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ABSTRACT 

 

 

 

 

 

Railway switches and crossings (S&Cs) are among the most important high-value 
components on a railway network and a single failure of such an asset could 
result in severe network disturbance, huge economical loss, and even severe 
accidents. Therefore, potential defects need to be detected at an early stage and 
the status of the S&C must be monitored to prevent such consequences. One 
type of defect that can occur is called a squat. A squat is a local defect like a dent 
or an open pit in the rail surface. In this thesis, a testbed including a full-scale 
S&C and a bogie was studied. Vibrations were measured for different squat sizes 
by an accelerometer mounted at the point machine, while the bogie was 
travelling along the S&C. A method of processing the vibration data and the 
speed data is proposed to investigate the feasibility of detecting and quantifying 
the severity of a squat. A group of features were extracted to apply isolation 
forest to generate anomaly scores to estimate the health status of the S&C. One 
key technology applied is wavelet denoising. The study shows that it is possible 
to monitor the development of the squat size introduced in the test bed by 
measuring point machine vibrations. The relationships between the normalised 
peak-to-peak amplitude of the vibration signal and the squat depth were 
estimated. The results also show that the proposed method is effective and can 
produce anomaly scores that indicate the general health status of an S&C 
regarding squat defects. 
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CCHHAAPPTTEERR  11..  IINNTTRROODDUUCCTTIIOONN  
 
 
1.1 Background 
 

The railway has always been an important part of the transportation 
infrastructure since the first day it was introduced. In recent years, many 
countries have adopted the philosophy of eco-friendly transportation and 
encouraged their citizens to use public transportation instead of driving personal 
cars. One approach to follow this philosophy is to enhance the existing public 
transportation network such as the railway. This approach makes the railway 
even more important. 

The railway network has been subjected to improvement and expansion 
remarkably in the past decades due to both the evolvement of railway 
technologies and the increase in demands. The railway transportation system 
has been proven to be safe, economical, comfortable, and environment friendly, 
which makes it an attractive choice as public transportation. According to 
previous research, it can be considered one of the most efficient means of 
transportation, especially for travels with a range between 100 km to 1000 km  
(Esveld, 2001; Indraratna et al., 2011). 

In Europe, both the railway freight and passenger traffic have increased during 
the past decade. Sweden has also experienced such a trend due to the growth 
of population, development of the economy and more frequent global trade  
(Trafikverket, 2019). Because of the challenges of severe congestion of both the 
roads and the sky, rising energy prices due to energy crises and the increasing 
emission restriction to save the environment, further shifting from air and road 
to rail can be anticipated  (Stenström, 2014). The rise in traffic volume and load 
have reduced the dependability of the railway network and influenced the 
achieved operational performance and Quality of Service (QoS) in a negative way  
(Åhrén & Parida, 2009). 

As connecting points in railway, the dependability of Railway Switches and 
Crossings (S&Cs) is facing challenges. Being safety-critical high-value assets, S&Cs 
in a railway network enable trains to switch between different tracks. To achieve 
such functionality, S&Cs include movable parts. This, together with 
discontinuities in the rail geometry and variability in the track support stiffness, 
cause S&C to have higher failure rates compared with a plain rail line  (Kassa et 
al., 2006). 

The current maintenance strategies and activities for S&Cs are cost intensive. 
Previous research has pointed out that in the United Kingdom (UK), S&Cs have 
consumed 24% of the maintenance and 23% of the renewal budget against only 
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5% of the track length (Cornish et al., 2016). In Sweden, in 2018 alone, S&Cs have 
consumed over 530 Million Swedish Kronor (MSK), which is around 10% of the 
whole maintenance budget  (Trafikverket, 2018). 

Hashemian claimed that to be able to lower the maintenance cost, avoid 
unnecessary replacement and improve the safety, availability and efficiency of 
S&Cs, Condition-Based Maintenance (CBM) is needed  (Hashemian, 2010). The 
immersion of modern techniques such as the Internet of Things (IoT), sensor 
technology and Artificial intelligence (AI) also contributes to push this trend of 
maintenance strategies from traditional Corrective Maintenance (CM) to 
Preventive Maintenance (PM) and eventually to CBM. Predictive Maintenance 
(PdM) is a subset of CBM. In CBM, the maintenance decisions are based on the 
previous and current state of the asset. PdM is a version of CBM where the 
prediction of future states is included in the formulation of the maintenance 
decisions.  

The core of CBM is the condition monitoring process, where different types of 
signals are monitored using corresponding types of sensors or other appropriate 
condition indicators (Campos, 2009). Then the maintenance activities are 
performed only when necessary or just before failure occurs (Andersen & 
Rasmussen, 1999). The price of sensors is decreasing, which decreases the cost 
of condition monitoring and increases the potential gain. 

 

1.2 Rail and S&C defects 
 

Nowadays, the most common method of rail and S&C inspection is still manual 
on-site inspections, which means dedicated railway maintenance experts are 
needed to visit and inspect the rail regularly at fixed intervals. They base the 
inspection on measurement tools, their vision, experiences, and insights to 
detect any defects. 

Another way of inspecting the rails is utilising a dedicated Track Recording 
Vehicle (TRV), which uses different optical sensors, accelerometers and gyro 
sensors for measuring the different irregularities. 

Other non-destructive testing (NDT) techniques that have been adopted to 
evaluate the rail defects include utilising vision technology (e.g. laser/camera), 
ultrasound, Eddy Current Testing (ECT) system, strain gauges and 
accelerometers (Barke & Chiu, 2005).  

Wear, fatigue and plastic deformations are among the most common types of 
defects observed in S&Cs. A squat is a common defect usually caused by Rolling 
Contact Fatigue (RCF) and appears on the running surface of the rails as a local 
depression and a dark spot containing cracks with either a circular arc or V-shape  
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(Grossoni et al., 2021). The root causes of squats are differential wear and plastic 
deformation according to previous study (Li et al., 2008).  

1.3 Problem statement 
 

Some existing methods of performing an inspection of rails and S&Cs are listed 
below. Their corresponding drawbacks and problems of each method are 
discussed. 

The main problem of manual on-site inspection is that it could take a long time 
which would expose inspectors to hazardous situations and subject the achieved 
results to human errors. If an expert misses some abnormalities, they might lead 
to tragic and severe accidents (Gibert et al., 2016). This is especially true for S&Cs 
as they are one of the key components in the railway network. 

The TRV system provides accurate measurements of the track condition. 
However, it is expensive to own and perform the inspection, thus the frequency 
of this type of inspection is usually low. Another issue with this method is that 
the optical sensors utilised are sensitive to the surrounding harsh environment. 
Due to the low frequency of inspections, severe track defects may not be 
detected in time and potential safety hazards may occur (Wei et al., 2016a). 

The visual inspection approach is sensitive to light intensity and detection 
accuracy is poor in the morning and evening hours and certain weather 
conditions such as rain and snow will also influence the accuracy (Liu, S. et al., 
2019). Lesiak et al. claimed that the laser scatterometry inspection is sensitive to 
dust and dirt on the lenses (Lesiak et al., 2015). Ultrasonic techniques suffer from 
some technical issues due to some environmental or operating conditions 
(Bombarda et al., 2021).  

The main challenge of the ECT system is the lift-off effect that affects the ECT 
signal causing erroneous data interpretation (AbdAlla et al., 2019). The strain 
gauge is sensitive to electromagnetic interference, fragile, of excessive size, and 
high dependence on the temperature (Kouroussis et al., 2015). 

One disadvantage of using Axle Box Acceleration (ABA) is that the maximal ABA 
excited by the wheel-track contact can be greater than 50 g; therefore, a larger 
operating range is required for the accelerometer. A trade-off in sensitivity is 
needed to meet the maximum measuring range. Besides, the vibration of the 
bearing itself and the vibration caused by the bearing defects would be mixed in 
the ABA measurements (Wei et al., 2016b). A roadside measurement system will 
be able to measure the status of the S&C more frequently, making it possible to 
detect defects at an earlier stage. Another disadvantage with ABA systems is the 
possibility of missing a specific squat defect due to the sinusoidal hunting 
movement of the measurement vehicle. 

 

5534454_Inlaga.indd   195534454_Inlaga.indd   19 2022-10-04   10:192022-10-04   10:19



  

4  

1.4 Purpose and objectives 
 

The purpose of this study is to automate the process of squat detection and 
monitor the health status of S&Cs to get more frequent and robust updates of 
the status, reduce the cost of inspections, reduce system downtime and increase 
the safety of train operation.  

The research objectives are: 

I. Investigate the possibilities of using accelerometers mounted on the 
point machine to identify squats with different sizes and locations on 
S&Cs. 

II. Propose an approach for automatic condition monitoring of S&Cs related 
to squats. 

 

1.5 Research questions 
 

Main RQ: How can vibration data collected at the point machine be used to 
detect defects and monitor railway S&Cs health? 

The main research question was broken down into two research questions. 

RQ1: How can squat defects be detected and quantified in S&Cs using 
vibration data collected at the point machine? 

RQ2: How can squat anomalies of S&Cs be detected automatically to monitor 
their health status? 

 

1.6 Linkage of research questions and appended papers 
 

Table 1.1 Mapping of research questions and the appended papers 

 Paper 1 Paper 2 
RQ 1 X  
RQ 2  X 

 

Paper 1 Proposed a method to analyse vibrations measured by accelerometers 
installed at the point machine to investigate the possibility to detect rail squats. 
The vibration signals used in this study were collected from a testbed. This study 
also investigated the possibility to quantify different squat sizes from the 
acquired signals. 
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Paper 2 Presented a method to analyse the vibration signals from the same test 
bed. Feature extraction and feature selection were applied to perform 
unsupervised machine learning algorithms for automatically monitoring the 
health status of an S&C. 

 

1.7 Scope and limitations 
 

The scope of this research is to study vibration data collected at the point 
machine to automatically monitor the health status of the S&C.  

The research presented in this thesis has the following main limitations: 

• Only one type of rail defect, rail squats, was investigated. 
• The bogie speed in the test bed was limited to under 2 m/s. 
• The study was limited to experiments from a testbed with one type of 

point machine and one type of bogie wagon. 
• The measurement data-set size was limited. Only three repetitions were 

performed per test case. 
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CCHHAAPPTTEERR  22..  LLIITTEERRAATTUURREE  RREEVVIIEEWW  
 

 

 

2.1 Squat detection 
 

A simplified method to detect the squat defects using laser scatterometry was 
presented by Lesiak et al. and both the simulation and experiment results 
achieved from artificial and real defects verified that it is effective in squat 
detection (Lesiak et al., 2015). The authors analysed the behaviour of laser beam 
passing through the artificial patterns of defects carved on the surface of rail 
head. However, this method encountered the challenges of dust and dirt on the 
laser transmitter or receiver. Ye et al. utilised 3D reconstruction techniques to 
improve the performance of laser-based track inspection and the results 
demonstrated the feasibility of using such techniques in railway systems (Ye et 
al., 2019). The authors built a novel 3D perceptual system based on a low-cost 
2D laser sensor. The study verified that the proposed method for rail and 
crossing-nose inspection was feasible. However, the issues of dust and dirt on 
the laser transmitter or receiver in operation environment remained as a key 
concern. Faghih-Roohi et al. proposed a Deep Convolutional Neural Network 
(DCNN) approach to analyse image data for the detection of rail surface defects 
and the experiments showed promising results and demonstrated its capability 
(Faghih-Roohi et al., 2016). The results of different DCNN architectures with 
different sizes and activation functions were tested to explore the efficiency of 
the proposed DCNN for detection and classification. However, the lens of the 
camera remained sensitive to dusts and dirt from the operation environment.  
Another approach of semi-supervised squat detection for imbalanced image 
data were presented by Kassa et al. and it was concluded that the approach was 
a reasonable alternative for improving the performance of rail track squat 
detection (Kassa et al., 2006).  Two models were proposed within the study. One 
model was generated using a commercial MultiBody System (MBS) software and 
the other was based on a multibody dynamics formulation. The results from both 
models showed that the maximum lateral displacement occurred at similar 
position and agreed with one another. However, these were simulated results 
and field experiments to verify them were not performed. A monitoring method 
using ultrasonic techniques was proposed by Kaewunruen & Ishida to measure 
the crack propagation of squats. The results showed that the propagation can be 
roughly estimated to be linear to accumulated passing tonnages up to a certain 
degree (Kaewunruen & Ishida, 2016). This finding could help railway authorities 
to plan more effective and efficient maintenance. However, the actual detection 
and measurement of the squat size were not discussed. An embedded system 
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based on ECT for online detecting and locating rails defects was presented by 
Alvarenga et al. and it claimed a classification accuracy of 98% (Alvarenga et al., 
2021). The proposed method aimed to interpret Eddy Current signals by using 
wavelet transforms. The processed data were further classified using a 
Convolutional Neural Network (CNN). However, well-labelled data in railway 
field are very rare and can be labour and cost intensive. A method to evaluate 
the track geometry and the load of fixed railway crossings using processed train 
gauge signals was proposed by Oßberger et al. and the results could be used as 
input for the condition monitoring process of the S&C (Oßberger et al., 2017). 
The superposition of the corresponding 2D profiles and the 3D reconstruction 
allowed a quantitative measurement of the geometry changes during actual 
train service. However, this study only focused on the crossing nose and not the 
whole S&C. 

Another way of detecting squats is using the ABA measurements. Bocciolone et 
al. investigated the feasibility of ABA-measurement-based rail status diagnosis 
(Bocciolone et al., 2007). The signal processing techniques of produced some 
RMS band values and associated the growing of one band level to the short-pitch 
corrugation wavelength off-line. But the algorithm was possible to be 
implemented on-line to make real-time decisions. However, relationship 
between the level of the vibration and the depth of the short-pitch corrugation 
was not established in this study. Molodova et al. used the Finite Element (FE) 
model to perform a parametric study analysing the relationship between 
maximum ABA signal amplitude and the train speed for squats (Molodova, Maria 
et al., 2015). A practical method was proposed to represent the relationship 
between the train speed and corresponding characteristics of ABA at each squat. 
The parameter study also indicates that the major frequency characteristics of 
ABA at squats were related to the natural frequencies of the track. However, the 
squat detection part was not included in the study. An automatic detecting 
method for track surface squats using ABA measurements was also presented 
and validated (Molodova, Maria et al., 2014). The automatic squat detection 
algorithm used wavelet spectrum analysis and estimated the squat locations. 
However, this approach aimed to perform squat detection for general rails, and 
it was not dedicated to performing condition monitoring for S&Cs. Wei et al. 
used the Bogie Acceleration (BA) collected by the accelerometers installed on 
the bogie frame for detecting both squats and corrugations (Wei et al., 2019). 
The study pointed out two main disadvantages of using ABA. One is the large 
values of the ABA that can exceed 50 g, therefore the acceleration sensor must 
have a trade-off between the maximum measuring range and the sensitivity to 
detect the track defects. Another problem of the ABA is the vibration caused by 
the bearing defects are mixed in the measurements. Therefore, the study chose 
BA signal instead. The results showed the proposed method could detect squats 
defects from the in-service train successfully. However, this approach was not 
designed to perform dedicated condition monitoring for S&Cs. 
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2.2 Condition monitoring for S&C 
 

S&Cs are critical asserts in railway network and the condition monitoring for S&C 
is an important topic. Many studies have been conducted previously in this area. 
One study presented an algorithm using Qualitative Trend Analysis (QTA) to 
detect and diagnose faults in switches  (Silmon & Roberts, 2010). The authors 
claimed that the increased fault diagnosis capability had the potential to 
contribute significantly towards the achievement of the 30% reduction in track 
Life-Cycle Costs (LCCs). However, the proposed method was designed for the 
switch system only and did not consider defects such as squats. Taştimur et al. 
proposed a vision-based condition monitoring approach for S&Cs using 
hierarchical SVM (Taştimur et al., 2016). The authors claimed that the 
performance of the proposed approach was superior to previous methods found 
in the literatures. However, the proposed method only could identify the S&C 
from provided images but not the defects. Liu et al. experimented with two 
different systems, one equipped with a 3-D accelerometer and a speed detection 
sensor to describe crossing degradation and the other using a Video Gauge 
System (VGS) to detect and quantify ballast conditions (Liu, X. et al., 2018). 
However, the measurements were sensitive to the speed and the type of the 
trains and only data from the same train type and with a similar speed could be 
used as input. Boogaard et al. presented a method of utilising both 
accelerometers and a strain gauge mounted 50 mm below the crossing frog  
(Boogaard et al., 2018). Only the vibration data from the furthest measuring 
point from the tip of the nose were processed in the study. The results showed 
the advantages of combining two different measuring methods for monitoring 
the crossing nose. However, the study did not cover monitoring the whole S&C. 
Barkhordari et al. proposed a method of employing a track-side system 
measuring the track acceleration to monitor ballast degradation  (Barkhordari et 
al., 2020). However, this method could not provide continuous condition 
monitoring. Another study presented a condition monitoring system for railway 
crossing geometry via both measured and simulated track responses. A 
calibration method was proposed to improve both the agreement between 
measured and simulated sleeper displacements for lower frequency track 
response and for the dynamic track response at high frequencies. However, the 
system had not been proven to be able to detect the change in crossing 
geometry over time and to quantify the geometry change. 

So far, there has no study been found to combine both the advantage of 
vibration related squat detection techniques to the condition monitoring health 
status of S&Cs. This study proposes a new method for squat detection and S&C 
health status monitoring related to squats. To achieve this, the vibration data 
measured by the accelerometer mounted at the point machine are used as input 
data. 
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CCHHAAPPTTEERR  33..  TTHHEEOORREETTIICCAALL  BBAACCKKGGRROOUUNNDD  
 
 
3.1 Vibration measurements 
 

Traditionally, some methods have been used to detect rail defects such as 
ultrasonic test vehicle (Kondo et al., 1996), ECT system (Mohan et al., 2011), 
strain gauge instrumented wheelsets (Magel et al., 2008), image-based visual 
system (Bojarczak, 2013) and Multi-Purpose Q and Y load detector (MPQY) 
(Delprete & Rosso, 2009) etc. Analysing vibration measurements is another 
method that have been widely used. It can be used to detect and diagnose 
defects for both the wheels and the rails. The advantages of this method are the 
cheap price, convenient installation and the integrity of the contained 
information (Wei et al., 2019; Molodova, Marija et al., 2011; Najeh et al., 2021).  

Detecting defects using vibration signals is generally conducted based on 
features extracted from the signals in either time, frequency, or time-frequency-
domain. The extracted features are then applied as the input for further analysis. 
An example of a time-domain vibration signal measured from an S&C subjected 
to an excitation of a moving bogie is shown in Figure 3.1. 

 
Figure 3.1 Example of a vibration signal measured from an S&C in time domain 

An accelerometer is a device that measures the vibration in terms of acceleration 
of an object. The force generated by vibration (acceleration) causes the mass to 
compress the piezoelectric material, which produces an electrical charge that is 
proportional to the force applied on it. The charge is proportional to the force, 
and the mass is a constant. By applying Newton’s second law, the charge is also 
proportional to the acceleration. 

 

3.2 Wavelet denoising 
 

The concept of wavelet transform can be traced back to 1909. The concept of 
wavelet transform is closely related to the Fourier transform. The Fourier 
transform is a useful tool to analyze the constant frequency components of a 
signal. However, it is impossible to tell at what instant a particular frequency 
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component occurs. Short-time Fourier transform (STFT) uses a sliding window to 
find spectrogram and provides the information in both time and frequency 
domains. However, the length of window limits the resolution in frequency. 
Wavelet transform solves the problem by using small wavelets functions with 
limited duration (Chun-Lin, 2010). Wavelet transform can be divided into two 
categories, namely, Continuous Wavelet Transform (CWT) and Discrete Wavelet 
Transform (DWT) (Torrence & Compo, 1998). CWT is a powerful tool for time-
frequency analysis and can be viewed as replacing the short-time Fourier 
transform’s time-frequency window gt,ξ with a “time-scale window” Ψa,b. The 
CWT can be defined as follows according to the study conducted by Johanson 
(Johansson, 2005): 

A function Ψ with 

  (3.1) 

 

is called a wavelet. For a given function f(x), and a selected wavelet Ψ, its CWT is 
defined as 

  (3.2) 

where 

 
 

(3.3) 

 

The function Ψ is called the mother wavelet. It is chosen to be localised at x = 0 
and at some ω = ω0 > 0 (and/or ω = −ω0). 𝑎𝑎  is a scaling/dilation factor that 
controls the width of the wavelet and 𝑏𝑏 is a translation parameter that controls 
its location. 

DWT decomposes a signal into a set of mutually orthogonal wavelet basis 
functions and is defined as follows (Torrence & Compo, 1998): 

 

  (3.4) 

where 

  (3.5) 

Wavelet denoising utilises DWT to decompose the original signal to obtain the 
wavelet coefficients, thresholding the coefficients and reconstructing the signal 
with reverse DWT  (Peng & Chu, 2004). Here 𝑎𝑎 is called the scale factor and 

5534454_Inlaga.indd   285534454_Inlaga.indd   28 2022-10-04   10:192022-10-04   10:19



  

13  

represents the scaling of the function, and 𝑏𝑏  is called the shift factor and 
represents the temporal offset of the function. 

 

3.3 Scale averaged wavelet power (SAWP) 
 

To evaluate fluctuation in power over a range of scales, the SAWP time series 
over scales 𝑠𝑠! to 𝑠𝑠" is defined as follows (Torrence & Compo, 1998): 

 

 
 

(3.6) 

where 

  (3.7) 

  (3.8) 

 

𝐶𝐶#  is scale independent and a constant for the selected wavelet function, 𝛿𝛿$  is a 
factor for scale averaging, 𝛿𝛿% is the sampling period and 𝑗𝑗!, … , 𝑗𝑗" represent scales 
over which the SAWP is computed. 𝑠𝑠&  is the smallest resolvable scale and 𝐽𝐽 
determines the largest scale. 𝑊𝑊'(𝑠𝑠) is the CWT of a discrete sequence. 𝑁𝑁 is the 
number of points in the time series (Kaiser & Hudgins, 1994). SAWP is utilised to 
detect the power burst in the vibration signal when a wheel hits a squat or a joint 
gap. This power time series will be used later to extract some features. 

 

3.4 Machine learning 
 

Machine learning addresses the question of how to build computer programs 
that improve automatically through learning experience  (Jordan & Mitchell, 
2015). Machine learning algorithms can mainly be divided into three categories, 
namely, supervised learning, unsupervised learning, and reinforcement learning 
(Jordan & Mitchell, 2015). Another way of categorising machine learning is 
according to the learning scenarios. Supervised learning, unsupervised learning, 
semi-supervised learning, transductive inference, on-line leaning, reinforcement 
learning, and active learning are the main categories (Mohri et al., 2018). 

Supervised learning is a machine learning approach that is defined by its use of 
labelled datasets to predict the output. Depending on the predicted output type, 
it could be either a regression problem when the outputs are quantitative, or a 
classification problem when the outputs are qualitative (Hastie et al., 2009). In 
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other words, in classification problems, the labels are discrete and in regression 
problems, the label are continuous (Nasteski, 2017). These two tasks are similar, 
and both can be viewed as a function approximation task. A few widely applied 
supervised machine learning algorithms are support-vector machines, linear 
regression, logistic regression, Naive Bayes, linear discriminant analysis, decision 
trees, k-nearest neighbour algorithm, neural networks, and similarity learning. 

Unsupervised learning is a type of machine learning algorithm that learns 
patterns from unlabelled data (Mohri et al., 2018). The machine is forced to build 
a compact internal representation of its world and then generate imaginative 
content from it (Hinton & Sejnowski, 1999). Another way to conceptualise this 
process is that the algorithms are left on their own to discover and present the 
interesting structure in the training data (Mahesh, 2020). The unsupervised 
learning algorithms learn patterns from the training data. When new data are 
introduced, it uses the previously learned pattern to recognize to which cluster 
the new data belong. Clustering, feature reduction and anomaly detection are 
the three main applications. Principal Component Analysis (PCA), manifold 
learning and autoencoders are a few examples of unsupervised learning 
algorithms for dimensionality reduction. Isolation forest, Local Outlier Factor 
(LOF) and minimum covariance determinant are typical unsupervised machine 
learning algorithms used in anomaly detection. K-means, hierarchical clustering, 
DBSCAN, affinity propagation, mean shift and gaussian mixture models are some 
popular unsupervised machine learning algorithms used for clustering. Since the 
fact that a large amount of data is unlabelled from railway maintenance and the 
healthy data are dominant compared with the data with defects (Hajizadeh et 
al., 2016), it is suitable to apply unsupervised machine learning algorithms to 
perform anomaly detection.  

Reinforcement learning directly takes inspiration from how humans learn from 
experience. It features an algorithm that improves by itself and learns from new 
situations using a trial-and-error method (Kaelbling et al., 1996). Another more 
recent understanding of reinforcement learning is that it studies how to use past 
data to enhance the future manipulation of a dynamical system (Recht, 2019). In 
another word, the goal is to find a sequence of inputs that drives a dynamical 
system to maximize a given object starting with minimal knowledge of the 
system. There are two main strategies for solving a reinforcement learning 
problem. The first is to search in the entire space of behaviors to find one that 
performs well in the given environment. This approach has been applied in 
genetic algorithms and genetic programming, and some other novel search 
techniques (Schmidhuber, 1996). The second is to utilise statistical techniques 
and dynamic programming methods to estimate the reward of taking actions in 
the provided environment (Kaelbling et al., 1996).  
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3.5 Anomaly detection 
 

Anomaly detection aims to detect anomalous or abnormal data points from a 
provided dataset and discover enthralling and rare patterns in the dataset 
(Ahmed et al., 2016). Anomalies refer to the patterns in data that do not conform 
to the defined notion of normal behaviour (Chandola et al., 2009a). For example, 
Figure 3.2 illustrates anomalies in a simple two-dimensional data set. The data 
has two normal regions, N1 and N2. Most observations lie in these two regions. 
Points that are sufficiently far away from these regions, for example, points o1 
and o2, and all points labelled o3, are considered as point anomalies. Figure 3.3 
shows an example of a contextual anomaly. The black point is considered as 
normal compared with its neighbouring points as it follows the general trend. 
The red point depicted in the same figure has the same value and cannot be 
decided as an anomaly by checking the value itself. However, when it is 
compared with the neighbouring points, there is a sudden change in the pattern 
and therefore can be considered as an anomaly in terms of the given context. 
Such deviations are known as contextual anomalies. Figure 3.4 displays an 
example of a collective anomaly scenario. The points in the red circle are normal 
when viewed as individuals. However, when these points are compared to the 
entire data as a collection, they are anomalies. 

 

Figure 3.2 An example of point anomalies in a two-dimensional data set. (Adapted from Chandola etal. 
2009) 
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Figure 3.3 An example of contextual anomaly in a time series. (Adapted from Chandola etal. 2009) 

 

 

Figure 3.4 An example of collective anomaly in a time series. (Adapted from Chandola etal. 2009) 
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CCHHAAPPTTEERR  44..  RREESSEEAARRCCHH  MMEETTHHOODDOOLLOOGGYY  
 
4.1 Research approach and process 
Research can be defined in many ways. The common meaning of research is to 
search for new knowledge. Research is defined as a piece of original 
contribution to the existing stock of knowledge helping for its advancement 
(Kothari, 2004). According to Kumar, research can be classified depending on 
three criteria: the application, the objectives and the enquiry mode (Kumar, 
2018). The current study belongs to applied research, with exploratory, 
descriptive and explanatory objectives. A quantitative approach (Creswell & 
Creswell, 2017) was utilised to investigate how the squat defects on an S&C can 
be detected and quantified and how it can be automated to generate an 
anomaly score to indicate the health status of the S&C. Figure 4.1 illustrates the 
main research process carried out to answer the research questions. 

 

Figure 4.1 Research design process 
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The field experiment and vibration measurements were performed in a previous 
study. The focus of this study was to design methods to process the available 
data by applying both statistical model and machine learning model to achieve 
new knowledge. 

4.2 Research methodology 
 

4.2.1 Data generation and collection 
The experiment was performed in a testbed including a full-scale S&C and a 
moving bogie. The accelerometer was mounted on the point machine. Both the 
vibration signal and the corresponding speed information were measured and 
saved while the bogie was travelling along the S&C with artificially introduced 
squats. The S&C used in the experiment has a dimension of 1:16 and a length of 
38.14 m. A simplified illustration of the testbed is shown in Figure 4.2. The rails 
are labelled in the figure from rail 1 to rail 4. The squats are labelled from A to K.  

 

Figure 4.2 Schematic diagram of the test setup and accelerometer placement 

The sensor used for this study was a miniature accelerometer of type KS91C. It 
has a measuring range of 0.3–37,000 Hz, with a sensitivity of 10 ± 20% mV/g and 
the resonant frequency greater than 60 kHz (+25 dB). The position of the 
accelerometer is visualised in Figure 4.2 and Figure 4.3. The vibration in the z-
direction was measured. The accelerometer was glued to the aluminium holder, 
which was mounted on one rod of the point machine. 

 
Figure 4.3 Sensor mounted on one rod of the point machine for extra protection 
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To simulate two different squat levels, the squats were manually introduced 
stepwise with 1 mm and 4 mm maximum depth. The positions and the measured 
dimensions of the squats are listed in Table 4.1. The squat with 1 mm depth is 
around 42 mm in diameter and the squat with 4 mm depth is about 63 mm in 
diameter. S0 and S1 are two stop blocks of the S&C on each end in the through 
direction. Wheels 2 and 4 travel first on rail 4 and then switch to rail 3 while 
wheels 1 and 3 always travel on rail 1. The point machine is located 5.86 m away 
from the stop block S0. Figure 4.4 shows what a real squat and an artificially 
introduced squat in the testbed look like. 

 

  
(a) (b) 

Figure 4.4 An example of Squat defect (a) A real squat (b) A manually induced artificial squat 

 

Table 4.1 Measurements of squats’ dimensions  

General info Size 1 Size 2 
Rail Nr. Squat 

name 
From S0 

(m) 
Squat 

diameter 
(mm) 

Max 
depth 
(mm) 

Squat 
diameter 

(mm) 

Max 
depth 
(mm) 

4 A 5.70 43 1.2 62 3.7 
4 B 6.70 41 1.0 61 3.9 
1 C 7.27 42 1.0 63 3.7 
3 D 10.68 42 1.0 66 4.4 
1 E 12.47 0 0 65 3.7 
3 F 18.04 42 1.1 65 4.2 
1 G 19.32 42 1.0 64 3.7 
1 H 28.02 42 1.5 62 4.7 
3 I 29.23 42 1.4 62 4.3 
3 J 32.14 42 1.2 63 4.4 
1 K 34.00 42 1.1 61 4.1 

 

 

4.2.2 Data processing 
 

The method to solve RQ 1 is described in detail in Figure 4.5. The vibration signal 
was first processed to remove the constant signal level, then high-pass filtered, 
wavelet denoised and converted from time domain to spatial domain. The 
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signals were resampled and then synchronised with the smoothed and re-
sampled speed data. The positions of squats were used to match the final 
processed vibration signal and identify different events. 

The mean value of the vibration signal was first deducted from the original 
measured signal. This step ensures that the constant component of the signal 
was removed. Since the focus of this study was to detect impact events, a third 
order high-pass filter with cut-off frequency at 100 Hz was applied to the original 
signal to remove some part of the low frequency components. 

To apply wavelet denoising, some parameters and the thresholding method 
should be decided. The denoising was set at a level nine decomposition 
empirically. The wavelet function should reflect the features presented in the 
signal in the time domain. However, since the primary interest in this study was 
the SAWP time series, different types of wavelet functions would yield the same 
qualitative results (Torrence & Compo, 1998). Symlet 4 (sym4) was chosen. 
There were some methods that could be used to determine the denoising 
thresholds. According to previous study, the influence of different methods on 
the SAWP is insignificant (Torrence & Compo, 1998). Empirical Bayesian with 
median thresholding was chosen. 

The original vibration data was sampled in the time domain. However, the 
interesting aspect in the study was where the squats are located. With the help 
of the logged speed information, the data in time domain was converted into the 
spatial domain. Since the speed was not constant, the converted spatial domain 
signal had a non-constant distance interval. 

To remove sudden changes in the speed measurements, convolution technique 
was used to smooth the speed data. Resampling was applied to both the speed 
signal and the vibration signal. Since the speed signal was sampled at 1 Hz and 
the vibration signal at 51.2 kHz, upsampling was applied to the speed signal. The 
converted vibration signal in the spatial domain had non-constant sampling 
frequency due to varying speed condition. Therefore, resampling to 51.2 kHz was 
applied using interpolation technique. 

To perform the spatial domain conversion, synchronisation of the vibration data 
and the speed estimation data was performed. The actual start time of the 
vibration data and the speed data were not the same. The data were aligned by 
assuming both signals stop at the same time. Furthermore, parts of the signals 
where the measured speed was constantly zero were removed due to that part 
of the signal were recorded before the bogie started to move. The technique 
used to help synchronising the vibration signals in the spatial domain with the 
expected events was utilising signatory common impulse response as reference 
points. The event chosen was when the front wheel hit the first rail joint, which 
happened for all test cases. This point was used to align the vibration signal in 
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the spatial domain to the expected events such as rail hitting squats, rail gaps or 
stop blocks.  

 

 

Figure 4.5 Data processing for RQ 1 
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Figure 4.6 Data processing for RQ 2 

The method to solve RQ 2 is described in detail in Figure 4.6. The vibration signals 
were initially filtered with a third-order Butterworth band-pass filter with 50 Hz 
and 2.5 kHz cutoff frequencies. The band-pass filter was applied to filter away 
the frequencies with noise and preserve the frequencies with useful information. 
A wavelet magnitude scalogram was utilised as a tool to decide the cutoff 
frequency of the band-pass filter as shown in Figure 4.7. It showed that the main 
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energy of the response for the squat defect was around 200 Hz to 400 Hz. There 
was also a second frequency band around 500 Hz to 2000 Hz. The filtered signals 
were aligned and truncated to equal length. This step made it possible to 
compare the results from different runs in the results. It could also be 
implemented in future studies to accurately extract the position information. 

 
Figure 4.7 Magnitude scalogram of squat G in a 4 mm case 

Furthermore, the signal was down-sampled to one-tenth of the original 
frequency. As the band-pass filter has a cutoff frequency as high as 2.5 kHz, the 
original signal with sampling frequency at 51.2 kHz contains redundant 
information. A sampling frequency at 5 kHz was enough to preserve all the useful 
information. To make the calculation easier, 5.12 kHz was applied. The output 
signals were processed in two separate ways after that.  

In one way, the signals were segmented into 400 equal-sized segments and nine 
corresponding time-domain features were extracted. The features used in this 
study were RMS, standard deviation, shape factor, kurtosis, skewness, peak-to-
peak amplitude, impulse factor, crest factor and clearance factor. In the other 
way, wavelet denoising was applied. The denoising was set at a level nine 
decomposition, with Symlet 4 wavelet, The empirical Bayesian denoise method 
was utilised with median thresholding and level-dependent noise estimator. The 
SAWP was calculated from the output signal. Two features, the number of peaks 
and the total peak power, were extracted from the SAWP time series and 
assigned to each segment. Totally 11 features were generated for the entire 
study.  
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4.2.3 Data modelling 
 

Linear regression: 

Linear regression analysis predicts the value of one variable based on the value 
of another variable. The variable to be predicted is usually named the dependent 
variable. The variable used to predict the other is called the independent variable. 

The aim of this analysis is to estimate the coefficients of the linear equation, 
involving one or more independent variables that best predict the value of the 
dependent variable. A more straightforward way to understand linear regression 
is that it tries to fit a straight line or surface that minimizes the error between 
predicted and actual values. One popular method to measure the error is the 
“least squares” method.   

To answer RQ 1, the influence of non-constant speed need to be analysed. Since 
the measured speed was in a small interval of 0 m/s to 1.5 m/s, it was reasonable 
to assume the relationship between the speed normalised peak-to-peak 
amplitude and the squat depth is approximately linear. Therefore, two linear 
models were proposed to estimate the relationship between the speed 
normalised peak-to-peak amplitude and the squat depth for squat F and G as 
shown in Figure 4.2. 

 

 

Isolation Forest: 

The Isolation Forest algorithm was initially proposed in 2008 (Liu et al., 2008). 
The authors used two quantitative properties of anomalous data points in each 
sample: 

• Few – the anomalous data points are the minority and consist of fewer 
instances  

• Different – the anomalous data have values that are very different from 
those of normal ones 

Based on the properties of anomalies to be few and different, they are easier to 
be isolated compared to normal points. The algorithm is described in detail as 
follows. Given a set of observations, the isolation forest algorithm selects a 
random sub-sample of the observations and assigns them to a binary tree. The 
branching of the tree starts by selecting a random feature from d-dimensional 
features. Then branching is done on a random threshold in the range of the 
selected feature. If the value of one observation is less than the selected 
threshold, it goes to the left branch; otherwise, it goes to the right. With such an 
approach, a node is split into left and right branches. This process should 
continue recursively until all data points are completely isolated or when the 
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maximum depth is reached. The above steps are repeated to construct random 
binary trees until all observations are isolated. Those points that are easier to 
isolate and with smaller path lengths will thus have higher anomaly scores. 

Chandola et al. claimed a few advantages of Isolation Forest (Chandola et al., 
2009b). First, it had a low linear time complexity and a small memory 
requirement. Next, it was suitable to deal with high dimensional data with 
irrelevant attributes. Lastly, it could be trained with or without anomalies in the 
training set, plus it could provide detection results with different levels of 
granularity without re-training 

To answer RQ 2, Isolation Forest anomaly detection was used to detect the 
anomaly segment of the vibration data. The detailed process of choosing 
different parameters such as the proper segment size, scaling technique, and 
feature selection was described and discussed in chapter 5.2.  
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CCHHAAPPTTEERR  55..RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONNSS  
 

 

 

5.1 Results and discussion related to RQ1 
 

RQ1: How can squat defects be detected and quantified in S&Cs using 
vibration data collected at the point machine? 

RQ1 was mainly answered in paper one. The first step performed in this research 
was the literature review. The research related to the use of vibration signals to 
detect the rail defects and the research about condition monitoring of S&Cs were 
investigated. The results of current studies were analysed. The results showed 
that analysing the vibration data is a promising approach for detecting the squats 
of an S&C. The initial results from the testbed also indicated that the vibration 
data changes when the squats defect level changes. This is shown in Figure 5.1. 
This was the first proof from data analysis that showed the possibility of using 
the peak-to-peak amplitude to detect the squats defects. The difference was 
clearer when a squat was nearer the measuring point and when a squat was 
located further away, the difference became less significant.  
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Figure 5.1 Comparison for different squat levels: (a) No squat case (b) 1 mm depth’s squats (c) 4 mm 
depth’s squats 

Spatial domain (m) 
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The maximum peak-to-peak amplitude values were extracted from the 
processed vibration signal. The maximum peak-to-peak amplitude of squat F and 
G are visualised in Figure 5.2 and Figure 5.3, respectively. As the speed of the 
bogie was non-constant, the peak-to-peak amplitude values could not be directly 
compared with each other. From all the squats introduced, squat F and squat G 
were chosen to be further analysed because they were not far away from the 
accelerometer and there were no joint gaps nearby. From those two figures, we 
could observe that for squat F and squat G, the speed was around 1m/s. It was 
reasonable to assume a proportional relationship between the amplitude and 
the speed within such a small interval. Therefore, all measured amplitude for 
squat F and G were divided by the corresponding speed to get an estimation of 
the amplitude at a fixed speed of 1m/s. This assumption might not be valid when 
the speed variation became larger so that more complex method might be 
needed to normalize the peak-to-peak amplitude. 

 

Figure 5.2 Peak-to-peak amplitude data for squat F on rail 3 (a) no squat case (b) 1 mm squat case           
(c) 4 mm squat case 
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Figure 5.3 Peak-to-peak amplitude data for squat G on rail 3 (a) no squat case (b) 1 mm squat case           
(c) 4 mm squat case 

The mean and the standard deviation of the estimated acceleration together 
with the fitted linear regression model for squat F are visualised in Figure 5.4. It 
showed that the mean amplitude value increases from 0.7605 g to 1.2355 g 
when the squat depth increases from 1 mm to 4 mm. The standard deviations 
for 1 mm and 4 mm cases were 0.3434 g and 0.088 g, respectively. The fitted 
linear model was: 

 𝑦𝑦	 = 	0.255𝑥𝑥	 + 	0.2942 (5.1) 

This curve fitting was reasonable because the data points were limited. When 
more data could be available from field measurements, more advanced curve 
fitting would be possible to apply. Different approaches could be compared by 
calculating the error of the fittings on new data. 
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Figure 5.4 Mean and standard deviation of estimated peak-to-peak amplitude vs. the squat depth, the 
dashed line is the fitted linear model (wheel 2, 4 hit squat F on rail 3) 

The mean and the standard deviation of the estimated acceleration together 
with the fitted linear regression model for squat G are presented in Figure 5.5. 
The mean amplitude value increased from 0.3499 g to 1.6286 g when the squat 
depth increased from 1 mm to 4 mm. The standard deviations for 1 mm and 4 
mm cases were 0.1437 g and 0.7054 g, respectively. The fitted linear model was: 

 𝑦𝑦	 = 	0.388𝑥𝑥	 + 	0.0452 (5.2) 

 

Figure 5.5 Mean and standard deviation of estimated peak-to-peak amplitude vs. the squat depth, the 
dashed line is the fitted linear model (wheel 1, 3 hit squat G on rail 1) 
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By analysing these two squats, it could be observed that the fitted linear model 
were different from one another. Therefore, more analysis should be performed 
when larger dataset from field tests became available. 

 

5.2 Results and discussion related to RQ2 
 

RQ2: How can squat anomalies of S&Cs be detected automatically to monitor 
their health status? 

This research question was mainly answered in paper two. The first step to 
answer the research question was to choose how the recorded signal should be 
cut into segments. A few different segment sizes were tested, and it was 
observed that dividing the signal into 400 segments was a reasonable choice. 
Higher number of segments would cut the signal from one squat into a few 
segments and low number of segments would make one segment containing 
multiple squats. The results of the influence of segment size are shown in Figure 
5.6. 

 

Figure 5.6 Example of anomaly scores for a case with 4mm artificial squats and with different segment size 

The time-domain features used in this study were RMS, standard deviation, 
shape factor, kurtosis, skewness, peak-to-peak amplitude, impulse factor, crest 
factor and clearance factor. The features extracted from SAWP were the number 
of peaks and the total peak power. In total, 11 features were generated. The 
features extracted for the study are shown in Fel! Ogiltig självreferens i 
bokmärke..  

 

 

 

5534454_Inlaga.indd   485534454_Inlaga.indd   48 2022-10-04   10:192022-10-04   10:19



  

33  

 

Table 5.1 Extracted features 

Feature 
number 

Feature type Feature name 

1 time domain RMS 
2 time domain standard deviation 
3 time domain shape factor 
4 time domain kurtosis 
5 time domain skewness 
6 time domain peak to peak amplitude 
7 time domain impulse factor 
8 time domain crest factor 
9 time domain clearance 
10 SAWP nr. of peaks 
11 SAWP total peak power 

 

Two different approaches for feature selection were utilised. The first approach 
made use of PCA. The accumulated PCA feature importance score is presented 
in Figure 5.7 (a). The first five features in PCA space captureed 96.55% of all the 
useful information. The second approach employed the Laplacian score and 
correlations between the features. First, the Laplacian feature importance score 
was calculated and ranked. The results are shown in Figure 5.7 (b). The y axle 
was not the Laplacian score but a score representing feature importance as 
defined in the Matlab implementation. A lower Laplacian score means a more 
relevant feature; thus a higher feature importance score. Then correlations 
between the most significant feature and the others were calculated. All other 
features that had a correlation value higher than 0.9 to the most significant one 
was removed. The above steps were repeated until there were no two features 
with a correlation value higher than 0.9. As a result, the remaining features were 
feature numbers 10, 11, 9, 8, 5 and 6. 
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(a) 

 

(b) 

Figure 5.7 Feature ranking (a) Accumulated PCA score ranking (b) Laplacian score ranking 

 

The results of utilising different features groups were compared. Figure 5.8 
shows one example of the anomaly scores for a test with 4mm squat case with 
different features. By comparing the anomaly scores for those three cases, 
however, it is evident that the difference is small and from a performance point 
of view, either of them could be used. However, a lower dimension of features 
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was preferred. The PCA space features were linear combinations of the original 
features and were difficult to interpret. Based on the above two arguments, the 
Laplacian score selected features were used for further study. 

 

 

Figure 5.8 Example of anomaly scores for a case with 4 mm squat case with different feature sets 

A threshold was needed to decide what should be considered as an anomaly. 
The knee point method was applied on the sorted anomaly score as is shown in 
Figure 5.9. The results indicated that the anomalies should be around 12% of the 
total segments. This was verified by plotting the anomalies with 88 percentiles 
together with the vibration signal. One example of the results for a 4 mm case is 
presented in Figure 5.10. By using the 88 percentiles, most of the anomalies were 
found without introducing unexpected false alarms. 

 
Figure 5.9 Knee point search for finding the threshold 
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Figure 5.10 Example anomaly detection for 4 mm squat case run 1 with 88 percentiles as a threshold, the 
anomalies match the pattern of the events (squats and joint gaps) 

 

All the test cases and the corresponding anomaly scores above the 88-percentile 
threshold are presented in Figure 5.11. This showed that with increased squat 
depth, more anomalies were found indicating the health status of the S&C was 
degraded. It can also be observed that the different test runs were well aligned 
at the beginning, but with the different speed profile for each run, the spotted 
defects also encountered different drift, and thus were not well aligned any 
more. This, however, would not influence the results of utilising the anomaly 
scores as an indicator to monitor the health status of the S&C. 

 

Figure 5.11 Anomaly scores above the 88-percentile threshold for all test cases showing the larger squats 
cause both anomalies spotted and lower anomaly scores  

A few indicators could be calculated to represent the health status of the S&C. 
One such indicator could be to calculate the sum of anomaly score for each test 
and then calculating the mean value of the sum for each test scenario with three 
repetitions. From the test data, we observed the scores of 11.65, 20.31 and 29.59 
for the S&C with healthy, 1 mm and 4 mm deep squat cases, respectively. 
Another indicator could be the mean value of the number of anomalies for each 
test scenario. From the test data, the average number of anomalies are 18.67, 
32.67 and 45.00 for the S&C with healthy, 1mm and 4 mm deep squat cases, 
respectively.  
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CCHHAAPPTTEERR  66..  CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUUTTUURREE  WWOORRKK  
 
 
6.1 Conclusions 
 

6.1.1 Conclusions related to RQ1 
RQ1: How can squat defects be detected and quantified in S&Cs using 
vibration data collected at the point machine? 

 

The following conclusions can be drawn from the investigations performed to 
answer RQ 1: 

• The study shows that accelerometers placed within the protective 
environment within a point machine could be utilised for monitoring 
defects such as squats along the S&Cs of the railway infrastructure. 
 

• The proposed methodology was able to detect six out of seven squats of 
4 mm depth within a range of approximately 13 m from the 
accelerometer mounted on the point machine. 
 

• The proposed methodology was able to detect four out of six squats of 1 
mm depth within a range of approximately 13 m from the accelerometer. 
 

• It was challenging to extract and locate accurately both 1 mm and 4 mm 
depth squats that are further than approximately 22 m away from the 
accelerometer. 
 

• The mean normalised amplitude value for squat F increased around 62% 
when the squat depth increases from 1 mm to 4 mm. 
 

• The mean normalised amplitude value for squat G increased 365% when 
the squat depth increases from 1 mm to 4 mm. 
 

• A linear model could be used to fit the normalised amplitude versus squat 
depth for squats F and G within the collected data. Larger data set could 
however require a different model.  

 

 

 

5534454_Inlaga.indd   535534454_Inlaga.indd   53 2022-10-04   10:192022-10-04   10:19



  

38  

6.1.2 Conclusions related to RQ2 
RQ2: How can squat anomalies of S&Cs be detected automatically to monitor 
their health status? 

The following conclusions can be drawn from the investigations performed to 
answer RQ 2: 

• The extracted features from both the time domain vibration signal and 
the SAWP with the proposed signal-processing procedure was able to be 
used as input to anomaly detection algorithms to detect squat defects. 

• Skewness, peak to peak amplitude, crest factor, clearance factor, number 
of peaks and total peak power were ranked to be the top features for 
anomaly detection. 

• The selected five PCA space features explained more than 96% of all the 
variance in the features. 

• Anomaly-detection algorithms could be utilised to generate anomaly 
scores to indicate the health state of S&Cs regarding squat defects. Using 
knee point technique, 12% of the total segments of all nine instances 
were determined to be anomalies. 

• The mean value of the total anomaly scores for each test scenario 
increased from 11.65 to 20.31 and 29.59 for S&Cs with healthy, 1 mm 
deep, and 4 mm deep squat cases, respectively. The values for 1 mm and 
4 mm cases were almost 1.7 and 2.5 times greater compared to the 
healthy case, respectively. 

• The mean value of the number of anomalies for each test scenario 
increased from 18.67, 32.67 and 45.00 for S&Cs with healthy, 1 mm deep 
and 4 mm deep squat cases, respectively. The values for 1 mm and 4 mm 
cases were almost 1.7 and 2.5 times greater compared to the healthy 
case, respectively. 

• An isolation forest algorithm could be utilised to generate anomaly 
scores to identify squat defects. 

 

6.1.3 Conclusions related to the main research question 
 

Main RQ: How can vibration data collected at the point machine be utilised to 
detect defects and monitor railway S&Cs health? 

In this study, a method was proposed to estimate the relationship between 
different squat levels and the corresponding normalised signal amplitude. An 
approach was proposed to process the vibration data to extract different 
features to detect defects such as squats and estimate the health status of the 
rails at the S&C. It is possible to use the signal processing approach described in 
the current study and combine it with anomaly detection techniques such as 
isolation forest to estimate the health status of S&Cs. Skewness, peak-to-peak 
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amplitude, crest factor, clearance factor, number of peaks and total peak power 
are some promising features. 

 

6.2 Future Research 
 

Some possible future research topics and approaches are listed below: 

• Collect more data from the test bed to quantify the relationships among 
the parameters such as the speed, depths and distance to the sensor to 
the maximum peak-to-peak amplitude in a controlled environment. With 
controlled variables, influence of each factor could be studied separately.  

• Evaluate the proposed method for real case to detect and quantify squats 
in an S&C.  

• Propose and implement a machine learning algorithm to learn from the 
patterns of the healthy S&Cs and perform continuous anomaly detection 
on them. 

• Evaluate the influence of other parameters such as train type, type of 
S&C, load and speed on the indicators and extend the presented method.  

• Combine the method to answer RQ 2 and the concept of federated 
learning to propose a nation-wide condition monitoring system for S&Cs. 
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