
Proceedings of NORMA 20 17

An inquiry of different interpretations of programming in conjunction

with mathematics teaching

Erik Bergqvist

Department of Health, Education and Technology, Lulea University of Technology, Sweden;
erik.bergqvist@ltu.se

This article discusses computational thinking and programming in mathematics teaching and aims
to shed light on different interpretations of what programming entails. The literature review revealed
that there are mainly two ways of approaching programming in an educational context either by a
narrow interpretation or a broader interpretation of programming. These different interpretations of
programming are manifested in different ways in mathematics teaching. The narrow interpretation
is manifested in an activity that focuses on learning to write code on a computer, while the broader
interpretation of programming is displayed in activities with a focus on learning how solve problems
in such a way it can be executed by a computer or by a human. Also, this article explores an
appropriate programming activity within the context of mathematics education in Sweden.

Keywords: Mathematics education, computational thinking, programming, coding, self-efficacy

Introduction
The background to this article is a survey conducted in two municipalities in Sweden in the spring of
2020. The purpose was to map the primary school teachers’ perceived professional needs regarding
mathematics education. The results showed that the teachers especially expressed a need to develop
their knowledge in how to use problem-solving and programming in conjunction with mathematics
teaching.

Computational Thinking (CT) involves the skills of reformulating a seemingly complex problem into
smaller parts and finding patterns, making abstractions, and designing algorithms (Wing, 2006).
However, the definition of CT, and the question of its usefulness outside the computer science
context, are still under debate (e.g., Denning, 2017; Li et al., 2020). Programming activities are
considered to be one way to develop CT-related skills in mathematics education. But, there are
different interpretations of what a programming activity can entail in practice because, in some
settings, programming is synonymous with ”coding” on a computer. And this might create
ambiguities in how programming activities should be planned so that students also learn mathematical
concepts and strategies. For example, Lu and Fletcher (2009) suggest that the first students encounter
teaching CT in schools should be built upon concepts and symbols that are familiar to students rather
than being introduced to a programming language.

Digital competence is defined as one of the eight key 21st-century skills for teachers and students.
According to the Swedish National Agency for Education (Skolverket, 2017), digital competence
involves four aspects, based on EU key competencies: Understanding of digitalization and how it
affects individuals and society, understanding and knowing how to use digital devices and media,
critical and responsible approach to digitalization, and finally, understanding of how to solve
problems and implement ideas in practice. Consequently, digital competence has connections to
mathematics education, perhaps primarily through the problem-solving aspects. Also, CT is often
implicitly mentioned in the same context as digital competence (Bocconi et al., 2018).

Proceedings of NORMA 20 18

The main purpose of this article is to discuss the various interpretations of what programming entails
within the context of mathematics education in Sweden.

The research questions for this article are as follows:

1. What kind of interpretations of the concepts of programming and CT can be found in the
literature?

2. In the Swedish context, what kind of interpretations of programming are especially relevant
and justifiable based on the national goals for mathematics education in primary school?

The research questions are mainly answered using a literature review, which aims to identify the
important discussions about CT and programming. And, to discuss an appropriate interpretation in a
Swedish context and how this interpretation can be manifested and evaluated in mathematics
teaching. First, however, the method of inquiry is explained, followed by a presentation of the main
results.

Method
The first research question was answered using a literature review, which aimed to identify the key
interpretations of CT and programming restricted to mathematics education. Google Scholar and Web
of Science were used. From each search result, relevance was determined by the title, and further if
the content seemed to discuss or relate to different interpretations of CT or programming, its full
reference was obtained for further evaluation. First, the first twenty pages of search results from a
search on Google Scholar were reviewed using the broad keyword ”computational thinking”. Then
the search results were refined including a search on Web of Science using the keywords
”computational thinking”, ”education”, ”mathematics”, and ”programming”. After combining the
search results from the two sources and removing duplicates, the abstracts were read to further decide
their relevance. Mainly peer-reviewed articles were included in the review. In the end, a total of ten
articles were deemed relevant since they discuss or contrast different interpretations to the
understanding of the concept of CT and/or programming. Accordingly, many articles were excluded
from the literature review. For example, articles that presented results from interventions or
experimental studies were excluded because they are already framed in a certain type of interpretation
of CT and programming. Further, the second research question is answered by using the results from
the literature review and a written clarification by the Swedish National Agency for Education
regarding programming in mathematics teaching.

Literature review
Research articles that include discussions of different interpretations of CT and programming in an
educational context are rare. Among the relevant articles, most of them discuss the usefulness or
transferable of CT outside of computer science, which essentially is about how the concept of CT
should be interpreted (e.g., Denning, 2017; Nardelli, 2019). However, two articles were found that
contrast different approaches to the understanding of CT, which also includes interpretations in an
educational context. Bocconi et al. (2018) and Li et al. (2020), divided different interpretations of CT
into categories that reflect different perspectives on CT and programming. Li et al. (2020) describe
different perspectives on interpreting the concept of CT found in the literature (based on the historical
development of the concept), and according to the authors, these perspectives also have a great impact

Proceedings of NORMA 20 19

on school practice. Bocconi et al. (2018), on the other hand, categorize the different interpretations
based on an analysis of policy documents and interviews with experts in Nordic countries.

Based on this literature review, essentially, there are mainly two ways of interpreting programming
either in the broad sense as something more than just ”coding” on a computer, or in a more narrow
(or technically) sense as identical to ”coding” on a computer. Further, these interpretations may affect
how programming activities are manifested in mathematics teaching. Most of the excluded articles
from the literature review have framed their studies in a narrow interpretation of programming i.e.
that programming is solely about writing code on a computer.

In the following sections, before a presentation of various approaches to the understanding of CT and
programming, the historical conceptual development of the broad interpretation of CT and how it is
connected to algorithmic thinking and programming is presented.

An interpretation of CT and programming

CT has many times been presented as a thinking model (e.g., Li et al., 2020; Wing, 2006). But, this
is, however, a quite ambiguous interpretation of CT, and since programming is considered to foster
CT, this ambiguity also influences how programming is interpreted. In the literature, the concepts of
programming and CT are difficult to separate because the impression is that CT requires the use of
programming (Voogt et al., 2015). Further, more research is needed to frame CT as an internal process
(manifested in a certain behavior) instead of a predefined external process, which ultimately frames
the learning activity (Lyon & Magana, 2020).

The concept of CT can be traced back to Seymour Papert’s idea of how children can develop
procedural thinking through programming in LOGO (Papert, 1980). This concept got renewed
attention when it was presented by Jeannette Wing in 2006, who explained that CT involves the skills
of reformulating a seemingly complex problem into smaller parts and finding patterns, making
abstractions, and designing algorithms (Wing, 2006). Further, abstraction is considered to be the
central thought process in CT, which mainly refers to the special process that strives to reduce the
information until the most relevant information for understanding remains (Wing, 2011).

Wing (2006) argued that CT is useful not only for computer scientists but for everyone; CT should
be associated with how people think rather than computers think, and proposes that CT should be
valued equally as much as reading, writing, and arithmetic in school. But also, to clarify the
misleading apprehension that computer science would be equivalent to computer programming.
However, although Jeannette Wing’s article from 2006 became influential in how we interpret CT,
its usefulness outside computer science contexts is an ongoing debate (Denning, 2017; Li et al., 2020;
Nardelli, 2019).

CT has similarities with other thinking skills such as algorithmic thinking and mathematical thinking.
For example, the mathematician and computer scientist Donald Knuth, who was the creator of, among
other things, the TeX computer typesetting system, explains algorithmic thinking by saying:

It has often been said that a person does not really understand something until he teaches it to
someone else. Actually a person does not really understand something until he can teach it to a
computer, i.e., express it as an algorithm. (Knuth, 1974, p. 327)

Proceedings of NORMA 20 20

Consequently, algorithmic thinking is more of a general mental tool to reach a deeper understanding
rather than a skill in how to write code on a computer. Because, according to Knuth (1974)
reformulating a problem and construction of algorithms force precision in thinking, which in turn
leads to a deeper understanding.

In 2011, Jeannette Wing refined the definition of CT by citing Cuny, Snyder, and Wing:

Computational thinking is the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be effectively carried out by an
information-processing agent. (Wing, 2011, p. 20)

Aho (2012) also presented a description of CT, which is similar to the definition above, where CT is
described as the ”thought processes involved in formulating problems so their solutions can be
represented as computational steps and algorithms” (p. 832). Consequently, there are similarities
between CT and algorithmic thinking, and perhaps that is also why algorithmic thinking is considered
to be the core process of CT. But at the same time, there is also a clear difference between them
because ”computational thinking includes the design of the model, not just the steps to control it”
(Denning, 2017, p. 33). Mathematical thinking is also considered part of CT. That is because
mathematical thinking involves the process that reformulates the problem so that it can be handled
mathematically, while CT involves the process that reformulates the problem with clarity so that it
can also be handled by a computer (Wolfram, 2016).

Various approaches to the understanding of CT and programming

Li et al. (2020) present three different approaches to the understanding of CT: Discipline-based,
psychology-based, and educational-oriented. The discipline-based approach has its roots within
computer science and mainly describes CT as a method of how computer scientists think and go about
solving problems, and also involves the idea that the associated skills need to be developed through
programming. This approach understands CT as a balance between computing and thinking skills. In
the psychology-based approach, the focus is rather on thinking skills, since the understanding of CT
has been influenced by the results stemming from research in human cognition. Human thinking in
general and CT are considered separated because CT is more about creating effective solutions in
computational steps.

The educational-oriented approach, on the other hand, seeks to define CT more practically so that it
is applicable in educational contexts. Further, they also divided this approach into certain
subcategories. In the first category, CT is considered to be able to be developed only through
programming (cf. discipline-based approach). In the second category, CT is thought to be useful even
outside computer science contexts. And finally, the last subcategory involves the idea that
computational literacy is important for everyone, not just computer scientists, and that CT can be
developed by other means than just through programming. For example, the International Society for
Technology in Education (ISTE) and the Computer Science Association (CSTA) developed a
practical definition of CT for K-12 education (ISTE, 2011), after collaborations with teachers and
researchers. They defined CT as a problem-solving process that involves decomposition, logical
organizing and analyzing data, abstractions, algorithm design, and generalization. Attempts have also
been made to create a uniform definition of CT within computer science. For example, based on

Proceedings of NORMA 20 21

existing literature, Shute et al. (2017) defined CT using six categories: decomposition, abstraction,
algorithm design, debugging, iteration, and generalization.

Bocconi et al.’s (2018) analysis of policy documents and interviews with experts in the Nordic
countries revealed that there exist two approaches to understanding CT and programming (although
the term CT was only implicitly used). The first approach was interpreted as a broad understanding
of CT and programming, that is, CT is considered to be useful outside of computer science, and with
the idea that CT is not the same as programming. The other approach was associated with a more
technically oriented understanding of CT. This approach instead encourages the development of the
necessary skills needed in our digital society.

Interpretation of programming in Sweden
In 2018, programming became part of the national goals for mathematics education in Sweden. The
reason for this was that the knowledge of programming and the use of digital tools was considered to
foster digital competence (Skolverket, 2017). Similar implementations of programming or
algorithmic thinking in the national goals for mathematics education could be seen in all of the Nordic
countries around that time (Bocconi et al., 2018).

Further, the Swedish National Agency for Education attempted to clarify the meaning of
programming in the national goals for mathematics education in primary school, by emphasizing the
broader perspective of programming:

Programming includes writing code, which has great similarities with general problem-solving.
However, programming should be seen from a broader perspective, which also includes creative
makings, control and regulation, simulation, and democratic dimensions. This further perspective
of programming is an important starting point in teaching, and programming thus includes all
aspects of digital competence. (translated from Skolverket, 2017, p. 10)

According to this written clarification, programming in mathematics teaching should be interpreted
as something more than just the ability of writing code on a computer. Using the results from the
literature review, this can be seen as an example of a broad interpretation of programming. In addition,
since digital competence is mentioned in the same context as programming, the interpretation of CT
is implicitly technical (cf. Bocconi et al., 2018). Hence, a broad interpretation of programming should
be applied in mathematics teaching. Thus, in the following section, an appropriate programming
activity that matches this interpretation will be discussed.

An appropriate programming activity
One type of programming activity that shifts focus from the ”coding” on a computer, is the so-called
”unplugged” (without the use of computational devices) programming activities or ”paper- and
pencil” activities. These types of activities are focused on practicing students in using their mental
tools (logical representations) to effectively solve problems, rather than focusing on learning how to
write code on a computer. In these kinds of activities, students learn how to decompose a seemingly
complex problem into discrete steps, design an algorithm for solving the problem, evaluate solution
efficiencies and optimize in a simulation (which includes ”coding”). In these activities, students have
the opportunity to, for example, practice designing algorithms using different logical representations
such as flow charts.

Proceedings of NORMA 20 22

Perceived self-efficacy is an important factor for understanding students’ performance and evaluating
effective learning strategies (Dweck et al., 2014), and has also shown a positive correlation to
mathematical achievement in previous research (e.g., Bonne & Johnston, 2016; Skaalvik & Skaalvik,
2004; Tossavainen et al., 2021). Previous research that examines the impact of ”unplugged”
programming activities on students’ mathematics self-beliefs in conjunction with mathematics teaching
is rare. Some research studies, however, examine the impact on mathematics self-beliefs. For example,
Psycharis and Kallia (2017) examined the relationship between programming, reasoning skills,
problem-solving, and self-efficacy. The programming activity consisted of designing a solution to a
math problem and then implementing it in MATLAB. The results showed that students’ self-efficacy
score was significantly improved after teaching mathematics in conjunction with programming.

Some studies investigated the impact of ”unplugged” programming activities on students’ CT. For
example, Kim et al. (2013) conducted an investigation aiming to improve students’ CT skills and
their interest in learning computer science. The student’s logical thinking was used as a measure of
the students’ CT. By comparing a traditional programming course with LOGO, they wanted to
investigate if students’ logical thinking is affected by an intervention (”the paper-and-pen course”)
where students practiced translating their mental models into logical representations such as flow
charts. The results showed a statistically significant improvement in the students’ overall logical
thinking in both the paper-and-pen strategy and the traditional programming course. However,
statistically, they could not claim that the improvements were greater in the paper-and-pen course
compared to the traditional course. Although, the scores in the post-survey of students’ understanding
of CT were statistically significantly higher than in the traditional course.

Discussion
In this paper, various interpretations of CT and programming are presented. Li et al. (2020) made a
thorough categorization of the different approaches for understanding CT, and since programming is
mentioned as a tool to promote CT, this implicitly also applies to interpretations of programming.
Although Bocconi et al.’s (2018) analysis of policy documents and interviews showed two different
ways to approach CT, these fit very well within Li et al.’s (2020) suggested education-oriented
perspective.

In summary, the various approaches to understanding of CT and programming indicate some
confusing aspects. Because, in some contexts programming has a broad definition and thus contains
several aspects of CT, and in others, programming is equal to ”coding” on a computer (i.e. the narrow
interpretation), and by that only a phase of CT. These different interpretations of programming are
likely manifested in different ways in mathematics teaching. The former would likely be manifested
in an activity based on learning to write code on a computer. While the latter is more likely expressed
in a learning activity where students focus on learning to solve problems in a way so it can also be
executed by a computer i.e. in computational steps. In fact, the narrow interpretation of programming
might be grounded in a misconception that algorithmic thinking only can be fostered through coding
on a computer. According to Knuth (1974), algorithmic thinking should be considered as a mental
tool rather than a specific skill in how to write computer programs. The narrow interpretation of
programming was found to be the most frequently used among the excluded articles in the literature
review.

Proceedings of NORMA 20 23

Further, the literature review showed that the Swedish National Agency for Education interprets
programming from a broader perspective similar to CT. Thus, appropriate programming activities
enable students to practice a wide range of CT-related skills. For example, this broad interpretation
of programming can be manifested in ”unplugged” programming activities that practice students in
using logical representations to effectively solve problems. Additionally, the literature review showed
that there was a need for more research that explores the effectiveness of ”unplugged” programming
activities, in particular, concerning the impact on students’ mathematics self-beliefs.

The classroom time for the teachers is a scarce resource and thus extremely valuable. Therefore, it is
important to consider whether too much coding on a computer in connection with mathematics
teaching risks leading to a shift of focus from the skills needed by a mathematics student to the skills
that are especially needed by a computer scientist. According to Denning (2017), there are many
similarities between the description of CT-related skills and George Pólya’s suggested mental
disciplines that make it possible to solve problems. For that very reason, the broader interpretation of
programming might be more easily combined with regular mathematics teaching.

References
Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–

835. https://doi.org/10.1093/comjnl/bxs074

Bocconi, S., Chioccariello, A. & Earp, J. (2018). The nordic approach to introducing computational
thinking and programming in compulsory education. Report prepared for the
Nordic@BETT2018 Steering Group. https://doi.org/10.17471/54007

Bonne, L. & Johnston, M. (2016). Students’ beliefs about themselves as mathematics learners.
Thinking Skills and Creativity, 20, 17–28. https://doi.org/10.1016/j.tsc.2016.02.001

Denning, P. J. (2017). Remaining trouble spots with computational thinking. Communications of
the ACM, 60(6), 33–39. https://doi.org/10.1145/2998438

Dweck, C. S., Walton, G. M. & Cohen, G. L. (2014). Academic tenacity mindsets and skills that
promote long-term learning. https://ed.stanford.edu/sites/default/files/manual/dweck-walton-
cohen-2014.pdf

ISTE. (2011). Operational definition of computational thinking: for K-12 education.
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf

Kim, B., Kim, T. & Kim, J. (2013). Paper-and-pencil programming strategy toward computational
thinking for non-majors: design your solution. Educational Computing Research, 49(4), 437–
459. https://doi.org/10.2190/EC.49.4.b

Knuth, D. E. (1974). Computer science and its relation to mathematics. The American Mathematical
Monthly, 81(4), 323–343. https://doi.org/10.1080/00029890.1974.11993556

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D. & Duschl,
R. A. (2020). Computational thinking is more about thinking than computing. Journal for STEM
Education Research, 3(1), 1–18. https://doi.org/10.1007/s41979-020- 00030-2

Lu, J. J. & Fletcher, G. H. L. (2009). Thinking about computational thinking. SIGCSE Bulletin,
41(1), 260–264. https://doi.org/10.1145/1539024.1508959

Proceedings of NORMA 20 24

Lyon, J. A. & Magana, A. J. (2020). Computational thinking in higher education: A review of the
literature. Computer Applications in Engineering Education, 28(5), 1174–1189.
https://doi.org/10.1002/cae.22295

Nardelli, E. (2019). Do we really need computational thinking? Communications of the ACM, 62(2),
32–35. https://doi.org/10.1145/3231587

Papert, S. (1980). Mindstorms children, computers, and powerful ideas. Basic Books.
https://dl.acm.org/doi/pdf/10.5555/1095592

Psycharis, S. & Kallia, M. (2017). The effects of computer programming on high school students’
reasoning skills and mathematical self-efficacy and problem solving. Instructional Science,
45(5), 583–602. https://doi.org/10.1007/s11251-017-9421-5

Shute, V. J., Sun, C. & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
research review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Skaalvik, E. M. & Skaalvik, S. (2004). Self-concept and self-efficacy: A test of the internal/external
frame of reference model and predictions of subsequent motivation and achievement.
Psychological Reports, 95, 1187–1202. https://doi.org/10.2466/pr0.95.3f.1187- 1202

Skolverket. (2017). Få syn på digitaliseringen på grundskolenivå - ett kommentarmaterial till
läroplanerna för förskoleklass, fritid- shem och grundskoleutbildning.
https://www.skolverket.se/publikationer?id=3783

Tossavainen, T., Rensaa, R. J. & Johansson, M. (2021). Swedish first-year engineering students’
views of mathematics, self-efficacy and motivation and their effect on task performance.
International Journal of Mathematical Education in Science and Technology, 52(1), 23–38.
https://doi.org/10.1080/0020739x.2019.1656827

Voogt, J., Fisser, P., Good, J., Mishra, P. & Yadav, A. (2015). Computational thinking in
compulsory education: Towards an agenda for research and practice. Education and Information
Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-9412-6

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2011). Research notebook: Computational thinking - what and why? The link
magazine, 6, 20–23. https://www.cs.cmu.edu/link/research-notebook-computational-thinking-
what-and-why

Wolfram, S. (2016, September 7). How to teach computational thinking.
https://writings.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/

	01_inledning_final
	02_preface_final
	03_papers_final

