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Abstract

The Grate-Kiln-Cooler process is a commonly used method of sintering during iron ore pel-

letization, where the pellets are formed, dried, and hardened. The pellets are oxidized in

the rotating Kiln, turning magnetite (Fe3O4) to hematite (Fe2O3), making the pellets attain

suitable metallurgical attributes for further processing. The process is constantly exposed to

thermal and mechanical stress, causing equipment degradation and thus unwanted produc-

tion stops due to internal process disturbances. A suitable maintenance policy is required

to cope with the risk of equipment degradation causing these production stops. Predictive

maintenance (PdM) is the most current maintenance policy, utilizing a substantial amount of

production data to foresee breakdowns and thus indicating the need for maintenance e↵orts

to prevent them from occurring.

The global supplier of iron ore products, Loussavaara-Kiirunavaara Aktiebolag (LKAB), op-

erates three pelletization plants in Kiruna. One of these pelletization plants experiences

availability below desired levels. This hampers the plant from fulfilling its yearly production

goals, resulting in lost revenue. This master’s thesis aimed to increase the understanding of

which causes influence the Grate-Kiln-Cooler process’ availability. When these causes were

identified, the aim was to develop a method of monitoring these to predict the need for main-

tenance (i.e., incorporating a PdM policy) to mitigate the risk of production stops. The work

has been conducted by utilizing the systematic problem-solving DMAIC methodology.

The refractory material was identified as the primary contributor to the low availability

in the investigated plant. Using principal component analysis (PCA) and statistical process

control (SPC), a Hotelling T 2 chart based on principal components was established to monitor

the refractory material’s condition. In this context, the combined usage of PCA and SPC

highlighted three possible tendencies in the Kiln that potentially damaged the refractory

material, causing production stops. The observed tendencies with the possibility of damaging

the refractory material were; abnormally high refractory material temperatures, periods where

the pellets’ temperature exceeded the refractory material’s temperature, and sporadic heat

fluctuations in the refractory material.

The utilized Hotelling T 2 chart provided a current state evaluation of the refractory material’s

condition and thus indicated the need for maintenance e↵orts. However, it was impossible to

predict breakdowns by identifying patterns in either the T 2-statistics or the individual charts.

The inability to predict stops was derived from obstacles related to lacking documentation,

deficient data, and that the time for breakdown is di�cult to determine accurately. These

obstacles hinder the prediction of breakdowns and, therefore, need to be dealt with to facilitate

the implementation of a successful PdM strategy.
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Introduction

1 Introduction

The following chapter presents a background where central themes regarding the subject are

brought up alongside a problem description. The purpose of the master’s thesis will then be

presented followed by the limitations of the study.

1.1 Background

The Grate-Kiln-Cooler process is one of the most commonly used pelletization processes

of iron ore (G. Singh et al., 2015). Pelletization in this context is a process where pellets

consisting of bindings and magnetite concentrate are formed, dried, and hardened (Kawatra

& Ripke, 2003). It is performed for the pellets to obtain strength to survive transportation

and to acquire the right metallurgical attributes for further processing (Kawatra & Ripke,

2003). It is crucial for the pellets to keep their shape and not break into smaller pieces called

fines (Eisele & Kawatra, 2003). Fines could create a nonpermeable bed of material in further

processing, which decreases the quality of the final product (Eisele & Kawatra, 2003). Formed

pellets travel through the Grate to lower their moisture level by gradually increasing the

heat in sections while the pellets move through it (Thurlby, 1988). The hardening process is

performed through oxidation which starts in the later stages of the Grate and accelerates when

the pellets reach the rotating Kiln (Stjernberg et al., 2015). The process of oxidizing magnetite

is called sintering and turns magnetite (Fe3O4) to hematite (Fe2O3) and simultaneously fuses

the individual particles into a solid (Kawatra & Ripke, 2003). After the sintering process, the

pellet’s temperature decreases in the Cooler until they reach a temperature that allows them

to be stored and then transported to the customer (A. Rönnebro, personal communication,

18 Jan 2022).

Varying temperatures and constantly moving components expose the equipment in the Grate-

Kiln-Cooler to thermal and mechanical stress, which causes degradation of machine compo-

nents (Malfliet et al., 2014). The process involves many di↵erent components at risk for

degradation that could cause production stops. Unplanned production stops a↵ect the total

amount of produced pellets and lead to waste when the plant is shut down. Maintenance

e↵orts are needed to ensure the process’s performance to avoid component failure that could

cause unexpected stops (Çınar et al., 2020).

Maintenance of machinery can reduce production costs and increase profits by increasing

equipment’s lifetime and hindering production stops (Sharma et al., 2005). In recent years,

the significance of maintenance management has become vital as organizations today allo-

cate more resources in terms of workforce and financial means in favor of their maintenance

e↵orts (Garg & Deshmukh, 2006). Cost of maintenance stands for a large part of produc-

ing organization’s overall operating costs (Garg & Deshmukh, 2006), and according to Han

and Yang (2006), it accounts for about 15 to 40% of organizations’ total operational-related

costs. Poorly managed maintenance e↵orts could increase this portion to become even more

substantial (Salonen & Deleryd, 2011). Maintenance management can be defined as the

combination of technical and administrative tasks utilized to retain or restore a system to
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its normal functional state (C.-H. Wang & Hwang, 2004). C.-H. Wang and Hwang (2004)

further mentions that the objectives of a maintenance management program are to ensure

system lifetime, safety, and function.

For organizations to benefit from the objectives presented by C.-H. Wang and Hwang (2004),

a maintenance strategy is needed (Parida, 2007; Murthy & Hwang, 1996). Di↵erent strategies

fit di↵erent situations (Nezami & Yildirim, 2013), and the di↵erent strategies are generally

divided into two categories; preventive- and corrective maintenance (Li et al., 2006). Accord-

ing to H. Wang (2002), subcategories within the preventive maintenance domain consist of

policies with the general objective to perform maintenance before failures occur, often based

on systematic measurements and inspections to assess the equipment’s condition. Corrective

maintenance, in contrast, aims to perform actions solely when failure is a fact (H. Wang,

2002). Preventive maintenance strategies are considered more demanding due to their need

for data and subsequent analysis to manage the maintenance and thus avoid the negative

consequences that emerge when the process stops (Carvalho et al., 2019). If operations suc-

ceed with acquiring and utilizing this data, it enables them to predict and schedule when

maintenance is needed and thus, avoid breakdowns, reduce costs, increase e↵ectiveness, and

improve reliability (Hashemian, 2010). Predictive maintenance (PdM) is the most current

policy that utilizes these large quantities of data to foresee potential breakdowns and signal

when early signs of failures emerge (Selcuk, 2017). Besides preventing system failure, PdM

fosters e�cient use of resources (Selcuk, 2017).

1.2 Problem discussion

Luossavaara-Kiirunavaara Aktiebolag (LKAB) is a global supplier of refined iron ore products.

LKAB’s operation in Kiruna consists of mining and refinement of iron ore. The iron ore

is mined underground and later processed above ground into di↵erent products and then

shipped to customers. The refinement operation in Kiruna consists of a sorting plant, three

concentrating plants, and three pelletizing plants, see Figure 1.

Figure 1: LKAB’s supply chain

The pelletization process can be divided into two major parts, the cold and the warm. The

cold part involves creating the right mixture between binders and raw material and forming

the pellets. The warm part consists of the Grate-Kiln-Cooler process, which sinters and cools

the pellets. LKAB experiences challenges with an availability below satisfactory levels in one

of the pelletization plants, which has made the plant unable to fulfill its yearly production

goal. The investigated plan is also less reliable than the others in regards to yearly produced
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pellets due to a more considerable year-to-year variation, see Figure ??. Today, the causes

of this problem and their e↵ect on the plant’s availability are unknown. However, LKAB

believes it could stem from deviations within the warm part of the process (A. Rönnebro,

personal communication, 18 Jan 2022).

The pelletizing plant’s performance is mainly evaluated through three Key performance in-

dicators (KPIs), which constitute LKAB’s Overall Equipment E�ciency (OEE) (M. Orava,

personal communication, 18 Nov 2021). The purpose of the OEE value is to highlight areas

with potential for improvement and thus provide fact-based support to foster development

(Nakajima, 1988). According to Nakajima (1988), the OEE is determined as the product of

the factors; availability, operational e�ciency, and quality rate. Thus, the OEE value can be

defined as follows:

OEE = Availability x Operational efficiency x Quality rate (1)

According to Parida et al. (2014), low OEE industry averages are today’s most prominent

existing industry issue. Ylipää et al. (2017) who researched the average OEE of 98 Swedish

companies, concluded it to be approximately 50%, which is coherent with Ingemansson (2004)

estimations. The two main contributors to the low OEE values in the research by Ylipää et al.

(2017), were the average operational e�ciency (67,1%) and the average availability (78,9%).

LKAB defines availability as the fraction of the time the pelletization plant produces pellets

out of the total available time (M. Orava, personal communication, 01 Feb 2022). Factors

determining the availability are internal disturbances (y) and preventive maintenance e↵orts

(z). External disturbances (e.g., downtime due to supplier shortages) and scheduled downtime

(t) do not influence the availability as these factors do not evaluate equipment condition. All

factors are measured in terms of hours. It is thus possible to calculate the daily availability

value (A) as:

A =
24� y � z � t

24� t
; 0 6 y, z, t 6 24 (2)

The availability of the investigated plant is 86-87%, while the others both have an availability

of 88-89%. It suggests that potential for improvement exists due to the goal of 93% availability.

The potential for improvement is further strengthened by the fact that the plant is the

latest plant and that it should be able to be at least or more e�cient than the other plants.

According to LKAB, it costs the organization around 1 million SEK in lost revenue per hour

when the plant is experiencing failure (i.e., production stops)1. Failure is defined as the

termination of an item’s ability to perform a required function (Swedish Standard Institute,
1The lost revenue is a rough estimation from two senior engineers at LKAB. Important to mention is that the iron ore price

heavily influences the loss, where this estimation is based on the prizes of 2021.
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2010). LKAB’s aim is that the availability should be greater or equal to the other pelletizing

plants as this would have a positive financial impact. All of LKAB’s pelletizing plants use

similar processes and raw materials, which indicates that the availability could increase (M.

Orava, personal communication, 27 Jan 2022). With these factors being similar, a hypothesis

is that the divergence stems from internal disturbances unique to the investigated plant.

1.3 Purpose

The purpose of this thesis is to contribute to increased availability in one of LKAB’s pelleti-

zation plants in Kiruna. The aim is to increase the understanding of what is a↵ecting the

availability in order to monitor these causes by developing a model to predict when mainte-

nance is needed. This aim could be divided into the following two sub-aims;

• identify causes of process disturbances,

• develop a method of monitoring these identified causes to predict the need of mainte-

nance.

1.4 Delimitations

The project will investigate only one of the pelletizing plants in Kiruna. The plant needs to

increase availability in order for the plant to achieve its long-term goal of increased production

rate. Availability is the only KPI out of the OEE measurements which will be investigated.

The parts of the process included within the scope are limited to the Grate-Kiln-Cooler

process, which LKAB deem has caused much downtime in recent years. Only internal distur-

bances will be taken into account as it is a factor that heavily a↵ects the availability.
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2 Methodology

The following chapter presents the research method with a motivation for why it has been

chosen to fulfill the master’s thesis purpose. Further, how data was gathered and analyzed is

explained and motivated, followed by a discussion regarding the reliability and validity of the

study.

2.1 Investigative approach

This thesis project was conducted in collaboration with LKAB to identify the causes of low

availability at the investigated plant. An exploratory approach was adopted because of the

need to find what could have been the cause’s origin of the problem. Data was gathered

through access to LKAB’s maintenance software (Plant performance) and production soft-

ware (Process Explorer), which contained data regarding internal stops and multiple produc-

tion parameters. It was decided to explore the problems and recognize patterns throughout

the project in di↵erent ways, which is explained for each step. Therefore, the study utilized

a quantitative research approach using secondary data, which saved time in the data collec-

tion and enabled a significant amount of historical data to be analyzed. The analysis was

conducted to generate hypotheses of possible causes, which were subsequently tested. This

approach which moves back and forth between data and theory is referred to as an abductive

approach (Saunders et al., 2007), which is a suitable approach when one desires to develop an

understanding of what could have caused an unanticipated event (Van Maanen et al., 2007).

The abductive approach was appropriate as it is a combination of the inductive and deductive

approach (Dubois & Gadde, 2002). An abductive approach allowed the continuous increase

of knowledge during the workflow to be obtained simultaneously by observations and existing

literature. This approach became beneficial as it allowed the results to be based on a fusion

of current theory and empirical observations, increasing the probability of novel findings.

To fulfill the purpose of the thesis, the problem-solving methodology DMAIC was used,

which is a part of the Six Sigma framework. DMAIC is a systematic approach for solving

problems divided into di↵erent steps and is a widely used procedure in quality and process-

related improvements (Mehrjerdi, 2011). The framework is often related to the quality of a

process’s outcome but could also be used as a tool to improve process quality (S. Kumar et

al., 2011). The authors further mention that utilizing the DMAIC methodology in a project

could eliminate errors and disturbances that a↵ect the process’s output. When the problem is

defined and quantified, data could be used to clarify it, which enables analytic tools to trace

the problem to its root causes (S. Kumar et al., 2011). The operation is then subjected to

a control stage to monitor future behavior to prevent the recurrence of the problem. In the

context of LKAB, the output were the availability. The DMAIC approach were used because

the causes of the stops had to be identified in order to achieve the project’s purpose. The

DMAIC methodology contains five steps: Define, Measure, Analyze, Improve, and Control

which objectives, according to Montgomery (2017), are presented in Table 1, where the actions

taken to fulfill the steps are presented.
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Table 1: The steps of the DMAIC methodology and their content

Step
Content presented by

Montgomery (2020)
Actions

Define

Identify and map the in-

volved processes and define

critical requirements for the

process. When an oppor-

tunity for improvement is

identified, it is essential to

validate the improvement’s

possible impact on the busi-

ness performance.

The Grate-Kiln-Cooler process was mapped to-

gether with employees at LKAB through meet-

ings and a tour of the pelletizing plant in Kiruna.

A literature review complemented the gathered

knowledge, which enabled an investigation regard-

ing how to increase availability. The causes of

disturbances were examined, and their impact on

the availability during recent years was later eval-

uated. The results later laid the ground for decid-

ing what cause to examine further in future steps.

Also, the impact of the business performance were

approximated by a calculation of the potential sav-

ings.

Measure

Determining what to mea-

sure, how to collect data,

and assessing the current

state of the process perfor-

mance.

The current performance was evaluated for the

whole process and its constituting parts. An in-

vestigation regarding whether autocorrelation was

present for the initial availability screening was

conducted to ensure validity. Furthermore, the

project presents and discusses how quantitative

and qualitative data were gathered and utilized.

Analyze

Analyzing obtained data to

identify causes of variation

by investigating hypotheses.

The seasonal e↵ect on the availability was inves-

tigated. Production data was analyzed through

both univariate and multivariate methods to ex-

plain as much variation as possible. Further, a

method to monitor the process’s performance was

developed.

Improve

Propose suggestions based

on the previous steps aimed

to fulfill the project’s pur-

pose. Finally, verify the

final solution to gain ap-

proval.

Findings gathered from previous steps were used

to present suggestions that would fulfill the thesis’s

aim. The proposed solution’s merits and limita-

tions were further discussed. The proposed find-

ings were validated with LKAB to ensure their rel-

evance to fulfill the thesis’s purpose.

Control

Propose a method in order

to sustain the gained bene-

fits thanks to the earlier pre-

sented improvements.

The section proposed how the solution can be used

into LKAB’s daily operations. The need to up-

date the model was also presented with critical

factors that have to be considered when updat-

ing the model in the future.
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The project was constructed in three phases, with di↵erent objectives. The phases aimed to;

identify internal disturbances, identify causes of these disturbances, and finally develop a way

of monitoring critical factors that will indicate the need of maintenance. The initial phase

aimed to fulfill the thesis’s first part of the purpose regarding identifying process disturbances.

The two following phases aimed to fulfill the second part of the purpose regarding developing a

model with the ability to indicate when maintenance is needed. How the steps of the DMAIC

methodology were divided among the phases and which specific activities were concluded in

each phase are presented in Figure 2.

Figure 2: Executed activities in the di↵erent project phases

2.1.1 Literature review

A literature review was conducted during the first phase of the project. The literature review

was performed to increase the understanding of maintenance e↵orts in the Grate-Kiln-Cooler

process. The gathered knowledge did also act as a foundation for the project’s last phase.

Peer-reviewed scientific articles published in journals were primarily used to gather informa-

tion and knowledge. Books were also used to find information but less frequently. For a book

to be perceived as valid literature to be included in the theoretical background, it needed to

previously be frequently cited in other peer-reviewed scientific papers to verify its scientific

validity. However, books were only used when needed, and if there existed the possibility to

use a scientific article instead, the scientific article was used. The databases Google Scholar

and Scopus were used to obtain literature. During the search for appropriate literature,

the search results were filtered based on the number of citations to increase the probability

that the obtained literature was relevant. Some of the keywords and the number of hits the

keyword generated during the search for relevant literature are presented in Table 2.
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Table 2: Keywords used in Google Scholar and Scopus

Database Keywords Date of retrieval No. Hits

Scopus
Predictive maintenance AND availabil-

ity AND increase
February 2022 126 hits

Google Scholar SPC AND OEE AND monitoring February 2022 1500 hits

Google Scholar
Grate-Kiln AND pelletization AND

performance
March 2022 407 hits

Google Scholar Grate-Kiln AND refractory material March 2022 254 hits

Google Scholar Grate-Kiln AND monitoring March 2022 249 hits

The literature review included research regarding appropriate maintenance strategies to in-

crease plant performance and current methods for production performance evaluation. Fur-

ther, literature were reviewed regarding how monitoring of processes could be conducted.

Literature regarding the Grate-Kiln-Cooler process was also gathered to gain a deeper un-

derstanding of how it operates and which generic internal disturbances it is prone to. The

review enabled the identification of possible causes for process failure.

2.2 Define

The define step aimed to identify and validate the potential improvements of the Grate-

Kiln-Cooler process. To gain an initial understanding of the pelletization process, three

meetings were arranged during the first week of the project, where process engineers presented

the process in detail. The company’s site in Kiruna was further visited to understand the

manufacturing process. The literature review was extended with literature about the Grate-

Kiln process with the purpose of complementing the received information from LKAB.

Maintenance data regarding causes of stops were reviewed to identify the causes which had

the most significant impact on the availability. Data were gathered from LKAB’s maintenance

software (Plant Performance) was limited to the last three years (2019-2021) during the initial

determination of the plant’s performance. The limited time frame was chosen to focus on

the present causes of failure and not be heavily a↵ected by historical data. The identified

causes’ e↵ect on the availability were evaluated, which was the main deciding factor on what

to continue to analyze in the next phase. The data set contained the following information

regarding internal disturbances for the investigated plant:
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• stop time due to internal disturbance,

• start time after the internal disturbance is fixed,

• duration of internal disturbance,

• object that caused the internal disturbance,

• cause of the internal disturbance.

The data included information about production stops for the entire plant but was limited

to the Grate-Kiln-Cooler process in the analysis. The limitation resulted in 229 stops repre-

senting 2081 hours caused by disturbances in either the Grate, Kiln or Cooler. To investigate

which specific causes had the most significant e↵ect on availability (i.e., caused the most

production stop hours), three causes for each part of the process were extracted. It resulted

in nine causes divided between the three parts, representing approximately 90% of the total

2081 hours of stops the Grate-Kiln-Cooler had experienced during the investigated period

of time. Before it was decided which causes were chosen to investigate further, they were

validated together with LKAB to assure their feasibility. The frequency of occurrence for

each cause of failure was also evaluated to eliminate causes with too few appearances. These

would have made it di�cult to show statistical significance in later analysis.

2.2.1 Potential savings

Based on the information of what an hour of stop in the plant cost LKAB in lost revenue,

potential savings were calculated regarding the chosen cause of stop. It was done by multi-

plying the lost revenue per hour by the number of hours it occurred. The number of stops

was then used to estimate what a single stop represents in lost revenue to understand better

how years with varying stops a↵ect it. From this, an annual loss could be calculated even

if large fluctuations existed on a year-to-year basis. Fluctuations in the iron ore price also

a↵ected the estimation, where the estimation was based on the ore prizes of 2021.

2.3 Measure

The measure step was conducted in the first phase of the project with the primary aim of

explaining the current situation of the plant to benchmark its present operational capacity.

Therefore, an initial screening of the Grate-Kiln-Cooler process was conducted to fulfill its

purpose. Primary data needed to be gathered to investigate the process’s current perfor-

mance. Both qualitative and quantitative data were gathered to ensure a valid result. The

qualitative data was gathered from discussions and meetings with employees at LKAB. The

scope of the meetings varied, but the general reasoning for them to be conducted was to either

questions or validate hypotheses that emerged during the project’s progress. The meeting’s

content depended on which step of the DMAIC methodology the workflow was dealing with,

for example, meetings in the earlier steps contained more general questions to establish a foun-

dation for the thesis’s later steps. The conducted meetings and their content are presented

in Table 3.
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Table 3: Conducted meetings for each step of the DMAIC methodology

Date Respondent Scope Duration Step

18/11/2021
Supervisor at

LKAB
Defining thesis scope 25 min Define

17/01/2022
Process engi-

neer

Presentation of the sorting, concentrating and

pelletizing plants
60 min Define

17/01/2022 Lean Coach Presentation of the mining process 60 min Define

18/01/2022
Maintenance

manager

Defining availability, elucidating present per-

formance and potential savings
60 min

Define

/Mea-

sure

18/01/2022
Process engi-

neer

Presentation of the investigated pelletizing

plant
60 min Define

24/02/2022
Supervisor at

LKAB

Presentation of the investigated pelletizing

plant
60 min Define

24/02/2022
Supervisor at

LKAB

Discussion and validation of the result in

Phase 1 and discussion regarding Phase 2
30 min Measure

07/03/2022
Process engi-

neer

Validate which parameters will be included in

the analyze step
45 min Analyze

10/03/2022 Technician
Discussion regarding the Kiln and the refrac-

tory material
65 min Analyze

11/03/2022
Refractory ma-

terial specialist

Data collection and explanation regarding the

refractory material
45 min Analyze

11/03/2022
Supervisor at

LKAB

Validation of which parameters to include in

the analysis step
25 min Analyze

10/05/2022
Supervisor at

LKAB

Validation of the proposed solution’s relevance

and fit within the project’s scope
40 min Improve

The quantitative data included information regarding production stops, temperatures in

Kiruna, and production parameters for the Great-Kiln-Cooler process. Data regarding pro-

duction stops and the production parameters are gathered through various sensors. Table 4

presents where the utilized data in the project was gathered and how it was used. The gath-

ered quantitative data were analyzed and illustrated through the use of the software program

Statgraphics2.
2Statgraphics centurion, version 19. https://www.statgraphics.com

10



Methodology

Table 4: Gathered quantitative data during the project

Data Source
Subject of inves-

tigation

Time

frame
Step

Production stops Plant performance Potential savings 2019-2021 Define

Production stops Plant performance Initial screening 2019-2021 Measure

Production stops and

temperature in Kiruna

Plant performance and (och

Hydrologiska Institutet, 2021)

Potential seasonal

variation
2010-2021 Analyze

Production parameters Process Explorer
Monitoring of re-

fractory material
2014-2021 Analyze

2.3.1 Initial screening of present performance

The initial screening was constructed to generate an understanding of the plant’s present

performance and the impact the disturbances had on the availability. To do this, a variable

to assess current performance was established; the fraction of unavailable time (FUT). The

FUT variable represented the time when the process was not able to produce output out of the

total amount of available time on a monthly basis. Autocorrelation was investigated using the

FUT variable to determine if potential autocorrelation was present. If autocorrelation were

present, the general assumption that an arbitrary observation could be modeled by equation

(3) would be invalid. In equation (3), µ indicated the process’s mean and "i the sequence of

random, independent variables from the same distribution. This was done both for the parts

of the Grate-Kiln-Cooler process individually and the entire process.

xi = µ+ "i (3)

The initial screening was further complemented by investigating the FUT between 2019-

2021 using Shewhart control charts and Moving-range-charts. The control charts provided

information regarding which parts of the process performed the worst and how the fraction of

available time altered between di↵erent months for each part of the process. The Shewhart

chart, sometimes referred to as an individual chart, was used because the sample size was

equal to one (Montgomery, 2020). It was impossible to derive the standard deviation from

the intragroup variation when the sample size was one. The MR-chart was thus used as

a determinate of dispersion to overcome this challenge. For a brief explanation of how the

control limits for the charts were calculated, see Appendix A.

When using Shewhart charts and Moving-range-charts, the Grate-Kiln-Cooler process was

divided into separate components to analyze them in isolation to examine which part of the

process had the most significant influence of the process’ availability. The entire process

was also investigated to examine its current performance and compare the result against

desired levels. The entire process was constructed as a series constituted by the Grate, Kiln,
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and Cooler. The potential autocorrelation among the observed months was investigated to

ensure that the initial screening results were valid due to the Shewhart charts sensitivity to

autocorrelation. If autocorrelation were present and positive, it would influence the initial

screening result because the standard deviation estimate would be underestimated, making

the control limits too narrow (Montgomery & Mastrangelo, 1991). If the control limits were

estimated too narrow, it would increase the risk of false alarms, increasing the risk of an

incorrect interpretation of the process performance. The investigation regarding the potential

presence of autocorrelation was essential since autocorrelation has a substantial e↵ect on the

Shewhart chart’s performance (Maragah & Woodall, 1992).

2.4 Analyze

2.4.1 The season’s e↵ect on the availability

Potential seasonal variations regarding the availability were investigated for the pelletizing

plants. The analysis investigated if the outside temperature in Kiruna influenced the plant’s

respective availability. Data for the outside temperature was gathered from och Hydrolo-

giska Institutet (2021), which contained the daily temperatures in Kiruna. Only measured

temperatures from 2010 until 2021 were considered because of the limitation that Plant Per-

formance data only existed for this period for the plants. The reason for choosing the most

amount of data possible was to achieve statistical significance in the results. The daily tem-

peratures were aggregated to a monthly average temperature for each month of the year.

Months with an average temperature below zero were classified as a cold month, and months

with an average temperature above zero were classified as a warm month. Therefore, each

year could be divided into two seasons, a warm season consisting of all the months classified

as warm and a cold season constituted of all the cold months. The average unavailable time

for the respective season was calculated by dividing each season’s total unavailable time by

the number of months the season included. It was necessary to use the average unavailable

time since the cold season included more months than the warm season. A hypothesis test

and confidence interval were established to investigate if the season influenced the availability.

2.4.2 Missing data for the process parameters

After the process parameters from Process explorer were obtained, cases with missing data

values existed. The data ranged from 2014 to 2021, where data were measured with a fre-

quency of one hour. The missing data values were scattered, meaning that a case did not

exist where two missing data values appeared consecutively. The missing data values were

linearly interpolated to enable further analysis. Because these missing data values could not

be traced to any disturbances in Plant performance, the production was perceived not to

be stopped. The linear interpolation was constructed in accordance with what Liston and

Elder (2006) suggests; which proposes that during the condition where missing data values

are measured hourly and do only appear single-handed, one can approximate the missing

values as the average of its values one hour before and after the missing data value. Figure 3

presents a general illustration regarding how the missing data values were interpolated, where

T1 represents the missing data value during observation ni.
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Figure 3: Illustration of how the missing values were approximated

2.4.3 Principal component analysis

Principal component analysis (PCA) is a multivariate analysis technique that describes data

by several inter-correlated quantitative components (Mishra et al., 2017). The objective of

PCA is to reduce the dimensionality of a data set by aggregating variance onto a new set

of orthogonal variables referred to as principal components (zi). The established principal

components are thus uncorrelated and explain a significant amount of the existing variation

(Mishra et al., 2017). PCA was primarily used in this project because of its features of

reducing dimensionality. The principal components are constructed as linear combinations

of the process variables (xi). The process variables are obtained a component weight (cij),

highlighting its influence to determine the principal component’s value for each observation.

The linear combination for an arbitrary principal component can thus be described as follows:

zi = [ci1, ci2, . . . cin] ·

2

6664

x1

x2
...

xn

3

7775
(4)

The principal components are ordered by how much variation they account for, meaning that

the first principal component explains most of the data’s variation. The eigenvalue (�i) for

each principal component corresponds to the amount of variation the principal component

accounts for; thus, the first principal component’s eigenvalue is higher than the second prin-

cipal component (Montgomery, 2020). The relationship between the established principal

component’s eigenvalues can be stated as:

�i � �i+1 � �i+2 � . . . � �n � 0 (5)

The decision regarding how many principal components to use needed to be made with
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caution. More variability from the original data would be retained as additional principal

components are included. However, the complexity of interpreting the result would have

increased if more principal components were added (Montgomery, 2020), which resulted in a

trade-o↵ between additionally explained variability and increased complexity of interpreting

the results. Because the data was unstandardized, it was impossible to select the numbers

of principal components to include depending on if their respective eigenvalues were greater

than one or not (Todorov et al., 2018). Therefore, a threshold (i.e., a certain percentage

of the original variation) was selected. Principal components were thus added until their

total explained variability reached or exceeded the selected threshold. In this project, the

threshold was set at 70%, meaning that principal components were added until at least 70%

of the original variation could be explained.

2.4.4 The Hotelling T 2 control chart

The multivariate control chart Hotelling T 2 is a widely used monitoring technique (Mahpouya

et al., 2022). A multivariate control chart is used when more than one parameter is monitored

(Ahsan et al., 2018). Further, the Hotelling T 2 is able to monitor production processes and

detect when outliers during production becomes present (Montgomery, 2020). Because several

independent variables were included in this project to monitor the process’ performance, the

Hotelling T 2 was used. Because several production parameters aimed to be monitored, in

combination with large quantities of observations to consider, the computational time became

an issue. To cope with this challenge, Ahsan et al. (2018) proposes the usage of principal

components when constructing the model for the Hotelling T 2. The benefits of utilizing PCA

when constructing the Hotelling T 2 stems from its ability to reduce data dimensionality and

thus decrease the number of variables to monitor, which increases the chart’s e↵ectiveness and

decreases the computational time (Ahsan et al., 2018). Therefore, the Hotelling T 2-statistic

was based on principal components. Each observation in the control chart obtains a value

based on the principal components. The obtained value is referred to as the T 2-static and

can be defined according to Ahsan et al. (2018), as follows:

T 2 =
kX

i=1

(yi � µi)2

�i
(6)

The k refers to the total number of included principal components, yi is the value for the

principal component i, and µi is the respective mean. �i is the eigenvalue corresponding

to principal component i. When the model for the Hotelling T 2 was constructed, the mean

vectors and the covariance matrices from the principal components were used. The means

and covariance matrices were established from a training set consisting of 641 observations of

the Kiln, where the process was determined to be in steady-state production during the first

quarter of 2019. Steady-state was estimated based on the most frequent range of values that

the production speed and the independent variables obtained during the observed period. The

previously saved means and covariance matrices were used as parameters for a new Hotelling

T 2, which included observations for the entire time frame (i.e., the testing data set). The

entire time frame spanned from 2014 until the end of 2021, where sequences prior to stops only
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due to the refractory material were considered. To enable a prediction regarding what has

caused each stop, 100 observations prior to each investigated stop were included. However,

stops during 2019 were not included in the test data set because it was previously used for

the training data set. Figure 4 illustrates how the training data set were used to develop a

model for monitoring the process.

Figure 4: Illustration of how the training data set were used to monitor the entire time frame

The alpha risk (i.e., the risk of a false alarm originating from pure chance) was chosen to

0,0054 for the Hotelling T 2 because the chart is one-sided and its control limit aimed to re-

flect three-sigma-levels. If the upper-control limit of the control chart is surpassed, resulting

in an alarm, it will indicate abnormalities in any of the principal components. The Hotelling

T 2 chart was thus able to simultaneously monitor all the included independent variables.

During the diagnostics regarding which parameter contributed to a specific alarm, Lowry and

Montgomery (1995) suggest univariate control charts to be used for the chosen independent

variables. Thus, were the multivariate control chart (i.e., Hotelling T 2) established to monitor

the process, with additional individual control charts to enable a more straightforward diag-

nostic procedure. Because the pelletization plant’s production speed has increased during the

test data period (i.e., 2014-2021), the univariate chart’s control limits were recalculated every

200th observation. The control limits for the individual parameters needed to be reevaluated

because their values increased as the production speed increased during the period. If the con-

trol limit were determined not to be recalculated, the risk of false alarms in the independent

charts would increase.
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2.5 Improve

The findings of the analysis step resulted in that it was impossible to isolate the root causes of

refractory material breakdowns. Because of this issue, the improve stage’s approach needed

to be altered. Thus, instead of proposing strict recommendations to solve the root causes,

the improve step adopted a general approach to discussing the analysis’ findings. Therefore,

the improve section aimed to discuss how the project’s findings from the analysis related to

fulfilling the project’s stated purposes by combining the gathered insights from the analysis

and the obtained knowledge from the conducted literary review. The findings from the anal-

ysis are discussed, where the model’s merits and delimitations are highlighted. The section

further emphasizes how the model should be utilized in LKAB’s daily operations to increase

its availability. The section further initiated the discussion regarding which prerequisites must

be addressed to further improve the model’s predictive ability.

2.6 Control

The last section within the DMAIC methodology, control, mainly revolved around what

LKAB in the future has to do to maintain the merits of this project. As a consequence

of not being able to propose distinct recommendations in the previous step, the control

step’s content also needed to be altered. Thus, the control step adapts a general approach,

focusing on how future initiatives to solve the issues regarding the refractory material shall

be evaluated. The earlier constructed measure of evaluating the process’ performance in the

measure step (i.e., the FUT measurement) was proposed to assess the issues regarding the

refractory material. The section proposes how and with which frequency the evaluation could

be conducted. Suggestions for maintaining the model’s merits regarding the need to update

the model was also proposed, where similar aspect as with the discussion regarding the FUT

measurement are discussed.

2.7 Reliability and Validity

To assess the level of quality a research methodology yields, reliability and validity are two

commonly used parameters (Forza, 2002). The level of reliability refers to which degree its

results are repeatable, i.e., the probability of the same results being achieved when using

the identical methodology in a future attempt to answer the same research question (Forza,

2002). The validity, in contrast, is instead a measurement regarding if the right concept has

been observed (Forza, 2002). The reliability and validity are not two separate measurements

because if the validity is perceived as low, the reliability is also low. However, the validity

can still be perceived as high even if the reliability is low.

There was no need to collect new data in this project since it was already obtained from

LKAB’s di↵erent databases, which could be seen as a factor that would increase the relia-

bility. However, due to the authors not being able to collect the data by themselves, the

knowledge regarding the measurement system’s margin of error is unspecified. The fact that
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the DMAIC methodology was used is perceived as a factor that could have increased the re-

liability because of the methodology’s systematic approach, which according to S. Kumar et

al. (2011), could eliminate errors and disturbances which could have a↵ected the result. How

the DMAIC methodology was utilized in the project, presented in Table 1, is an additional

factor that the authors perceive to strengthen the reliability. The reasoning behind this is

because Table 1 provides a holistic presentation of which methods were used for each step

within the methodology, which could increase the method’s repeatability in future replicates

of the project.

During the initial period of the project, the entire Grate-Kiln-Cooler process was in consider-

ation as the potential cause for low availability in plant before narrowing the scope to solely

examining the refractory material in the Kiln. The substantial decrease in scope could influ-

ence the reliability in both a positive and negative fashion. The reliability could have been

decreased as the wrong section of the process was examined due to an insu�cient method

when deciding which part of the process would be further investigated. On the other hand, the

reliability could have been increased as the narrower scope enabled a more in-depth analysis

of the refractory material.

In this project, the production speed was used to evaluate if the process was experiencing a

stop or not. This assumption was based on the fact that production speed is a fair measure-

ment of process performance. The assumption was perceived to be appropriate in many cases,

for example, if a stop is present, the production speed will be equal to zero. Because the pro-

duction speed is continuous, periods of deviating or unstable values in the process parameters

could be observed when the production speed deviates from steady-state production. Even

though the production speed in many cases provides a fair evaluation regarding whether a

stop is present, it likely exists periods in the examined data set where the production speed

is not an accurate translation. Due to the risk of the assumption not always being valid, the

project’s validity was perceived to be hampered.

Even though it existed aspects during the project’s execution that could have hampered

the project’s reliability and validity, the quality of the project’s method is still perceived

as adequate. The reliability and validity are perceived as adequate enough to yield similar

outcomes if an external party replicates the project.
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3 Theoretical background

The following chapter presents an overview of the current literature regarding the main topics

of this master’s thesis. The chapter begins with a brief presentation of di↵erent maintenance

policies. Further, a selection of literature regarding process monitoring is followed by how

monitoring is performed in the Grate-Kiln process and what disturbances could emerge. The

chapter concludes with other studies that have researched the prediction of breakdowns.

3.1 Maintenance strategies

Maintenance managers need to be careful when deciding which maintenance strategy to in-

corporate due to its complexity (Sharma et al., 2005). The lack of adequate estimations

regarding which factors deserve the most attention during the decision of appropriate strat-

egy distorts the decision-making process (Sharma et al., 2005). Preventive and corrective

maintenance are the two main categories of maintenance management (Li et al., 2006), where

further sub-categories within both domains exist. These sub-categories make up maintenance

policies that organizations exercise, which are; Run-to-Failure (R2F), Preventive maintenance

(PvM), Condition-based maintenance (CBM), and Predictive maintenance (PdM) (Sharma

et al., 2005; Susto et al., 2012; Garg & Deshmukh, 2006). How these are divided into the two

categories is presented in Figure 5.

Figure 5: Categories of maintenance strategies and its subcategories using categories proposed by Li et al.
(2006)

The R2F strategy is the most elementary maintenance strategy as maintenance e↵orts only

are executed during equipment failure (Carvalho et al., 2019). The strategy is a sub-category

within the corrective maintenance domain, meaning that actions are only made when needed

(Hao et al., 2010). R2F is the least resource-e�cient maintenance strategy as interven-

tions, and its associated downtime after failure is usually more substantial compared to other

strategies (Susto et al., 2014). In contrast to a reactive maintenance approach like R2F, PvM

instead utilizes a proactive approach (Hao et al., 2010). The PvM strategy proposes main-

tenance e↵orts to be scheduled based on the equipment’s age and the number of performed

iterations (Susto et al., 2014; Dekker, 1996). The main objective of PvM is to mitigate the

risk of frequent and sporadic system failures (Gits, 1992). Even though PvM reduces the risk

of system breakdown (Dekker, 1996), unnecessary maintenance actions are sometimes per-
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formed, resulting in an insu�cient use of resources and increased operational costs (Susto et

al., 2014). The third policy CBM was introduced with the ambition to solve the shortcomings

with PvM (Ahmad & Kamaruddin, 2012). A CBM system is consistently monitoring specific

equipment parameters and, with the gathered information, deciding if maintenance is needed

or not (Ahmad & Kamaruddin, 2012).

It does not exist a universal agreement if CBM and PdM are synonyms or two di↵erent

practices (Fernandes et al., 2021; Selcuk, 2017). The connection between the two practices

is strong and according to (Hashemian, 2010), is it possible to perceive CBM as PdM and

vice versa. One similarity is that both policies measure and analyze specific parameters of an

asset, and from that, evaluate its condition (L. Wang et al., 2007; Bashiri et al., 2011). One

di↵erence, on the other hand, is that CBM usually only presents a short-term measurement

of the asset’s health in contrast to PdM that enables a long-term prediction of the asset’s

condition (Levitt, 2003; Chebel-Morello et al., 2017). Furthermore, PdM is also capable of

recognizing behavior patterns to determine when maintenance e↵orts are needed (Lee et al.,

2006). Predictive tools are used based on historical data, statistical methods, integrity factors

(i.e., visual aspects, wear, and other apparent physical deviations), and machine learning (ML)

(Susto et al., 2014; Selcuk, 2017).

3.2 Process monitoring

Statistical process control (SPC) is used to monitor a process through various control charts

(MacCarthy & Wasusri, 2002). SPC utilizes statistical methods to determine when deviations

from normal occur (MacCarthy & Wasusri, 2002). Traditionally, SPC has its domain within

quality assurance-related issues but is currently also used as means for fault detection and

diagnostics (Woodall, 2000). The objectives with SPC and PdM are not identical as SPC

is used to monitor critical quality parameters rather than indicating when maintenance is

required. Even if the general motivators to adopt SPC and PdM are di↵erent, Panagiotidou

and Tagaras (2010) recommended a joint treatment because the two concepts complement

each other, thanks to the following two reasons.

Firstly, the two concepts share the same central issue; the configuration of the monitoring

mechanism. It is challenging to decide which parameters should be monitored, how they

should be measured, and when corrective actions should be performed. Some parameters

indicate both the level of equipment condition and product quality, making it possible to

combine SPC and PdM to obtain additional information about the process. By that, knowl-

edge gathered primarily for maintenance purposes can explain SPC-related concerns and vice

versa. Combining these two concepts thus mitigates the risk of information loss due to im-

proper configuration of the monitoring system. (Panagiotidou & Tagaras, 2010).

Secondly, SPC is primarily used to monitor critical quality parameters. If the control charts

indicate deviations from the target value, it could stem from the equipment operating in

adverse conditions, making it more prone to failure. For example, if vibrations of the machine

extend healthy rates, it will damage the equipment. However, the extended vibrations will be

detected in the control charts as the monitored quality parameters probably will deviate from
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normal. Therefore, it is possible to utilize the close relationship between equipment condition

and shifts in quality to foresee potential breakdowns. (Panagiotidou & Tagaras, 2010)

Thanks to the possibility to combine PdM and SPC in order to monitor parameters that have

an e↵ect on equipment condition, it could be used as a tool within PdM. It is illustrated in

Figure 6 as an add-on to Figure 5. In Figure 6, CBM could also be perceived as PdM as it is

closely connected and di�cult to di↵erentiate (Hashemian, 2010).

Figure 6: Categories of maintenance strategies presented in Figure 5 with the addition of SPC

When monitoring a system’s condition, there is a need to use various sensors and other

tools to obtain necessary data (Hashemian, 2010), which in practice is not done with ease

Panagiotidou and Tagaras (2010). Selcuk (2017) proposes that the first step for organizations

intending to implement PdM successfully is to identify which components to be monitored.

The second step is to determine which parameters indicate the degradation of the asset by

influencing the identified critical component. Lastly, Selcuk (2017) deems that organiza-

tions have to choose appropriate PdM techniques to analyze and monitor the parameters

with. Hashemian (2010) suggests some generic parameters to monitor, which will provide

data that enables an assessment of the equipment’s condition. These proposed parameters

were; rate of vibration, humidity, ambient temperature and pressure, acoustic level, and tem-

perature. Commonly used measurement techniques to measure the generic parameters are;

vibration, lubrication analysis, ultrasonic, acoustic emission, and high-frequency vibration

(Hutton, 1996). When appropriate monitoring techniques are combined with SPC, it will

enable continuous improvements (Azizi, 2015). The usage of SPC thus both acts as a mean

of monitoring the process and evaluating its performance (Panagiotidou & Tagaras, 2010;

Woodall, 2000), which according to Azizi (2015), are factors that could enhance production

performance, hence increasing OEE.

3.3 The influence of maintenance strategy on OEE

Performance measurement (e.g., KPIs and OEE) is a fundamental tool in management be-

cause it provides a quantitative evaluation for where improvements are possible (Velmurugan

& Dhingra, 2015). The three pillars that constitute the OEE (i.e., availability, operational
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e�ciency, and quality rate) act as a foundation for organizations to enrich productivity, flex-

ibility and decrease unwanted expenses (S. Singh et al., 2021). Within each part of the

OEE measurement, sub-dimensions exist, referred to as the Six big losses, which all influence

at least one of the OEE’s constituting parts (Wudhikarn, 2011). According to Wudhikarn

(2011), the six big losses are; equipment breakdowns, set-ups and adjustments, minor stops,

reduced speed of production, defect or needed rework, and start-ups losses. The availability

is a↵ected by the two first mentioned losses (Azizi, 2015). The three main components of the

OEE are all heavily a↵ected by how well the maintenance e↵orts are orchestrated, meaning

that OEE is partly influenced by the maintenance e↵orts (Juuso & Lahdelma, 2013). How-

ever, it is essential to determine OEE correctly, as an improper evaluation of OEE hampers

the implementation of future maintenance initiatives (J. Kumar et al., 2014). To evaluate

the OEE correctly is unfortunately a complex issue because it is hard to evaluate the quality

rate because of its intangible elements (Parida & Kumar, 2009). Therefore, OEE acts as a

measurement of equipment performance, and indicator of which maintenance policy to adopt

in future maintenance initiatives, see Figure 7. E↵ects of maintenance e↵orts are vital to

evaluate because maintenance performance depends on how well maintenance-related KPIs

align with other business objectives (Swanson, 2001).

Figure 7: Categories of maintenance strategies presented in Figure 5 with the addition of OEE

One of the objectives of all maintenance policies is to improve OEE; however, various mainte-

nance policies yield di↵erent results. PdM and CBM are perceived as more e↵ective policies in

this regard compared to PvM and R2F (Christou et al., 2020; Sullivan et al., 2010; Christou

et al., 2022). Çınar et al. (2020) mention that organizations who adopt an R2F policy only

could obtain an OEE at most of 50%. Çınar et al. (2020) further state that a PvM policy

could acquire an OEE between 50-70% but utilizing PdM results in the highest increase of

OEE where it is possible to obtain a level above 90%.

3.4 The Grate-Kiln process

The pelletization process of iron ore produces a uniform and firm pellet with high iron purity,

which is suited for further processing in either blast furnaces or through direct reduction

(G. Singh et al., 2015). There are di↵erent processes and technologies for pelletization where

21



Theoretical background

the Grate-Kiln process is the most commonly used for sintering (G. Singh et al., 2015). There

exist di↵erent varieties of the Grate-Kiln process (G. Singh et al., 2015). However, at LKAB’s

pelletizing plant the process consists of a straight traveling Grate with a rotating Kiln. Grate-

Kiln processes are well suited for producing pellets with consistent quality using minimal

amounts of energy thanks to the recycling of hot gases created in later stages of production

(Stjernberg et al., 2015). Gases from the cooling stage are pumped to the drying and pre-

heating sections which result in less thermal losses (Stjernberg et al., 2015). The Grate-Kiln

process is applicable in di↵erent metal ore refinement processes and is not restricted only

to iron (Stjernberg et al., 2015). Even though there are di↵erences in specific components,

Stjernberg et al. (2015) states that the process involves the same significant three steps. Pre-

heating in a Grate, hardening in a Kiln, and then a Cooler. The Grate generally consists of

four main sections where the temperature increases gradually as the product proceeds through

the sections; updraught drying (UDD), downdraught drying (DDD), tempered pre-heating

(TPH), and pre-heating (PH) (Y. Wang et al., 2012). The Kiln, in contrast, is a continuous

process where the pellets from the PH come to reach their final mineral composition and

structural densification through sintering (Fan et al., 2012). It is achieved by exposing the

pellets to high temperatures through a burner that uses either coal, gas, or oil (S. Wang et

al., 2018). From the Kiln, the pellets proceed to the Cooling stage, divided similar to the

Grate until they are cold enough for transport.

3.4.1 Disturbances in the Kiln

In the case of the sintering of iron ore, the oxidation process of magnetite to hematite is an

exothermal reaction, meaning that thermal energy is released during the process (Stjernberg

et al., 2015). Fluctuations in the pellet condition thus a↵ect the production circumstances

due to di↵erent amounts of thermal energy being released (Fan et al., 2012). The authors

mentions that stable thermal regulation is critical in achieving a high-quality pellet, making

this a challenge for pellets producers. Heat fluctuations do a↵ect not only the quality of

the pellets but also equipment condition (Stjernberg et al., 2015). Thermal stress is one

of three factors that Malfliet et al. (2014) found a↵ecting the equipment of the sintering

process in copper production, together with chemical and mechanical stress. Malfliet et al.

(2014) emphasize that specific degradation mechanisms could di↵er between furnaces, making

it challenging to generalize specific mechanisms but state that these three main factors are

the ones that a↵ect equipment lifetime. The same classification could also be seen on the

mechanisms a↵ecting mechanical degradation at LKAB presented by Stjernberg et al. (2015),

which advocates that it could be generalized for iron ore processing as well.

A common source of failure in the Grate-Kiln process is problems regarding the lining inside

the Kiln, also referred to as refractory material (Stjernberg et al., 2015). Problems related

to refractory material wear in Kiln are connected to high costs of maintenance and defaulted

production (Weinberg et al., 2016). The refractory material’s purpose is to protect the metal

casing of the Kiln from thermal stress, chemical degradation, and mechanical wear (Malfliet

et al., 2014). The material often contains high levels of alumina (Al2O3) and silica (SiO2)

together with other oxides and carbides containing aluminum, magnesium, or silicon (S. Wang
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et al., 2022). There are mainly two categories of problems regarding the lining; degradation

of the material and the formation of deposits on the material (Stjernberg et al., 2012). The

authors state that these causes are often linked, for example, when formations are removed

or come loose, the material could be damaged in the process. The lining consists of a more

resistant material than the surrounding metal, however, it is also worn out by the conditions in

the machine (Stjernberg et al., 2015). When being exposed to high temperatures, the lining

expands, which causes mechanical stress as it interacts with surrounding material as well

as chemical stress from interaction with the pellets (Shubin, 2001). The stress is substantial

when starts and stops are made in the process due to fluctuating temperature, which has been

seen causing refractory material to fall o↵ as a result of spalling (Shubin, 2001). Spalling is

the process were irregularities in the lining appear, small cracks, which increase its adhesion

for deposit formations (S. Wang et al., 2018). In the Kiln, reactions between unburnt carbon

and pulverized pellets create these deposits, which stick to irregularities in the surface of the

lining (S. Wang et al., 2018). Formations are often observed when the burner of the Kiln

uses coal as fuel which creates ash consisting of unburnt coal which bonds to the pulverized

pellets (Stjernberg et al., 2015; S. Wang et al., 2022).

3.4.2 Monitoring the Kiln

The Kiln is a relatively closed system because the goal to minimize thermal losses and prevent

heat fluctuations (Y. Wang et al., 2012). As a result of this, process monitoring of what is

happening inside the system becomes challenging during steady-state production, which is

further complicated by the high temperatures of the sintering process (Fan et al., 2012). The

growing demand for monitoring the Kiln has increased the demand for sensors able to monitor

the closed and complex process (Y. Wang et al., 2012; Fan et al., 2012). As fluctuation in the

raw material condition a↵ects the released thermal energy, monitoring of the process becomes

essential to ensure both product quality and equipment health (Fan et al., 2012).

To e↵ectively control the Grate-Kiln-Cooler process, two parts are needed. Firstly, an expert

system to detect and respond to abnormal conditions, and secondly, a model designed to

describe relations and interactions between all production parameters and how these a↵ect

output (G.-m. Yang et al., 2016). Each of these two parts consists of multiple steps which need

to be functional for the process to be controlled e↵ectively (G.-m. Yang et al., 2016). Figure

8 presents the included steps that G.-m. Yang et al. (2016) highlights to be considered during

the configuration of the expert system. When the parts are integrated, the authors state that

it can be managed to achieve a more stable production which is economically beneficial.

Figure 8: The constituting components of an expert system for the Grate-Kiln process based on the article by
Y. Wang et al. (2013)
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The purpose of an expert system according to Y. Wang et al. (2013) and G.-m. Yang et al.

(2016), align with what Hashemian (2010) mentions being the aim of process monitoring.

Hashemian (2010) mention that a central part of process monitoring is to choose a set of

variables that could be analyzed to assess the condition of process equipment. Therefore, one

could argue that monitoring could be seen as part of an expert system for process control,

with the di↵erence that monitoring alone lacks the possibility of making adjustments to the

system. Since developing a fully functional expert system is out of the project’s scope, focus

will be on the first component, Data processing, where the aim of monitoring is to detect

process shifts from steady state. The monitoring of equipment’s condition could hence be

seen as a way of determining when maintenance e↵orts are needed for the equipment to go

back to steady-state, which make it fall within a PdM strategy (Lee et al., 2006). Determining

the state of equipment require an dependent variable which according to Liu et al. (2015)

could be an indicator of equipment health based on di↵erent input variables. An e↵ective

way to monitor equipment condition in PdM is to combine it with SPC (Panagiotidou &

Tagaras, 2010), which utilizes statistical methods to detect abnormal deviations from steady-

state production (MacCarthy & Wasusri, 2002). As a result, it is suitable to utilize SPC as a

first step in the development of a control system to achieve a more stable production process,

which Stjernberg et al. (2015) state would be favorable for equipment health.

3.4.3 Monitoring degradation of refractory material in the Kiln

Manufacturing companies often produce large quantities of equipment data used to detect

disturbances in production (Luo et al., 2008). The authors mention that manufacturing

companies tend to store production data for long periods of time and that a common problem

occurs when companies work with interpreting the data. Finding patterns that could indicate

future equipment failure could help to make proactive decisions regarding when preventive

maintenance are needed to avoid critical breakdowns (Luo et al., 2008). The complexity of

industrial environments has out-competed the human capability to analyze much of the data

by itself and is therefore in need of more complex analysis tools (Luo et al., 2008). Another

thing that also a↵ect the complexity of the analysis are the scope, if the degradation model are

monitoring on equipment level or component level (Weiss & Hirsh, 1998). The author state

that monitoring on equipment level are much more complex due to the fact that equipment

consist of many di↵erent components that could be a↵ected by degradation. In the work

of building a model for predicting equipment failure at a test bed company by Luo et al.

(2008), the authors were faced with a number of issues which they mentioned needed to be

handled before the model could be useful. These were problems regarding standardization

of production stop documentation, finding useful events to train the model with and to find

patterns in the data.

There are many di↵erent ways to detect patterns where many are based in machine learning

which use algorithms to build models that could be trained to identify reoccurring patterns

(Mohammadi & Wang, 2016; M.-C. Yang et al., 2018). Even though there exist di↵erent

methods to detect patterns, many follow the same basic problem formulation. The target

events (Et) has to be chosen and timestamped (Weiss & Hirsh, 1998), which in the case of
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breakdowns in the refractory material is when a large enough fall-out of refractory material

cause a production stop. From these, a chosen time leading up to that point makes up the

monitoring time (M), which in turn are divided into a prediction period (P ) and warning

period (W ) (Weiss & Hirsh, 1998; Luo et al., 2008), see Figure 9. The duration of these could

di↵er between situations and together they make up a sequence of separate monitoring times

M , (Weiss & Hirsh, 1998). During the prediction time P , patterns are being searched for in

the values of the chosen variables (M.-C. Yang et al., 2018).

Figure 9: Timeline of how the monitoring time are divided

M.-C. Yang et al. (2018) developed a monitoring system that could detect large fall-o↵ of

refractory material in a cement Kiln, which they further claimed could be generalized in

other similar situations. M.-C. Yang et al. (2018) found two things that could indicate

when this occurred; when the drive amp of the Kiln motor increases sharply and when the

temperature quickly drops in the burning zone in the Kiln. The sudden increase in drive amps

were derived from an increase of material moved in the Kiln, which were the case when large

fall-outs happened. As a result of the fall-outs, the temperature may drop for a short period

due to the increased energy loss to the environment before it returns to its stable state. In

that case, the outer layer of the Kiln will be exposed to higher temperatures, which could

be observed as red spots on the Kiln mantle. These signs could be harder to detect if the

fall-out is rather small, but in that case, adjustments may not always be needed. These two

indicators could be used together to detect refractory material fall-outs to achieve a more

reliable monitoring (M.-C. Yang et al., 2018).
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4 DMAIC

The following chapter presents the result for the stages in the DMAIC methodology in chrono-

logical order. The first two sections (i.e., Define and Measure) aims to describe and evaluate

the causes of process disturbances. Further, the developed method of monitoring these causes

is presented in Analyze, followed by an explanation of how to utilize the method to fulfill the

purpose of the study presented in Improve. Lastly, the Control stage discusses which manage-

ment e↵orts are needed to sustain the result’s merit.

4.1 Define

The sintering process of iron pellets consists of three main steps; Grate, Kiln, and Cooling.

Formed pellets from earlier processing are transported to the Grate and then passed through

the other steps in the mentioned order to end up as finished products after exiting the cooler.

For a visual overview of the three-step process, see Figure 10.

Figure 10: Overview of the Grate-Kiln-Cooler process

Production time is divided into three categories at LKAB: the time the plant is available, time

for preventive maintenance e↵orts, and time of internal disturbances. The plant is scheduled

to run almost all the time, making up around 730 hours each month, resulting in over 8800

hours of production time every year. Time for external disturbances and planned downtime is

not included in the production time due to the inability to control these. Therefore, assuming

that the plant will be in production every hour is not plausible.

The production goal is to reach a maximum of 4% of preventive maintenance e↵orts and 3% of

internal disturbances out of the total production time (M. Ryytty, personal communication,

21 Feb 2022). Table 5 and Figure 11 show the outcome and goals for the three categories

of production time during 2019-2021. Figure 11 highlights that both preventive maintenance

e↵orts and internal disturbances exceed the target values, which results in lower availability

than expected. Preventive maintenance e↵orts are included in the calculation because it is a

parameter that could be controlled. Preventive maintenance e↵orts should not be mistaken

for planned maintenance executed during the planned downtime. Preventive maintenance

e↵orts are actions to repair and stop breakdowns from reoccurring. It is not reasonable to

assume that there will be no breakdowns; therefore, the availability could never archive the

value of 100%.
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Table 5: Scheduled vs actual outcome

Preventive maintenance

e↵orts (%)
Internal disturbances (%) Availability (%)

Goal 4,00% 3,00% 93,00%

Outcome 7,72% 9,79% 82,47%

Figure 11: Time distribution of the plant, 2019-2021

The total time of production stops during the selected period makes up the highlighted slice

in Figure 11 called Internal disturbances. The analysis of stops resulted in di↵ering causes of

failure for each part of the Grate-Kiln-Cooler process. The three most significant causes of

production stop for each part are presented in Figure 12 together with the number of times

(n) they occurred. It was done as an initial screening to explore which cause to move forward

within the analysis. The distribution and duration of the stop causes is also presented in the

Pareto diagram in Figure 13. The result shows that stops caused by refractory material have

the most significant negative e↵ect on availability, representing around 63% of all downtime

during the investigated period.

Figure 12: Causes of production stop, duration of stop (hours) and number of stops (n), 2019-2021.
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Figure 13: Causes of production stop and their duration (hours) 2019-2021.

The initial investigation of what caused the disturbances in the Grate-Kiln-cooler process

resulted in the decision to further investigate refractory material breakdowns due to the

potential impact if the number of stop hours could be decreased. As illustrated in Figure

14, the refractory material could be found inside the Kiln and acts as a protection for the

Kiln mantle against thermal and mechanical stress. The material comprises multiple separate

bricks, which together make up the component referred to as the refractory material.

Figure 14: Visualization of the Kiln’s cross-section

4.1.1 Potential savings

Stops as a result of refractory material represented a total of 1 316 hours, accounting for

63% of the total time of internal disturbances in the plant during the sample time as seen

in Figure 12. With 14 stops during 2019-2021, the average stop lasts for 94 h, which is the

longest average stop among all disturbances. Every hour of stopped production represents

approximately 1 million SEK in lost revenue. Based on this estimation, lost revenue due to

the refractory material during the past three years exceeds 1 300 million SEK. The calculation

was based on the assumption that the demand for iron ore exceeded the supply, i.e., every

additional ton of produced iron ore would be sold. The project will thus focus on reducing

the number of stops which, based on the data from 2019-2021, means that reducing one
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stop could increase revenue by around 94 million SEK. On the other hand, increasing annual

availability by 1% represents an increase of 88 hours, which represents around 88 million SEK.

The estimations have to be taken with caution due to additional costs of maintenance that

may be needed to prevent stops, which are not included. Also, the loss of revenue per hour

is an estimation that is di�cult to estimate precisely.

According to Fan et al. (2012); Stjernberg et al. (2015), there could be a possible correlation

between stops, meaning that reducing one stop could prevent other production stops as well,

which aligns with what production engineers at LKAB mentioned. With this reasoning, the

financial impact of reducing the number of stops could be even more significant than the

linear relation discussed above.

4.2 Measure

A variable to assess current performance was established during the measure step, the fraction

of unavailable time (FUT). Shewhart charts and moving-range charts (MR-chart) highlight

how the FUT varies between months. Potential autocorrelation had to be investigated to

ensure that the assumption of independent observations in time is reasonably fulfilled to use

these charts.

4.2.1 Investigation of autocorrelation

While investigating whether autocorrelation was present, the partial autocorrelation function

(PACF) and autocorrelation function (ACF) were used. It was done for the Grate, Kiln,

and Cooler individually and for the entire combined process. The probability limits were

established using a 95% confidence interval for both the PACF and ACF. The result showed

that none of the four investigations showed any tendency for its data to be autocorrelated in

either the PACF or ACF. The result is presented in Appendix B, C, D, and E.

4.2.2 The entire process

When measuring the current performance of the entire process combined using control charts,

it becomes evident that the process today does not perform at a satisfactory level. The She-

whart chart that was conducted is presented in Figure 15. The goal that internal disturbances

should not exceed 3% for the entire process is currently not met. The control charts high-

lights that both the dispersion and mean increase over time, which means that the Grate-

Kiln-Cooler process performed better in 2019 than 2021. The months 28 and 34 represent

the worst performing, as the FUT exceeded the upper six sigma control limit of 42%. The

MR-chart, presented in Figure 16 highlights that the average moving range of the internal

disturbances from one month to the next is 13%, measured in absolute terms. The MR-chart

further indicates that the variability of the FUT seems to increase over time.
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Figure 15: FUT for the entire process

Figure 16: MR-chart of the FUT for the entire process

4.2.3 Kiln

The investigation of the Kiln provided insights regarding its performance were the established

control charts presented in Figure 17 and Figure 18, highlights that the performance of the

Kiln was more satisfactory in 2019 compared to 2021. The Shewhart chart has a mean FUT

of 5%, while a possible shift of the mean may exist after month 24 until the end of 2021.

After month 24 (i.e., the end of 2020), the availability fluctuated heavily between months.

The FUT has exceeded the upper control limit three times (i.e., 26, 28, 34). Due to recent

fluctuations, the mean of 5% is perceived as invalid for the Kiln today. Observing the months

after month 24 in isolation, a FUT mean of 20% is perceived to be more representative as a

measurement of its current performance. Thus, the Kiln’s performance has degraded during

the investigated period.
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Figure 17: FUT for the Kiln

The MR-chart conducted for the Kiln showed that its average moving range is 10% between

months. The MR-chart alarmed due to its upper control limit being exceeded at months 25,

26, 28, 29, 34, and 35. By analyzing the control charts for the Kiln, it is possible to claim

that the Kiln does not appear to be in statistical control, at least in recent time. A similar

inspection of the Grate and Cooler has been conducted and is presented in Appendix F and

Appendix G. Based on the initial inspection of Kiln’s performance during recent years, in com-

bination with previous findings regarding the refractory material’s impact on the availability;

the refractory material was chosen to be further analyzed.

Figure 18: MR-chart of the FUT for the Kiln
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4.3 Analyze

4.3.1 The seasonal e↵ect on the availability

The null hypothesis for the hypothesis test was that the availability was independent of the

current season. The second generated hypothesis was that season a↵ected the availability.

The confidence interval was established to validate the results from the hypothesis test and

provide further information regarding the potential di↵erence’s proportion. The di↵erence

between the two seasons was calculated for each year by subtracting the average time of

unavailable hours during the cold season (Aci) with the average time of unavailable hours

during the warm season (Awi) (i.e., Aci-Awi). The final test variable denoted as �Ai, reflects

the di↵erence in availability, measured in the unit of hours between the two seasons for each

observed year. Table 6 presents how the test variable was constructed:

Table 6: The construction of the test variable

i 1 2 3 . . . 12

Cold Ac1 Ac2 Ac3 . . . Ac12

Warm Aw1 Aw2 Aw3 . . . Aw12

Di↵erence �A1 �A2 �A3 . . . �A12

A test to investigate if the final test variable �Ai stemmed from a normal distribution was

conducted because both the hypothesis test and the confidence interval are based on the

assumption that data is normally distributed (Endo et al., 2015). The constructed test for

normality (i.e., The Shapiro-Wilk test) is presented in Appendix H. The final test variable

was determined to stem from a normal distribution, as the Shapiro-Wilk test could not reject

the normality assumption at the 5% significance level.

The season’s e↵ect on the availability was significant for investigated plant. The hypothesis

test highlighted that it is possible to reject the null hypothesis with a 95% confidence. Because

the null hypothesis could be rejected, it implies that the season’s influence on the availability

can be perceived as significant. The hypothesis test provided the following result:
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Hypothesis test for �Ai

Sample mean = 29,78

Sample standard deviation = 40,00

t-test

Null hypothesis (H0) : mean = 0

Alternative hypothesis (H1) : mean 6= 0

Computed t-statistic = 2,5795

P-value = 0,026

Reject the null hypothesis for ↵ = 0,05

The confidence interval was later established to examine the season’s magnitude of influence

on the availability. The confidence interval was constructed with a confidence level of 95%.

The confidence interval showed that the cold season has a higher average unavailable time (µ)

compared to the warm season. The di↵erence in average unavailable time among the seasons

is with 95% probability within the range presented in the confidence interval.

Confidence interval for �Ai

95% confidence interval for µ: [4,37; 55,19]

95% confidence interval for �: [28,33; 67,91]

The final test variable was the average unavailable time for each observed cold season minus

the respective warm season. The di↵erence in hours of average unavailable time, measured

in absolute numbers, was highlighted in the confidence interval and determined with 95%

confidence to be within the range [4,37; 55,19]. Because the constructed confidence interval

does not include zero and solely includes positive numbers implies that the cold season has a

higher rate of unavailable time.

4.3.2 Monitoring of refractory material

A total of seven independent variables were included in the calculation of the T 2 statistic. The

production parameters were selected based on discussions with process engineers at LKAB

and gathered knowledge from the literature review. Both sources of knowledge frequently

highlighted that temperature had an important influence on the refractory material health.

Thus, the common denominator among all the selected production parameters is their ability

to influence temperature in the Kiln. The selected independent variables are presented in

Table 7. Production parameters that were perceived to create redundancy were not included.

Like the two production parameters oil flow and coal flow, which act as fuel for the burner,

hence influencing the amount of energy it uses. Because the production parameter power

of burner already was included, the parameters oil flow and coal flow were perceived as

redundant and thus not included.
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Table 7: Selected independent variables

Production parameter Unit Frequency

The temperature of refractory material Celsius (C°) Hourly

The temperature di↵erence between refrac-

tory material and the pellet’s temperature
Celsius (C°) Hourly

Kiln rotation RPM Hourly

Power of burner Megawatt (MW) Hourly

Speed Cooler Percent (%) Hourly

Gas flow in upper PH Millimeter water pillars (mmVP) Hourly

Gas flow in lower PH Millimeter water pillars (mmVP) Hourly

Three principal components were extracted, which explained approximately 79% of the total

variability. The component’s weights are presented in Table 8. The first principal component

is heavily influenced by the speed of the Cooler and the rotational speed of the Kiln. Thus,

the first principal component will obtain a high value if these two independent variables

obtain high values. In contrast, the gas flow for the upper and lower part of PH (pre-heating

section of the Grate) decreases the first principal component value; hence if PH upper and

lower obtains a high value, it will decrease the first principal component’s obtained value.

The second principal component is positively influenced by the temperature of the refractory

material and the temperature di↵erence. On the other hand, Kiln’s rotation and the Cooler

speed will negatively influence the second principal component. Lastly, is the third component

positively influenced by the gas flow in upper PH and negatively influenced by the burner’s

power.

Table 8: Component weights for the three constructed principal components

Independent variable PC1 PC2 PC3

The temperature of refractory material (C°) 0,34 0,51 0,23

The temperature di↵erence between refrac-

tory material and material (C°)
0,04 0,70 -0,05

Kiln rotation (RPM) 0,52 -0,12 0,26

Power of burner (MW) 0,18 0,41 -0,20

Speed Cooler (%) 0,53 -0,19 0,19

Gas flow in upper PH (mmVP) -0,22 0,04 0,88

Gas flow in lower PH (mmVP) -0,50 0,20 0,16
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The principal components were further used to diagnose the internal disturbances due to

refectory material fall-outs in the established Hotelling T 2. Observing to what extent a

single principal component contributed to an observation’s T 2-statistic makes it possible to

understand which production parameter contributed to the s in the Hotelling T 2. Since

each principal component is constructed as a linear combination of the independent variables

and their respective component weights, it is possible to know which independent variable

significantly influences the T 2-statistic. The higher the absolute value of the component

weight, the bigger its influence is on determining the principal component’s value. The

information gathered from the principal components was validated through the established

univariate control charts to ensure the diagnostics’ validity.

4.3.3 The first investigated stop

Due to the observations being measured hourly, there were a lot of data to be analyzed

due to the available data consisting of many years of measurements. That made it hard to

visually assess the process performance for the entire time frame through the Hotelling T 2.

Nevertheless, it was possible to only focus on the production stops by using the Hotelling T 2

and its corresponding univariate charts. Therefore, the need existed to examine each stop in

isolation to reduce the amount of data and thus enable a visual assessment of the process’s

behavior towards failure. Out of the existing stops during the entire period, two stops were

of greater interest. The two selected production stops were chosen because they did not have

a significant amount of noise in the data prior to stop. Only stops due to refractory material

fall-outs were of interest, meaning that other internal disturbances for the Kiln were ignored.

The time period of interest for each investigated stop was 100 hours prior to it. The first

examined stop occurred at observation 523 (December, 2016), and the Hotelling T 2 were able

to highlight this production stop as presented in Figure 19. The T 2 chart was able to signal

when the stop became present, as the upper control limit was notably surpassed. Before the

stop, the T 2-statistic is below the control limit indicating steady-state operation.

Figure 19: Hotelling T 2 chart for the first selected stop, occurring during observation 523
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It was di�cult to diagnose the cause for the stop by using the principal component’s relative

contribution. All the individual charts for the stop therefore had to be examined to find what

could have been the cause of the stop. The individual chart regarding the temperature of the

refractory material was the only parameter that showed any possible deviating behaviors, see

Figure 20.

Figure 20: Individual chart for the temperature of the refectory material for the stop during observation 523

The temperature of the refractory material was high compared to the centerline in the chart

prior to stop during the entire investigated period. The three observations where the temper-

ature rapidly decreased (i.e., 488, 499, and 506) were of interest as the temperature decreased

much during a short amount of time. This occurred even though the burner did not highlight

a significant drop in power during these three observations making it noticeable. Because the

temperature for the refractory material was of interest, the temperature di↵erence was also

investigated. In Figure 21, the di↵erence in temperature is presented where the similar pat-

terns occurred for the three observations where the temperature dropped (i.e., observations

488, 499, and 506), see Figure 20.

Figure 21: Individual chart for temperature di↵erence of the refectory material for the stop during observation
523
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4.3.4 The second investigated stop

The second investigated stop occurred at the beginning of 2017, during observation 669 in

Figure 22, and lasted for 178 hours. In Figure 22, the constructed Hotelling T 2 is presented.

In the Hotelling T 2, the T 2-statistic experienced two spikes (i.e., observations 592 and 635)

before the stop. The production did not experience a stop during either observation 592 or

635. After observation 635, it is possible to detect a slight shift of the T 2-statistic, which

continues until the stop becomes present.

Figure 22: Hotelling T 2 chart for the second stop, occurring during observation 669

The principal component’s relative contribution to the T 2-statistic was investigated to under-

stand what caused the two alarms during observations 592 and 635. The T 2-statistics and the

principal component’s relative contribution are presented in Table 9. According to the table,

the second principal component were the main contributor to the observed T 2-statistics dur-

ing the two investigated observations. As mentioned earlier, the second principal component’s

value is heavily determined by the refractory material’s temperature and the temperature dif-

ference. Their univariate charts were thus investigated to understand what could have caused

the two spikes and the production stop.

Table 9: T 2-statistics and principal component’s relative contribution

Observation T 2-statistic PC1 PC2 PC3

592 24,677 0,378 24,190 0,331

635 23,785 0,389 23,757 0,004

The individual chart illustrating the temperature of the refractory material during the second

stop is presented in Figure 23. The control chart highlights that the refractory material

experienced temperatures above the control chart’s centerline before the stop occurred for 36

consecutive hours (i.e., from observation 593 until observation 629). The refractory material’s

temperature experienced two temperature drops during observations 592 and 635. The two
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temperature drops thus caused the two observed alarms in the Hotelling T 2 chart. Right after

the two temperature drops occurred, the temperature increased the following hour rapidly

while no significant changes were observed in the burner’s e↵ect. A few hours before the stop

occurred, a minor trend of increasing temperature for the refractory material can be observed.

Figure 23: Individual chart for the temperature of the refectory material during observation 669

The individual chart regarding the temperature di↵erence between the pellets and the re-

fractory material was further investigated, which is presented in Figure 24. Before the stop

occurred, the temperature di↵erence was negative as the discrepancy was below the lower

control limit for most observations. A negative temperature di↵erence value implies that

the refractory material’s temperature was lower than the pellet’s temperature. The trend

of negative temperature di↵erences continued for 39 hours (i.e., from observation 628 until

observation 667). Similar to the first investigated stop, the direction of the temperature drops

indicates that the cause for the temperature change stemmed from the refractory material.

Figure 24: Individual chart for the temperature di↵erence during observation 669
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4.3.5 Summary of analysis

The analysis highlighted that the Kiln process is more prone to failure during the cold season.

In addition to the literature review and discussions with employees at LKAB, this insight ini-

tiated a hypothesis that temperature variations influence the Kiln’s health. The Hotelling T 2

chart was constructed using three principal components to monitor the Kiln’s performance

prior to production stop. For the second examined stop, the principal components high-

lighted that the second principal components obtained deviating values prior to breakdown.

Individuals charts for the temperature of the refractory material and di↵erence in the mate-

rial temperature were investigated further in both cases. Their respective charts highlighted

abnormal high temperatures for the refractory material with several sudden drops in tem-

perature. The sudden drops in temperature in the refractory material resulted in periods of

negative temperature di↵erence between the refractory material and the pellets. Through in-

vestigating the individual charts for the two selected stops one could observe a tendency that

the temperature of the refractory material and the temperature di↵erence a↵ect the Kiln’s

health. If the tendency is valid, it would suggest that Kiln’s health is negative influenced by

at least one of the following:

• Periods of high temperatures in the refractory material.

• Temperature drops in the refractory material which appears sporadic.

• Negative di↵erence in temperature between the refractory material and the pellets.

Please note that the analysis only brought up two stops as these were the ones that showed the

most significant results. The tendencies were more distinct for the two selected stops compared

to others, like the ones presented in Appendix I and Appendix J, where the tendency was not

as prominent. Therefore, it still exists a need to validate the observed tendencies additionally.

4.3.6 The shortcomings of the developed Hotelling T 2 chart

The analysis proposes that the constructed Hotelling T 2 chart’s performance to predict break-

downs could have been distorted. In order to examine which shortcomings could have ham-

pered the chart’s predictive abilities, the autocorrelation for the included production parame-

ters and the T 2-statistic was investigated. The autocorrelation was examined for the model’s

training data. The training data were used instead of the test data because the test data

includes production stops, which contribute to autocorrelation as the production parameters

obtain trends due to the production parameters deviating before a stop. The autocorrelation

test is present in Appendix K, and highlights that all production parameters, except Kiln

rotation, were indeed autocorrelated to some extent. Consequently, since autocorrelation

was indeed present, it hampered the Hotelling T 2 chart’s monitoring ability because positive

autocorrelation leads to an overestimation of the upper control limit, decreasing the chart’s

ability to signal when shifts occur (Vanhatalo & Kulahci, 2015). To cope with the challenge of

autocorrelated data in a multivariate setting, Vanhatalo and Kulahci (2015) proposes the us-

age of the residuals attained from a suitable vector autoregression model (VAR) to construct
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the Hotelling T 2 in order to erase the hazards which emerge when autocorrelation becomes

present.

An alternative approach to cope with autocorrelated data would be to utilize an autoregres-

sive AR-model to erase autocorrelation for the individual charts (Montgomery & Mastrangelo,

1991). Figure 25 illustrates how the individual chart regarding the temperature of the refrac-

tory material in Figure 20 would di↵er if an AR-model of the second-order (i.e., AR(2)-model)

were leveraged to erase the autocorrelation. If the autocorrelation is considered, the control

limits widen, resulting in a decreased number of false alarms and a more accurate diagnostics

procedure. When autocorrelation is considered, the individual chart’s upper control limit

increases by approximately 1% compared to when autocorrelation was neglected.

Figure 25: Individual chart for the temperature of the refectory material for the stop during observation 523
when an AR(2)-model is utilized

A test for normality was also conducted to examine which shortcomings could have distorted

the Hotelling T 2 chart’s predictive ability. The test for normality was conducted for the

production parameters regarding the refractory material’s temperature, the temperature dif-

ference, and the established T 2-statistics, which are presented in Appendix L. The training

data used during the investigation was similar to the case when the potential autocorrelation

was investigated. The reason why not all production parameters’ probability distribution

were investigated was based on the fact that the analysis proposes that only the parameters

regarding the refractory material’s temperature and the temperature di↵erence influence the

stop, implying that it is most valuable to examine their potential violation against the as-

sumption to be normally distributed. If the T 2-statistic was normally distributed or not was

examined to investigate how the production parameter’s respective distribution a↵ected the

Hotelling T 2 chart. Normal distributed T 2-statistics are preferred as the upper control limit

otherwise run the risk of being overestimated and hence become misleading (Borror et al.,

1999). All examined tests for normality concluded that the assumption of the data to stem

from a normal distribution could be rejected with 95% confidence.

40



DMAIC

4.4 Improve

Based on the analysis step, the Hotelling T 2 chart is perceived as a suitable method for

monitoring multiple parameters simultaneously to evaluate the equipment’s health. As men-

tioned in multiple literature sources, monitoring equipment health could be beneficial in a

production environment as it could indicate when maintenance is needed and therefore in-

crease availability. Today, no multivariate analysis tools are used to monitor the process in

the investigated plant. If multivariate tools are implemented correctly, it could help to de-

tect interrelationships between variables that could be lost when only using univariate tools

(Montgomery, 2020).

4.4.1 Monitoring of equipment health

To be able to determine the refractory material’s health in the Kiln, a variable representing the

state of the equipment is needed Liu et al. (2015). By constructing a model of the steady-state

production as done in the Hotelling T 2 chart, we create a way of monitoring the equipment by

using the T 2-statistic as the variable representing equipment health. The recommendations

to LKAB will be to use the same methodology used in this project to monitor the equipment’s

condition to indicate when maintenance is needed.

Using the Hotelling T 2 chart makes it possible to monitor multiple production parameters at

once to detect if any of these deviate from normal operating values. Suppose any parameters

deviate significantly, the T 2-statistic will increase, which would indicate that something has

happened in the process. A situation without any operational decisions being executed to

change the process along with a large T 2-statistic would indicate that something is wrong or

no longer operates as it should. Therefore, it would indicate that maintenance is needed to

mitigate the risk of breakdowns. Using a Hotelling T 2 chart based on principal components

also enables the identification of possible causes of the disturbances, which is essential to

allocate suitable corrective maintenance e↵orts where it is needed.

To understand how movements in the Hotelling T 2 chart could be derived from behaviors

in di↵erent production parameters, an example from a stop caused by refractory material in

the beginning of 2017 in Figure 26 is used. In the figure, two spikes, marked with 1 and 2,

could be observed in the Hotelling T 2 chart. The analysis of the T 2-statistics showed that

the two spikes were derived from the second principal component, which is heavily weighted

by the parameters temperature di↵erence and refractory material temperature. Therefore,

the individual charts for those two parameters were investigated, which showed distinctive

patterns for the same observations. On occasions 1 and 2, drops in the temperature were

observed, causing the spikes in the Hotelling T 2 chart. Occasion 3 was instead explained by

a shift in the average temperature di↵erence, stretching over several observations.
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Figure 26: Visualization of how movements in the individuals charts are reflected in the Hotelling T 2 chart

4.4.2 The need to search for patterns in data

The analysis results show that monitoring only the T 2-statistic as a categorical variable, being

in control or not, is not enough to decide if maintenance is needed. It could be seen that only

because the T 2-statistic exceeds the upper control limit at a single moment in time, there

could not be assumed that maintenance is needed. An example of this could be seen in Figure

27, where the T 2-statistic exceeds the upper control limit during several observations before

returning to steady-state before a production stop occurs.

Figure 27: Hotelling T 2 chart during a stop caused by refractory material in May 2020

The risk of a sequence of observations above the control limit in the Hotelling T 2 chart

is low, and for this to happen by chance for multiple subsequent values is highly unlikely.

Therefore, it could be assumed that it could be derived from abnormal behaviors in any

production parameters making the process deviate from steady-state. Deviating from steady-
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state therefore does not solely indicate that a breakdowns will appear in the near time meaning

that the deviation could depend on other factors. The result of the model not being able

to signal exclusively in situations before breakdowns occur indicates that we cannot solely

look at the T 2-statistic as the determinant for when maintenance is needed, which Ahmad

and Kamaruddin (2012) would define as a CBM strategy. However, observing T 2-statistics

exceeding the upper control limit could be useful to detect abnormal behaviors in the process.

To more accurately determine the need for maintenance, we recommend that the Hotelling

T 2 chart also should be used to find patterns in the data which could indicate changes in

equipment health which, according to Chebel-Morello et al. (2017); Lee et al. (2006) fall

within the PdM strategy domain. As seen in Figure 26, there exist some patterns in the data

which indicate that there would be of great interest to explore further if patterns like this

would be possible to prove significant before stops.

4.4.3 Improve monitoring accuracy

Movements in the T 2-statistics were not always derived from such apparent changes in the

production parameters as in Figure 26. The issue of identifying these could be assumed

to be the result of di↵erent things. One of those things could be the Kiln’s position in

the production process, which makes it challenging to analyze in isolation due to being a

part of the critical production line. Therefore, disturbance from other plant processes could

cause production to diverge from steady-state and cause movements in the Hotelling T 2

chart. The second reason connects to what Weiss and Hirsh (1998) mentions, that it is

more complex to monitor equipment than individual components. The Kiln consists of many

di↵erent components where the refractory material could be seen as one. However, counting

the refractory material as one component is misleading because it covers the whole inside

of the over 40m long Kiln, which has a diameter of 8m. The third relate with the Kiln’s

size and concerns the di↵erent measurements of the process parameters. Having only one

sensor providing measurements to describe the whole refractory material temperature may

not reflect all variations making the measurement a poor representation. The lack of sensors

providing data for monitoring is seen as one of the potential improvements to better represent

the refractory material’s health. Additional sensors could better represent the current state of

the process, but as more data is collected, the risk of deficient data increases correspondingly.

In addition to this, the increasing the frequency of the measurements is also recommended

because it could yield an even better representation and increase the ability to detect small

changes in the process.

Accurately deciding when maintenance e↵orts are needed could contribute to increased avail-

ability. To achieve this, predicting breakdowns would be beneficial because, if accomplished,

maintenance e↵orts could be applied when a breakdown is predicted. The method developed

in the analysis step could only indicate the equipment condition. The T 2-statistic is recom-

mended to act as a signal for when maintenance is needed, but more accurate ways of deciding

when maintenance is needed could be achieved by predicting breakdowns. Therefore, it is

recommended to not solely base the decision of future maintenance e↵orts on the Hotelling

T 2 chart’s ability to signal when the process is deviating from steady-state. It is the first step

toward utilizing a predictive maintenance strategy. The next step is to develop a method to
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find statistically significant patterns in the data before it stops. A recommendation for how

LKAB should move forward with this will be further presented in section 5.

4.5 Control

To assess if future improvements solve the issues regarding the refractory material, LKAB

is recommended to reevaluate the Kiln’s performance through a similar procedure as in the

measure step. By reevaluating the FUT, it will contribute to an understanding of how future

initiatives influence the availability. The reevaluation of the FUT measurement is recom-

mended to be conducted monthly in order to detect potential trends or shifts among ob-

servations. Since this project’s findings revolve around the refractory material, the present

calculation of the FUT should only include downtime due to the refractory material. By only

including the associated downtime in the Kiln due to the refractory material, it will become

easier for LKAB to trace how the issue varies between months. Further, the construction of a

FUT measurement evaluating the current performance regarding the refractory material will

enable an assessment of future improvement initiatives’ impact on solving the issues related

to the refractory material. Because of how the FUT measurement has been constructed, a

decrease will be perceived as an improvement and vice-versa.

4.5.1 The need to update the model

The model needs to be updated in the future as the production speed is planned to increase.

Consequently, the production parameters’ steady-state will change accordingly, making the

current model outdated. If the model is not updated, the risk of false alarms would be

increased since the principal component’s means would no longer represent the actual mean

of the principal components during steady-state production. How often the model should be

updated is di�cult to determine exactly. By observing to which degree the production speed

increases between di↵erent years, we recommend updating the model at least every year due

to the small yearly change. When the model aims to be updated, the most current obtainable

steady-state production values are recommended to be used when developing the model.

The decision regarding which production values are perceived as steady-state production and

thus used to develop the model is crucial since it regulates the model’s sensitivity to process

disturbances. If the range of values perceived as steady-state production is too wide, the

model cannot signal when deviations occur, hence not being able to detect emerging stops.

In contrast, if the range of perceived steady-state values is too narrow, the model will likely

result in many false alarms.
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5 Improving the ability to determine the need for maintenance

The following chapter presents the improvements the project recommends to complement the

developed method of monitoring equipment health presented in previous chapters. First, the

discovered obstacles for developing a method of predicting breakdowns are presented. Further-

more, the challenges to incorporating the method into the daily operations are discussed with

a suggested implementation plan.

5.1 Obstacles for predicting breakdowns

In the project’s third phase, the Improve and Control steps of the DMAIC methodology,

improvements to more accurately determine when maintenance is needed were identified.

Predicting breakdowns was identified as a way to achieve this, which was attempted during

the analysis by finding patterns before production stops. During the analysis step, statis-

tically significant patterns in the data could not be established. The reason for this was

identified as being the result of four obstacles. These obstacles need to be handled in a way

that makes it possible to avoid their negative impact on pattern-finding. Therefore, solving

these issues becomes complementary recommendations to those earlier presented to enable

future prediction of breakdowns through pattern finding. Solving these obstacles is also seen

as having a positive impact on monitoring equipment health, thanks to the possibility of

increasing the quality of available maintenance data. The obstacles were the following:

• Not enough documentation about the stop

• Deficient data

• The actual breakdown time has to be known

• Breakdowns that satisfy pattern finding are rare

5.1.1 Not enough documentation about the stop

When analyzing past production stops, the quality and quantity of documentation vary be-

tween stops. For some stops, documentation exists in addition to the information automati-

cally generated by various sensors. The additional documentation comes from the operator’s

observations. It is the piece of information that is needed to better understand and analyze

changes in the production in historical data. A consequence of this issue was the di�culty

in di↵erentiating what kind of stop (i.e., alarms from sensors, operators pushing emergency

stop, or decisions from plant managers) caused the production stop in Plant performance.

The problem of not being able to connect movements in data from actual events in the

Kiln or if its decisions made by employees is seen as the biggest obstacle to finding reliable

patterns in data. Therefore, additional documentation is needed to distinguish the changes

influenced by production decisions and those resulting from actual process fluctuations. The

problem regarding documentation could be derived from a lack of standardization of the doc-

umentation process resulting in di↵erent operators having di↵erent documentation routines
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in connection with production stops. This obstacle complicated the analysis of stops, and the

shortage of documentation proved to be a common denominator for all encountered obstacles

in the search for patterns. Therefore, more documentation about the stops is perceived as a

prerequisite that needs to be addressed to predict breakdowns.

5.1.2 Deficient data

Deficient data was a problem that was present throughout the whole project. The obstacle

consisted mainly of observations that obtained values significantly deviating from values im-

mediately before and after the specific value in Plant performance. This problem was the

case for all production parameters, which disturbed the search for patterns and made the

T 2-statistics obtain misleading values. One of the identified reasons for this could be that

measurements of di↵erent production parameters are taken at di↵erent timestamps every

hour. That means measurements taken for the same observation could theoretically di↵er

by up to 59 minutes, making measurements of production parameters an unfair represen-

tation of separate hours. For example, if there were a short stop during ten minutes, this

stop would only be reflected in those measurements taken during that period. However, the

other production parameters may not indicate any disturbances. Another thing that was

observed was parameters that took on the same value for multiple measurements in a row.

It often appeared in combination with production stops causing significant movements in the

T 2-statistics, which aggravated the search for patterns in connection with stops. The obstacle

was further complicated because many of these cases were untraceable when looking at the

maintenance data due to the lack of documentation from operators.

An example of how the deficient data could appear is presented in Table 10. The abnormal

observation during observation 417 resulted in a spike in the Hotelling T 2 chart, which could

not be explained in hindsight when analyzing the data. The production parameters indicate

that the process could either have been stopped, a measurement error has occurred, or some-

thing in the process had changed. These behaviors must be addressed if any conclusions can

be drawn from observations like these, highlighting the need to handle these deficient data

values.
Table 10: Example of a situation with deficient data

Row

Production

speed

(Ton/h)

Temperature

of refrac-

tory mate-

rial (C°)

Temperature

di↵erence

refractory

material

and mate-

rial (C°)

Kiln

rota-

tion

(RPM)

Speed

Cooler

(%)

Power

of

burner

(MW)

Gas

flow up-

per PH

(mmPV)

Gas flow

lower

PH

(mmPV)

416 857,3 1387 118 2,3 23,68 47,74 -6,4 -210,58

417 841,7 1369 100 0,62 0 35,61 -6,86 -221,68

418 842,2 1412 139 2,25 27,76 43,01 -8,62 -259,32
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5.1.3 The actual breakdown time has to be known

When production stops caused by refractory material are initiated, it often depends on how

long it takes operators to detect a breakdown. Because these stops are substantial and often

stretch over long periods, there is a policy that production engineers have to decide if a

production stop should be initiated. The timestamp documented in Plant performance as the

breakdown moment is the time for initiating the stop, not the actual time for the breakdown.

The time from identification to production stop could further vary due to decisions to keep

production going for di↵erent amounts of time. There is no documentation of when the actual

time for breakdowns could have occurred or how long it took to decide when to initiate the

stop. Therefore, it is di�cult to know with certainty when a breakdown has happened by

looking at historical data. Therefore, it makes finding patterns before production stops in an

attempt to predict breakdowns di�cult because the time of breakdown is untraceable as of

today.

According to LKAB, it is confirmed that a di↵erence could exist between the actual time

of the breakdown and the time of production stop. The problem is visualized in Figure 30

based on the problem formulation presented by Weiss and Hirsh (1998). Assigning a too-late

timestamp to a breakdown results in looking at the wrong prediction time (P1) when searching

for patterns instead of the actual prediction time (P0). The problem is further complicated

due to the di↵erence in time (�E) between the actual breakdown (E1) and the production

stop (E0), which varies between stops since it could take di↵erent amounts of time to detect

the stop for operators and make a decision if the stop should be initiated. Because of that,

it becomes di�cult to find consequent and accurate patterns when assessing prediction rules

for breakdowns due to di↵erent time intervals being analyzed.

Figure 28: Timeline of how the the predicting time di↵er when the wrong time for breakdown is used based on
the model ofWeiss and Hirsh (1998).

In the second stop in the analysis, a slight shift in the Hotelling T 2 chart was observed, which

was derived from a change in the temperature di↵erence between the refractory material and

the pellets, see Figure 29. One hypothesis is that the shift could result from a breakdown,

which occurred somewhere between observation 630-640 instead of the marked production

stop at observation 669. The reason for the production stop being initiated much later could

either be the result of the breakdown not being identified directly or from a decision to keep

production going. The importance of documenting details in situations like these is needed in

order to improve the model and to be able to find patterns in the data to predict breakdowns.
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Figure 29: Individual chart regarding the temperature di↵erence for the second stop during observation 669

Identifying and rectifying the breakdown early could limit the maintenance e↵orts needed to

repair the equipment. As mentioned by Fan et al. (2012), the Kiln is challenging to monitor

due to high temperatures and because it is a closed system which contributes negatively to

identifying these timestamps accurately. Even though operators can look inside the Kiln

through a camera located at the end of the Kiln close to the burner, it is di�cult to see

fall-outs throughout the whole Kiln. Apart from the limited visual inspection on the inside,

operators also could inspect the Kiln mantle externally by searching for red spots.

In the article by M.-C. Yang et al. (2018) where they try to indicate refractory material fall-

outs in a Kiln, they identified three indicators of when fall-outs of refractory material appear.

M.-C. Yang et al. (2018) used a combination of; a heat sensor that analyzed the Kiln mantle

for red spots, monitoring of the drive amps of the Kiln motor, and identified sudden drops

in the Kiln temperature to identify fall-outs. Measurements were done with short sample

times, which enabled them to be used together to determine when a fall-out occurred more

accurately. These methods could be valuable to investigate further if these could contribute

to solving the problem by more accurately determining the time for a breakdown.

5.1.4 Breakdowns that satisfy pattern finding are rare

Even though production stops caused by refractory material represent most stop time in the

Grate-Kiln-Cooler process, there are not many production stops yearly. Cases that satisfy

pattern searching are even rarer because, before some stops, there are often large fluctuations

in the production parameters. Further, the mentioned obstacles also disrupt the ability to

find patterns by creating noise in the data. The result is that the number of stops that could

be analyzed and used to determine prediction rules is scarce, making it challenging to find

statistically significant patterns.

This obstacle is closely connected to the problem of deficient data. It could be the case

of occasional or multiple subsequent deficient observations and is further complicated due to

missing documentation. Some production stops happen in combination with other stops, such

as during the start-up process from another stop without reaching steady-state production

in between. A visualization of this are presented Figure 30 for two stops in September 2021.

The T 2-statistic never reaches steady-state again (i.e., under the upper control limit) before

the next stop occurs.
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Figure 30: Hotelling T 2 chart for 22-26 of September 2021

The several T 2-statistics above the upper control limit could be interpreted as unsatisfactory

equipment health, and thus, maintenance is required. In the example in Figure 30, however,

the T 2-statistics could be derived from a lower production rate than usual, resulting in all

individual production parameters deviating from steady-state. The reason why production

was not settled back to steady-state between these stops could not be answered by the infor-

mation in Process explorer. Documentation would be needed if these kinds of stops will ever

be able to contribute with information about breakdowns.

5.2 Tuning the Hotelling T 2 model

In addition to the obstacles which need to be solved, the model’s ability to indicate when

maintenance is needed could benefit from adjustments to improve its monitoring accuracy, for

example, which operational values are perceived as steady-state. The analysis findings further

propose the need to evaluate which parameters to include in the model, in addition to the

parameters regarding the refractory material’s temperature and the temperature di↵erence,

which showed a tendency to influence the refractory material’s condition. Selecting a di↵erent

set of variables to be included in the model could increase the capability of predicting equip-

ment health more accurately. Hashemian (2010) propose a set of generic variables, where the

rate of vibration, ambient temperature, and pressure are perceived as variables that could

be considered in the future development of the model. The ambient temperature could be of

great interest as this project’s findings propose that the weather temperature influences the

Kiln’s performance.

The decision if the Hotelling T 2 should be based on principal components or not is a further

factor that could influence the model’s performance. The principal components provide the

benefit of reducing the data set’s dimensionality (Mishra et al., 2017), which is advantageous

if an extensive amount of data that needs to be handled. If the number of included parame-

ters is high in combination with many observations during the model’s development, principal
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components are considered beneficial. However, if the model solely aims to monitor a few

variables, the usage of principal components could be unnecessary. A reason to consider ne-

glecting the idea of using principal components in the case of a few included parameters is the

increased complexity of interpretation, which becomes more challenging when using principal

components (Montgomery, 2020). The increasing complexity of interpreting the result will

make diagnosing the cause of the T 2-statistic’s behavior more challenging, increasing the risk

of misallocated maintenance e↵orts.

5.3 Incorporating the improvements in the daily operations

For the model to create value for LKAB, it must be e↵ectively incorporated into its daily

operations. Challenges to configuring the model into existing digital systems and establishing

ways of working are essential aspects that need to be addressed. Educating the employees on

how the model’s results should be interpreted and utilized is also important. This does not

mean that the usage of the model should replace all diagnostics of equipment health that are

already in place. LKAB has a lot of knowledge and ways of handling breakdowns based on

years of experience, an asset that should not be neglected. Therefore, the presented method

should complement existing ways of working to enable a faster recognition of the need for

maintenance and more accurately describe their causes.

Additional systems may be needed in the future as a part of the pattern-finding before stops

which may need algorithms to detect trends in the data. The literature also highlights that a

connected system for monitoring the Kiln to assess its condition could yield higher productiv-

ity, often referred to as an expert system Y. Wang et al. (2013), where the first step towards

developing a fully functional expert system is to establish a way of monitoring a process to

detect abnormalities. This project could be perceived as the initial step towards developing

an expert system, personalized for monitoring the Kiln G.-m. Yang et al. (2016).

5.4 Implementation plan

Once the obstacles have been handled and the decision on how the model should be tuned,

an implementation plan, as presented in, Figure 31, is required for LKAB to incorporate a

PdM strategy successfully. The implementation plan highlights the need first to address the

current obstacles, which act as a prerequisite to facilitating the model development. The

prerequisites should be addressed according to the implementation plan, which proposes the

obstacle of insu�cient documentation to be solved first due to its close connection to the other

obstacles. In which sequence the prerequisites are addressed is important since interconnection

exists among them. For example, if the problem regarding insu�cient documentation is

solved, the issues concerning deficient data will be less challenging. The implementation

plan’s previous steps regarding the prerequisites will facilitate the model development phase.

The development and evaluation of the model will be an iterative process, which will continue

until the model is perceived as adequate to be incorporated into the daily operations. The

last phase of the implementation plan regarding the integration of the model in the daily

operations revolves around the infrastructure and ways of working needed to seize the model’s

generated value.
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Figure 31: Implementation plan of how to incorporate the model into the daily operations
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6 Discussion

The following chapter presents a brief discussion, mainly focusing on the utilized method and

assessing its attained level of reliability and validity. Suggestions of alternative methods for

future projects that strive to continue the journey towards incorporating a PdM strategy are

proposed.

6.1 Method discussion

The systematic problem-solving methodology DMAIC was a critical success factor during the

scope reduction of the project. Initially, the entire Grate-Kiln-Cooler process was investi-

gated, which then was limited to examining the refractory material. Exploring which internal

disturbance had the most significant impact on availability was vital. The utilization of the

DMAIC methodology increased the likelihood that the right part of the process was targeted

after the narrowed scope since the methodology stressed the importance of properly defining

the problem.

The art of deciding which production parameters to monitor and which range is determined

as steady-state production is aspects of the project that needs to be further investigated.

A more suitable method of deciding these needs to be identified and exercised because the

current methods are inadequate since assumptions were necessary which could have influenced

the results (e.g., the range perceived as steady-state for the production parameters might not

reflect the actual steady-state).

The Kiln’s position in the production line increased the complexity of investigating which

parameters truly a↵ect the refractory material. Therefore, the authors propose that isolat-

ing the Kiln during analyses would be beneficial to ensure that observed disturbances stem

from the included production parameters and not from other parts of the production line.

Additionally, the extensive amount of data handled in the project has been seen as an asset

and a liability. It enabled hypotheses to be tested and verified quantitatively but also caused

confusion on several occasions, resulting in rework.

This project used statistical methods such as the Hotelling T 2 chart based on principal compo-

nents to indicate whether maintenance e↵orts are needed. However, it is possible that other

mathematical modeling techniques could have been more suitable to indicate the system’s

need for maintenance (e.g., various classification methods). Further, the possibility of uti-

lizing other predictive methods as machine learning approaches to detect when maintenance

is needed could also be of relevance. Nevertheless, independent of which predictive method

is the most suitable to detect the need for maintenance, the non-satisfied prerequisites, as

issued earlier, have to be attained first.
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6.1.1 The ability to increase availability using SPC

The question remains if SPC is the most suitable method to improve the plant’s availability.

Monitoring using the Hotelling T 2 will not prevent degradation of the refractory material.

Degradation will always be present due to the limited lifetime of the refractory material,

which usually lasts 1-3 years. However, it is known from the literature that stable operating

conditions favor the lifetime of the refractory material. Monitoring the equipment’s health

using the Hotelling T 2 chart detects when the process operation deviates from stable condi-

tions (i.e., steady-state). It would provide the benefit of indicating when adjustments may be

needed to stabilize the process and improve operational conditions, which could decrease the

degradation rate and potentially result in fewer breakdowns during the refractory material’s

lifetime. When the T 2-statistic is observed taking on large values, the process deviates from

steady-state, which otherwise could be di�cult to detect due to the complexity of monitoring

the Kiln. These deviation does not solely need to be the result of breakdowns. However, it

indicates that something has changed in the process and needs to be investigated. As of today,

breakdowns often are addressed as operators observe them, which could take time, making

the process operate for hours with defective components. Therefore, monitoring could enable

earlier detection of breakdowns limiting the impact of the breakdown and thus, minimizing

the maintenance needed and accordingly increasing availability.

However, if the availability will increase due to the monitoring method developed in this

project, is di�cult to know beforehand. The data used for the development of the model is

the data that is available from the sensors in place today. Knowing if these are causal with

the deterioration of the refractory material to provide any early signs of breakdown is unlikely

and needs more investigation. The risk is that the chosen production parameters used in the

model’s development cannot be used to describe the deterioration, meaning that there could

be a need to explore new parameters or other occurrences that would indicate breakdowns. If

the parameters are not chosen correctly, the risk is that the consequences of breakdowns are

monitored rather than the occurrences leading up to them, preventing increased availability

by the proposed monitoring method.

The monitoring may become unnecessary since the Kiln today can operate for several hours

without any noticeable consequences for the end products. Suppose the decrease of mainte-

nance hours due to early identification of breakdown through monitoring does not exceed the

lost production hours due to stopping the process early; monitoring will not yield a positive

financial outcome. Thus, it would indicate that other approaches within the realm of PdM

perhaps would be more suitable from a financial standpoint. The final decision criteria de-

pend on whether the advantages of utilizing a specific PdM approach exceed the increased

use of resources it entails.

6.1.2 The robustness of the results

Autocorrelation was present for the vast majority of the included production parameters,

which resulted in challenges regarding the constructed Hotelling T 2 chart’s monitoring ability.

Autocorrelation caused the upper control limit in the chart to increase, which poses an issue
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because it impaired the monitoring system’s ability to detect shifts, consequently decreasing

its monitoring performance. In addition, the issue concerning the unfulfilled assumption

that data were normally distributed was also perceived to impair the monitoring system’s

performance.

The authors perceive the presence of autocorrelation, which were unconsidered during the

model development, as an issue that needs to be considered in future attempts to monitor

the refractory material. However, the authors have reasons to believe that the negative e↵ect

of autocorrelation on the project’s result could have been hampered since the issued obsta-

cles, regardless of whether autocorrelation is present, make it impossible to predict emerging

breakdowns e↵ectively. Furthermore, when breakdowns were identified in the Hotelling T 2

chart, the T -statistic obtained values notably above the upper control limit, suggesting that

the utilized model’s ability to detect shifts once they occurred was not decreased. The indi-

vidual chart presented in Figure 25, where autocorrelation was considered and erased through

the usage of an AR(2)-model, further suggests that the initial individual charts (i.e., when

autocorrelation was neglected) might be misleading as the control limits are to narrow. Never-

theless, the initial individual charts still enable visualization of how its respective parameters

alter as time progresses, enabling detection of abnormalities and possible trends before break-

downs. In addition, when considering the slight relative increase in the upper control limit

(i.e., 1%) compared to when autocorrelation were neglected, suggesting that the conclusions

drawn from the charts does not di↵er significantly from when autocorrelation is accounted

for.

The issue that the investigated parameters did not stem from a normal distribution impacted

the project’s results. The production parameters measuring the refractory material’s temper-

ature and the temperature di↵erence between the refractory material and the pellet’s tem-

perature were non-normally distributed. This resulted in the assumption of normality being

violated, increasing the risk of falsely interpreting the individual charts while monitoring the

system. However, when the monitoring system is incorporated into the daily operation, the

individual charts are intended to be interpreted through a qualitative approach to diagnose

the cause of the deviating T -statistics. A qualitative approach refers to employees utilizing

existing knowledge of the system to decide when abnormalities occur in the individual charts

instead of solely reacting when the upper control limit is surpassed. The negative consequence

of the data being non-normally distributed, and the sample size is one, is that according to

Chou et al. (2001), the upper control limit becomes overestimated. The hazard that arises

when the upper control limit is overestimated is that the Hotelling T 2 chart’s ability to detect

shifts will be hampered, decreasing its proficiency in monitoring the process. To solve the

issues regarding the violation of the normality assumption in the individual charts, Borror

et al. (1999) proposes the usage om of an exponentially weighted moving average (EWMA)

chart, which is a more robust approach to non-normally distributed data. Further, Borror

et al. (1999) mentions the EWMA chart’s adequate ability to detect shifts in the process

mean, resulting in it being a beneficial control chart to consider in the case of non-normally

distributed data.
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6.2 The reliability and validity of the result

As issued earlier, the normal operational condition for all independent variables was unknown.

Consequently, the operational condition highlighting steady-state needed to be estimated,

which influenced the model’s ability to monitor the process accurately. The production speed

was used to decide which periods were perceived as steady-state production. If the normal

operating conditions for each included production parameter were known, these would be

used to determine steady-state, increasing the model’s probability of monitoring the process

more accurately. Therefore, the lack of knowledge regarding which operational condition

reflected steady-state hampered the project’s reliability. Furthermore, the reliability was also

perceived to be hampered by deficient data in the Process explorer data set as it increased

the risk of examining the concept incorrectly.

In terms of the project’s validity, several factors could have influenced it during the project’s

execution. Which production parameters that finally were chosen to be included in the model

in order to monitor equipment health was perceived to influence the validity. In which fashion

is nevertheless hard to determine. The included parameters were chosen based on current

literature and discussions with employees at LKAB, which would initially suggest the validity

to be strengthened. However, the results from the analysis propose the opposite, i.e., that the

parameters could be wrongly selected because of the model’s inability to predict breakdowns,

which instead suggests the result’s validity to be decreased.

The validity could have been strengthened thanks to the several meetings held with the

supervisor at LKAB to ensure that the workflow and the findings prior to the meetings

were within the project’s scope and of relevance to LKAB. The meetings also provided the

opportunity to benchmark the current finding’s credibility, thus increasing the validity.

To what extent the presented findings in the thesis can be generalized is according to Lucas

(2003), referred to as the study’s external validity. Even though the findings presented in the

thesis can be perceived to only apply to the Kiln for the investigated plant, one could argue

that the production parameters a↵ecting the health of the refractory material are generic. As

the production parameters can be perceived as generic, it implies that the possibility exists

that the findings could be generalized for similar Kiln processes. Furthermore, the currently

non-satisfied prerequisites identified could be perceived to some extent also be generalizable

for similar processes. The fact that similar research, for example, by (Luo et al., 2008),

identified similar obstacles further strengthens that the prerequisites could be applicable for

other Kiln processes.
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7 Conclusion

The following chapter presents the conclusions which answer the master’s thesis stated pur-

pose. Beginning with the first part, which aimed to identify the causes of process disturbances,

followed by the second part regarding the chosen method of monitoring the critical causes

identified in the first part.

This thesis has contributed to understanding what a↵ects availability in the Grate-Kiln-Cooler

process in one of LKAB’s pelletization plants. Refractory material breakdowns in the Kiln

are the most significant disturbance causing a majority of the downtime in the plant and

thus, preventing LKAB from reaching its production goals and missing out on a substantial

amount of revenue. Stops caused by refractory material are rare, and there could be many

months between them. Nevertheless, the disturbance still represents the most significant

influence on low availability because these stops often are present for over a hundred hours.

It means that either preventing stops from happening or limiting the maintenance needed to

correct them could substantially impact the availability. Therefore, monitoring the refractory

material is assumed to be favorable for detecting future disturbances and preventing them

from happening.

An appropriate way of monitoring the refractory material is perceived to be through the

usage of a Hotelling T 2 chart. It enables multiple production parameters to be monitored

simultaneously to construct a quantification of the equipment health in the form of the T 2-

statistic. The model on which the Hotelling T 2 chart is based on using steady-state values for

the included production parameters. The T 2-statistic will therefore represent how far these

parameters are from their steady-state, which indicates if production is unstable. In that

case, the principal components could then be used to assess which production parameters

have deviated and may need maintenance. The main contribution of this master’s thesis

will be its used methodology to determine the need for maintenance. Providing the right

maintenance e↵orts as soon as needed could prevent and ease the impact of future breakdowns.

Determining the need for maintenance by investigating a variable representing equipment

health has been beneficial in previous literature. However, the findings suggest that the

method could lack precision and that the ability to predict breakdowns through identifying

patterns in the data before stops could help to determine this more accurately.

The Hotelling T 2 chart and its constituting parameters were investigated in an attempt to

find patterns before stops. Unfortunately, stops caused by refractory material could not be

predicted by analyzing the T 2-statistics. However, some patterns were observed in the process

parameters. The individual charts regarding refractory material temperature showed some

tendencies which caught the authors’ attention. It resulted in a hypothesis that changes in

the temperature could be a valid indicator of when a breakdown is about to occur. Only

a few production stops caused by refractory material had occurred during the observed pe-

riod, combined with noisy data, making it di�cult to conclude the tendencies’ statistical

significance. Therefore, further investigation is recommended about how refractory material

temperatures are connected to the need for maintenance and if patterns could indicate an

upcoming breakdown. In addition, there is also a need to develop the model further and
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evaluate if the current way of collecting and handling data needs to be developed to achieve

a more accurate representation of the equipment’s health and improve the ability to predict

future stops through pattern finding.

The ambition of this project is that the findings alongside the developed methodology could

create a fundamental understanding of what could be included in a predictive maintenance

strategy. The understanding is perceived not only limited to the examined process in this

project; thus, it could be generalized to other similar Kiln processes. However, the impact

of implementation, independent of which process the method will be applied to, will depend

on the model’s ability to reflect the process and distinguish patterns in data proceeding

stops. Therefore, further development of the model is essential for a successful predictive

maintenance strategy.
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8 Appendices

8.1 Appendix A - Control limits for the univariate control charts

The average moving range MR, based on two observations, were calculated as follows:

MR =

Pn
i=1 |xi � xi�1|

n
(7)

Thus could the centerline (CL) and the upper- and lower control limit (UCL and LCL) for

the Shewhart chart be calculated as follows:

UCL = µ+ 3
MR

d2
(8)

CL = µ (9)

LCL = µ� 3
MR

d2
(10)

Where µ is the process mean, and d2 is a constant whose value depends on the number of

observations used to determine the MR. This case was based on only the previous observation,

meaning that two observations were used to determine the MR. Therefore, d2 obtained the

value d2 = 1, 128 (Montgomery, 2020). The CL, UCL, and LCL for the MR-chart were later

calculated, which used Montgomery (2020) definition, as follows:

UCL = D4MR (11)

CL = MR (12)

LCL = D3MR (13)

Where MR is the average moving range, and D4 and D3 are two constants depending on how

many observations were used to determine the MR. Because only two observations were used

to determine the MR, D3 became equal to zero (Montgomery, 2020), meaning that the LCL

obtained a value of zero for all the conducted MR-charts.
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8.2 Appendix B - Investigation of potential autocorrelation for the Great

Figure 32: Autocorrelation functions for the Grate

Figure 33: Partial autocorrelation functions for the Grate
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8.3 Appendix C - Investigation of potential autocorrelation for the Kiln

Figure 34: Autocorrelation functions for the Kiln

Figure 35: Partial autocorrelation functions for the Kiln
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8.4 Appendix D - Investigation of potential autocorrelation for the Cooler

Figure 36: Autocorrelation functions for the Cooler

Figure 37: Partial autocorrelation functions for the Cooler

65



Appendices

8.5 Appendix E - Investigation of potential autocorrelation for the entire process

Figure 38: Autocorrelation functions for the entire process

Figure 39: Partial autocorrelation functions for the entire process
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8.6 Appendix F - Initial screening for the Grate

The established control chart highlight that Grate’s performance varies heavily during the

selected time frame. However, the mean is at 2%, meaning that, in general, the process’s

availability is satisfactory under the assumption that the remaining components of the pro-

cess are available the entire time. The Shewhart chart presented in Figure 40 highlight the

volatility of the process. The alarms in the control chart for months 16 and 30 are of special

interest as the availability was extraordinarily low. The corresponding MR-chart for the Grate

in Figure 41, highlights that the average moving range was 3%. Further, the MR-chart posits

that four months exceeds the upper control limit, which stems from the two spikes at months

16 and 30 in the Shewhart chart. As both control charts include alarms more frequently than

the amount that would be present only due to pure chance, it is possible to claim that the

process is not in statistical control.

Figure 40: FUT for the Grate

Figure 41: MR-chart FUT for the Grate
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8.7 Appendix G - Initial screening for the Cooler

The Cooler as the last component in the process were as well analysed by the usage of a

Shewhart and an MR-chart, which is presented in Figure 52. The Shewhart chart highlights

that the mean of the Cooler is 1%, which is the lowest identified mean among the three

process steps. It is not possible to identify a shift or a trend in the Shewhart chart. The

upper control limit was exceeded once, which was at the month 7. The MR-chart show that

he average moving range of the cooler is 1% and the upper control limit is exceeded once. The

cooling process could be perceived to be in statistical control as none of the two examined

charts imply the contrary.

Figure 42: FUT for the Cooler

Figure 43: MR-chart FUT for the Cooler
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8.8 Appendix H - Test for normality

Figure 44: Test for normality for the final test variable
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8.9 Appendix I - The first contradicting stop

The investigated production stop appeared in observation 1192. In the Hotelling T 2 chart,

there is no prominent trend apart from a slightly increasing positive trend. The individuals

charts, presented in Figure 46 and Figure 47 indicated high temperatures for the refractory

material prior to stop. The temperature di↵erence increased during the selected time frame.

The temperature di↵erence was still not big enough to be perceived as a deviation. However,

it existed hours before the stop when the temperature di↵erence was negative.

Figure 45: Hotteling T 2 chart for the stop during observation 1192 in November 2021

Figure 46: Individual chart for the temperature of the refractory material during observation 1192 in November
2021
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Figure 47: Individual chart for the temperature di↵erence during observation 1192 in November 2021
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8.10 Appendix J - The second contradicting stop

The production stop, which occurred at the end of 2021, is presented in Figure 48. The

Hotelling T 2 chart highlight steady-state production with no visible trend. Its respective in-

dividual charts, presented in Figure 49 and Figure 50 also highlights steady-state production.

Because the individual charts did not show any deviations or strange behavior, one could

argue that these two variables were not the cause of the production stop. Stops, where this

phenomenon occurred were why it is impossible to conclude that the refractory material’s

temperature and temperature di↵erence are the only factors influencing equipment health.

The stop during observation 1569 rather suggests that other variables influence equipment

health.

Figure 48: Hotteling T 2 chart for the stop during observation 1569 in December 2021

Figure 49: Individual chart for the temperature of the refractory material during observation 1569 in December
2021
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Figure 50: Individual chart for the temperature di↵erence during observation 1569 in December 2021
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8.11 Appendix K - Test for autocorrelation among production parameters and

the T 2-statistic

Figure 51: Autocorrelation function for the investigated production parameters and the T 2-statistic from the
training data set 74
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8.12 Appendix L - Test for normality for the influencing parameters and the

T 2-statistic

Figure 52: Test for normality for the influencing parameters and the and the T 2-statistic from the training
data set
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