearman: 0.659

Figure 3.4: Analogy Scores for Skip-gram-hierarchical softmax (w4s1h1) of SW for 5 Epochs &
Skip-gram-hierarchical softmax (w8s1h1) of BW for 10 epochs (Adewumi et al., 2022d). (not
drawn to scale from 400)

3.3.2 Swedish embeddings and the analogy set

Section 2.2 discusses the Swedish analogy test set in detail. The unavailability of such
a set (Fallgren et al., 2016; Précenth, 2019), which is similar to the English set by
Mikolov et al. (2013b), motivated the creation of one (Adewumi et al., 2020c). From
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Table 3.8: NER Dev & Test sets Mean Results (Adewumi et al., 2022d). (w: window size, s1:
skipgram, s0: CBoW, h0: negative sampling)

Metric Default 100B w8 s0 h0 w8 s1 h0 BW w4 s1 h0
Dev, Test Dev, Test Dev, Test Dev, Test Dev, Test

F1 0.661, 0.661 0.679, 0.676 0.668, 0.669 0.583, 0.676 0.679, 0.677
Precision 0.609, 0.608 0.646, 0.642 0.636, 0.637 0.553, 0.642 0.644, 0.642
Recall 0.723, 0.724 0.716, 0.714 0.704, 0.706 0.618, 0.715 0.717, 0.717

Table 3.9: SA Dev & Test sets Mean Results (Adewumi et al., 2022d). (w: window size, s1:
skipgram, s0: CBoW, h0: negative sampling)
Metric Default 100B w8 s0 h0 w8 s1 h0 BW w4 s1 h0

Dev, Test Dev, Test Dev, Test Dev, Test Dev, Test
F1 0.810, 0.805 0.384, 0.386 0.798, 0.799 0.548, 0.553 0.498, 0.390

Precision 0.805, 0.795 0.6, 0.603 0.814, 0.811 0.510, 0.524 0.535, 0.533
Recall 0.818, 0.816 0.303, 0.303 0.788, 0.792 0.717, 0.723 0.592, 0.386

Accuracy 0.807, 0.804 0.549, 0.55 0.801, 0.802 0.519, 0.522 0.519, 0.517

Tables 3.10 and 3.11, we notice the good performance of the Skip-gram-negative sam-
pling embeddings in all (English & Swedish) but one case. Again, this confirms previous
work (Mikolov et al., 2013a). Notable is the higher performance of the CBoW-negative
sampling embedding compared to the GoogleNews-based embedding by Mikolov et al.
(2013a), though the earlier is from a smaller corpus. The subword embedding by Grave
et al. (2018) has the highest performance overall.

Table 3.10: Skip-gram English & Swedish intrinsic scores (Adewumi et al., 2020c). (highest score
in bold). H.S.: hierarchical softmax; N. S.: negative sampling

Skip-gram (s1)
H. S. (h1) N. S. (h0)

window (w) 4 8 4 8
Subword %

Analogy 62.6 58.8 74.4 69.8
WordSim score1 64.8 66.3 69.9 70

Spearman 67.6 69.4 74.3 73.6
Word2Vec %

Analogy 61.3 58.3 73.5 70.4
WordSim score1 66.3 67.3 69.6 70.1

Spearman 70 70.9 74.5 74.7
Swedish

Subword % 45.05 39.99 53.53 53.36
Word2Vec % 45.53 41.21 58.25 57.30
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Table 3.11: CBoW English & Swedish intrinsic scores (Adewumi et al., 2020c). (highest score in
bold). H.S.: hierarchical softmax; N. S.: negative sampling; Gr: (Grave et al., 2018), GN: Google News
(Mikolov et al., 2013a)

CBoW (s0)
H. S. (h1) N. S. (h0) Gr GN

window (w) 4 8 4 8
Subword %

Analogy 67.2 68.7 71.6 71 82.6
WordSim score1 62.6 66.2 47.3 51.1 68.5

Spearman 65.3 70.3 45.3 49.5 70.2
Word2Vec %

Analogy 59.7 61.9 76.2 75.4 74
WordSim score1 64.1 66.7 65.4 67.5 62.4

Spearman 68.2 71.2 66.9 69.4 65.9
Swedish

Subword % 26.5 23.93 36.79 35.89 60.9
Word2Vec % 28.02 28.04 52.81 55.64

The results from comparing the Swedish Gigaword and Wikipedia corpora are pre-
sented in Tables 3.12 and 3.13 for the initial learning rates of 0.05 and 0.01, respec-
tively. The Skip-gram-negative sampling combination for both corpora for subword and
word2vec models have the best scores in most cases. No value is recorded for the Giga-
word CBoW-hierarchical softmax with the initial LR of 0.05 because the program fails
several times, as it reports Encountered NaN error. The highest score (of 60.38%) from
both tables belongs to the word2vec embedding of the Wikipedia corpus while the low-
est (of 2.59%), belongs to the CBoW-hierarchical softmax, subword embedding of the
Gigaword corpus. The better performance of the Wikipedia corpus, despite its noise, we
conjecture may be due to the wider genre/topic coverage (or balance in domains), the
relatively small noise in the corpus or the combination of both. Nearest neighbour qual-
itative assessment of the Skip-gram-negative sampling subword embedding is presented
in Section 3.14.

We further show in experiments with the Yorùbá language that embeddings from
the undiacritised Wikipedia (U_Wiki) outperforms C3 by Alabi et al. (2020), giving the
highest WordSim score & corresponding Spearman correlation, as indicated in Tables 3.15
and 3.16 (Adewumi et al., 2020a). Wiki, U_Wiki, C3 & CC, represent embeddings from
the cleaned Wikipedia dump, the undiacritised version, the diacritised data from Alabi
et al. (2020), and the Common Crawl embedding by Grave et al. (2018), respectively.
The negative effect of noise, from the original data, in the Wiki word2vec embedding
appears to reduce in the subword version in Table 3.16.
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Table 3.12: Mean Analogy Scores for Swedish Gigaword & Wikipedia Corpora with LR=0.05
(Adewumi et al., 2020b).

Skipgram (s1) CBoW (s0)
H. S. (h1) N. S. (h0) H. S. (h1) N. S. (h0)

window (w) 4 8 4 8 4 8 4 8
Word2Vec %

Wikipedia 47.02 44.09 60.38 60.38 29.09 30.09 54.39 56.81
Gigaword 40.26 44.23 55.79 55.21 26.23 27.82 55.2 55.81

Subword %
Wikipedia 46.65 45.8 56.51 56.36 28.07 24.95 38.26 35.92
Gigaword 41.37 44.7 58.31 56.28 2.59 - 46.81 46.39

Table 3.13: Analogy Scores for Swedish Gigaword & Wikipedia Corpora with LR=0.01 (Adewumi
et al., 2020b).

Skipgram (s1) CBoW (s0)
H. S. (h1) N. S. (h0) H. S. (h1) N. S. (h0)

window (w) 4 8 4 8 4 8 4 8
Word2Vec %

Wikipedia 48.92 49.01 51.71 53.48 32.36 33.92 47.05 49.76
Gigaword 39.12 43.06 48.32 49.96 28.89 31.19 44.91 48.02

Subword %
Wikipedia 45.16 46.82 35.91 43.26 22.36 21.1 14.31 14.45
Gigaword 39.13 43.65 45.51 49.1 31.67 35.07 28.34 28.38

3.4 Contextual vs non-contextual representation

Researchers have criticised the VSM (Budanitsky and Hirst, 2001; French and Labiouse,
2002; Turney and Pantel, 2010). The main criticism is that they largely ignore word
order; for example, the words rock and solid in "rock solid" and "solid rock" will be
individually represented with the same vectors, even though the phrases are different in
meaning (Turney and Pantel, 2010). Another problem, according to French and Labiouse
(2002), is the absence of essential world knowledge. Contextual word representations,
which are derived from deep bidirectional language model (LM) have demonstrated sig-
nificant improvement by capturing contextual semantic structures that outperform word
embeddings, thereby improving the SoTA (Peters et al., 2018b). They differ from non-
contextual embeddings because each token is assigned a representation that is a function
of the entire input sentence, instead of a context window (Peters et al., 2018a). An LM is
a probability distribution over a sequence of tokens (Liu et al., 2020a). Language models
that achieve SoTA first produce context-insensitive token representation, producing an
embedding lookup. Context-dependent representations are then computed afterwards
(Peters et al., 2018b).

There are many models that use contextual representation. Embeddings from Lan-
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Table 3.14: Example qualitative assessment of Swedish Skip-gram-negative sampling (w4s1h0)
subword embedding (Adewumi et al., 2020b).

Nearest Neighbor Result
Wiki: syster systerdotter (0.8521), systern (0.8359), ..

Gigaword: syster systerdotter (0.8321), systerdottern (0.8021), ..

Table 3.15: Yorùbá word2vec embeddings intrinsic scores (%) (Adewumi et al., 2020a).
Data Vocab Analogy WordSim Spearman
Wiki 275,356 0.65 26.0 24.36
U_Wiki 269,915 0.8 86.79 90
C3 31,412 0.73 37.77 37.83

Table 3.16: Yorùbá subword embeddings intrinsic scores (%) (Adewumi et al., 2020b).
Data Vocab Analogy WordSim Spearman
Wiki 275,356 0 45.95 44.79
U_Wiki 269,915 0 72.65 60
C3 31,412 0.18 39.26 38.69
CC 151,125 4.87 16.02 9.66

guage Models (ELMo) (Peters et al., 2018a), Generative Pre-trained Transformer (GPT)-
2, and Text-to-Text Transfer Transformer (T5) (Raffel et al., 2019), Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2018a), and its many succes-
sors like Robustly optimized BERT pretraining Approach (RoBERTa) (Zhuang et al.,
2021) are just some of them. Specifically, ELMo is a deep contextualised representation
that models complex (syntactic and semantic) characteristics of word use, and how they
vary in different contexts. ELMo representations are a function of all of the internal
layers of the biLM, making them deep, just as it is with BERT and many recent SoTA
models. Usually, in these pretrained contextualised models, the higher-level states (or
upper layers) of the model capture context-dependent aspects of word meaning while
lower-level states model aspects of syntax. Simultaneously exposing all of these signals
is highly beneficial (Peters et al., 2018a; Devlin et al., 2018a). Compared to BERT,
ELMo might be considered shallow. The BERT model, which is based on the encoder
stack of the Transformer architecture, is a bidirectional pretrained model from unlabeled
text. The Transformer is an encoder-decoder architecture based solely on the attention
mechanism (Vaswani et al., 2017). Its architecture is depicted in Figure 3.5. BERT
was pretrained by jointly conditioning on the left and right context in all the layers of
the model (Devlin et al., 2018a). It is based on the WordPiece embedding. The input
representation for a token is constructed by summing the corresponding token, segment,
and position embeddings. The depiction is given in Figure 3.6. (Devlin et al., 2018a)

The encoder of the original Transformer has a stack of 6 identical layers, with 2 sub-
layers in each. A mulit-head self-attention and a fully connected feed-forward network
occupy the first and second sub-layers, respectively. Additional structures complete the
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Figure 3.5: The Transformer architecture by Vaswani et al. (2017)

encoder. The decoder is very similar to the encoder but it has a third sub-layer that
performs multi-head attention over the output from the encoder. Masking is added to
the first sub-layer’s attention to prevent positions from attending to subsequent position
(Vaswani et al., 2017). Positional encoding to the input is needed by the Transformer
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Figure 3.6: BERT input representations, which are the sum of the token embeddings, the seg-
mentation embeddings, and the position embeddings (Devlin et al., 2018a).

at the initial points of both the encoder and decoder stacks because the model has no
recurrence or convolution, which are useful for the order of sequence of input (Vaswani
et al., 2017).

Three common encoding algorithms in recent SoTA LM are WordPiece (Schuster and
Nakajima, 2012), BPE (Gage, 1994; Sennrich et al., 2016), and sentencepiece (Kudo and
Richardson, 2018). WordPiece is similar to BPE and sentencepiece incorporates BPE.
WordPiece initialises the vocabulary so that it includes all the characters present in the
training data and learns a number of merge rules progressively (Schuster and Nakajima,
2012). It runs a greedy algorithm and chooses the symbol pair that maximises the
likelihood of the training data in the vocabulary. BPE compresses by segmenting rare
words into more commonly appearing subwords. Common pairs of adjacent bytes are
replaced by single bytes that is not in the original data. The process is repeated until
there is no further compression possible. Its expansion routine is fast and it’s not memory
intensive, usually. The original algorithm was unable to handle large files that are too big
to fit into memory (Gage, 1994; Radford et al., 2019). Sennrich et al. (2016) introduced
an improvement to the original BPE algorithm. Instead of merging pairs of bytes, they
merge characters, thereby encoding rare or unknown words as sequences of subword units.
Each word is represented as a sequence of characters. This version of BPE is used in
sentencepiece. Sentencepiece is an unsupervised tokeniser/detokeniser for text-generation
NN systems, such as DialoGPT, where the size of the vocabulary is determined before
training (Kudo and Richardson, 2018).

Using contextual embeddings

Contextual embeddings are useful for downstream tasks in NLP. The three main ways
they may be used are feature-extraction methods, finetuning, and adapter methods (Liu
et al., 2020a). ELMo is based on feature-extraction. It freezes the weights and forms a
linear combination of the representations, which is then used as features for task-specific
architectures (Liu et al., 2020a). Peters et al. (2018a) found that using ELMo at the
output of the model, besides being input at the initial layer, in task-specific architectures
improves results in some tasks. Devlin et al. (2018a) also compared this approach to
finetuning by supplying the contextual embeddings to a randomly initialised two-layer
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biLSTM bfore the classification layer. Finetuning starts with the pretrained contextual
weights of the model and makes small adjustments to them to specialise them to specific
tasks. Usually, a linear layer is added on top of the pretrained model in the finetuning
process (Devlin et al., 2018a; Liu et al., 2020a). Adapters are modules added between
layers of a pretrained model, whose weights are fixed, with a multi-task learning objective
(Houlsby et al., 2019; Liu et al., 2020a; Raffel et al., 2020). The adapter modules are
tuned, adding only few parameters per task, unlike the usual 100% weight adjustment
for finetuning.

3.5 Experiments & Evaluation: Named Entity Recog-
nition (NER) for African languages

We investigated the performance of deep NNs for NER on various low-resource African
languages (Adelani et al., 2021). The languages are Ahmaric, Hausa, Igbo, Kinyarwanda,
Luganda, Luo, Nigerian-Pidgin English, Swahili, Wolof, and Yorùbá. Some of the lan-
guages are further discussed in Section 5.1. The languages were selected primarily because
of the availability and willingness of collaborators who annotated data. Characteristics
of some of the languages that could pose challenges for systems developed for English
include diacritics (or tonal marks) and the use of non-latin characters. The experimental
setup for NER for the ten languages involved sourcing data from online news websites and
recruiting collaborators to annotate the data. There were 2 to 6 annotators/language,
who are native/L1 speakers, and IAA is calculated per language. Each language has
about 2,500 labelled sentences on average. The Hausa language, from Table 3.17, had
the best F1 score of 91.64 and the XLM-R has the best overall performance as a model.

Table 3.17: Transfer Learning average F1 Results over 5 runs. 3 Tags: PER, ORG & LOC.
WikiAnn, eng-CoNLL, and the annotated datasets are trained for 50 epochs while fine-tuning
is for 10 epochs. Highest score/language is in bold, and the best score in zero-shot setting is
indicated with an asterisk (*) (Adelani et al., 2021).
Method amh hau ibo kin lug luo pcm swa wol yor
XLM-R-base 69.71 91.03 86.16 73.76 80.51 75.81 86.87 88.65 69.56 78.05
WikiAnn zero-shot 27.68 – 21.90 9.56 – – – 36.91 – 10.42
eng-CoNLL zero-shot – 67.52 47.71 38.17 39.45 34.19 67.27 76.40 24.33 39.04
pcm zero-shot – 63.71 42.69 40.99 43.50 33.12 – 72.84 25.37 35.16
swa zero-shot – 85.35* 55.37 58.44 57.65* 42.88* 72.87* – 41.70 57.87*
hau zero-shot – – 58.41* 59.10* 59.78 42.81 70.74 83.19* 42.81* 55.97
WikiAnn + finetune 70.92 – 85.24 72.84 – – – 87.90 – 76.78
eng-CoNLL + finetune – 89.73 85.10 71.55 77.34 73.92 84.05 87.59 68.11 75.77
pcm + finetune – 90.78 86.42 71.69 79.72 75.56 – 87.62 67.21 78.29
swa + finetune – 91.50 87.11 74.84 80.21 74.49 86.74 – 68.47 80.68
hau + finetune – – 86.84 74.22 80.56 75.55 88.03 87.92 70.20 79.44
combined East Langs. – – – 75.65 81.10 77.56 – 88.15 – –
combined West Langs. – 90.88 87.06 – – – 87.21 – 69.70 80.68
combined 9 Langs. – 91.64 87.94 75.46 81.29 78.12 88.12 88.10 69.84 80.59
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The models trained are CNN-biLSTM-CRF, mBERT, and XLM-R. The latter two
models are based on pretrained models from the HuggingFace hub (Wolf et al., 2020).
Additional techniques employed in the study involves combining XLM-R and gazetteers,
cross-lingual transfer learning (from English, using the CoNLL-2003 dataset by Aggarwal
and Zhai (2012), and Swahili), and the use of the cross-lingual WikiAnn dataset (Pan
et al., 2017). A gazetteer is an index that typically contains geographical information
(or place-names) and social statistics and is used in conjunction with a map (Grover
and Tobin, 2014). Language-specific finetuning of BERT and XLM-R on unlabelled
data is also done for each of the languages, thereby providing additional performance
improvements when compared with mainly finetuning mBERT and XLM-R, respectively.
It was observed from the study that the pretrained models have reasonable performance
on languages that they were not pretrained on but showed better performance if the
language was part of the pretrained languages. Also, across all the languages, it is
observed that entities that were not in the training data and those which are three-word
entities or more were challenging for the models.



Chapter 4

Open-Domain Conversational
Systems

“Garbage in, garbage out, that’s the way codes
go."

(Parallelism)

In the West African folktale by Medearis (1995), objects like yam, cloth, water, and a
royal throne spoke to humans. The people to whom the objects spoke were so shocked
that they nearly jumped out of their skin. This story might be unrealistic. However,
metal boxes or handheld devices having conversations with humans is becoming more
ubiquitous. Conversational systems may be classified on the basis of architecture into
frame-based, rule-based and data-driven approaches (Jurafsky and Martin, 2020). They
may also be classified on the basis of their goal into task-based and open-domain ap-
proaches (Hosseini-Asl et al., 2020).

This chapter is organised as follows. First, Section 4.1 discusses the characteristics of
human dialogues before discussing open-domain versus task-based conversational systems
in Section 4.2. Deep models for open-domain conversational systems are introduced in
Section 4.3 before looking at measuring progress of conversational systems in Section 4.4.
The following Sections 4.5 and 4.6 then take a look at metaphors in chatbots and exper-
iments & evaluation, respectively, before closing with ethics of developing conversational
systems.

4.1 Characteristics of human dialogues

Human dialogues can be complex (Jurafsky and Martin, 2020). We do not only con-
verse using speech but we use gestures and facial expressions, usually called body lan-
guage. Even when we write during conversations, we may employ cues such as confirma-
tory/clarification questions or mimick sound in what is called onomatopoeia. Clarifica-
tion questions for confirmation are particularly useful in task-based systems before filling
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slots or deciding intents (Jurafsky and Martin, 2020). An example of human-human
conversation from the training set of the MultiWOZ dataset is shown in Figure 4.1. The
conversation covers the domains of booking a hotel. It shows turns of a conversation,
where a turn is each single contribution to the conversation from a speaker (Schegloff,
1968; Jurafsky and Martin, 2020). There are a total of 10 turns in the figure. It will be
observed that a turn can have more than one sentence. The turns may also be called
utterances or dialogue acts (Jurafsky and Martin, 2020).

Figure 4.1: Conversation from the training set of the MultiWOZ dataset

Humans learn over time when the other converser (or speaker) in a dialogue may
have paused, stopped (called endpointing) or might be making a correction (Jurafsky
and Martin, 2020). Grounding is the useful feedback that one party in a conversation
understood the other’s utterance. It is how humans acknowledge the other party’s utter-
ance in a conversation. In human-human conversation, grounding may be indicated by
"ok" or "I see" in responses by the hearer. Conversational systems need to understand
these also. For example, in Figure 4.1, the 4th turn in the conversation responds to the
first speaker with “I sure can. First, ...". The first sentence in the response is the ground-
ing that indicates to the first speaker that the second speaker understood the request for
reservation.

It is important to realise that a conversation is not a collection of independent turns
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but connected utterances. An exemption to this intuition was made when the assump-
tion for training on the PIE-English idioms corpus was introduced and the corpus is used
for training conversational models in Section 4.6. This assumption holds, in this case,
because the sentences of the turns in the dataset discuss the same cases of idioms (or
"domain"), even though the sentences are drawn from different examples from the base
corpora: the BNC1 and UKWaC (Ferraresi et al., 2008). This is further discussed in
Section 4.5. Good examples of connected utterances are adjacency pairs, which are com-
posed of first and second pair parts (Sacks et al., 1978). Examples of adjacency pairs are
question-answer turns, compliment-appreciation turns, and proposal-acceptance turns.
Furthermore, conversations do not always follow a predefined manner; side sequence or
sub-dialogue within an ongoing dialogue may arise (Jurafsky and Martin, 2020). In ad-
dition, humans may also introduce new topics (or domain) in an ongoing conversation,
which may change the direction of the conversation altogether. According to Sacks et al.
(1978), the following are some of the observations in any human conversation.

• One party talks per time.

• Turn order varies.

• Turn size varies (Schegloff, 1968).

• Recurring change of speaker. This is when conversers alternate their roles between
listening and speaking.

• Length of conversation is not known in advance.

• The number of participants can vary.

• Turn-allocation techniques may be used.

• Turn-taking errors may be fixed through helpful mechanisms, such as pausing for
the next speaker.

One party may have the conversational initiative in a dialogue. This is the case when
such a party controls the conversation. An example of this is an interview where the
speaker asking the questions directs the conversation. This is the style for QA dialogue
systems. However, in a typical human-human conversation, the initiative shifts back
and forth between parties. Mixed (or rotating) initiative is harder to achieve than when
one side controls the initiative in conversational systems. Designing them as passive
responders is much easier (Jurafsky and Martin, 2020).

1english-corpora.org/bnc
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4.2 Open-domain vs Task-based

A task is a specific piece of work to be accomplished2. Multi-task, therefore, implies
multiple tasks are involved. Open-domain conversation refers to the unrestrained cov-
erage of the topics of conversation (i.e. conversation around many domains or tasks)
(Hosseini-Asl et al., 2020). The topics of conversation for humans can be many and
varied at social events. Task-based (single-domain or closed-domain) systems tend to
be rule-based (Jurafsky and Martin, 2020). Understanding input, deciding actions, and
generating a response are usually the processes involved in task-based conversational sys-
tems (Hosseini-Asl et al., 2020). These processes are similar to what obtains with the
NLU and NLG of open-domain conversational systems (Gehrmann et al., 2021). ELIZA
by Weizenbaum (1969) is an example of a rule-based system. There are other examples
of rule-based systems, such as PARRY (Colby et al., 1971). Such systems are designed
with if-else conditions. Research systems (which are rule-based) consist of hand-crafted
semantic grammars with thousands of rules (Jurafsky and Martin, 2020). The semantic
grammar is a context-free grammar. The rule-based approach is popular in industry and
has the advantage of high precision, however, the rules can be expensive, slow to create,
and suffer from recall problems (Chowdhary, 2020; Jurafsky and Martin, 2020).

Since open-domain conversational systems are usually data-intensive, deep ANNs are
more suitable than rule-based architectures, according to Jurafsky and Martin (2020).
More is discussed about some of the architectures for open-domain conversational sys-
tems or NLG in Section 4.3. Data-driven systems learn inductively from large datasets
of samples of conversations. The data available for such systems include transcripts
of human-human spoken dialogues, such as the Gothenburg Dialogue Corpus (GDC)
(Allwood et al., 2003), written dialogues, such as the MultiWOZ (Eric et al., 2020),
crowdsourced conversations that are written, such as the EmpatheticDialogues (Rashkin
et al., 2019), and social media conversations, such as Reddit3. Since the amount of data
needed for training deep models is generally large, models are usually pretrained on large,
unstructured text or conversations from social media before they are finetuned on spe-
cific conversational data, through transfer learning. The data-driven approach may be
combined with the rule-based approach in a hybrid setting (Jurafsky and Martin, 2020).

4.2.1 Information Retrieval (IR)

One of the two common ways that data-driven conversational systems produce turns as
response is through Information Retrieval (IR) (Jurafsky and Martin, 2020), where the
system fetches information from some fitting corpus, given a dialogue context. Incor-
porating ranking and retrieval capabilities provides additional possibilities for chatbot
response generation. If D is the training set of conversations, given a context (or query)
q, the goal is to retrieve an appropriate turn r as the response. Similarity is used as the
scoring metric and the highest scoring turn in D is selected from a potential set. This

2dictionary.cambridge.org
3reddit.com
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may be achieved using different IR methods, including the classic tf-idf for D and q, and
choosing the response with the highest cosine similarity with q (Jurafsky and Martin,
2020). This is expressed in Equation 4.1. A neural IR method is another approach one
could use. For example, in an encoder-encoder architecture, one could train the first
encoder to encode the query while the second encoder encodes the candidate response
and the score is the dot product between the two vectors from both encoders.

NER facilitates IR, of which Information Extraction (IE) is a subtask (Aggarwal and
Zhai, 2012). It is a main subtask of Information Extraction (IE) and uses tagging and
partial parsing to identify (real-world) entities of interest (Aggarwal and Zhai, 2012;
Indurkhya and Damerau, 2010). These entities are categories that include proper or
special names, such as person, location, organization, date, time, money, percent, facility,
and geo-political entities (Bird et al., 2009; Indurkhya and Damerau, 2010). The other
main subtask of IE is relation extraction (Aggarwal and Zhai, 2012). IE derives meaning
by building structured data from unstructured data. One method is to use triples to
establish the meaningful relationships (Bird et al., 2009).

response(q,D) = argmax
rεD

q.r

|q||r|
(4.1)

4.2.2 Natural Language Generation (NLG)

The other common method for turns as response for data-driven conversational systems is
generation (Jurafsky and Martin, 2020). In this method, an encoder-decoder or language
model is used for response generation, given a dialogue context. As shown in Equation 4.2,
each token of the response (rt) of the encoder-decoder model is generated by conditioning
on the encoding of the query (q) and all the previous responses (rt−1...r1), where w is a
word in the vocabulary V .

rt = argmax
wεV

P (w|q, rt−1...r1) (4.2)

Decoding algorithms

The choice of the decoding algorithm in the encoder-decoder or decoder-only (autore-
gressive) models has a major impact on the performance of the model and the quality
of responses that are generated (Holtzman et al., 2020). The random algorithm is a
stochastic decoding method. The greedy algorithm has a tendency to produce repetitive
and predictable tokens that lead to poor performance and beam search algorithm fairs
better than it (Holtzman et al., 2020; Radford et al., 2019; Raffel et al., 2020). Beam
search uses depth-first search and maintains the top k candidates on a priority queue for
exploration. Both search algorithms are sometimes referred to as maximisation-based
algorithms (Holtzman et al., 2020). Nucleus (or Top-p) sampling samples from the dy-
namic nucleus of tokens with the majority of the probability mass, cutting off the tail
of the distribution that is deemed unreliable (Holtzman et al., 2020). It is a stochastic
decoding scheme and is different from Top-k sampling, which relies on selecting a fixed
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number of tokens (top k) as samples according to their relative probabilities at each
time-step. With nucleus sampling, for a given probability distribution conditioned on
the previous words and the context, the top-p vocabulary is the smallest set V (p) ⊂ V
that satisfies Equation 4.3, where x is the next word and p is the minimum probability.
Figure 4.2 depicts an example of two time-steps in the nucleus sampling method and
Figure 4.3 shows a cherry-picked example of generated text, based on different decoding
algorithms.

∑
xεV (p)

P (x|x1...t−1) ≥ p (4.3)

Figure 4.2: Nucleus (Top-p) sampling example for p = 0.93

In addition to the various decoding algorithms for generation, there are other impor-
tant factors to consider for response generation. Temperature is one of them. This tilts
the distribution towards highly probable samples, thereby lowering the mass in the tail
distribution and controlling the shape of the distribution (Holtzman et al., 2020).
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Figure 4.3: Cherry-picked example of comparison of decoding algorithms when a webtext context
is provided. Red highlights show incoherence while blue highlights show unnecessary repetitions.
Image from Holtzman et al. (2020)

4.3 Deep models for open-domain conversational sys-
tems

An NN is an adaptive and fairly complex system, as described in Section 1.6. Deep
learning uses statistical techniques, based on sample data, for classifying patterns or
making predictions by using NN with multiple layers. For these networks to generalise
well, there must be large enough data, usually, and the test data should be similar to
the training data, so that appropriate interpolation can be achieved (Marcus, 2018).
Models based on reinforcement learning (RL) or adversarial networks are also used in
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the development of conversational systems (Adiwardana et al., 2020; Chowdhary, 2020;
Jurafsky and Martin, 2020), however, our attention here will be on common models based
on the encoder-decoder architecture or one of its stacks, usually the decoder. RL systems
use rewards that are given at the end of a successful conversation, to train a policy to
take action. Noteworthy that challenges still exist generally with deep learning models
(Marcus, 2018) and some of them include struggling with open-ended inference, being
data-intensive, requiring so many parameters that may impede transparency, engineering
difficulty, and lack of commonsense reasoning (Bird et al., 2009). Below are some deep
model architectures for open-domain conversational systems.

4.3.1 Encoder-Decoder

The encoder-decoder architecture conditions on the encoding of the queries and responses
up to the last moment in order to generate the next response token (Jurafsky and Martin,
2020). It is common for generating conversations or responses to utterance prompts and
is a sequence-to-sequence (seq2seq) model (Holtzman et al., 2020). A seq2seq model
makes predictions by outputting a probability distribution over possible next response
tokens (Adiwardana et al., 2020). The basic architecture is known for dull, repetitive
responses (Chowdhary, 2020). IR techniques, like concatenation of retrieved sentences
from Wikipedia to the dialogue context, is one way of augmenting the architecture for
refined responses (Jurafsky and Martin, 2020).

Other shortcomings may be addressed by switching the objective function to a mutual
information objective or introducing the beam search decoding algorithm to achieve
relatively more diverse responses (Chowdhary, 2020). Both the encoder and decoder may
use the LSTM (Hochreiter and Schmidhuber, 1997) or Transformer (Vaswani et al., 2017)
as the base architecture. Some processes are basic to the encoder-decoder, regardless
of the underlying architecture that is used. The sequence of words is run through an
embedding layer in the encoder stack, which then compresses the sequence in the dense
feature layer into fixed-length feature vector. The decoder produces a sequence of tokens
after they are passed from the encoder layer. This is then normalised using a Softmax
function, such that the word with the highest probability becomes the output. Attention
(Bahdanau et al., 2015) may be introduced to the model. The attention mechanism
focuses on desired parts of a sequence regardless of where they may appear in the input
and ignores other parts or assigns less weighted average to them (Raffel et al., 2020).

4.3.2 DLGNet

DLGNet was presented by Olabiyi and Mueller (2019). It has a similar architecture as
GPT-2. It is a multi-turn dialogue response generator that was evaluated, using BLEU,
ROUGE, and distinct n-gram, on the Movie Triples and closed-domain Ubuntu Dialogue
datasets. As an autoregressive model, it uses multiple layers of self-attention to map
input sequences to output sequences by shifting the input sequence token one position to
the right so that, at inference, the model uses the previously generated token as additional
input for the next token generation. Instead of modelling the conditional distribution of
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the response, given a context, it models the joint distribution of the context and response.
Two sizes of the model were trained: a 117M-parameter model and the 345M-parameter
model, with 12 attention layers and 24 attention layers, respectively. No preprocessing
of the datasets was done because of the use of BPE, which provided 100% coverage for
Unicode texts and prevented the OOV problem. The good performance of the model
is due, in addition to BPE, the long-range transformer architecture and the injection of
random informative paddings.

4.3.3 Meena

Adiwardana et al. (2020) presented Meena, a multi-turn open-domain conversational
agent that was trained end-to-end, being a seq2seq model (Bahdanau et al., 2015). The
underlying architecture of the seq2seq model is the Evolved Transformer (ET). It has
2.6B parameters including 1 ET encoder stack and 13 ET decoder stacks. The hyper-
parameters of the best Meena model were decided through manual coordinate-descent
search. The data it was trained on is a filtered public domain corpus of social media
conversations containing 40B tokens. Besides automatic evaluation, using perplexity, it
was also evaluated in multi-turn conversations using the human evaluation metric: Sen-
sibleness and Specificity Average (SSA). This human evaluation combines two essential
aspects of a human-like chatbot: making sense and being specific.

4.3.4 BlenderBot 2

Roller et al. (2020) pointed out the ingredients for their SoTA model BlenderBot, which
comes in different variants. Some of the ingredients are empathy and personality, consis-
tent persona, displaying knowledge, and engagingness. Three types of architecture, all
based on the Transformer, were investigated: retrieval, generative, and a combination
of the two, called retrieve-and-refine. The generative architecture is a seq2seq model
and uses Byte-Level BPE for tokenisation. Three variants, based on different number of
parameters, were designed: 90M, 2.7B, and 9.4B. Human evaluation of multi-turn conver-
sations, using ACUTE-Eval method, showed its best model outperformed previous SoTA
on engagingness and humanness. The other main conclusions from their study are that
finetuning on data that emphasises desired conversational skills brings improvement and
models may give different results when different decoding algorithms are used, though
the models may report the same perplexity.

4.3.5 Text-to-Text Transfer Transformer (T5)

Among the models that are pretrained on large text and may be adapted for conversa-
tional systems is Text-to-Text Transfer Transformer (T5) by Raffel et al. (2020). It is an
encoder-decoder Transformer like the one by Vaswani et al. (2017) and depicted in Fig-
ure 3.5. An input sequence is mapped to a sequence of embeddings in the encoder, which
is then fed to the decoder before the final dense Softmax layer. A simplified version of
layer normalisation is employed such that no additive bias is used. The self-attention of
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the decoder is a form of autoregressive or causal self-attention. All the tasks considered
for the model are cast into a text-to-text format, in terms of input and output. Maximum
likelihood is the training objective for all the tasks but a task-prefix is specified in the
input before feeding the model in order to identify the task at hand. The base version of
the model has about 220M parameters.

4.3.6 GPT-3

Brown et al. (2020) introduced GPT-3, being the biggest size out of the eight models
they created. It is an autoregressive model with 175B parameters that shares many of
the qualities of the GPT-2. These include modified initialisation, pre-normalisation, and
reversible tokenisation. It, however, uses alternating dense and locally banded sparse
attention. Results in few-shot inference reveal that the model achieves strong perfor-
mance on many tasks. Zero-shot transfer involves providing text description of the task
to be done, during evaluation. This is different from one-shot or few-shot transfer, which
involves conditioning on 1 or k number of examples for the model in the form of context
and completion. No weights are updated in any of the three cases at inference time and
there’s a major reduction of task-specific data that may be needed. Despite the successes
of the model, it struggles at few-shot learning with some datasets, loses coherence over
sufficiently long passages, gives contradictory utterances, and its size makes it difficult
to deploy.

4.3.7 DialoGPT

Dialogue Generative Pre-trained Transformer (DialoGPT) was trained on Reddit con-
versations of 147M exchanges (Zhang et al., 2020). It is an autoregressive LM based
on GPT-2, another SoTA model (Radford et al., 2019). In single-turn conversations, it
achieved performance close to human in open-domain dialogues, besides achieving SoTA
in automatic and human evaluation. The medium model has 345M parameters and 24
transformer layers while the small model has 12 layers. In the model, a multiturn dialogue
session is framed as a long text and the generation as language modelling. Furthermore,
it employs what is called maximum mutual information (MMI) scoring to address the
problem of bland response. This technique uses a pretrained backward model to the
source sentences from the responses. An advantage of the model is the easy adaptability
to new dialogue datasets with few samples. The more recent improvements to the Di-
aloGPT model jointly trains a grounded generator and document retriever (Zhang et al.,
2021). This is the predominant model that is used in the conversational systems exper-
iments of this thesis. Figure 4.4 shows some of the hyperparameters set for the model
in the experiments. The no_repeat_ngram_size determines the minimum length of the
n-gram that should occur only once in the generated output.



4.4. Measuring progress 69

Figure 4.4: Some hyperparameters for DialoGPT in this work.

4.3.8 Model cards

Model cards are the documentation or statements which detail the performance char-
acteristics of ML models, according to Mitchell et al. (2019). They are necessary for
these models because of the implications or outcome of using the models. They are
useful for transparency. Model cards should not serve as disclaimer or exoneration from
responsibility for strongly harmful or unethical models. They should provide evaluation
information of the different conditions that may be applicable to the model. The con-
text of use for the model, performance evaluation procedure, used metrics, and types of
possible errors are also important in the model card. The importance of model cards,
like their data counterpart mentioned in Section 2.6, cannot be over-emphasised. The
discovery of systematic biases, such as those in face detection or criminal justice, have
made this even more important (Mitchell et al., 2019). This is the reason some have
called for algorithmic impact statements (Bender and Friedman, 2018). Mitchell et al.
(2019) recommended the following additional details in a given model card under relevant
sections: the person or group behind the developed model, versioning, licence, fairness
constraints, intended use and users, demographics, training and evaluation data, ethical
consideration, and recommendations. Not all sections of the model card may be relevant
for every model. The appendix contains the model cards of some of the models used in
this work. In particular, Appendix D for , E for , F for and G for .

4.4 Measuring progress

We need to measure the performance of any system to determine how successful it is.
Since the goals of task-based systems are different from those of open-domain conver-
sational systems, they do not always use the same evaluation metrics. Automatic eval-
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uation metrics used in NLG tasks, like MT, such as BLEU or ROUGE, are sometimes
used to evaluate conversational systems (Zhang et al., 2020). However, these metrics are
also discouraged because they do not correlate well with human judgment (Jurafsky and
Martin, 2020). Perplexity is sometimes used and has been shown to correlate with the
human evaluation metric SSA (Adiwardana et al., 2020). Equation 4.4 is the mathemat-
ical equation of perplexity. It measures how well a model predicts the data of the test
set, providing an estimate on how accurately it expects the words people will say next
(Adiwardana et al., 2020). Very low perplexity for generated text, however, has been
shown to imply such text may have low diversity and unnecessary repetition (Holtzman
et al., 2020).

PP(Wtest) =
N

√(
1

ρ(Wtest)

)
(4.4)

The most credible way, perhaps, for evaluating open-domain conversational systems
(or chatbots) is through human evaluation. This may be done through participatory or
observer evaluation. The participatory approach requires an evaluator to have a chat
or conversation with the system while the observer approach requires a third party to
read a transcript of conversations (Jurafsky and Martin, 2020). Some of the qualities that
open-domain conversational systems may be evaluated on include: humanness (or human-
likeness), engagingness, fluency, making sense, interestingness, and avoiding repetition.
The Likert scale is usually provided for grading these various qualities. Most of the
human evaluation in this work are based on human-likeness. The others are comparison
of diversity and how fitting responses are to the given contexts. In some brief detail,

• human-likeness attempts to determine if the turns or conversations are the way
humans would generally speak.

• engagingness attempts to establish if the conversation is engaging such that sub-
sequent turns elicit continual user response so that the conversation lasts for a
reasonable amount of time.

• fluency measures how fluent or articulate the generated turns or conversations are.

• making sense attempts to establish if the responses or the conversation is logical.

• interestingness may be considered closely related to engagingness and it attempts
to determine if the turns or conversations are of interest.

• avoiding repetition evaluates if the generated text has unnecessarily repeated to-
kens.

4.5 Metaphors in the mouths of chatbots
It has been shown that metaphors have more emotional impact than their literal equiva-
lent (Mohammad et al., 2016). Idioms generally make utterances more colorful (or rich)
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and diverse. Indeed, Holtzman et al. (2020) observed that the distribution of generated
text (from beam search or pure sampling) is different and less surprising than natural
text. In this work, as results in Section 4.6 reveal, the use of idioms appears to enrich
and bring diversity to generated text, without changes to the decoding algorithm.

Jhamtani et al. (2021) asserted that robust performance of dialogue systems is de-
pendent on the ability to handle figurative language. In order to use the PIE-English
idioms corpus for training as intended in this work, we make the assumption that the
corpus is suitable as a conversational dataset of dialogue turns, though the corpus is not
originally a dialogue dataset. This assumption is valid because the sentences of the turns
discuss the same cases of idioms despite being drawn from different examples from the
base corpora: the BNC and UKWaC (Ferraresi et al., 2008).

4.6 Experiments & Evaluation

The experiments were set up to test the first hypothesis in Section 1.5. We utilise the
model checkpoint by Adewumi et al. (2022c), which is already trained on the MultiWOZ
and available on the HuggingFace hub Wolf et al. (2020) to produce another model
checkpoint (IdiomWOZ) by finetuning on the PIE-English idioms corpus. A second new
model checkpoint is created (IdiomOnly) from the original DialoGPT model by Zhang
et al. (2020) by finetuning also on the same idioms corpus. The DialoGPT model for the
second model checkpoint is the same medium variant utilised by Adewumi et al. (2022c)
to produce the MultiWOZ checkpoint. The idioms corpus was split in the ratio 80:10:10
for the training, dev, and test sets, respectively, and multiple runs (3) per experiment
conducted in order to determine the average perplexities and standard deviation.

The two newly saved model checkpoints from each category plus the MultiWOZ model
checkpoint from Adewumi et al. (2022c) are then used to generate three conversation
transcripts in a first set of experiments. Ninety-four random numbers were generated
and used to select the same prompts from the test sets (the PIE-English idioms corpus
and the MultiWOZ) to feed the three models. Thirty-two prompts for generation and
fifteen prompts with their test set responses (for credibility) are selected from each test
set. In the second set of experiments, sixty-two random numbers were generated. Thirty-
two (from the idioms corpus) were used as prompts for two of the models (IdiomWOZ
and MultiWOZ) while thirty are credibility conversations from the MultiWOZ test set.

The credibility conversations are to test the evaluators for their competence, hence the
responses to these prompts are not generated but are the responses from the correspond-
ing test sets. They are distributed at regular intervals within each transcript. All the
experiments were run on a shared DGX-1 machine with 8 x 32 Nvidia V100 GPUs. The
operating system of the machine is Ubuntu 18 and it has 80 CPU cores. From Table 4.1,
which compares the average perplexity of the models, we observe that the MultiWOZ
model from Adewumi et al. (2022c) has the lowest perplexity. This is very likely be-
cause the MultiWOZ data the model was trained on is larger (with more conversation
turns) than the idioms corpus. The results are statistically significant as the p-value (p
< 0.0001) of the two-sample t-test for the difference of two means (for the IdiomWOZ
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and IdiomOnly) is smaller than alpha (0.05). Although the average perplexity for the
IdiomOnly model is lower than the IdiomWOZ, we chose to generate responses and have
human evaluation on the latter, especially as one of its runs had a lower perplexity, as
may be deduced from the standard deviation. In addition, perplexity alone does not tell
how good a model is Roller et al. (2021); Hashimoto et al. (2019).

Table 4.1: Average perplexity results. sd - standard deviation
Model Perplexity

dev (sd) test (sd)
IdiomWOZ 201.10 (34.82) 200.68 (34.83)
IdiomOnly 189.92 (1.83) 185.62 (2.05)

MultiWOZ (Adewumi et al., 2022c) 6.41 (-) 6.21 (-)

Tables 4.2 and 4.3 present human evaluation results for two different transcripts of 64
and 32 single-turn conversations for the first and second set of experiments, respectively,
after removing the 30 credibility conversations from each. Instruction 1 and Instruction 2
below are the instructions for the first and second set of transcripts, respectively. As Alm-
Arvius (2003) speaks of the diverse types of meaningful variation in text, we evaluate the
second transcript (with results in Table 4.3) based on two characteristics: more fitting
and more diverse responses. Table 4.2 is based on humanlikeness. We observe that,
under majority votes, two (MultiWOZ and IdiomWOZ) out of three of the models have
more humanlike single-turn conversations than other categories. The MultiWOZ model
has the most humanlike single-turn conversations. However, when we consider idioms
only prompts in Table 4.2, the IdiomWOZ model has the most humanlike conversations.
In Table 4.3, IdiomWOZ has more fitting conversations than the MultiWOZ, though the
converse is the case with regards to more diverse conversations. This may be due to the
evaluators’ understanding or interpretation of what is diverse. For all the evaluations,
we observe that there is CUS of 80%. The CUS is the same across sections in each table
since the same transcript is involved for each section. Tables 4.4 and 4.5 show some
single-turn conversations from the second transcript. Person 1 is the prompt from the
PIE-English idioms test set.

Instruction 1: Here are 94 different conversations by 2 speakers. Please,
write Human-like (H) or Non-human-like (N) or Uncertain (U), based on
your own understanding of what is human-like. Sometimes the speakers use
idioms. If you wish, you may use a dictionary.

Instruction 2: Person 2 & Person 3 respond to Person 1. Please, write
which (2 or 3) is the a) more fitting response & b) more diverse response
(showing variety in language use).
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Table 4.2: Human evaluation results of 3 annotators on 3 classes for 64 single-turn conversa-
tions.

Model Scale (majority votes) CUS
H (%) U (%) N (%) 3-way (%) %

IdiomWOZ 39.1 10.9 37.5 12.5 80
IdiomOnly 15.6 12.5 60.9 10.9 80
MultiWOZ 62.5 1.6 32.8 3.1 80

unanimous votes
IdiomWOZ 20.3 0 12.5 - 80
IdiomOnly 6.3 0 31.3 - 80
MultiWOZ 45.3 0 23.4 - 80

idioms only maj. votes (32 samples)
IdiomWOZ 30 23.3 33.3 13.3 80
IdiomOnly 26.7 0.2 36.7 16.7 80
MultiWOZ 26.7 3.3 66.7 3.3 80

Table 4.3: Human evaluation results of 3 annotators on 3 classes for 32 single-turn conversa-
tions.

Model Scale (majority voting) CUS
More fitting (%) More diverse (%) %

IdiomWOZ 71.9 28.1 80
MultiWOZ 28.1 71.9 80

unanimous votes
IdiomWOZ 46.9 9.4 80
MultiWOZ 9.4 15.6 80

4.6.1 Evaluator feedback

Feedback from some of the evaluators suggests the use of idioms complicated the task a
bit but it was sometimes influential in spotting which of the two conversations was a more
fitting or diverse option. Evaluators found it relatively easier evaluting the humanlikeness
characteristic in the first set of experiments but had to resort to a dictionary for the idioms
in some instances.

4.7 Ethics of developing conversational systems

It has been mentioned earlier that ethical issues are an important consideration when
developing conversational systems. In Section 5.4 we show examples of cases when models
may be prompted with offensive text. Some systems have been known to demean or
abuse their users. It is also well known that machine learning systems reflect the biases
and toxic content of the data they are trained on (Neff and Nagy, 2016; Jurafsky and
Martin, 2020). Privacy is another crucial ethical issue. Data containing PII may fall into
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Table 4.4: Excerpt from the second transcript of single-turn conversations. Person 2 is the
IdiomWOZ
Person 1 Person 2
He knew his father’s grievance ; and put off
the evil day as long as he possibly could

he’s dead meat

achieving results that fly in the face of re-
alism

I’m not here I’m just a fly on the wall

does that mean Jane is off the hook ? She had the nerve to call time on her three-
year spell in charge

he’s still sulking ; sounding like a broken
record

the whole caboodle

we need new ways to do this ; to chew the
fat ; to check ourselves out

the Government’s approach to the environ-
ment is geared more towards addressing
the environment rather than helping the
environment

the 24-year-old striker is self-critical
enough to insist he is not yet firing on all
cylinders

You’re the one up to your neck in it

remind her to take it off the hook the bookie took it on the nod
A lengthy break is in order ; so make sure
you keep your nose clean

they are under a cloud because of fears
about US President’s wife Hillary Clinton

all the young men wanted to be in on it
before it was all over

It was the last word in a book he had
bought for a song

The phrase ; ’There’s one born every
minute ’ comes to mind .

I’m going to jump the gun and name my
12th man

Some families breed like rabbits and send
us all their male heirs

he was out for the count

Utd have shown they are in a league of
their own

It’s a long shot him signing for Leeds.
They’re a hard nut to crack

from now until the year dot he was the apple of her eye
The founders of Press for Change ended
the tyranny of “fear of exposure” by show-
ing it for what it was – a paper tiger

She felt hot and heavy under the hot
weather

it’s a good idea to go the distance it ’ll just collapse and give up the ghost
somewhere in South Africa

the wrong hands and cause security threat to those concerned. It is important to have
systems designed such that they are robust to such unsafe or harmful attacks. Attempts
are being made with debiasing techniques to address some of these challenges (Dinan
et al., 2020). Privacy concerns are also being addressed through anonymisation techniques
(Henderson et al., 2018; Jurafsky and Martin, 2020). Balancing the features of chatbots
with ethical considerations can be a delicate and challenging work. For example, there is
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Table 4.5: Excerpt from the second transcript of single-turn conversations. Person 3 is the
MultiWOZ
Person 1 Person 3
He knew his father’s grievance ; and put off
the evil day as long as he possibly could

That’s great; thanks.

achieving results that fly in the face of re-
alism

Yes; realism. I like it.

does that mean Jane is off the hook ? I’m looking for a place to go in the centre.
he’s still sulking ; sounding like a broken
record

Well then I suppose I need to find some-
thing else to do for you.

we need new ways to do this ; to chew the
fat ; to check ourselves out

To each their own. Let me know if you
need any more info.

the 24-year-old striker is self-critical
enough to insist he is not yet firing on all
cylinders

Well if you’ll excuse me... let me ask my
wife. Does she think we should try for a
little earlier; say 20:30?

remind her to take it off the hook I’m sorry; I forgot to hang up. Good bye.
A lengthy break is in order ; so make sure
you keep your nose clean

I am looking for a restaurant in the centre
of town that serves unusual food.

all the young men wanted to be in on it
before it was all over

I was able to book the table for you. The
reference number is : RLTOT7X2. Can I
help with anything else?

The phrase ; ’There’s one born every
minute ’ comes to mind .

I was able to book the table for you. The
reference number is : RLTOT7X2. Can I
help with anything else?

Some families breed like rabbits and send
us all their male heirs

I’m sorry; but I’m not sure what you’re
looking for. Could you please restate your
requirements?

Utd have shown they are in a league of
their own

I’m sorry; but I’m not sure what you’re
looking for. Could you please restate your
requirements?

from now until the year dot I’m sorry; but I don’t understand your re-
quest. Would you like to try a different
restaurant?

The founders of Press for Change ended
the tyranny of “fear of exposure” by show-
ing it for what it was – a paper tiger

Excellent. Can I have the address and
postcode; please?

it’s a good idea to go the distance I can help with that! What are your de-
parture and destination sites?

contention in some quarters whether using female voices in some technologies/devices is
appropriate. Then again, one may wonder if there is anything harmful about that. This
is because it seems to be widely accepted that the proportion of chatbots designed as
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“female” is larger than the those designed as “male”. In a survey of 1,375 chatbots, from
automatically crawling chatbots.org, Maedche (2020) found that most were female.

We surveyed 100 chatbots4, with regards to the binary gender: female or male, across
different literature. The method employed for the survey involved the initial step of
searching based on the term “gender chatbot” in Google scholar and recording details of
all chatbots mentioned in the first 10 pages of the search result. Thereafter, the Scopus
database was equally queried with the same search term and it turned out 20 links.
Both sites resulted in 120 result links from which 59 chatbots were identified. Facebook
Messenger, which is linked to the largest social media platform, was chosen to provide
additional 20 chatbots. The chatbots from Facebook Messenger were selected from 2
websites that provided information on some of the best chatbots on the platform5. The
sites were identified with the search term “Facebook Messenger best chatbots” on Google
and the chatbots were selected based on the first to appear on the list. Meanwhile, 13
chatbots have won the Loebner prize in the past 20 years, as some are repeat winners.
Some chatbots mentioned in the scientific literature hosted their chatbots on Facebook
Messenger but are not counted twice in this survey. This is also true for Loebner prize
chatbots mentioned in the scientific papers. The 8 popular/commercial chatbots in the
survey include Microsoft’s Cortana and XiaoIce, Apple’s Siri, Amazon’s Alexa, Google
Assistant, Watson Assistant, Ella, and Ethan by Accenture.

Each chatbot’s gender is identified by the designation given by the developer or cues
such as avatar, bot name or voice, especially in cases where the developer did not specifi-
cally identify the gender of the chatbot. These cues are created based on general percep-
tion or stereotypes. A chatbot is considered genderless if it is specifically stated by the
reference or developer or nothing is mentioned about it and there are no cues to suggest
gender. Maedche (2020) uses similar cues in their research. Technically, creating gen-
dered chatbots through ML involves training computer models with data attributed to a
particular gender, such as using samples of female voice to train a chatbot to have female
voice. Overall, in our survey of the 100 chatbots, 37 (or 37%) are female, 20 are male,
40 are genderless, and 3 have both gender options. When the data is further broken
down into 4 groups: journal-based, Loebner-winners, Facebook Messenger-based, and
popular/commercial chatbots, we observe that one constant trend is that female chat-
bots always outnumber male chatbots. Even the genderless category does not follow such
a consistent trend in the groups. Out of the 59 chatbots mentioned in journal articles,
34% are female, 22% are male, 42% are genderless, and 2% have both gender options.
54% are female among the 13 chatbots in the Loebner-winners, 23% are male, 15% are
genderless, and 8% have both options. Of the 20 chatbots from Facebook Messenger,
25% are female, 10% are male, 65% are genderless, and 0 offer both genders. Lastly, of
the 8 popular/commercial chatbots, 62.5% are female, 25% are male, 0 is genderless, and
12.5% have both options.

The results support the popular assessment that female chatbots are more predomi-

4May, 2020.
5growthrocks.com/blog/7-messenger-chatbots

enterprisebotmanager.com/chatbot-examples
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nant than the male chatbots. Although we do not have information on the gender of the
producers of these 100 chatbots, it may be a safe assumption that most are male. This
observation of the predominance of chatbots being female has faced criticism in some
quarters, such as a recent report by West et al. (2019) that most chatbots being female
makes them the face of glitches resulting from the limitations of AI systems. Despite
the criticism, there’s the argument that this phenomenon can be viewed from a vantage
position for women, such as being the acceptable face, persona or voice, as the case may
be, of the planet. Silvervarg et al. (2012) compared a visually androgynous agent with
both male and female ones and found that it suffered verbal abuse less than its female
counterpart but more than the male. Does this suggest developers should do away with
female chatbots altogether to protect them or what we need is a change in the attitude of
users? This is especially given that previous research has shown that stereotypical agents,
with regards to task, are often preferred by users (Forlizzi et al., 2007). Some researchers
have argued that chatbots having human-like characteristics, including gender, builds
trust for users (Louwerse et al., 2005; Muir, 1987; Nass and Brave, 2005). Also, Lee et al.
(2019) in their study, observed that chatbots that consider gender of users, among other
cues, are potentially helpful for self-compassion of users. An interesting piece of research
might be to give consumers the option to choose chatbot gender, find out what the total
distribution will be and ascertain the reasons for users’ choices. It should be noted that
there are those who find the ungendered, robotic voice of AI eerie and uncomfortable and
will, thus, prefer a specific gender.



78 Open-Domain Conversational Systems



Chapter 5

Learning Deep Abstractions

“Models are like the brain."

(Simile)

While working on cross-lingual transferability, Artetxe et al. (2020) hypothesised that
deep monolingual models learn some abstractions that generalise across languages. This
may contrast with the previous hypothesis that attributes the generalisation capability
of deep multilingual models to the shared subword vocabulary that is used across the
languages, and their joint training, as demonstrated for mBERT (Pires et al., 2019). The
performance of these models on low-resource languages and unseen languages are known
to be relatively dismal, especially when compared to their monolingual counterparts
(Pfeiffer et al., 2020; Wang et al., 2021; Virtanen et al., 2019; Rönnqvist et al., 2019).
Furthermore, the multilingual versions of the deep models do not cover all languages,
meaning many languages are still under-represented.

In this chapter, we will explore the commonalities in human languages first before
looking at pretraining for transfer learning in Section 5.2 and multilingual deep models
in Section 5.3. Thereafter, results from the experiments and evaluation on cross-lingual
transferability are presented in Section 5.4.

5.1 Commonalities in human languages

Language may be described as the use of a finite set of elements (e.g. words), and
making a set of rules (grammar and syntax) to create different comprehensible combina-
tions for communication1. It is the principal mode of human communication, according
to Google/Oxford Languages, consisting of words that are used in a conventional and
structured way and conveyed by writing, speech or gesture2 (Friederici, 2017). Although
there are over 6,000 languages in the world with their peculiarities (Futrell et al., 2015;
Youn et al., 2016), there is strong evidence that suggests many of them share certain

1bbc.com/future/article/20121016-is-language-unique-to-humans
2Google/Oxford Languages, accessed on April 6, 2022.
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common features. Friederici (2017) believes that similarities in the structure which many
languages share may be a result of how quickly and accurately the brain likes to pro-
cess information. She refers to this underlying commonalities as "linguistic universals"
or "cross-linguistic generalisations". Fitch (2011) calls them "formal universals" and
thinks they may be understood as the model of a general solution to a set of differential
equations, where each language is one particular solution. Two pointers to these linguis-
tic universals are semantic similarity across languages through polysemous words (Youn
et al., 2016) and minimal dependency length (MDL) (Futrell et al., 2015).

Youn et al. (2016) provide an empirical measure of semantic proximity among con-
cepts by using crosslinguistic dictionaries for translation of words between languages.
It involves observation of polysemies (words having more than one meaning) in the vo-
cabulary across different language groups, which shows that the structural properties
are consistent across the language groups, and largely independent of environment. The
frequency of two concepts sharing a single polysemous word in a sample of unrelated lan-
guages determines the measure of semantic similarity between them (Youn et al., 2016).
The study focused on a sample of 81 languages in a phylogenetically and geographically
stratified way. The 81 languages include the Hausa, Yorùbá, and Swahili languages,
which are examined in this thesis, where Yoruba and Swahili are grouped under the
Niger-Kordofanian family and Hausa is in the Afro-Asiatic family (Youn et al., 2016).
They noted that a group of languages may have structural resemblances as a result of
the different speakers having common historical or environmental features. Figure 5.1
shows part of the universal semantic network of languages.

For quantitative, cross-linguistic evidence of MDL, Futrell et al. (2015) provide a
relatively large-scale demonstration for this syntactic property of languages, showing that
dependency lengths are shorter than chance. MDL is the attempt to reduce the distance
between syntactically related words in a sentence (Futrell et al., 2015). Distances between
linguistic heads and their dependents in a sentence are called dependency lengths, where
the head licenses another word (the dependent). It supports previously held view that
speakers prefer short dependency length in word orders and that languages tend to follow
the same direction. In the study, which involves 37 languages, including English and
Swedish, which are part of the investigation in this thesis, it is shown that the overall
dependency lengths are shorter than random baselines by conservative estimates, for all
the languages. This suggests that MDL is a universal quantitative property of human
languages. It is a functional explanation that the grammars of languages evolved in order
that users of languages may communicate through sentences that are relatively easy to
produce and understand.

MDL is seen as a reliable generalisation in NLP, as observed by Futrell et al. (2015),
since many SoTA models incorporate a bias in favour of positing short dependencies
(Klein and Manning, 2004; Smith and Eisner, 2006). This chapter evaluates cross-lingual
transferability from English for seven target languages, possibly exploiting these linguistic
universals,. These target languages are Swedish, Swahili, Wolof, Hausa, Kinyarwanda,
Yorùbá, and Nigerian Pidgin English. The languages are briefly discussed in the following
subsections. The target languages cover Sweden and Finland, shown in Figure 5.2, and
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Figure 5.1: The universal semantic network of languages, based on polysemy (Youn et al.,
2016). Concepts are linked when polysemous words cover both concepts. Swadesh words (the
starting concepts) are capitalized. The size of a node and the width of a link to another node are
proportional to the number of polysemies associated with the concept and with the two connected
concepts, respectively. This distribution indicates that concepts have different tendencies of being
polysemous. For example, EARTH/SOIL has more than 100 polysemies, whereas SALT has only
a few. Three distinct clusters, colored in red, blue, and yellow, are identified.



82 Learning Deep Abstractions

countries in West, East, Central, and Southern Africa, shown in Figure 5.3 (Heine et al.,
2000). The target languages involve a total of over 249 million speakers.

Figure 5.2: Sweden and Finland. Image from online.seterra.com

5.1.1 English

Modern or standard English (subsequently referred to simply as English) is quite different
from the English of the early periods (Crystal, 2018). It is one of the West Germanic
languages belonging to the Indo-European language family3. Besides being the national
or dominant language of England, Canada, and the United States of America, it is the
lingua franca for many countries and many domains (Björkman, 2014). It is the world’s
most international language (Konig and Van der Auwera, 2013). Examples of English
sentences from the MultiWOZ dataset are provided below.

3britannica.com/topic/English-language
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• I have several options for you; do you prefer African, Asian, or British food?

• I want to book it for 2 people and 2 nights starting from Saturday.

• That is all I need to know. Thanks, good bye.

5.1.2 Swedish

The Swedish language is spoken by more than 8.5 million people in Sweden as a national
language (Reuter, 1992). It is also one of the prominent languages of Finland (Konig
and Van der Auwera, 2013). It is a Germanic language and bears resemblance with
Danish and Norwegian for historical reasons (Konig and Van der Auwera, 2013). Below
is the Swedish translation of the English sentences mentioned earlier, from the MultiWOZ
dataset.

• Jag har flera alternativ för dig; föredrar du afrikansk, asiatisk eller brittisk mat?

• Jag vill boka det för 2 personer och 2 nätter från och med Lördag.

• Det är allt jag behöver veta. Tack hejdå.

5.1.3 Swahili

Swahili, a Bantu language, is predominant in the southern half of Africa (Polomé, 1967).
It is also an official language for countries in the East African Community (EAC). The
countries are Burundi, Uganda, South Sudan, Kenya, Tanzania, Rwanda, and the Demo-
cratic Republic of the Congo (DRC). Zambia, Mozambique, the southern tip of Somalia,
and Malawi use the language as lingua franca (Polomé, 1967). Over 50 million people
speak the language4. It is a working language of the African Union. Below is the Swahili
translation of the English sentences mentioned earlier.

• Nina chaguzi kadhaa kwako; unapendelea chakula cha Kiafrika, Kiasia, au Uin-
gereza?

• Nataka kuihifadhi kwa watu 2 na usiku 2 kuanzia Jumamosi.

• Hiyo ndiyo yote ninahitaji kujua. Asante, kwaheri.

5.1.4 Wolof

Wolof is used in Mauritania, Senegal, and the Gambia. It has more than 7 million
speakers5. It is of the Senegambian branch of the Niger–Congo language phylum. It
is the largest language phylum in the world (Heine et al., 2000). Wolof is not a tonal
language, unlike most other languages of the Niger-Congo phylum. Below is the Wolof
translation of the English sentences from the MultiWOZ dataset.

4swahililanguage.stanford.edu
5worlddata.info/languages/wolof.php
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• amna ay tanneef yu bari ngir yaw. ndax bëg ngan lekku niit ñu ñull yi, wa asi wala
wa angalteer

• Soxla jënd ngir ñaari niit ak ñaari guddi mu tambelee gawu

• dedet li rek la soxla. jerejef. ba benen yoon

5.1.5 Hausa

Hausa is spoken by the Hausa people and is a Chadic language, which is the most widely
spoken language of the Chadic branch of the Afroasiatic phylum Heine et al. (2000).
The northern part of Nigeria and the southern part of Niger are where it is mainly
predominant but it has minorities in Cameroon, Benin, and Chad. There are more than
40 million speakers6. Below is the Hausa translation of the English sentences from the
MultiWOZ dataset.

• Ina da zabubbuka da yawa a gare ku; kun fi son abincin Afirka, Asiya, ko Biritaniya?

• Ina so in yi wa mutane 2 da dare 2 farawa daga ranar Asabar.

• Wannan shine kawai abin da nake bukatar sani. Godiya, bye bye.

5.1.6 Nigerian Pidgin English

Nigerian Pidgin English is popular among young people and is a simplified means of
communication among the ethnic groups in Nigeria. The vocabulary and grammar are
limited and often drawn from the English language (Ihemere, 2006). About 75 million
people are estimated to speak the language though the actual number is difficult to say7.
Below is the Nigerian Pidgin translation of the English sentences mentioned earlier.

• I get plenty options for you! you prefer African, Asian, or British food?

• I wan book am for 2 people for 2 night for Saturday

• na everything wey i need to know. thank you. good bye

5.1.7 Kinyarwanda

Kinyarwanda is an official language of Rwanda. It is also a dialect of the Rwanda-Rundi
language (Heine et al., 2000). More than 22 million people are estimated to be speakers
of the language8. Below is the Kinyarwanda translation of the English sentences.

• Mfite henshi naguhitiramo hari ibiryo bitetse mu buryo bw’ Afrika, Aziya, cyangwa
Ubwongereza?

6britannica.com/topic/Hausa-language
7bbc.com/news/world-africa-38000387
8worlddata.info/languages/kinyarwanda.php
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• Ndashaka kubika imyanya ku bantu 2 n’amajoro 2 guhera ku wa Gatandatu.

• Ibyo ni byo nari nkeneye kumenya. Urakoze, murabeho.

5.1.8 Yorùbá

Yorùbá is predominantly spoken in Southwestern Nigeria by the Yorùbá ethnic group
(Heine et al., 2000). It is spoken in areas spanning Nigeria and Benin with smaller
migrated communities in Sierra Leone, Cote d’Ivoire, and The Gambia. More than 45
million people are estimated to speak the language9. Below is the Yorùbá translation of
the English sentences from the MultiWOZ dataset.

• Mo ní awó.n às.àyàn púpò. fún o. ; s.é o fé.ràn óunje. Áfríkà, Ásíà, tàbí ìlú Gè.é.sì?

• Mo fé s.e ìwé fún ènìyàn méjì àti fún alé. méjì tí ó bé.rè. láti o. jó. Sátìdeé.

• Ìye.n ni gbogbo ohun tí mo nílò láti mò. . O s.eun, Ó dàbò.

5.2 Pretraining for transfer learning
Erhan et al. (2010) observed that the best results in supervised learning tasks usually are
brought about by an unsupervised learning component, which is an unsupervised pre-
training phase. He et al. (2019), however, asserted that training from scratch (random
initialisation) can often give similar performance as pretraining and finetuning, partic-
ularly in computer vision (CV). Others, like Hendrycks et al. (2019), disagree, showing
that pretraining improves robustness. Even He et al. (2019) acknowledge that training
from scratch will involve more number of training iterations (compared to finetuning) for
the randomly initialized models to converge. The process of pretraining can be described
by greedy layer-wise unsupervised training. Each layer learns a nonlinear transformation
of its input, which is the output of the previous layer that captures the main changes
in its input (Erhan et al., 2010). Some suggestions as to why pretraining works well
are that 1) it is a conditioning or regularisation mechanism for the parameters of the
network (Erhan et al., 2009, 2010) and 2) it is helpful for initialising the network around
the parameter space where optimisation is easier, such that a better local optimum of
the training criterion is found (Bengio et al., 2007).

There are several types of pretraining objectives (or tasks). Some of them include
Masked Language Model (MLM) or denoising objective (Devlin et al., 2018a), Next
Sentence Prediction (NSP) (Devlin et al., 2018a), Causal (or autoregressive) Language
Model (CLM) (Brown et al., 2020; Zhang et al., 2020), Sentence Distance (Sun et al.,
2020, 2021), Sentence Reordering (Sun et al., 2020, 2021), and Universal Knowledge-
aware Pretraining (Sun et al., 2021). MLM randomly masks a small part of the input
tokens, with the objective of predicting the original vocabulary id of the masked word

9worlddata.info/languages/yoruba.php
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Figure 5.3: Coverage of the African languages in this thesis. Colors added only for aesthetics.
Image from online.seterra.com

based only on its context. NSP determines if two sentences semantically follow each
other or are related. Sentence Distance is an extension of NSP and is widely used in
various pretrained models (Sun et al., 2021). Sentence Reordering learns relationship
between sentences by reorganising permutated segments from a randomly split paragraph.
Universal knowledge-aware pretraiing uses a pair of triples from knowledge graphs and
the corresponding sentences from encyclopedia, where relation in triple or words are
randomly masked. Pretraining of monolingual deep models for low-resource languages
is a challenge because of the scarcity of data in such languages. This has motivated
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pretraining multilingual deep models.

5.3 Multilingual deep models

Multilingual deep models are deep models that are usually pretrained on unstructured
data of two or more languages with the same pretraining task. Deep architectures are
usually needed to learn the complicated functions that represent the high-level abstrac-
tions (Erhan et al., 2010). Some of these models are discussed briefly below and Table 5.1
summarises the languages represented in some multilingual models and Google MT.

Table 5.1: The languages in some models: √: yes, X: no (Adewumi et al., 2022a)

Language Multilingual model
mBERT mBART mT5 XLM-R AfriBERTa Google MT

Swedish √ X √ √ X √

Pidgin English X X X X √ X
Yorùbá √ X √ X √ √

Hausa X X √ √ √ √

Wolof X X X X X X
Swahili √ X √ √ √ √

Kinyarwanda X X X X X √

5.3.1 Multilingual Text-to-Text Transfer Transformer (mT5)

Xue et al. (2021) introduced this multilingual variant of T5. It was pretrained on a large
multilingual dataset (mC4) covering 101 languages. However, three of the languages
in this thesis are not covered by mT5. These are Wolof, Nigerian Pidgin English, and
Kinyarwanda. The pipeline follows the general-purpose text-to-text format and pretrain-
ing on unlabeled data without dropout. Data sampling for each language in the corpus
employed a zero-sum strategy, thereby controlling the probability of training on low-
resource languages to mitigate the possibility of overfitting for low-resource languages
and underfitting for high-resource languages.

5.3.2 Multilingual Bidirectional Encoder Representations from
Transformers (mBERT)

The multilingual version of BERT by Devlin et al. (2018a) is a pretrained model for
104 languages. It is trained on Wikipedia using the familiar MLM objective. BERT
is an encoder stack from the Transformer architecture, where the large version has 24
stacks. It is pretrained with a deeply bidirectional method, where 15% of the words in
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the input is masked so that it predicts only the masked words. In mBERT, exponentially
smoothed weighting of the data (and vocabulary creation) is performed. This is to
balance the amount of data from high-resource and low-resource languages. High-resource
languages will be under-sampled while low-resource languages will be over-sampled. For
tokenisation, a 110K shared WordPiece vocabulary is used10 and the same recipe as
used for English is applied to all other languages so that 1) words are lower-cased and
accents removed (though accent is important in some languages), 2) there’s splitting of
punctuation, and 3) tokenisation based on whitespace. The mBERT cased version fixes
normalisation issues in a lot of the languages. Four of the languages in this work are not
available in mBERT (Devlin et al., 2018b). They include Wolof, Hausa, Nigerian Pidgin
English, and Kinyarwanda.

5.3.3 Multilingual Bidirectional & Auto-Regressive Transformer
(mBART)

Liu et al. (2020b) presented mBART, a Transfromer-based seq2seq denoising auto-encoder,
pretrained on monolingual corpora in 25 languages (Lewis et al., 2020). It is the first
method for pretraining a seq2seq model by denoising full texts in several languages. It
is trained once for all languages and provides a set of parameters that can be finetuned.
Although mBART is pretrained on 25 languages from the common crawl corpora, none
of the languages in the thesis are represented in mBART (Liu et al., 2020b).

5.3.4 Cross-Lingual Model-RoBERTa (XLM-R)

XLM-R is also a Transformer-based multilingual MLM that is pretrained on text from 100
languages (Conneau et al., 2020). The Common Crawl dataset used for training was more
than two terabytes of filtered data but one dump was used for English while twelve dumps
were used for all other languages. Subword tokenisation was directly applied on raw text
data using SentencePiece. Language embeddings are not applied and it is assumed this
allows the model to better deal with code-switching (the use of more than one language
in one context). A vocabulary size of 250K was utilised. Conneau et al. (2020) observed
that more languages in the multilingual model leads to better cross-lingual performance
on low-resource languages up until a point. Again, four of the languages in this work
are not available in XLM-R. They include Wolof, Yorùbá, Nigerian Pidgin English, and
Kinyarwanda.

5.4 Experiments & Evaluation: Cross-lingual transfer-
ability

We demonstrate that generation of conversations is possible, with reasonable perfor-
mance, for a foreign language though the pretraining was in English (Adewumi et al.,

10github.com/google-research/bert/blob/master/multilingual.md
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2022c). This is done first for the Swedish language and then six other African languages,
in a second set of experiments. The investigation seemingly agrees with the hypothe-
sis that deep monolingual models learn abstractions that generalise across languages, as
demonstrated also by Artetxe et al. (2020), though their experiments are different from
those carried out in this thesis. Less computational effort was needed to demonstrate
this hypothesis in this work. The models produced are hosted on the HuggingFace hub11.

5.4.1 First experimental setup

DialoGPT (medium) model is used in the first set of experiments involving Swedish.
Zhang et al. (2020) reported that the medium model gave the best performance when
compared to its small and big variants. This is compared with a baseline seq2seq model
that is trained on the Swedish GDC dataset. The seq2seq model is an LSTM architec-
ture (Hochreiter and Schmidhuber, 1997) and uses the attention mechanism (Bahdanau
et al., 2015), based on the ParlAI platform by Miller et al. (2017). It has 6M trainable
parameters and a batch size of 64 is used to train it. The experiments were carried out on
several Tesla V100 GPUs on an Nvidia DGX-1 machine running Ubuntu 18 and having
80 CPU cores.

The various Swedish datasets for the first set of experiments are conversational data
from Reddit (2 sizes), Familjeliv (3 sizes) and the GDC (Allwood et al., 2003). These are
shown in Table 5.2. They are later compared with the English MultiWOZ in perplexity
results. The datasets are pre-processed by removing emails, URLs, numbers and some
special characters. The datasets were split in the ratio 80:10:10 for training, dev, and
test sets, respectively. The conversation context is 7 during training. Multiple runs (5)
per experiment were conducted and the average perplexity reported in Table 5.3. As the
the data size increases, the perplexity falls, as expected. Although the model trained on
the MultiWOZ achieves the best perplexity, this is not unexpected, given that DialoGPT
is pretrained on English data. The model trained on the Familjeliv size of over 1M turns
is the best-performing of the Swedish models. The seq2seq model, whose architecture is
different from DialoGPT and is not pretrained, has the worst perplexity result overall.

Table 5.2: Summary of datasets in first set of experiments (Adewumi et al., 2022c).
Dataset File Size Conversation Lines
Reddit 4K 0.57M 4,300
Reddit 60K 10.4M 59,437
Familjeliv 70K 10.3M 71,470
Familjeliv 400K 45.3M 347,590
Familjeliv 1M+ 200M 1,576,360
GDC 6.6M 108,571
MultiWoZ (English) 11M 143,048

11huggingface.co/tosin



90 Learning Deep Abstractions

Table 5.3: Mean perplexity results for the different datasets after training for 3 epochs (Adewumi
et al., 2022c)

Dataset Dev set Test set
Reddit 4K 71.94 88.31
Reddit 60K 65.86 51.70
Familjeliv 70K 11.12 12.27
Familjeliv 400K 7.02 7.44
Familjeliv 1M+ 7.150 7.148
GDC 29.17 23.95
Seq2seq-GDC 2,864 2,865
MultiWOZ (English) 6.41 6.21

Table 5.4 shows results from human evaluation of the Swedish single-turn conversa-
tions for three of the models, with the last row showing scores for the original dialogue
(i.e. human-human conversations from the Familjeliv test set). Single-turn conversa-
tions are evaluated, as practised in the original paper (Zhang et al., 2020), by drawing
30 prompts randomly from the test set for each model and generating responses from the
model. A Likert scale of clearly human-like (4.0), somewhat human-like (3.0), not very
human-like (2.0), clearly not human (1.0) was provided. The sum of columns 4.0 and 3.0
gives the human-likeness average for each model and the model trained on the familjeliv
1M+ dataset achieves 57.2% human-likeness score. Figures 5.4, 5.5, 5.6, 5.7, and 5.8
show conversations with the DialoGPT-MultiWOZ and the DialoGPT-GDC models. We
observe from some of the conversations that when prompted with offensive phrases in
both languages, the models do not respond back with offensive text. The response from
the DialoGPT-GDC model is, however, less coherent than the DialoGPT-MultiWOZ.
This is not surprising since the DialoGPT-MultiWOZ was trained on more data and
performs better in perplexity result. The transcripts of the conversations are available
online12.

Table 5.4: Human evaluation score per model. clearly human-like (4.0), somewhat human-like
(3.0), not very human-like (2.0), clearly not human (1.0) (Adewumi et al., 2022c)

Dataset Scale (%)
1.0 2.0 3.0 4.0 sum(3.0,4.0)

Familjeliv 1M+ 0.233 0.194 0.252 0.320 0.572
GDC 0.317 0.221 0.221 0.240 0.461
Reddit 60K 0.582 0.220 0.154 0.044 0.198
Human-human 0 0.079 0.281 0.640 0.921

12github.com/tosingithub/gemdesk
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Figure 5.4: DialoGPT-GDC model prompted with a Swedish offensive phrase (Blue: user).

Figure 5.5: DialoGPT-GDC model prompted with certain Swedish phrases (Blue: user).

Figure 5.6: DialoGPT-MultiWOZ prompted with English sentences (Blue: user).
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Figure 5.7: DialoGPT-MultiWOZ prompted with English sentences (Blue: user).

Figure 5.8: DialoGPT-MultiWOZ prompted with English offensive phrase (Blue: user).

5.4.2 Second experimental setup

In the second set of experiments, instead of two main models, an additional SoTA model is
compared: BlenderBot 90M (Roller et al., 2021). The experiments were conducted using
a participatory approach (Nekoto et al., 2020) on Google Colaboratory while some other
experiments were run on the shared DGX-1 machine mentioned earlier. Each experiment
was run 3 times and the average perplexity (including standard deviation) obtained. The
training time for the BlenderBot 90M and the seq2seq models was for 20 minutes each.
The decoding algorithm for all the models was set as top-k (k=100) and top-p (p=0.7).
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The three models do not have exactly the same parameters or configuration and are not
expected to have the same performance.

Method of human evaluation

Similar to the first set of experiments, we use the observer evaluation method, where
evaluators read transcripts of conversations (Jurafsky and Martin, 2020). They rate
single-turn conversations for human-likeness on a Likert scale with 3 entries (human-
like (H), non-human-like (N) or uncertain (U)). A transcript is given to 3 native/L1
speakers per language to evaluate. Thirty-two single-turn conversations are generated
per language and 3 credibility test dialogues spread out within the transcript to make
up 35. A randomly generated list was used to select the same 32 prompts for all the
languages from each test set of the AfriWOZ dataset. DialoGPT c7 x 1,000 (having
context size 7 and 1,000 training turns), which had the best perplexity across languages,
was used to generate the conversations, though small scale human evaluation is carried
out to verify sample conversations from the other models: BlenderBot 90M and the
seq2seq.

Eighteen conversation transcripts returned were credible out of the total of twenty-
four. Discredited transcripts are the ones that failed 2 or more out of the 3 credibility test
conversations by marking them as anything but H. The 3 credibility conversations are
prompts and responses directly from the AfriWOZ test set instead of generated responses
from the model. The evaluators were recruited on Slack13. They are also L1 speakers of
the target languages and second/L2 (but dominant) speakers of English. They are not
connected to the translation of the datasets nor did they take part in the training of the
models, making them unbiased evaluators. The instruction for every evaluator at the top
of the transcript of conversations is given below.

Below are 35 different conversations by 2 speakers. Please mark each one as
Human-like (H) or Non human-like (N) or Uncertain (U) based on your own
understanding of what is human-like.

Table 5.5 gives the perplexity results for the three models. DialoGPT with a context
size of 14 achieves the lowest perplexity per language despite using half the training size
that is used for the BlenderBot 90M and Seq2Seq models.

Performance vs. amount of data or context size

Taking DialoGPT, the best model from Table 5.5, and doing ablation studies over both
the training set size and the context size, we arrive at results in Tables 5.6 and 5.7,
respectively. Increasing the training set size by doubling the number of dialogue turns
brings improvement by lowering the perplexity for the model of each language. However,
doubling the context size, does not result in a similar effect. Perplexity only improves

13slack.com
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Table 5.5: Results for the 3 main models (c14: context size 14; sd: standard deviation; Hausa
seq2seq appears to overfit) (Adewumi et al., 2022a).
Language Model Training turns Perplexity

Dev (sd) Test (sd)
Pidgin English DialoGPT c14 500 67.57 (2.53) 90.18 (3.24)

BlenderBot 90M 1,000 81.23 (0) 81.23 (0)
Seq2Seq 1,000 277.2 (15) 277.2 (15)

Yorùbá DialoGPT c14 500 12.63 (0.47) 10.66 (0.40)
BlenderBot 90M 1,000 154.43 (0.06) 154.43 (0.06)

Seq2Seq 1,000 45.85 (1.41) 45.85 (1.41)
Hausa DialoGPT c14 500 26.40 (0.75) 35.95 (0.73)

BlenderBot 90M 1,000 39.39 (1.61) 39.39 (1.61)
Seq2Seq 1,000 1.92 (0.12) 1.92 (0.12)

Wolof DialoGPT c14 500 15.2 (0.09) 26.41 (0.10)
BlenderBot 90M 1,000 108.7 (0) 108.7 (0)

Seq2Seq 1,000 401.6 (10.39) 401.6 (10.39)
Swahili DialoGPT c14 500 20.03 (0.29) 17.02 (0.22)

BlenderBot 90M 1,000 128.8 (0.10) 128.8 (0.10)
Seq2Seq 1,000 134.5 (2.75) 134.5 (2.75)

Kinyarwanda DialoGPT c14 500 24.47 (0.17) 26.45 (0.17)
BlenderBot 90M 1,000 177.87 (0.06) 177.87 (0.06)

Seq2Seq 1,000 195.07 (7.66) 195.07 (7.66)

when we half the context size from 14 to 7. The results are statistically significant. P-
values (p < 0.0001) for the difference of two means of the two-sample t-test (between the
two lowest results) for all the languages are smaller than alpha (0.05). Given that these
results are obtained with small data, increasing the data size will improve the results.

Human evaluation

Table 5.8 shows that the single-turn dialogues of the Nigerian Pidgin English are human-
like 78.1% of the time by majority votes. 34.4% of them are unanimously judged as
human-like, which is higher than both the 3-way tie (when each annotator voted for
each different category) of 15.6% or non-human-like of 6.3%. This is very likely because
Nigerian Pidgin English is closely related to the English language, which is the language
of pretraining. Meanwhile, the Yorùbá transcript has 0% human-like single-turn conver-
sation. This may be because of the language’s morphology and written accent, among
others reasons. It has the most peculiarities in written form, as shown in Table ??, mak-
ing it challenging for the model. Wolof, Hausa, Swahili and Kinyarwanda follow after
Nigerian Pidgin English with 65.6%, 31.3%, 28.1% and 28.1% of conversations assessed
as human-like, respectively.

The Fleiss Kappa (k) scores are not interpretable using the Kappa 2 annotators on
2 classes guide (Landis and Koch, 1977), since this study uses 3 annotators on 3 classes
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Table 5.6: Ablation study of DialoGPT-c7 over training turns (c7: context size 7; sd: standard
deviation; bold figures are the better values per language) (Adewumi et al., 2022a)

Language Training turns Perplexity
Dev (sd) Test (sd)

Nigerian Pidgin English 500 42.55 (0) 52.81 (0)
1,000 37.95 (0.66) 46.56 (1.13)

Yorùbá 500 10.52 (0.04) 9.65 (0.01)
1,000 7.22 (0.06) 8.76 (0.08)

Hausa 500 18.53 (0.23) 25.7 (0.4)
1,000 9.92 (0.05) 12.89 (0.04)

Wolof 500 15.2 (0.09) 26.41 (0.10)
1,000 14.91 (0.3) 25.85 (0.04)

Swahili 500 15.55 (0.17) 14.22 (0.14)
1,000 9.63 (0) 9.36 (0.03)

Kinyarwanda 500 19.28 (0.19) 21.62 (0.22)
1,000 10.85 (0) 14.18 (0.08)

Table 5.7: Ablation study of DialoGPT over context sizes for training set with 1,000 turns
(c7, c14: context sizes 7 & 14; sd: standard deviation; bold figures are the better values per language)
(Adewumi et al., 2022a)

Language Context size Perplexity
Dev (sd) Test (sd)

Nigerian Pidgin English c7 37.95 (0.66) 46.56 (1.13)
c14 70.21 (2.17) 92.23 (2.33)

Yorùbá c7 7.22 (0.06) 8.76 (0.08)
c14 7.63 (0.13) 9.11 (0.14)

Hausa c7 9.92 (0.05) 12.89 (0.04)
c14 11.30 (0.04) 15.16 (0.05)

Wolof c7 14.91 (0.3) 25.85 (0.04)
c14 16.61 (0.2) 30.37 (0.08)

Swahili c7 9.63 (0) 9.36 (0.03)
c14 11.07 (0.04) 10.71 (0.05)

Kinyarwanda c7 10.85 (0) 14.18 (0.08)
c14 12.84 (0.1) 17.43 (0.14)

and k is lower when the classes are more (Sim and Wright, 2005). This study confirms
the observation made by Gwet (2014) that the interpretation guide may be more harmful
than helpful. Perez Almendros et al. (2020) report how the Kappa score rose from 41% to
61% when the classes were reduced from three to two. CUS is apparently a more intuitive
and reliable method, at least, in this case because of the homogeneous test conversations.
Figure 5.9 shows the human-likeness scores and the CUS in a bar chart for the languages,
as given in Table 5.8.
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Table 5.8: Human evaluation results of 3 annotators on 3 classes using single-turn conversations.
A recent human-human upperbound is 92.1%, according to Adewumi et al. (2022c). The subjective
Kappa example of 2 annotators on 2 classes does not apply here since Kappa is lower when classes are
more (Sim and Wright, 2005). - implies not applicable (Adewumi et al., 2022a).

Model language Scale (majority votes - 2/3) CUS Fliess k
H (%) U (%) N (%) 3-way (%) %

Nigerian Pidgin English 78.1 0 6.3 15.6 66.7 -0.079
Yorùbá 0 3.1 75 21.9 33.3 -0.154
Hausa 31.3 6.3 53.1 9.4 66.7 0.228
Wolof 65.6 0 31.3 3.1 100 0.070
Swahili 28.1 15.6 34.4 21.9 66.7 0.067
Kinyarwanda 28.1 25 34.4 12.5 66.7 0.091

unanimous votes - 3/3
Nigerian Pidgin English 34.4 0 0 - 66.7
Yorùbá 0 0 25 - 33.3
Hausa 12.5 0 21.9 - 66.7
Wolof 15.6 0 9.4 - 100
Swahili 9.4 0 9.4 - 66.7
Kinyarwanda 9.4 0 6.3 - 66.7

Error analysis

A few of the challenges noticeable with the models are highlighted here. DialoGPT,
though the best model in the investigations, shows particular weakness with the Yorùbá
language by failing to generate the right word morphology, sometimes. Below are 2
examples where the conversations are not coherent.

• prompt: E. sè. ń ro mí

• response: Eèlóò ni orúko. o.dún?

• prompt: Ìye.n náà da, wó.n s.è ń darúgbó náà ni

• response: Kì ni orúkó. orúnju rE. ?

BlenderBot 90M mixes English responses with its generation atimes, even though the
prompts are of the foreign target language. Two examples of prompts in Hausa and the
generated responses are given below. One can observe that it echoes the prompt given
to it in the first pair of example.

• prompt: Barka dai, me za ku iya gaya mani game da gidan abincin bangkok na
burni?

• response: barka dai , za za ku iya gaya mani game da gidan abincin bangkok na
burni ? i ’ m not sure if you ’ re being sarcastic or not .
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Figure 5.9: Bar chart of human-likeness scores and CUS for the languages (Adewumi et al.,
2022a).

• prompt: Ee na mutum 2 da 19:30 na ranar Lahadi don Allah. Ina bukatan lambar
nuni kuma.

• response: haha , i ’ m not sure if i ’ m the only one who thinks that .

A big drawback of the seq2seq model is the repetitive nature of some of its responses
across different prompts. Two examples of the prompts and generated responses for the
Nigerian Pidgin English are given below. Exactly the same response is generated for two
different prompts and the response is not coherent.

• prompt: I need one place to chop for the center wey dey expensive. Good bye

• response: I dey go like .

• prompt: e dey okay. i fit get that number. you fit also recommend me hotel wey
dey expensive

• response: I dey go like .

Evaluator feedback

In post-evaluation feedback, some evaluators explained that coherence of the conversation
and the grammar mattered to them in making their judgment. For example, considering
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Yorùbá, responses that referenced inanimate objects as if in the context of animate
objects or humans were voted as non-human-like. For Wolof, many conversations are
human-like but for cases where the responses were inconsistent with the prompt given.
For example, there were conversations that were hard for an evaluator to judge because
the responses are questions to question-prompts. Such conversations were awarded the
uncertain (U) votes by the evaluator.



Chapter 6

Conclusion and Future Work

“Good night toiling, good sleep."

(Apostrophe)

In the end, users tend to want intelligent systems with the ability to communicate in
natural language. The more original and colourful the communication, the better. The
experiences the pioneering chatbot ELIZA, by Weizenbaum (1969), created with her users
suggest this might be the case. The road to it might seem long but it may be possible in
the foreseeable future. One important element to achieving human-like conversations will
be to endow conversational models with idiom-awareness since a conversational system
that can respond in a similar way to its user, in figurative speech, is more fitting, as this
study shows.

6.1 Conclusion
This thesis confirms two important hypotheses about open-domain conversational sys-
tems that are idiom-aware and deep monolingual models. For the confirmation of the
first hypothesis that an open-domain conversational system that is idiom-aware, gen-
erates more fitting responses to prompts containing idioms, Chapter 2 introduced the
PIE-English idioms corpus. Chapter 4 presented results of training the SoTA DialoGPT
model on the corpus. The PIE-English idioms corpus offers opportunities for further
research, as the dataset may be adapted or expanded in different ways. It may not be
sufficient to train models on data that exclude idioms and it may not always be practi-
cal to substitute idioms with their literal meaning in exchanges between users and the
conversational systems. Instead, careful curation of figurative language data is essen-
tial to train open-domain conversational deep learning models. This is because idioms
or figurative language is part and parcel of many human languages and cannot be ig-
nored if we must achieve the rich conversation that is typical of natural languages with
conversational systems.

For the confirmation of the second hypothesis that deep monolingual models learn
some abstractions that generalise across languages, Chapter 5 presented results of trans-
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ferability from English to seven other diverse languages. Some of the abstractions seem
to be the linguistic universals, which are common across many languages. They are se-
mantic similarity across languages through polysemous words (Youn et al., 2016) and
minimal dependency length (MDL) (Futrell et al., 2015). Out of the seven languages, for
which this hypothesis is demonstrated, the only one (Yorùbá) that seems not to fit the
hypothesis, based on human evaluation, may actually do so if better quality data, such
as the MultiWOZ, is used. The linguistic universals in languages reveal that though we
humans are so diverse, we are also very similar in many ways.

Four important research questions (RQ) are addressed in this thesis: 1) How impor-
tantly do hyper-parameters influence word embeddings’ performance? 2) What factors
are important for developing ethical and robust conversational systems? 3) To what
extent can models trained on figures of speech (idioms) enhance NLP? And 4) How can
models trained on figures of speech (idioms) enhance open-domain, data-driven chatbots
for robust assistance? The following contributions arose as the outcome of addressing
the hypotheses and RQs.

1. The Swedish analogy test set for evaluating Swedish word embeddings is created
and released publicly under the CC-BY4 licence. The resource, which was verified
by Språkbanken, is hosted on the Språkbanken website1.

2. The Potential Idiomatic Expression (PIE)-English idioms corpus, is created and
released publicly under the CC-BY4 licence. The purpose of the corpus is to train
ML models in idiom identification and classification. This resource is hosted on
the International Conference on Language Resources and Evaluation (LREC) plat-
form2.

3. The AfriWOZ dialogue dataset of parallel corpora of 6 African languages is created
and released under the CC-BY4 licence. This dataset is primarily for training open-
domain conversational systems but it may easily be adapted for other relevant NLP
tasks, like MT, automatic speech recognition (ASR), and task-based conversational
systems. The resource is hosted online3.

4. Credibility unanimous score (CUS) is introduced for measuring IAA of conversa-
tion transcripts. The assumption behind CUS is simple and provides advantages
over some other methods, such as Fleiss Kappa (k), because it seems more intu-
itive, easier to calculate (as it is based on percentages), and seemingly less sensitive
to changes in the number of categories being evaluated. Besides, the homoge-
neous samples are also used to test the credibility of the annotators and determine
majority agreement on the human-human (or homogeneous) conversations in the
transcript.

1spraakbanken.gu.se/en/resources/analogy
2lrec2022.lrec-conf.org/en/
3github.com/masakhane-io/chatbots-african-languages
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5. We show insights into energy-saving and time-saving benefits of more optimal em-
beddings from better hyperparameter combinations and relatively smaller corpora.

6. Selected word embeddings in English, Swedish and Yorùbá are created and released
for public access.

7. The codes used in this work are made open-source and hosted on Github4, under
the CC-BY4 licence.

8. The model checkpoints developed in the course of this thesis are made available on
the HuggingFace hub5.

9. The philosophical argument for developing robust and ethical conversational sys-
tems are raised and may serve as a springboard for further helpful discussions
around the subject.

Furthermore, the importance of ethics in the development of open-domain conversa-
tional systems cannot be over-emphasised. Privacy concerns, offensive/hateful messages,
and harmful bias of all kinds are some of the issues that should be considered (Jurafsky
and Martin, 2020). The use of model cards and data statements are some of the ways
to address these concerns, though they should not be taken as exoneration from respon-
sibility. This thesis provides such model cards and data statements for the deep models
in this work, especially since the pretraining data are from online public sources that
are known to contain all kinds of views (including undesirable ones) and suffer from the
concerns already identified.

6.2 Future work
This work has provided some resources and insight into open-domain conversational sys-
tems but there are still existing challenges and many possibilities to be explored. The
Swedish analogy test set could be extended and made balanced across all the subsections.
This may provide a more robust evaluation of Swedish embeddings though intrinsic eval-
uations are known to have shortcomings (Chiu et al., 2016). The PIE-English idioms
corpus may be adapted or extended by increasing the samples for the classes with very
little samples or increasing the number of classes that are represented. Doing so may
produce more fitting responses from open-domain conversational systems. In addition,
investigating and designing better decoding algorithms that will be much similar to the
distribution of human conversation will make achieving human-like conversations realistic
(Holtzman et al., 2020).

Since this may be the first thesis exploring cross-lingual transferability from deep
monolingual English models to low-resource languages for open-domain conversational
systems, scaling up this work to more languages will establish the extent to which

4github.com/tosingithub
5huggingface.co/tosin
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the hypothesis holds. Transfer learning, based on pretrained deep models, provides
energy-saving and time-saving benefits for downstream tasks when finetuning is applied.
Zero/Few-shot learning provides gains in this regard also and may be advantageous for
low-resource languages. AfriWOZ may provide the opportunity to develop open-domain
conversational systems that can chat with each other (in machine-machine conversations),
thereby continually generating high-quality data for low-resource languages. The auto-
matically generated data may be useful for other NLP tasks such as automatic speech
recognition (ASR), NER, MT, task-based conversational AI, and automatic text sum-
marisation, among others. The future holds many possibilities and it’s crucial to continue
to have discussions, whether philosophical or practical, in order to shape the future for
ethical and robust open-domain conversational systems.
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A Appendix A

Data statement for the Swedish analogy test set for evaluating Swedish word embeddings.
Details

Curation ratio-
nale

Due to the unavailability of Swedish evaluation dataset for word em-
beddings this analogy test set was created.

Dataset lan-
guage

Swedish

Demographics of contributors
No of contribu-
tors

1

Age 42
Gender Male
Language L2

Demographics of annotators
No of annota-
tors

2

Annotator 1
Age -
Gender Male
Language L1

Annotator 2
Age -
Gender Male
Language L1

Data characteristics
Total samples 20,637
Number of
Sections

2 Main sections

Semantic sec-
tion

10,380 samples (5 sections- capital-common-countries (342), capital-
world (7.832), currency (42), city-in-state (1,892), family (272))

Syntactic sec-
tion

10,257 samples (6 sections - gram2-opposite (2,652), gram3-
comparative (2,162 ), gram4-superlative (1,980), gram6-nationality-
adjective (12), gram7-past-tense (1,891), gram8-plural (1,560))
Others

IAA 98.93% (raw percentage)
Licence CC-BY 4.0.

Table 6.1:
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B Appendix B

Data statement for the PIE-English idioms corpus for idiom identification.
Details

Curation ratio-
nale

Due to the unavailability of idioms dataset with more than the 2classes
of literal & general figurative speech classification, this dataset was
created.

Dataset lan-
guage

English

Demographics of contributors
No of contribu-
tors

4

Age 42 | - | - | -
Gender Male | Female | Female | Female
Language L2 | L2 | L2 | L2

Demographics of annotators
No of annota-
tors

2

Annotator 1
Age -
Gender Male
Language L2

Annotator 2
Age -
Gender -
Language L2

Data characteristics
Total samples 20,174
Number of
classes

10

Number of
cases

1,197 (e.g. “the nick of time", “a laugh a minute")

Total samples of euphemism (2,384), literal (1,140), metaphor (14,666),
personification (448), simile (1,232), parallelism (64), paradox (112),
hyperbole (48), oxymoron (48), and irony (32)

Base data BNC and UKWaC.
Others

IAA 88.89% (raw percentage)
Licence CC-BY 4.0.

Table 6.2:



106 Conclusion and Future Work

C Appendix C

Data statement for the AfriWOZ dataset for open-domain dialogue & other NLP models.
Details

Curation ratio-
nale

Due to the unavailability of dialogue data for low-resource African lan-
guages, this dataset was created.

Dataset lan-
guage

Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda &
Yorùbá
Demographics of contributors

No of contribu-
tors

19

Age -
Gender Male & Female
Language L1

Demographics of annotators
No of annota-
tors

Not applicable

Data characteristics
Total samples 1,500 turns per language
Total natural
languages

6 (Swahili, Wolof, Hausa, Nigerian Pidgin English, Kinyarwanda &
Yorùbá)

Training set
turns per
language

1,000

Validation set
turns per lan-
guage

250

Test set turns
per language

250

Domains cov-
ered

hotel, restaurant, taxi and booking.

Base data MultiWOZ and 2 blogs for Yorùbá only.
Others

IAA CUS 33.3% - 100%
Licence CC-BY 4.0.

Table 6.3:
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D Appendix D

Model card for DialoGPT, trained on MultiWOZ
Details

Model ratio-
nale

This is a fine-tuned model of DialoGPT (medium) on the MultiWOZ
v2.2 dataset. It is intended to be used as a conversational system.

Limitation The dataset it’s trained on is limited in scope, as it covers only certain
domains such as restaurants, hotel, taxi, train, hospital and police.

Result The perplexity achieved on the test and validation sets are 10.25 and
10.71, respectively.
Others

Model link https://huggingface.co/tosin/dialogpt_mwoz
More Information about the original pre-trained model can be found at

https://huggingface.co/microsoft/DialoGPT-medium
Licence CC-BY 4.0.

Generation example from an interactive environment:
Role Response
User I would like to have breakfast.
Bot There are several options for Chinese in the city centre. Are you looking

for a particular price range?
User I’m looking for free food
Bot There are 4 Chinese restaurants that are in the cheap price range. 3 in

centre and one in north.
User Not good enough.
Bot How about Charlie Chan? It is a Chinese restaurant in the centre of

town.

Table 6.4:
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E Appendix E

Model card for DialoGPT, trained on Gothenburg Dialogue Corpus (GDC)
Details

Model ratio-
nale

This is a fine-tuned model of the DialoGPT (medium) on the Swedish
Gothenburg Dialogue Corpus (GDC). It is intended to be used as a
Swedish conversational system.

Limitation The GDC dataset it’s trained on is limited in scope, as it’s from the
transcription of dialogues of about 25 different social activities, includ-
ing debates, academic seminars and situations. The dataset has about
108K turns.

Result The perplexity achieved on the test and validation sets (from 80:10:10
split) are 27.81 and 27.81, respectively.
Others

Model link https://huggingface.co/tosin/dialogpt_sv
More Information about the original pre-trained model can be found at

https://huggingface.co/microsoft/DialoGPT-medium
Licence CC-BY 4.0.

Generation example from an interactive environment:
Role Response
User Jag ska fika.
Bot ja det är ju så att jag kanske inte kan få den att göra det
User tack så mycket
Bot tack tack ses vi om sex vecko igen

Table 6.5:
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F Appendix F

Model card for DialoGPT, trained on the PIE-English idioms corpus
Details

Model ratio-
nale

This is a fine-tuned model of DialoGPT (medium)-MultiWOZ v2.2 on
the Potential Idiomatic Expression (PIE)-English idioms corpus. It is
intended to be used as an idiom-aware conversational system.

Limitation The dataset it’s trained on is limited in scope, as it covers only 10
classes including metaphor, simile, euphemism, parallelism, personifi-
cation, oxymoron, paradox, hyperbole, irony and literal.

Result The perplexity achieved on the test and validation sets are 160.9 and
160.46, respectively.
Others

Model link https://huggingface.co/tosin/dialogpt_mwoz_idioms
More Information about the original pre-trained model can be found at

https://huggingface.co/tosin/dialogpt_mwoz
Licence CC-BY 4.0.

Generation example from an interactive environment:
Role Response
User remind her to take it off the hook.
Bot the bookie took it on the nod
User A lengthy break is in order ; so make sure you keep your nose clean
Bot they are under a cloud because of fears about US President’s wife

Hillary Clinton
User Some families breed like rabbits and send us all their male heirs
Bot he was out for the count

Table 6.6:
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G Appendix G

Model card for DialoGPT, trained on the wolof data in the AfriWOZ dataset
Details

Model ratio-
nale

This is a fine-tuned model of DialoGPT (small) on the Wolof data of
the AfriWOZ dataset. It is intended to be used as a conversational
system in Wolof language.

Limitation The dataset it’s trained on is limited in scope, as it covers only certain
domains such as restaurants, hotel, taxi, and booking.

Result The perplexity achieved on the test and validation sets are 20.74 and
11.66, respectively.
Others

Model link https://huggingface.co/tosin/dialogpt_afriwoz_wolof
More Information about the original pre-trained model can be found at

https://huggingface.co/microsoft/DialoGPT-small
Licence CC-BY 4.0.

Generation example from an interactive environment:
Role Response
User sowwu bi la bëg
Bot waw, ndax mën ngan ma jox ay leeral si bërëb buñu feetee ak lekkukaay

bi
User soxla na dem gawu. ngir leeral rek bëg na joggee peterborough di dem

cambridge
Bot soxlu na dem ginaw jurrom ñenti waxtu ak ñaar fukki simili ak jurrom

ben.
User waw jiss sal ma ben bu seer si njëg si toluway
Bot jënd bi baaxna. jerejef. ba benen yoon.

Table 6.7:
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