
Supervision
Object motion interpretation using hyperdimensional computing based on 

object detection run on the edge

Albin Andersson Svensson

Computer Science and Engineering, master's level 

2022

Luleå University of Technology 

Department of Computer Science, Electrical and Space Engineering



Supervision 

Object motion interpretation using hyperdimensional 
computing based on object detection run on the edge 

Albin Andersson Svensson, 
Luleå University of Technology, Sweden 

July 24, 2022 

Abstract 

This thesis demonstrates a technique for developing efcient applica-
tions interpreting spacial deep learning output using Hyper Dimensional 
Computing (HDC), also known as Vector Symbolic Architecture (VSA). 

As a part of the application demonstration, a novel preprocessing 
technique for motion using state machines and spacial semantic pointers 
will be explained. 

The application will be evaluated and run on a Google Coral edge TPU 
interpreting real time inference of a compressed object detection model. 
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1 Introduction 

The following work is done at Future Ordering which is a digital ordering 
platform providing many IT services for Food and Beverage companies. One 
of these services being developed is the Supervision project which is an AI 
based supervision system for ensuring order accuracy and reducing order 
completion time in quick service restaurants (QSR). 

In today’s QSR the collection area is often a very stressful environment where 
the worker prints out a physical receipt, reads the receipt and places the listed 
items in a paper bag for takeaway orders or placed on a tray for eat-in orders. 

Order accuracy 

is how accurate an order is completed. For example a QSR worker missing to 
add an item that is ordered or adding an item that is not ordered is considered 
a loss in order accuracy. In the food and beverage industry a low order accuracy 
has a negative efect on customer satisfaction and leads to items being given for 
free leading to economic losses. 

Order completion time 

is the time from an order being made to an order being delivered to a customer. 
Currently the collection area presents a bottle neck in order completion time and 
Supervision aims to alleviate this bottle neck, leading to an increase in customer 
satisfaction and a more efcient pipeline. 

1.1 Motivation 

As mentioned, a physical receipt is printed out and used in the order completion 
process. Supervision would remove the need for a physical receipt since the 
digital tracking of the order completion could be communicated to a worker via 
a screen. This would have a positive impact on company spending since paper 
for the receipt printers would not have to be bought. Reducing paper receipt 
usage would also have a positive impact on the environment. 

In an article from green america1 , about environmental and human health 
efects of paper receipts, it is stated that "Every year in the United States, receipt 
use consumes over 3 million trees, 9 billion gallons of water, and generates over 4 
billion pounds of CO2 and 302 million pounds of solid waste during production". 
This is a signifcant number and in the solutions section of this article they 
suggest digitalization of receipts as a very good approach to reducing the use 
and damages of paper receipts. 

The order completion process would also be less stressful for the workers 
working in collection areas since a digital list would automatically be updated, 
reducing the number of steps a worker would need to take in order to ensure 

1link to green america article 
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order accuracy, such as picking up a pen and manually checking of an item on a 
list or keeping track of the list in their own memory. 

Automation is shown to have a positive efect on worker well-being by, for 
example, reducing cognitive load and stress [1]. The introduction of a supervision 
system in collection areas would hopefully reduce worker cognitive load and 
improve worker well-being. 

Having digital lists and automatic list state tracking would hopefully increase 
order accuracy as well as reducing order completion time through clear com-
munication with the QSR worker through a screen. It also makes it possible 
for future systems to be integrated such as task prioritization and optimization 
through analysis of QSR collection areas, robotics integration and many more. 

1.2 Integrated Hardware 

For many restaurants it is appreciated, and sometimes a requirement, that the 
hardware implementation of the system is unnoticeable since the atmosphere of 
the restaurant is of great importance. The two most obvious technical directions 
to go is a cloud based solution where the application is run in some data center, 
or an on-premise solution where the application is run on some small integrated 
hardware. 

There are benefts with both approaches but this work focuses on developing 
for integrated hardware for the following reasons. 

Scaling the supervision system across multiple restaurants and stations 
becomes a very intuitive process when thinking about costs and resource require-
ments. For every on-premise supervision system the same hardware would be 
needed and installed. Simply adding a unit per system makes for a very straight 
forward approach. 

It also makes sense since there would have to be some on-premise hardware 
handling the sensor input to the application either way, we could use the same 
hardware for both sensor input and processing. Having the processing on the 
edge has the beneft of reducing network trafc compared to a cloud computing 
solution which would be high since it is real-time image data being transferred. 
This would drastically reduce latency compared to processing done in the cloud. 

Edge computing is also known to be very energy efcient in comparison to 
data centers in the sense that a data center machine is almost always up and 
running even though it is not performing any processing2 . From an environmental 
perspective, using integrated hardware would mean lesser house gas emission 
[2] and there has even been research into how to use renewable energy for edge 
devices specifcally [3]. 

2link to article about green edge computing energy 
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2 Problem Formulation 

2.1 Previous work 

This work is based on a student project issued by Future Ordering during autumn 
2020. The previous systems architecture can be seen in Figure 1. 

Figure 1: Supervision Architecture 

The previous system worked well when it came to increasing order accuracy 
in the case where an order could ft on one tray without overlapping items. This 
restriction came from only using one camera from above, and constructing a 
state once every seconds from a collection of frames sampled within that second. 
This state construction limited the solution to where it couldn’t handle takeaway 
orders placed in a takeaway bag or where the order couldn’t ft on only one tray. 

These issues prevents the system from being deployed in a real world envi-
ronment since a high percentage of orders are done through takeaway. 

Another limitation was the way the STATE module in Figure 1 kept track of 
the state through getting data from the AI/Camera module. It got continuous 
updates from the AI module of what it saw. This will be changed so that update 
events are being sent instead to the state letting it know what item it should add 
or remove from the state, shifting more of the responsibility of understanding 
the collection area over to the AI/Camera module. 

2.2 Related Work 

There are many diferent ways we go from sending raw AI output data to sending 
more informative update events and sections 2.2.1 through 2.2.3 explains a few 
sources of inspiration for our proposed solution. 
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2.2.1 Real World Application 

There are vision based AI solutions for product recognition being developed. In 
December of 2021, a few future ordering employees, including the author of this 
paper, were visiting a gas station that used object detection to detect products 
being placed on a scan area. The products were recognized and a price was 
displayed for the products placed in the area. The AI worked well as long as 
you only had a few products that were well separated and not overlapping or 
covered. 

Their system used many cameras which seemed to have a benefcial efect on 
the object detection task. Otherwise it seemed to have a similar performance to 
the version of supervision at Future Ordering mentioned in 2.1 but the system 
also had the same limitation in that the products need to be seen at all times in 
order for them to be scanned, which in turn means that the system is limited by 
the dimensions of the scan area. The products also needed to be well separated 
which is believed to have to do with how the AI model was designed and trained 
through restricting how the the system is used in order to increase AI-model 
accuracy. 

2.2.2 Hyper dimensional Computing 

Research has been done in how to use Hyper Dimensional Computing, HDC, as 
a tool for scene interpretation and understanding using relation vectors such as 
to the right of or above etc [4]. This understanding and interpretation of a scene 
could be used to interpret the collection area that we are interested in especially 
since HDC operations are very quick to perform and can be implemented in 
Spiking Neural Networks (SNN) [5]. 

2.2.3 Action Detection 

There has been AI models that can classify actions such as pedestrian actions[6]. 
These models are often recurrent models based on continuous temporal data. 
This would probably work but would most likely require us to have a very 
complex model. This seems too complex for our use-case where we are interested 
in two inverse events, adding and removing an item from a bag or tray. 

We should be able to use an object detection model to gather enough 
understanding about what is going on in the collection area without needing to 
increase the complexity into another deep learning model design. 

2.3 Problem defnition 

The general problem is making a supervisor system for the assembly line problem 
process called "kitting". Kitting processes have been shown to increase through-
put in many industries such as in construction, manufacturing, distribution and 
many more. The solution to this problem can as such be applied to all of these 
industries that include a kitting process. In today’s kitting operations a human 
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is often there to supervise and complete a kit based on a list of items. This 
operation is very prone to human errors and result in economic loss [7]. 

2.3.1 Technical problem 

The technical problems we want to solve are mainly the shortcomings of the frst 
system in Section 2.1. 

We need an event based state construction application that can handle items 
not being seen at all times and being removed from the collection area due 
to large orders, and we need to be able to run the application on integrated 
hardware. 

The latter mentioned problem puts requirement of being efcient and requiring 
a low amount of resources on three primary applications, the image capturing 
application, the object detection neural network model and the state constructing 
and event triggering application. We then end up with the following three 
problems to solve. 

1. We need to compress, reduce the number of parameters, in a trained object 
detection model, making it fast and compatible with integrated hardware. 

2. We need an efcient image capturing application feeding the object detec-
tion model which can be run on that same hardware. 

3. We need to have an efcient state construction application that can send 
events to the state module as explained in Section 2.1. 

2.4 Delimitation 

The following delimitation will be set for this project in order to focus on building 
a working prototype rather than optimizing. 

We will only utilize some basic training techniques for how to train an object 
detection model and not go too much in depth of how to train the ideal model 
for this use case. A lot of optimization can be done here to fnd the perfect 
training settings and we will not spend time optimizing but rather focusing on a 
working prototype. 

We will not go in depth of how an object detection model is designed and 
only use previously designed models. This is since a lot of research is being done 
around the world into object detection models and we do not want to spend 
time reinventing the wheel. 

We will not go in depth of the image capturing and model feeding process, 
relying on previously built example code. This is since camera streaming algo-
rithms for model feeding is a known and solved problem and we simply re-use 
these algorithms. 
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We will not compare diferent object detection models for optimal performance 
for this use case. There are many object detection models out there and we will 
focus on those designed for edge hardware but we will not spend time optimizing 
the model choice. 
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3 Theory 

In order for the reader to follow the implementation described in Section 4 the 
following concepts needs to be explained frst. 

3.1 Hyper Dimensional Computing 

The essence of Hyper Dimensional Computing (HDC) is to generate random 
vectors of very high dimensions and these vectors have the property of being 
approximately orthogonal [8]. This property is key to all HDC applications since 
we can have these vectors symbolize any concept without being similar symbols. 
The two main operators in HDC are called "binding" and "bundling", which are 
used to construct new symbolic associations. 

3.1.1 Binding 

Binding is the operation of binding3 two vectors together constructing a new 
vector, with notation shown in Equation 1. 

A ⊙ B = C (1) 

The resulting vector, C, is equally similar to both input vector components 
while still being approximately orthogonal to every other vector in the vector 
space. This is very useful since we can use this to construct associations, or 
concepts, with multiple symbols. For example we can bind a vector symbolizing 
water with a vector symbolizing glass to represent a glass of water. This example 
can be further enriched with vectors such as a container vector bound with glass 
before binding with water, and so on. 

We can then create a query vector by taking the inverse of one of the 
component vectors and bind it with the output vector resulting in the other 
input component. This operation is called unbinding4 with notation shown in 
Equation 2. 

C ⊙ B−1 ≈ A (2) 

Notice how the resulting vector is approximately A meaning that we need to 
calculate the similarity, often using cosine distance, between the resulting vector 
to each vector that could be the result and choose the closest one, fnding vector 
A. 

3.1.2 Bundling 

Bundling is an operation which creates a set of vectors creating a memory vector 
representing a collection of vectors. This operation, with notation shown in 
Equation 3, 

3analogous to encoding 
4analogous to decoding 
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A + B = C (3) 

is useful since we can bundle information into one memory vector and then 
query the memory vector for information we want. For example if we construct 
the following memory vector in Equation 4, 

M = TRAINGLE ⊙ BLUE + SQUARE ⊙ RED (4) 

we can query the memory vector, M, as shown in Equation 5 by unbinding 
with the vector symbolizing triangle to get the vector symbolizing blue. 

M ⊙ TRAINGLE−1 ≈ BLUE. (5) 

The query example in Equation 5 can be seen as a symbol for the question 
"What color is the triangle?". 

3.1.3 Permutation 

Permutation is an operation which slightly changes a vector into a resulting 
vector closely similar to the input but still approximately orthogonal to every 
other generated vector. You can use this to construct sequences or iterators. For 
example if you want to make an ordered list you can generate an iterator vector 
and permute it according to the position in the list, by the notation in Equation 
6. 

List = ITERATOR> ⊙ Car + ITERATOR>> ⊙ Bus + ITERATOR>>> ⊙ Bike. 
(6) 

In the case of bipolar vectors5 , shifting would result in a vector with a cosine 
distance of 1 to the original vector, making them still approximately orthogonal. 
This makes the permutation operation obsolete since we can instead just generate 
a new random vector to symbolize the diferent iterator steps. 

However, in the case of HRR explained in Section 3.2 permuting a vector 
results in a vector closer than orthogonal which is a key property for fractional 
binding explained later in Section 3.2.1. 

3.1.4 Summary 

These operations are very quick making HDC a good framework to develop very 
efcient solutions. HDC is also brain-motivated making it very good to use in 
combination with machine learning algorithms [5], this will be further explained 
in the future work Section ??. 

5vectors consisting of -1 and 1 evenly distributed in a random fashion 
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3.2 Holographic Reduced Representation 

Traditionally, the vector type used in HDC are binary vectors6 but in order to 
be able to use spacial semantic pointers explained in Section 3.3, we need to be 
able to perform fractional binding. Therefor we use another HDC representation 
of real valued vectors called Holographic Reduced Representation[9], or HRR. 
These vectors are randomly generated real valued vectors and can be bound 
together using convolution. 

As we know from signal theory, one can use the Fourier transform to re-
represent the vectors from time/space domain into the frequency domain. Since 
convolution in the time/space domain is equivalent to multiplication in the 
frequency domain we can now use multiplication to bind these vectors together 
as shown in Equation 7. 

A · B = C (7) 

This representation is called FHRR, a realization of HRR in the frequency 
domain7 . These vectors can be directly generated without using Fourier transform 
by generating a unitary vector where the dimension of the exponent is the 
dimension of the vector as shown in Equation 8. Note that the vector v is a 
randomly generated imaginary vector and that the dimension d needs to be 
sufciently large for the amount of concept we want to symbolize. 

Bv1,v2,...,vd (8) 

Since these are considered by many to be the same representation we will be 
using HRR when talking about FHRR vectors in the frequency domain for the 
remainder of this thesis. 

3.2.1 Fractional binding 

Remember from Section 3.1 that we can create iterators by permuting a vector. 
In HRR we can instead permute a vector by binding a vector with itself[10]. We 
can then represent an iteration k times as shown in Equation 9. 

kY 
Bk = B (9) 

i=1 

Since we are using unitary vectors, meaning that the base B is equal between 
vectors, we can when binding Bk1 with Bk2 simply add the exponents of the 
vectors together as shown in Equation 10 

Bk1 · Bk2 = Bk1+k2 , k1, k2 ∈ R. (10) 
6vectors consisting of 0 and 1 evenly distributed in a random fashion 
7this also means that our representing vectors are now complex numbers 
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3.3 Spacial Semantic Pointers 

Using fractional binding we can then represent coordinates by generating vectors 
for representing X and Y and then bind these two 1-dimensional coordinates 
into a 2-dimensional coordinate as demonstrated in Equation 11[10]. 

S(x, y) = Xx ⊙ Y y (11) 

For example we can generate a vector X and a vector Y, permuting these for 
a two dimensional square space of size n for each coordinate as in Algorithm 1. 

Algorithm 1 Generating SSPs 
X ← RandomV ector 
Y ← RandomV ector 
for i < N do 

for j < N do 
Xi ← X≫i 
Yj ← Y≫j 
S(i, j) ← Xi ⊙ Yj ▷ Spacial Pointer 

end for 
end for 

Once the positions have been generated the position vectors can be bound 
to another concept such as an item. For example we can bind an apple to the 
position x = 30, y = 20 as in Equation 12, 

PApple = Apple ⊙ S(X30, Y20) (12) 

resulting in a symbolic vector representing a point where an apple is. 
These vectors can then be queried with for example "Where is the apple?" 

by unbiding, as in Equation 13. 

PApple ⊙ Apple−1 ≈ S(X30, Y20) (13) 

You can then calculate the distance of all of the spacial pointers we have 
generated and graph the distances as in Figure 2 and 3, 

Figure 2: Heat Map 
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Figure 3: Surf Plot 

meaning that the SSP unbound with apple results in the position x = 30, 
y = 20 being the closest one and then as we go further from that position we 
have greater distance. This is a result of the permutation operation explained in 
Section 3.1.3 when using HRR. The oscillating pattern comes from the nature 
of HRRs being euclidean vectors that are permuted by rotation, resulting in a 

n(R) 

sinusoid-like signal across the 2-d space. 
These positions can then describe areas by Equation 14 Z 

S(R) = Xx ⊙ Y ydxdy (14) 
(x,y)∈R 

or by a averaging as in Equation 15. 

S(R) = 
1 
ΣP, P ∈ R (15) 

Calculating distances between the area vector and all of the spacial pointer 
vectors and graphing the distances results in Figure 4. 
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Figure 4: Area Example 

If we create a memory vector of item points and use the area S(R) from the 
previous examples we can create a query "What items are in the area R?" by 
Equation 16 

M = PApple + PBanana 
(16)

Query = M ⊙ S(R)−1 

followed by Equation 17 

Dist1 = Banana ⊙ Query 
(17)

Dist2 = Apple ⊙ Query 

we would see that the distance to the Apple vector is close meaning that the 
Apple item is within the area S(R). We can observe this in the plot in Figure 5. 
The threshold drawn in red at 0.99 in Figure 5 is a parameter that is chosen to 
separate items being in and outside the area and can be optimized. 

Figure 5: Item distance diagram 
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3.3.1 Hexagonal representation 

There is an addition to SSPs that improve their performance called hexagonal 
representation[10]. Hexagonal representation takes three axes to describe a two 
dimensional coordinate as in Figure 6. 

Figure 6: Hexagonal coordinate system 

We can achieve a hexagonal coordinate from a regular coordinate through 
Algorithm 2 which uses L2 normalized hexagonal defnition of the x- and y-axes 
to calculate a third z coordinate value from the original coordinate. 

S(x, y, z) = Xx ⊙ Y y ⊙ Zz (18) 

Algorithm 2 Hexagonal Representation 
xaxis = [1, −1, 0] 
yaxis = [−1, −1, 2] 
xaxis = L2Norm(xaxis) 
yaxis = L2Norm(yaxis) 

procedure ToHexCoord(coord) ▷ coord has x and y coordinate 
return xaxis ∗ coord[1] + yaxis ∗ coord[0] 

end procedure 

This can then be used in the generation of SSPs similar to Algorithm 1 but 
now we also generate a Z vector which is used as in Algorithm 3 and Equation 
18. 

This process really improves the "sharpness" and accuracy of HDC queries. 
In Figure 7 you can see a much sharper spike where the coordinate is and a 
much less wavy pattern around the coordinate as we go further away from the 
coordinate location compared to our frst SSP representation in Figure 2 and 
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Algorithm 3 Generating SSPs - Hexagonal Representation 
X ← RandomV ector 
Y ← RandomV ector 
Z ← RandomV ector 
for i < N do 

for j < N do 
hexCoord ← T oHexCoord([i, j]) 
Xij ← X≫hexCoord[0] 
Yij ← Y≫hexCoord[1] 
Zij ← Z≫hexCoord[2] 
S(i, j) ← Xij ⊙ Yij ⊙ Zij 

end for 
end for 

Figure 3. In Figure 8 we can also see a much smoother area defnition using 
hexagonal coordinates compared to Figure 4 where the area appears to have 
holes. If we query "What items are in the area?", as shown in Equation 16, when 
the SSP for the product Apple is for a coordinate within these holes together 
with a chosen threshold we could get a very high distance value for Apple, but 
this is much less common in the case where we use hexagonal coordinates due to 
the visibly much smoother gradient across the area in Figure 8. 

Figure 7: Hexagonal representation: Coordinate 
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Figure 8: Hexagonal representation: Area 

3.4 Bipolar vector representation 

Another vector representation is the bipolar vector representation which is a 
vector consisting of a sequence of evenly distributed -1 and 1 where the length 
of the vector is the dimension of the vector as shown in Equation 19. 

BipolarV ector = [10, −11, −12, ..., 1dimension] (19) 

As explained in Section 3.3 one can generate areas through the use of vectors 
representing coordinates. The properties of fractional binding explained in 
Section 3.2.1 gives a very cloudy appearance as shown in Figures 4 and 8. 
However if we use bipolar vectors instead we can represent even sharper areas as 
shown in Figure 9. 
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Figure 9: Bipolar Representation, dimension = 500, area 50x50 

The diagonal noise can be explained by the use of permutation through 
shifting. For a more uniformly distributed noise we can instead permute by 
shifting in both directions and then binding these together resulting in Figure 
10. 

Figure 10: Bipolar Representation, shifting both directions 

These fgures are very noisy since less information can be stored in the same 
dimension compared to HRR where the vectors are real numbers. Bipolar vectors 
has a binary nature to them which means that we will need higher dimension to 
create separation between symbols. Increasing the dimension from 500 to 2000 
results in a less noisy space as shown in Figure 11. 
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Figure 11: Bipolar Representation, dimension = 2000 
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3.5 Object detection 

Object detection is a camera based AI technique for associating positions with 
objects. The output is a bounding box drawing out where an object is together 
with an object class and a score of how sure the object detection model is of 
being correct. 

3.5.1 Training 

To train an object detection model we frst need to gather a dataset by taking 
pictures of the classes we would like to use. The data then has to be annotated 
by marking out where the object is, often by drawing a bounding box, in the 
image8 . 

It is then advised [11] that we scale the dataset to many example images. 
This can be done through a process called Data Augmentation. 

3.5.2 Data augmentation 

It is shown in research [11] that generating more training examples based on 
augmenting a collected data set through diferent transformations of the original 
data has a benefcial efect on model training. This is also true for object 
detection but here we also need to augment the bounding boxes marking out 
the objects accordingly. The following augmentation techniques were used to 
expand the original dataset. 

Rotation 

Rotation means we that we rotate an image and its bounding box according to 
some angle and around some point. There are several ways that this can be done 
but one way is to pad a rectangular input image with black so that rotating the 
image never results in some part of the image being outside of the frame. An 
example of this can be seen in Figure 12. 

8a common annotation tool to use for object detection datasets is the LabelImg tool which 
you can fnd at: https://github.com/tzutalin/labelImg 
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Figure 12: Result of rotation example 

When rotating the coordinates of the bounding box we then need to ofset 
the rotated bounding box so that it is rotated around the new middle and then 
ofset, due to the padding, so that it marks the object in its new orientation. 

Scaling 

This means we change the width and height of the image, often resulting in 
stretching of the input image. We then need to transform the bounding box 
by the same ratio of change. This can easily be done by calculating the ratio 
through Equation 20 and then multiplying the xratio with the bounding box’s 
coordinate’s x part and yratio with the bounding box’s coordinate’s y part. A 
scaling result example can be seen in Figure 13. 

xratio = NewW idth/OldW idth 
(20) 

yratio = NewHeight/OldHeight 
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Figure 13: Result of scaling example 

Flip 

Flipping can be done simply by transforming both the image and the bounding 
box by the transformation matrices described in Equation 21 and then shifting 
into correct position by width for horizontal fip and height for vertical fip. 2 2 

#" 
−1 0 

HorizontalF lip = 
0 −1 #" (21) 
1 0 

V erticalF lip = 
0 −1 

Blur 

Blur can be achieved through convolving an image with a defned blur kernel. A 
blur kernel can be defned as a matrix, for example a 5x5 matrix as in Equation 
22. A larger σ value results in a bigger blurring efect when applied to the image. 
An example of bluring can be seen in Figure 14. Since we do not change the 
position or orientation of the object within the frame the bounding box does 
not need to be transformed. 

 
1 ... 1 

BlurKernel5x5 = 
1 
σ 

 
. . . 

 (22) 

1 ... 1 
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Figure 14: Result of bluring example 

Brightness 

Brightness can be achieved through multiplying the image pixel values by some 
amount. This is a very simple process and the result can be seen in Figure 
15. Since the orientation of the object is not transformed we do not need to 
transform the bounding box. 

Figure 15: Result of brightness example 
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3.5.3 The Model: Efcient-Det 

Efcient-Det [12] is an efcient object detection model heavily supported by 
tensorfow9 tools. 

One tool within tensorfow allows the conversion from a tensorfow model 
into a compressed .tfite model which can then be compiled for the use on a 
tensor processing unit (TPU). 

3.6 Compression 

Model compression is the process of shrinking an AI models size, meaning that 
the number of layers or parameters has been reduced. There are many diferent 
techniques for model compression where many strive to reduce the number of 
"redundant" parameters in the model, often choosing to remove certain weight 
connections or removing layers all together. 

3.6.1 Quantization 

Quantization is a compression technique which can be used in tandem with other 
compression techniques since instead of reducing the number of parameters it 
instead uniformly reduces the "resolution" of a model. For example if a weight 
has the value of 3.1425611234141 there is a lot of information in that number 
but we can roughly say that it is 3, reducing the data that is represented while 
hopefully not afecting the accuracy of the model too much. 

Changing weights from a foating point number representation to an integer 
takes up a lot less memory space, making operations faster and taking less space 
which is essential for certain hardware where it is highly preferred to have the 
model stored in cache memory for very quick processing10 . 

A common quantization technique is full integer quantization which takes 
weights being represented by a 32-bit foating point number and converts them 
into 8-bit integers, reducing the model size by a factor of 411 . 

3.7 Hardware 

3.7.1 Edge hardware 

Edge hardware has the beneft of being cheap, task specifc, low energy consump-
tion, small and close to data collection and more. 

3.7.2 TPU - Tensor Processing Unit 

Tensorfow has together with google worked out the coral product line which 
include AI accelerators that are heavily linked with the software libraries of 

9a python package for machine learning development https://www.tensorfow.org/ 
10for example the Coral Dev Board has an internal eMMC memory of 8 GB 

https://coral.ai/docs/dev-board/datasheet/
11you can read more about this quantization and how to implement it at 

https://www.tensorfow.org/lite/performance/posttrainingintegerq uant 
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tensorfow. One can train and compile a tensorfow light model to run on a TPU, 
increasing the inference per second rate by a drastic amount. 

Coral has an example demo which runs object detection of a maximum of 
20 objects in a video of car footage. In table 1 you can see the performance 
of inference on a TPU processor versus a CPU processor. You can clearly see 
the power of the TPU having an inference time of 11.15 ms and a FPS of 89.70 
compared to the CPU having an inference time of 359.89 ms and a FPS of only 
2.78. 

Processor Inference Time FPS 

CPU 359.89 2.78 

TPU 11.15 89.70 

Table 1: TPU vs CPU: inference on the Coral Dev Board 
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4 Implementation 

4.1 System Components 

The focal point of this thesis is the AI edge application with components as 
in Figure 16. We will construct the vector memory once and then access that 
memory when running the application. The object detection part will do inference 
on a frame caught by a camera and the application will be binding products to 
positions and fnd out "What items are in the area?" using SSPs as explained in 
Section 3.3. 

Figure 16: Lower Level Architecture 

We then defne several areas as we explained in Section 3.3 required for us 
to capture the movement we are interested in. For our case where we want to 
capture an "add" and a "remove" event that means three areas. One entry area, 
one transition area and one destination area as shown in Figure 17. 
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Figure 17: Areas for our use-case 

We will also defne a state machine that keeps track of each seen object class 
within the scene. The state machines are then traversed by checking whether or 
not an item is in an area and is traversed between areas in a certain sequence. 

The state machine in Figure 18 is constructed in a way that an item type 
can be located in the destination area and enter the entry area at the same time 
and still be able to track an item being transitioning from the entry area. This 
is assuming that a tray or takeaway bag is in the destination area but they could 
be outside of the camera tracking scene all together, resulting in a simpler state 
machine. 

When the areas has been traversed in a desired sequence the state machine 
will be traversed accordingly and fnally send an add or remove event as shown 
to the right in Figure 18. 
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Figure 18: State machine for our problem 

Condition Boolean Expression 

C1 ET D 

C2 ET D 

C3 ET D 

C4 ET D 

C5 ET D 

Table 2: Conditions table for Figure 18 where E, T and D are booleans for if an 
item is in area Entry, Transition or Destination respectively 

We also implement a life-time cycle that removes a state machine from 
memory if the corresponding item has not been seen for a certain time interval. 
This requires an item to be seen during a set time interval but relieves the 
memory and keeps thread count to a minimum if one would choose to update 
the state machines in parallel. 
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4.2 HRR: Interpreting HDC Application 

4.2.1 HDC vector setup 

This is the frst procedure executed. Here we generate the random HDC HRR 
vectors representing each x and y coordinates as explained in Section 3.2.1 and 
Section 3.3.1, the diferent products we can expect to see as explained in Section 
3.3 and then we bind and bundle coordinates together into areas defning the 
areas E, T and D as explained in Section 3.3. 

These vectors are then stored in dictionaries with appropriate key names 
such as "Area:E", "Apple" or "10,20". 

4.2.2 HDC functions 

We defne the most important function in Algorithm 4 which returns an array 
of items that are in the area. The inputs are areaV ec which is a HRR vector 
representing an area and memV ec which is an HRR vector that is a bundle 
of all of the item-points being detected in a frame as explained in Section 3.3. 
The procedure simply multiplies the memory vector with the conjugate of the 
area vector resulting in a query vector, goes through all of the objects that are 
detected in the frame and calculates the cosine distance between the objects and 
the query vector. The distances that are closer than 0.99 (a chosen threshold) is 
considered to be within the area, so those are returned in the output. 

Algorithm 4 Finding items in Area 
procedure findItems(areaV ec, memV ec) 

∗ query ← memV ec · areaV ec 
items ← [] 
for i in range(Objects) do 

dist ← cosineDistance(ℜ(Objects[i]), ℜ(query)) 
if dist < 0.99 then 

items.append(Object) 
end if 

end for 
return items 

end procedure 

This is then used in Algorithm 5 to update each state machine keeping track of 
an items movement. The input into updateStates is a memory vector constructed 
from the object detection output just as in Algorithm 4 and stateMachines is a 
collection of state machines keeping track of the state of each object type. 

The updateConditions procedure updates the conditions as shown in table 
2 so that the procedure steT oNext(conditions) updates the state machine 
accordingly. 
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Algorithm 5 State transition 
procedure updateStates(memV ec, stateMachines) 

for sm in stateMachines do 
boolA ← sm.Item in findItems(A, memV ec) 
boolT ← sm.Item in findItems(T, memV ec) 
boolB ← sm.Item in findItems(B, memV ec) 
conditions ← updateConditions(boolA, boolT, boolB) 
sm.stepT oNext(conditions) 

end for 
end procedure 

4.3 Bipolar HDC Application 

As explained in Section 3.4 you can also use a bipolar vector representation for 
coordinates, removing the "closeness" property of HRR SSPs. This is suitable 
for our use-case since the main method that we care about is Algorithm 4 which 
gives a very binary answer, an item is or isn’t within an area. 

We can then replace the vectors used in Algorithm 4 with bipolar vectors, 
still using cosine distance for similarity calculation. 

As explained in Section 3.4 we get a sharper area query compared to HRR. 
However we can improve this implementation further. 

4.3.1 K-window 

Sometimes when querying the area vector the answer might not always be true 
to reality, meaning that the query accuracy is low, especially for vectors of lower 
dimension. 

To mitigate this we can do several things, one of them being introducing a 
K-window. 

This K-window takes the closest k neighboring coordinates and bundles them 
together which is then bound to an item vector. 

We can see this as making the item representation "bigger" in the 2-
dimensional space, including several positions for the description of where the 
item is. We then use this new memory vector for describing where an item is for 
our query inside of Algorithm 4. 

4.3.2 Optimizing threshold 

Optimizing the threshold in Algorithm 4, being set to 0.99 for explanation 
purposes, also drastically improves the quality of our query answers. 

One can do this through collecting all distance values for when the truth 
value should be True and False respectively and then use a ROC curve or other 
optimization technique. This will be shown in the evaluation in Section 5. 
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4.4 Object Detection 

The object detection model is a trained Efcient-Det model which is more 
explained in Section 3.5.3. It is built using tensorfow lite model maker and 
is compressed using full integer quantizaion as explained in Section 3.6 and 
compiled for use on a Google Coral TPU as explained in Section 1.2. 

The dataset which is used for training is a dataset of 60 images where 40 of 
them are used for the next augmentation step and 20 are used for validation 
during training. 

4.4.1 Augmentation pipeline 

In Figure 19 you can see the "recipe" for the augmentation used in the fnal 
version of the object-detection model. The original dataset was 40 images of 
size 640x480 annotated with the tool LabelImg. Those were frst fed into a 
scaling augmentation algorithm of 100% meaning that we generate one output 
image for each input image resulting in 80 images. Those were then fipped both 
horizontally and vertically with a chance of 100% resulting in 240 images. We 
then ran all of those 240 images through brightness augmentation of 50% chance 
with a randomly chosen factor between 0.5 (meaning half of the current pixel 
values) and 1.5. Those images were then run through a blur of 50% chance, with 
a random amount of blur flters chosen between the number 5 and 20. Those 
were then run through the fnal augmentation, rotation with a 50% chance and 
a random angle chosen between -20◦and 20◦ .. 

Depending on the chances of augmentation we end up with diferently sized 
datasets. The dataset used for the fnal version was a total of 451 images. 

Figure 19: Augmentation pipeline 
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4.4.2 Inference 

During runtime images are taken as visual input from a camera, fed into the 
detection model which outputs a collection of items in combination with a 
description of bounding boxes describing where the items are located in the 
image. 

This collection is then used to construct the memory vector used in Algorithms 
4 and 5 by taking the middle points of bounding boxes and binding it with the 
corresponding objects through the use of our constructed item memory and 
fnally bundling together into a single memory vector. 

This memory vector is then used to query the area vectors using Algorithm 
4 to fnd out if an object is in an area at this time. We then update the state 
machines accordingly, eventually resulting in an event being triggered if the 
correct conditions in the correct sequence are met. 

4.5 External systems 

These systems are not a part of the implementation of this thesis but are 
already existing external systems that will be using the previously explained 
implementation. 

4.5.1 GUI 

The GUI module receives an "add item" event or a "remove item" event and 
updates the lists and communicates to the worker what needs to be done next. 
If an incorrect item is added the GUI will communicate to the worker to remove 
the item and if a correct item is added the item will be crossed of the order list. 
Remove events will also update the GUI, removing an item that was not ordered 
will remove the "remove this item" instruction on the screen and removing an 
item that was ordered will un-cross the item from the list, requiring the worker 
to put it back into the takeaway bag or onto the tray. 

4.5.2 Future Ordering API 

Just as the GUI application, this will receive events based on the order completion 
process and communicate to other Future Ordering systems such as logging 
information. 

33 



5 Results 

The following experiments were performed on a laptop with an Intel(R) Core(TM) 
i5-8265U CPU @ 1.60GHz. 

The focus here is of the query "What items are in the area?" which we call 
the "main query" in the following sections. These measurements are based on 
the bipolar-vector representation. 

5.1 HDC 

Vector Generation 

Figure 20: Execution time of generating an HDC area vector 

Figure 21: Execution time of generating a single HDC vector vs increased 
dimension 
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Accuracy 

The following defnitions in Equations 23, 24 and 25 are used in the evaluation 
of accuracy in our HDC main query where TP are the numbers of true positives, 
TN are the numbers of true negatives, FP are the number of false positives and 
FN are the number of false negatives in our experiment. 

T P 
T P R = 

T P + F N 
(23) 

F P 
F P R = 

F P + T N 
(24) 

p
G − mean = T P R · (1 − F P R) (25) 

Figure 22 is a ROC curve demonstrating the true positive rate vs false positive 
rate for diferent dimensions, k-window sizes and diferent thresholds. 

Figure 22: ROC Curve 

Figure 23 shows the best values from the ROC curve, meaning the values 
in the top left corner of Figure 22 with the highest g-mean score, vs the chosen 
threshold. This experiment was a stepping threshold from 0.8 to 1 which explains 
why many values line up at 0.8. The experiment should therefor be reproduced 
with a larger range in order to capture the best threshold for those cases. 
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Figure 23: Gmean - Best values of ROC optimization 

Execution Time 

Figure 24 shows the execution time if we would use a geometric algorithm using 
a polygon defnition of an area to answer the main query. 

Figure 24: Execution time using shapely python package - Execution time vs 
number of vertices of polygon 
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Figure 25 shows the execution time for the main query using our proposed 
HDC solution. 

Figure 25: Execution time using our proposed HDC algorithm - Execution time 
vs HDC Dimension 

5.2 Object detection 

5.2.1 Inference speed 

Tested as shown in Figure 26 with two objects being detected under a Google 
Coral Dev Board. Result is showing average inference speed of 71.83 ms and an 
average FPS of 11. The inference software run is an example from tensorfow for 
object detection12 with a custom trained object detection model. 

12the code can be found at this github link 
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Figure 26: Setup when measuring inference speed on Google Coral Dev Board 

5.2.2 Accuracy of Models 

EfcientDet0 model trained with augmented dataset vs non-augmented dataset 
compressed using full integer quantization. 

Augmentation AP Before Compression AP After Compression 

Yes 0.874 0.860 

No 0.677 0.671 

Table 3: Average Precision (AP) for model trained using augmentation vs without 
augmentation before and after compression 
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6 Discussion 

6.1 HDC algorithm 

6.1.1 HDC vs Polygon Approach 

If we compare our experimental results in Figures 24 and 25 we can make a 
rough understanding that the geometric algorithm from the shapely python 
package is better for cases where areas which require lower amounts of vertices 
to describe them can be used in a solution. However when increasing the vertices 
count above 80 we can see that the HDC algorithm starts to be a legitimate 
competitor with the plotly algorithm executing somewhere between 0.04 and 
0.05 miliseconds as observed in Figure 24 which can be achieved by using the 
proposed HDC approach. 

Remember that the vectors with a specifc dimension as shown in 25 will 
have a constant execution time no matter how complex the area is. We can also 
see in Figure 23 that we can reach a satisfactory level of accuracy for the HDC 
algorithm which provides some argument for this algorithm being used as long 
as a complex area which would require many vertices can be symbolized with 
a vector of small enough dimension to have a satisfactory execution time and 
accuracy. 

For example in Figure 25 we can see the HDC algorithm for vector dimension 
of 1000 outperforming the plotly algorithm where more than around 80 vertices 
are required. 

More extensive experiments will need to be done in order to determine for 
where our approach is an advantage over a more classical geometric algorithm. 
Currently the only approach that has been tested against is the plotly algorithm 
since it seemed to be one of the most accessible ones when using python but it 
needs to be put up against more algorithms. 

6.1.2 Vector generation 

In Figure 20 the execution time for generatic HDC area vectors are shown. 
Depending on the solution this could be done during runtime but for our 
purposes we predefned these during the setup phase since we don’t need to 
dynamically defne areas during runtime however other applications might want 
to do that. This is also assuming that the bipolar vector representation is used, 
HRR representation would be much slower and is should defnitely not be used 
during runtime. 

In Figure 21 we can see the execution time for generating a single vector 
which in comparison to the results of generating an area vector in Figure 20 is a 
lot faster and can defnitely be done during runtime. 

6.1.3 K-window 

In Figures 22 and 23 we can see that the best performing threshold values are for 
situations where a k-window is used (notice the numbers showing the size of the 

39 



k-window) but the diference between using a larger or a smaller k-window has 
no efect on the accuracy, however it does matter in the choice of the threshold. 
More extensive testing for k-windows of diferent sizes is required to notice any 
signifcant efect of using a k-window. 

As a rule of thumb a k-window should not be used since we then don’t have 
to bundle a new item vector together with a k-nearest-neighbor algorithm during 
run-time. 

6.1.4 Optimizing threshold 

In Figure 22 together with 23 we can see that using an optimization process, 
such as ROC, to fnd the ideal threshold value is worth while since we get an 
almost perfect accuracy score in 23 after choosing the best contenders in 22. 

6.2 Object detection 

6.2.1 Augmentation vs No-augmentation 

We can observe from the result in Table 3 that using augmentation gets us a 
greater average precision of 87.4% compared to when augmentation is not used 
with an AP score of 67.7%. This confrms the theory in Section 3.5.2 making 
augmentation the better option. 

6.2.2 Quantization 

We can observe in Table 3 that quantization seems to have a greater efect on 
the augmentation model while not as great on the model trained on only the 
original data. This can probably be explained by more nuanced connections 
being defned by the foating point values of the weights, meaning that quantizing 
into a 8-bit integer representation counters this nuance more than in the case of 
the model trained on original data. 

For both cases quantization slightly decreases the average precision of the 
models which also confrms the theory. 

6.2.3 Inference speed 

The inference speed evaluation done in Section 5.2.1 is far from ideal. Firstly, 
we would like to test with custom software that doesn’t draw out the window as 
shown in Figure 26 and solely focuses on the inference. Still, an average FPS 
of 11 is still usable for demo purposes but will most likely need to be increased 
for use in production. We would like to reach a number similar to the demo 
example shown in Section 3.7.2. 

6.2.4 Hardware 

The model was using 264 TPU supported operations and 3 which had to be 
performed by the CPU. Having 100% of the operations done within the object 
detection model done on the TPU would increase the performance. 

40 



6.3 Future expansions 

6.3.1 More Elaborate Motion 

In Section 4 we presented the approach of using area defnitions together with 
statemachines for a discrete motion representation. 

This concept can be further elaborated for the specifc problem we want to 
solve. For example if we would like to send diferent events based on if an item 
is moving through the top or bottom of area A in Figure 18, we could introduce 
areas such as in Figure 27 and modify our state machine accordingly. However 
continuing this process would increase the complexity of the state machine and 
if taken to it’s extreme would result in every coordinate taken into account. This 
can be seen as the motion resolution being scaled up where more felds and 
complexity would mean the ability to capture more intricate movements but 
would also mean a more complex state machine (or maybe a neural net based 
on this pre-processing) to accompany it. 

This process we can be further expanded through taking the concept of SSPs 
into 3 dimensional coordinates through binding a Z vector, with permutation, 
for the z-coordinate in 3d-space. 

Figure 27: More elaborate motion 
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6.3.2 Full Spiking Neural Net Solution 

The promise of this approach does not entirely lie in the comparison of execution 
times for the most efcient algorithm but in the possibility for a full spiking 
neural net (SNN) solution. 

As mentioned briefy in this report HDC operations are brain inspired and 
can be implemented in SNNs [5]. There has been some discussion at the end of 
this project about where this work could lead, the following is an example of 
one approach. 

Lets say we have a frst layer of spiking neurons with size equal to the 
dimension we have chosen for the HDC vectors. The input to that layer would be 
a SSP vector for a coordinate of a position we track (using HRR representation). 
The second layer would then have one neuron for each area we are interested 
in and train the neural connections to recognize if a position is within one of 
these areas. We can then connect those neurons to a third layer where we train 
the network to map the area neuron to the vector representation of the area 
(through our bundling of SSP vector as described in Section 3). 

We would then need to have a sequence checker, or state machine, in the 
form of a neural network part that would check the sequence of activation in 
the network and, at a fnal layer, spike the event neuron "add" or "remove". 
This output would then be read by the external systems, perhaps triggering 
a convolution neural network based image classifcation of what item we are 
adding or removing. 

There are ways of interpreting motion in SNNs but this could be the frst 
approach that implements static predefned areas into the solution of a SNN 
combining it with HDC. The work of building a solution like this could lead to 
the development of a high level framework where you could design your own 
SNNs from simple reasoning of areas and sequences through the use of HDC. 
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7 Conclusion 

The presented problem of automatically tracking adding and removing specifc 
items to and from a bag has great value in all kitting processes and especially in 
the fast food industry. 

To solve this problem we have proposed an approach of implementing an 
object motion classifying application using a pre-designed object detection model 
together with an interpreting application using hyper dimensional computing 
(HDC) together with fnite state machines. 

We have evaluated the main HDC functions and queries used during runtime, 
proving that the suggested approach is efcient enough to have a satisfactory 
performance resulting in a high FPS count for the application running on an 
edge TPU device. Since the use of an edge TPU was successful we can also 
assume that the solution has a relatively small energy footprint. 

We have also gone through some optimization practises and discussed the 
result of these and how to use them appropriately. 

Some further research value of this thesis is in the exploration and application 
of HDC to this problem and the possibility of future expansion into a complete 
spiking neural network solution. 
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