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Abstract—This paper introduces a machine learning-based ap-
proach for detecting electric poles, an essential part of power grid
maintenance. With the increasing popularity of deep learning,
several such approaches have been proposed for electric pole
detection. However, most of these approaches are supervised, re-
quiring a large amount of labeled data, which is time-consuming
and labor-intensive. Unsupervised deep learning approaches have
the potential to overcome the need for huge amounts of train-
ing data. This paper presents an unsupervised deep learning
framework for utility pole detection. The framework combines
Convolutional Neural Network (CNN) and clustering algorithms
with a selection operation. The CNN architecture for extracting
meaningful features from aerial imagery, a clustering algorithm
for generating pseudo labels for the resulting features, and a
selection operation to filter out reliable samples to fine-tune the
CNN architecture further. The fine-tuned version then replaces
the initial CNN model, thus improving the framework, and
we iteratively repeat this process so that the model learns the
prominent patterns in the data progressively. The presented
framework is trained and tested on a small dataset of utility
poles provided by “Mention Fuvex” (a Spanish company utilizing
long-range drones for power line inspection). Our extensive
experimentation demonstrates the progressive learning behavior
of the proposed method and results in promising classification
scores with significance test having p − value < 0.00005 on the
utility pole dataset.

Keywords—Aerial Imagery, Electric Poles, Computer Vision,
Deep Learning, Unsupervised Learning

I. INTRODUCTION

Having an uninterrupted electric power supply has become
a necessity for the efficient functioning of modern-day society,
leading to the prevalence of electricity towers. These towers,
however, are immensely vulnerable to natural hazards, e.g.,
extreme weather conditions [1], corrosion of overhead power
lines [2], road accidents [3], short circuits, forest fires, and
entanglement by trees or other tall vegetation near the utility
towers [4]. Such hazards would not only lead to the dete-
rioration of transmission and distribution of electric power,
but could also increase the fragility of utility poles. Fragile
utility poles can be dangerous for pedestrians and can damage
nearby property and vehicles. These factors all contribute to
the importance of the inspection and maintenance of electricity
lines, including electricity towers.

The detection of electricity towers is necessary for main-
tenance, planning, and operations, as well as for risk manage-
ment and rapid damage assessment after calamities. Mapping

an electrical pylon is challenging, and not having exact pylon
locations is fairly common [5]. Determining the exact location
of power pylons is laborious and time-consuming, and the pro-
cess includes human interpretation for high spatial resolution
imaging from Unmanned Aerial Vehicle (UAV)/aircraft and
ground field studies [6]. The high level of human involvement
makes finding utility poles in a large area a daunting task.
Therefore, there is a need to find more cost-effective methods
for mapping assets, such as utility poles.

Remote sensing (RS) offers a promising solution for the
automatic detection and mapping of electrical pylons. In fact,
many different sensors have been examined for the task,
including Synthetic Aperture Radars (SAR) [7], [8], and Light
Detection and Ranging (LiDAR) [9], [10], [11]. Cetin and Bik-
dash [6] mapped electricity poles using the shadow information
in aerial images, and Sun et al. [12] mapped power poles using
stereo images. Wang et al. [11] proposed a semi-automated
approach to classify power lines using LiDAR data of urban
regions with precision and recall of about 98%. Another widely
researched approach is the use of optical sensors from satellites
and UAVs [13], [14], [15], [16]. Due to the small size of utility
poles, it is difficult to detect them efficiently from the low
resolution of free access or low price satellite imagery [17].
Hence utility companies increasingly use UAVs with high
spatial resolution to survey their networks. Utility poles can
be efficiently detected from aerial imagery, when the spatial
resolution is 30 cm or higher. However, different lighting
conditions, background noise, and other factors can still affect
the detection of electric poles. In this work, we have used UAV
based high spatial resolution gray scale imagery for utility
poles detection.

Deep learning methods are proving to be very effective
for computer vision tasks. Recent Deep Neural Networks
(DNN) based approaches have achieved human-level accuracy
in many visual representation learning tasks, like analysis
and classification of natural images [18], art images [19],
and medical images [20]. More specifically, DNNs have been
deployed for effective mapping of a variety of objects from
high-resolution RS imagery such as roads [21], buildings [22],
and solar arrays [23]. In the last decade, solutions based on
Deep Convolutional Neural Networks (DCNN) have also been
designed to effectively map utility poles and power grids from
aerial imagery. Recently, Huang et al. [24] developed and
released a large labeled dataset (263km2) for power grids
and reported baseline results for utility pole detection and20
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power line interconnection. Zhang et al. [25] used RetinaNet
and modified brute-force-based line-of-bearing to estimate the
locations of detected roadside utility poles with crossarms from
Google Street View (GSV) images.

Although the use of deep learning models is providing
state-of-the-art results, it also carries some serious limitations.

1) These models are mostly supervised and require large
amount of labeled data to train the deep architec-
ture. Labeling the data is labour-intesive and time-
consuming task. In most of the cases it requires expert
domain knowledge making it more expensive.

2) The resulting models are domain specific. Meaning
that once they are trained on one dataset, their perfor-
mance in (terms of accuracy) significantly decreases
when deployed on another dataset of the same prob-
lem domain.

To tackle these limitations, the concept of Curriculum Learning
(CL) (proposed by Bengio et al. [26]) has been used by some
researchers in the machine learning domain [27]. Recently,
Abid et al. [28] used the CL concept and proposed Unsuper-
vised Curriculum Learning (UCL) to deal with the limitations
of supervised deep learning architectures. A similar unsuper-
vised learning based approach [29] is used for detecting burnt
regions of 2019-2020 wildfire happened in Australia.

In this paper, we use an unsupervised deep learning
framework to classify utility poles from high-resolution
grayscale imagery. The proposed solution is an updated ver-
sion/modification of UCL [28]. In the UCL framework we
fine-tune a pre-trained computer vision deep learning model
using pseudo-labels generated from the clustering of examples
in the target domain. To prevent the model from learning noise,
only “reliable samples” are used in this fine-tuning step. These
“reliable samples” are provided by the selection operation,
which aims to filter out (or exclude) samples far from the
cluster centroids to avoid outliers. For this filtering step, a
similarity index threshold is applied. A selection operation
based on a similarity threshold alone, however, can generate
imbalanced sample selection in different categories, leading
to a problem of imbalanced class distribution among reliable
samples. This situation requires a modification in the proposed
selection operation of UCL method that filters the samples
from clusters without creating an imbalanced class distribution
problem.

In this paper, we introduce a new selection operation to
avoid imbalanced class distribution problems in an unsuper-
vised deep learning framework for electric pole classification.
The main reason this is needed is that the provided dataset of
utility poles has a small count (368) of utility pole images,
compared to the count (3483) of images not containing utility
poles. The detailed experimental validation shows that the
proposed solution has the capability to learn the characteristics
from electric poles from limited sample size.

The rest of the paper is structured as follows: Section II
discusses the dataset used and the pre-processing we applied
on it. Section III describes the used methodology and explains
the proposed solution. In Section IV, a detailed experimental
analysis is presented. Section V gives the critical analysis of
the updated UCL. Lastly, Section VI gives a summary of the
work and an outline of future directions.

II. AREA OF INTEREST AND DATA

The data consists of high-resolution (5328 × 4608 pixels,
or 24.55 megapixels) grayscale aerial photographs of farmland
intended to monitor installed electric towers. Some of these
images contain an electric tower (also called an electricity
pylon or a transmission tower), while others do not. In the
images containing towers, the tower itself often occupies only
a small percentage of the pixels. Some images only contain
the shadow of a tower - these images are also labeled as tower
images. Most of the images of towers also contain power lines.
The non-tower images mostly contain farmlands, and a fraction
of them also contain power lines. Examples of tower and non-
tower images are shown in Figures 1a and 1b, respectively.

(a) Tower Images Samples (b) Not Tower Images Samples

Fig. 1: Preprocessed utility pole dataset image samples.

A. Cleaning and Balancing

The dataset is in a raw state, meaning that some images are
junk images, depicting close-ups of rocks and similar objects
taken in the beginning of take-off or at the end of landing
- in other words, not aerial photographs. These images have
been manually removed. A few images containing almost no
electricity tower were also removed. This data cleaning was
done to avoid the unsupervised framework from learning the
noisy samples. Fig. 2 shows a few examples of removed
images.

Fig. 2: Examples of Removed Images; left: from “Non tower”
category, right: from “tower” category.

The dataset provided has 3851 samples in total, out of
which 368 contains tower images, while a large majority
(3483) are non-tower images. After data cleaning, the total
count of samples remaining is 3371, out of which 3045
are non-tower and 326 are tower images. Because of this
largely unbalanced class distribution, the data has also been
balanced.We did so by randomly sampling non-tower images
so as the remaining set would contain the same amount of
tower and non-tower images. After balancing, we got a count
of 694 samples. These samples were divided into 0.8:0.2 for
training and validation, and testing, respectively.
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III. UPDATED UCL FOR ELECTRIC POLE LEARNING

The proposed updated UCL method formulates the electric
poles detection from RS data in an unsupervised manner.
The standard UCL framework is composed of three essential
modules:

1) A CNN architecture that learns the robust and dis-
tinctive electric pole features from the data, and

2) The unsupervised clustering scheme that splits the
images into groups on the basis of similar appearance
properties.

3) The selection operation that provides a number of
reliable samples for each cluster, which can be then
used for fine-tuning the CNN architecture.

The core concept of the framework is to iteratively fine-
tune the deep feature extraction and clustering mechanism
in an unsupervised manner. The concept of UCL has also
been explored in the computer vision [30], [31] and RS
community [29], [28] which make use of transfer learning
and latent space representation for cross-domain adaptation.
The clustering results are treated as pseudo labels to fine-
tune the deep model. The process of fine-tuning the deep
model continues progressively with a growing count of training
samples and respected pseudo labels until the model converges.

In UCL, any CNN architecture can be deployed. The
selection of CNN model varies from the nature of problem
and its complexity. Like standard UCL, we use VGG-16 model
(pre-trained on ImageNet [32]) as the CNN model tasked with
learning the electric pole features. This pre-trained VGG-16
is first used to extract features from the images in electric
pole dataset. The output of the last convolutional layer is
then extracted to get feature maps. These feature maps are
flattened to generate feature vectors for each image. These
feature vectors are clustered using a well-known clustering
algorithm, k-means. The size of the input layer of VGG-16
is adjusted according to the image patch size of the electric
pole dataset. In the more formal description, samples of the
dataset are represented by {xi}Ni=1. VGG-16 is used to extract
features maps {fMapi}Ni=1 which are later flattened {fi}Ni=1
to get feature vectors. These feature vectors are clustered
into K clusters {ck}2k=1 using the k-means objective function
{yi}Ni=1 ← min

∑N
i=1

∑2
k=1 |fi − ck| where each feature

vector is assigned a cluster label {yi}Ni=1 on the basis of it
minimum distance from the respected centroid ĉk, where c is
the centroid of the kth cluster. In the current configuration,
the K parameter of k-means clustering is set to 2 to cluster
the images into two groups of either be an electric pole or not
an electric pole image patch.

As the pre-trained VGG-16 model used here is trained on
a dataset from a different domain, the acquired clusters for
RS data will be rather noisy initially. Hence, these clusters
can not be used for fine-tuning the deep model straight away
for electric pole detection. A selection operation is applied to
prune the clusters by removing the noisy samples and filtering
out the relevant features to tackle this situation. This is done
by first calculating a similarity score between each sample, and
their respective cluster centroid. Then, the a specific count of
samples having a greater similarity scores are selected and are
designated as “reliable samples”. This specific count increases
over fine-tuning iterations. With this pruning, only samples that

are close to the centroid (or in other words, samples that are
sufficiently similar to the centroid) are selected. This filtering
mechanism helps VGG-16 to focus on learning the prominent
features of the cluster, avoiding the noise and outliers. The
“reliable samples” chosen by the selection operation are then
used for fine-tuning the deep model, using the cluster-IDs
as pseudo labels. The model fine-tuned in this manner is
used for feature extraction in the next iteration. As the fine-
tuning is carried-out on in-domain data, the resulting model is
now better adapted to working with RS imagery, thus clusters
generated in the next iteration would be comparatively better
(that is, less noisy). With every iteration, the model learns the
prominent features using pseudo labels generated by clustering.

A. Reliable Sample Selection

In their study, Abid et al. [28] use a λ threshold parameter
for the similarity score to determine which samples to include
in the reliable set. Any sample with a similarity score above
the threshold is considered reliable and thus is included in the
reliable set. The value of the λ parameter is decided through
empirical testing and will vary depending on the dataset used.

One potential issue with using a set threshold value for
similarity is that one of the clusters can have much more
homogeneous features, giving it higher similarity scores. That
cluster would then contribute many more reliable samples
than the other(s), causing an imbalance in the set of reliable
samples.

As a solution to this problem, in this work, we propose an
alternative method to determine which samples are reliable,
by focusing on the number of reliable samples rather than
the threshold value. In effect, for each iteration, we set the
algorithm to select a preset number of the most reliable
samples from each cluster. The exact algorithm is presented
below.

The number of reliable samples (n) from each cluster is
set to the minimum of the following values:

• 75% of the number of samples in the cluster
This limit is motivated by the assumption that the
least similar 25% of the samples are likely to be
noise, so far removed from the ”best” samples that
they are unlikely to contribute much when training
the network.

• 3% of the total number of samples in all clusters,
multiplied by the iteration number
This makes the number of reliable samples start low
(choosing only the most reliable samples), and in-
crease gradually with each iteration.

This means that the number automatically increases for each
iteration and that both clusters contribute an equal number of
samples to the “most reliable samples” dataset used for fine-
tuning. The reliable sample count increases by 3%, until it
reaches the 75% cap, and once it reached this cap, it does not
increase any longer. The 3% figure has been shown to work
well on the electric pole dataset used in this work, but a lower
value may yield better results for larger datasets.
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B. Implementation Details

For fine-tuning the deep model, the Stochastic Gradient
Descent optimizer was used with a learning rate of 0.0001
and momentum of 0.9, and the categorical cross-entropy
loss function. Experiments are conducted on a Windows 11
computer with 32GB of RAM and a GeForce 1660 Super
GPU with 6GB of RAM. The code was written using Python
3.10.4, TensorFlow 2.8.0, scikit-learn 1.0.2, and Pandas 1.4.2
(as well as various other packages). Training times naturally
varied depending on the number of reliable samples, but an
entire 10-iteration run typically took less than 30 minutes due
to the small dataset.

IV. EXPERIMENTAL VALIDATION

The proposed updated UCL is analyzed by conducting
extensive experimentation in different configurations. All ex-
periments are performed at least five times on the electric tower
dataset, thus the reported results are the average scores attained
from multiple experiments with respective standard deviation
(σ). Multiple experimentation allowed us to perform signifi-
cance test on obtained results, i.e., t-test. The discussion of
experiments and results are divided into four parts, namely 1)
Direct testing of electric pole dataset on ImageNet weights, 2)
Supervised and unsupervised VGG-16 fine-tuning, 3) Cluster
analysis, and 4) Error analysis.

A. Direct Testing on ImageNet Weights

Initially, the performance of pre-trained (ImageNet) VGG-
16 is computed with an electric tower dataset. VGG-16 with
ImageNet weights is directly tested on the test set of the
electric tower dataset. In this direct testing, we have considered
two settings. First, we extract the feature maps of the last
convolution layer of VGG-16 and apply k-means clustering
to them. Second, we train only the last classification layer of
VGG-16 for two epochs with cluster labels generated by the k-
means algorithm (in the previous setting). For both settings, we
compute the performance of VGG-16 with ImageNet weights
on the electric pole dataset. The experiments are conducted in
a 5-fold setting. The results of VGG-16 with ImageNet weights
are reported in the first and second row of Table I. The first and
second row in the table shows the mean and standard deviation
(σ) of Precision, Recall, and F1-Score. It can be seen that
clustering extracted feature maps from pre-trained VGG-16 by
k-means gave an F1-Score of 75.68%. Only training the last
layer with pseudo-labels generated by the k-means clustering

algorithm improved the F1-Score by 3%, i.e., 78.63% with
2.21% of σ on the electric pole dataset.

B. VGG-16 Fine-tuning

1) Supervised fine-tuning: In general, supervised models
perform better than unsupervised ones on a specific data as
they are trained using the true labels, whereas unsupervised
ones try to learn based on prominent features in the datasets.
The performance of the unsupervised framework has been
evaluated, considering the supervised model as the benchmark.
VGG-16 is trained for 50 epochs in the supervised setting
with early stopping criteria on validation loss. The last row
in Table I reports the mean and σ of fine-tuned VGG-16 in
a supervised manner. The supervised model gave an average
F1-Score of 95.58% with 2.35% σ on the electric pole dataset.
F1-Score obtained from the supervised fine-tuned model is the
highest possible and will be used as this study’s benchmark
for unsupervised fine-tuning.

2) Unsupervised Fine-tuning: We have analyzed the pro-
gressive learning behavior of an unsupervised framework that
learns the variations in the dataset with the assumption that the
ground truth is unavailable. A clustering algorithm generates
the pseudo-labels to train the deep model at every fine-tuning
iteration. Initially, UCL is used without updating the selection
operation and using fix threshold value [28] for extracting
the reliable samples present near the centroids. The UCL
framework [28] gave an average F1-Score of 63.59% with
1.22% σ with a small electric pole image dataset(see Table I
3rd row). This F1-Score is worse than the one obtained direct
inference on ImageNet weights. The 1st iteration of fine-tuning
the model is inclined towards extracting only 1 sample from a
cluster and the other with a few hundred images. This sample
selection leads to the poor fine-tuning of the deep model.

In this work, we have updated the selection operation,
which selects the equal count of samples from each cluster
to avoid the imbalanced class distribution problem. We have
considered two types of experimentation settings; i) partially
freeze the deep model for fine-tuning and ii) fine-tune the
entire deep model. In the first setting, VGG-16 is fine-tuned
in an unsupervised manner with its initial 12 layers frozen.
As it can be seen in the Table I forth row, the UCL with
updated selection operation reported an average F1-Score
87.32% with 2.63% σ. The obtained F1-Score shows that
the updated UCL is significantly better than standard UCL
(p − value < 0.000005), and only VGG-16’s classification
layer trained with pseudo-labels. We then fine-tuned the entire

Precision Recall Macro F1-Score

Mean σ Mean σ Mean σ

K-means Clustering 0.8524 0.0000 0.7615 0.0000 0.7568 0.0000
VGG-16’s last layer trained with Pseudo Labels 0.8066 0.0356 0.7892 0.0215 0.7863 0.0221

UCL with fixed lambda [28] 0.8152 0.0031 0.6661 0.0088 0.6359 0.0122
UCL with flexible lambda early layers frozen (Our) 0.8791 0.0215 0.8716 0.0270 0.8732 0.0263

UCL with flexible lambda (Our) 0.9023 0.0127 0.8999 0.0035 0.8998 0.0032
Supervised 0.9556 0.0192 0.95672 0.0000 0.9558 0.0236

TABLE I: Shows results conducted in different configurations to show the learning capability of UCL in comparison with
clustering and supervised training.
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(a) Purity graph of generated clusters during
fine-tuning iterations UCL with updated selec-
tion operation.

(b) Silhouette Score graph of generated clus-
ters during fine-tuning iterations of the UCL
with updated selection operation.

(c) Change in the cluster labels of samples
over fine-tuning iterations of the UCL with
updated selection operation.

Fig. 3: Cluster analysis during the UCL with updated selection operation fine-tuning iterations.

Not Tower

Tower

0 1 2 3 4 5 6 7 8 9

Fig. 4: Samples closest to the centroids of “Not Tower” and “Tower” clusters generated using k-means over 10 fine-tuning
iterations of UCL with updated selection operation. The centroids shown here are obtained from Fold1.

deep model in updated UCL. The performance in terms of
accuracy improved further by 2%, by reporting an average
F1-Score 89.98% with 0.32 σ, which is also significantly
(p − value < 0.000005) better than the standard UCL and
direct inference on ImageNet weights. The proposed updated
UCL removed the imbalanced class distribution problem and
can learn the prominent features from the electric pole dataset
with limited samples without needing expert labeling.

C. Clustering Analysis

The generated clusters using k-means clustering in an unsu-
pervised framework are further analyzed to monitor the train-
ing process. The progressive fine-tuning of the unsupervised
framework is observed for ten iterations. In the beginning,
the clusters for the electric tower dataset are created with
the features extracted from pre-trained VGG-16 on ImageNet
dataset, a domain different from our target domain that is UAV
imagery. As a result, the generated clusters of remotely sensed
electric tower images are not compact. Two measures are used
to analyze the quality of the clusters: Purity and Silhouette
scores. Purity, on the one hand, is a measure that uses the
true labels to calculate the correctly classified labels over the
total number of samples in the cluster. On the other hand,
the Silhouette score calculates the compactness of the clusters
based on the distance between the samples within the cluster
and the neighboring cluster(s).

Figure 3 shows the graph of Purity, Silhouette score, and
change in the cluster labels over fine-tuning iterations of
fully trained UCL with updated selection operation. It can
be seen in Graph 3a that the purity tends to increase over
starting three fine-tuning iterations from 0.74 to 0.85 for 5-Fold
experiments. This increase is observed from 1 to 4 fine-tuning
iterations. Later it remains between 0.79 to 0.83 for the rest of
the fine-tuning iterations. The Silhouette scores in Graph 3b
show a slight decrease over the first fine-tuning iteration and
then a sudden increase over the second and third iterations
of fine-tuning. This increase indicates that the clusters are
better separable over fine-tuning iterations. After the third
iteration, the increase in the Silhouette scores is slow. Though
an increase can be observed in the graph, its maximum goes to
0.45 value in 10 fine-tuning iterations. Based on the Silhouette
score, the models fined-tuned at second, third, and fourth
iterations are most likely to be the reasonable models to retain.
In graph 3c, the maximum change in the cluster samples’
labels is observed at the second, third, and fourth iterations
for respected folds of fine-tuning. Their Silhouette score is
also showing a remarkable increase at respective iterations. All
the models have shown the drastic change in labels at either
the second or third fine-tuning iteration except Fold4. Fold4
with a red curve has shown drastic change in cluster labels
at two iterations; 2 and 4. In parallel, its Silhouette score
increases at iteration 2 but decreases at iteration 4. Hence,
considering iteration 2 will be the better choice for Fold4.
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Based on these observations, the fine-tuned models of second
or third iterations of the respected folds of UCL with updated
selection operation seems a reasonable choice to retain. That
is the second fine-tuning iteration for folds 1, 4, and 5, and
the third fine-tuning iteration for folds 2 and 3, respectively.

The centroids generated in the training process of UCL up-
dated with selection operation in Fold1 are shown in Figure 4.
In the early iterations of fine-tuning, the model successfully
learns the electric pole features from the data and generates
clusters around these characteristics. After some iterations of
fine-tuning, the model deviates to other prominent features
present in the dataset, like electric wires. The dataset used
in this study is complicated because it has similar prominent
features in both categories of the tower and not the tower, like
background and electric wires. These similar characteristics
raise the difficulty for the unsupervised model to only focus
on the specific features of electric poles (mostly cropped in
the image or occluded with electric wires) by ignoring the
other prominent characteristics in the data. Adding to it, the
sample count for fine-tuning the UCL is considerably small
(556 samples). With these limitations, the model can still learn
the desired tower category in the first five fine-tuning iterations
by creating the centroid around respected features of the tower
and not tower images.

D. UCL Fine-tuning Analysis

UCL with updated selection operation has been fine-tuned
for 10 iterations leading to 10 fine-tuned deep models. So far,
the clustering analysis has shown that either second or third
iteration of fine-tuning the respected fold is most suitable to
deploy. To ensure, we have tested all the fine-tuned models
over ten iterations with the test dataset, see Graph 5. It can
be seen that all the five folds reported F1-Score below 50%
on ImageNet weights when no training has been initiated.
This is because the classification layer is not trained so far.
After the first fine-tuning, the F1-Score increased to almost
75% for folds 2 to 5 and 83% for fold 1. In the next couple
of fine-tuning iterations, the F1-Score increased to 90%. This
increase in the F1-Score indicates that the model is learning the
prominent features of utility poles. For the later iterations of
fine-tuning UCL, the F1-Scores remain between 81% to 85%.
Like clustering analysis, the results on test data also indicate
that the second fine-tuning iteration model is most suitable for
folds 1, 4, and 5, and the third fine-tuning iteration model for
folds 2 and 3, respectively.

V. DISCUSSION AND CRITICAL ANALYSIS

When using supervised learning, the results were quite
good, with an average F1-Score of 95.58%. Having access
to ground truth labels when training the deep model enables
it to learn the relevant features effectively. We do not need
labeled data for an unsupervised approach, like UCL. With
updates in the selection operation of UCL, we achieved an
average F1-Score of 90%, but there is a small trade-off of 5%
in F1-Score performance compared to supervised models. Let
us deeper analyze the proposed UCL with an updated selection
operation.

The proposed UCL with updated selection operation is
further monitored by observing the reliable sets and similarity

Fig. 5: The F1-Scores graph of fine-tuning iterations UCL with
updated selection operation on test dataset of utility poles.

Fig. 6: Mean and standard deviation of similarity scores of
reliable samples in cluster 0 over 10 fine-tuning iterations of
UCL with updated selection operation.

Fig. 7: Mean and standard deviation of similarity scores of
reliable samples in cluster 1 over 10 fine-tuning iterations of
UCL with updated selection operation.
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Fig. 8: Mean and standard deviation of similarity scores of
reliable samples in cluster 1 over 10 fine-tuning iterations of
UCL with updated selection operation.

scores. In standard UCL, a similarity threshold is set to extract
reliable samples from clusters, where samples selected from
one cluster have a high tendency to be must larger or lesser in
count than the samples extracted from another cluster. To avoid
this situation of imbalanced class distribution, we made the
threshold flexible by selecting the exact count of samples from
each cluster based on similarity. Figure 6 and 7 shows mean
and standard deviation of similarity score of reliable samples
in cluster 0 and 1, respectively. In the initial iteration of
fine-tuning, the most reliable samples that are 90±5% similar
to the centroids are selected. In the following iterations, the
σ increases in graphs of both clusters. One reason is that
the sample count is increasing linearly with every fine-tuning
iteration. The updated UCL is increasing the reliable samples
linearly over fine-tuning iterations. An interesting observation
can be seen in Figure 7 of cluster 1. In the later iterations,
the mean and standard deviation gradually deviate from the
maximum possible similarity, i.e., 1.0. One of the possible
reasons is that the generated clusters are not separable based
on Euclidean distance. Also, we are selecting samples based on
the similarity with the centroid. In other words, the selection
is made based on the Euclidean distance from the centroid.
This limitation of Euclidean distance raises the demand for two
alternative solutions; i) A clustering method that is independent
of Euclidean distance and ii) A selection operation that is
not dependent on Euclidean distances of samples from their
respective centroids.

In Figure 8 we have visualized the similarity score of
reliable samples and all samples in cluster 1 for the third
fine-tuned model of fold 1. In the early iterations of fine-
tuning, the reliable sample set has a comparatively higher
average similarity than all samples in the cluster. With every
subsequent iteration, the gap in the average similarities of
both sets is decreasing. This observation is because more and
more samples are becoming part of the reliable set. In the last
iterations, majority of the cluster samples are considered in the
reliable set.

Uniform Manifold Approximation and Projection (UMAP)
is a non-linear dimensionality reduction technique that can be
used for high dimensional data visualization. We have used
UMAP to visualize high-dimensional extracted features of
4608 dimensions in 2D with true-labels and pseudo-labels, see

Fig. 9: UMAP with true labels on best iteration of UCL with
updated selection operation.

Fig. 10: UMAP with pseudo-labels of k-means clustering on
best iteration of UCL with updated selection operation.

Figure 9 and 10. For this visualization, we have considered
the best fine-tuning iteration of UCL updated with selection
operation in fold 1. In Figure 9, it can be seen that samples
based on true labels, yellow and purple, are somewhat sepa-
rable, but there is a small chunk of data that is overlapping in
both categories. The purple cluster seems to be comparatively
more compact than the yellow. The yellow cluster can be seen
as roughly three chunks in one cluster. First small chunk of
the yellow cluster is near the left edge of the graph, second
chunk in the middle and third chunk in the lower left. The
first chuck seems to have no outlier. The second chunk has a
few purple samples. Whereas, the last chunk has quite some
examples of purple cluster, showing a big overlap. This seems
to be an region where both classes have common prominent
features.

Figure 10 shows the sample distribution in k-means clus-
tering, one cluster represented with purple and the other with
yellow. The blue squares are the centroids of clusters, and
orange are the closest samples to their respective centroids.
Both clusters show a similar distribution as seen in the true
labels (Figure 9). The model learned the first and second
chunks of the yellow cluster. But the third chunk which has
quite few examples of purple cluster in true labels (Figure 9)
seems hard for the model to learn. The model learned some
examples from the thrid chunk as yellow class but most of
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these samples it learned as purple class. This misclassification
is because this area is mostly overlapping with the purple
category.

Fig. 11: Model 3 Misclassified Images, Output Layer Predic-
tion

Some of the misclassified samples of updated UCL are
visualized in Figure 11 where the first two rows represent
failure cases of Tower images and third-row shows misclas-
sified Non-tower images. It can be seen in the figure that
most of the images misclassified as non-tower have very little
representation of tower in them, in several cases only a shadow
of a tower is visible. It is because images with just the shadow
are labeled as tower images in the dataset. It can also be
noted that some images having a cropped tower is occluded by
electricity wires. The images misclassified as tower images, on
the other hand, usually (but not always) have quite prominent
wires. The electricity wires are quite prominent and are present
in both categories; tower and not a tower. This may confuse
the model to classify these images.

VI. CONCLUSION

The supervised deep models need a massive corpus of
labeled data to train the deep model, which is time and
labor-intensive and demands domain knowledge. This paper
proposes an unsupervised deep learning framework for electric
pole detection from grayscale high spatial resolution imagery.
This architecture removes the requirement of data labeling. The
unsupervised framework learns the characteristics of electric
poles using the pseudo-labels generated from clustering. Such
frameworks mostly select the samples from the clusters on a
threshold basis, often leading to imbalanced class distribution
problems. We have proposed a new selection operation tech-
nique that avoids imbalanced class distribution problems in
filtering the samples from the clusters. These filtered samples
are used for fine-tuning the CNN model with cluster IDs. A
dataset of eclectic poles provided by Mention Fuvex (a Spanish
startup utilizing long range drones for power line inspection) is
used to prove the hypothesis. The experimental validation on
provided utility pole dataset shows that the proposed solution
can learn the prominent features of utility poles with generated
cluster labels compared with direct clustering. The paper
shows a statistically significant improvement of about 12%
in comparison with direct inference on ImageNet weights by
reporting F1-Score of 89.98% (see Table I second and fifth
rows. However, a big room for future direction is still open.

The selection operation of UCL can be explored by combining
the fixed threshold method used in Abid et al. [29], [28]
and proposed selection operation of equal selection reliable
samples. Further, we have worked with a few hundred samples.
One way to improve performance is to increase the number of
samples. The dataset used has high spatial resolution images
of quite a big size. They are resized to make them suitable for
the deep model. Instead of resizing, the images can be divided
into smaller patches to yield fruitful results.
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