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Abstract: Mono, hybrid, and ternary nanofluids were
tested inside the plain and twisted-tape pipes using k-
omega shear stress transport turbulence models. The
Reynolds number was 5,000 ≤ Re ≤ 15,000, and thermo-
physical properties were calculated under the condition

of 303 K. Single nanofluids (Al2O3/distilled water [DW],
SiO2/DW, and ZnO/DW), hybrid nanofluids (SiO2 + Al2O3/
DW, SiO2 + ZnO/DW, and ZnO + Al2O3/DW) in the mixture
ratio of 80:20, and ternary nanofluids (SiO2 + Al2O3 +
ZnO/DW) in the mixture ratio of 60:20:20 were estimated
in different volumetric concentrations (1, 2, 3, and 4%).
The twisted pipe had a higher outlet temperature than the
plain pipe, while SiO2/DW had a lower Tout value with
310.933 K (plain pipe) and 313.842 K (twisted pipe) at Re =
9,000. The thermal system gained better energy using
ZnO/DW with 6178.060W (plain pipe) and 8426.474W
(twisted pipe). Furthermore, using SiO2/DW at Re = 9,000,
heat transfer improved by 18.017% (plain pipe) and 21.007%
(twisted pipe). At Re = 900, the pressure in plain and
twisted pipes employing SiO2/DW reduced by 167.114 and
166.994%, respectively. In general, the thermohydraulic
performance of DW and nanofluids was superior to one.
Meanwhile, with Re = 15,000, DW had a higher value of
ηThermohydraulic = 1.678.

Keywords: heat transfer properties, hydrodynamic per-
formance, ternary hybrid nanofluid, twisted-tape pipes,
energy turbulators

Nomenclature

Ag silver
Al₂O₃ aluminum oxide
CMC containing carboxymethyl cellulose
CoTs co-twisted tapes
Cp specific heat capacity (J/kg K)
CTs counter-twisted tapes
Cu copper
CuO copper oxide
Dh hydraulic diameter (m)
DW distilled water
f friction factor
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Fe iron
FOM figure of merit
k thermal conductivity (W/mK)
L pipe’s total length (m)
ṁ mass flow rate (kg/s)
MgO magnesium oxide
MWCNTs multi-walled carbon nanotubes
nf nanofluids
np nanoparticles
Nuavg average Nusselt number
PCM phase change material
PEC performance assessment criteria
Pout pressure outlet (Pa)
PP plain pipe
Pt platinum
Re Reynolds number
SiO₂ silicon dioxide
SST shear stress transport
SWCNTs single-walled carbon nanotubes
Tin inlet fluid temperature (K)
TiO2 titanium dioxide
Tout outlet fluid temperature (K)
TP twisted pipe
TPF thermal performance factor
Tw wall temperature (K)
ZnO zinc oxide
α twist ratio
β width/depth
η enhancement Index
ρ density (kg/m3)
Φ mass fraction of nanoparticles
µ dynamic viscosity (Ns/m2)

1 Introduction

1.1 Study background and motivation

Pipes are the thermal system to exchange (dissipate) the
heat from different engineering, industrial, and manufac-
turing applications. Tremendous energy is extensively
consumed using heat exchangers in power plants, heating,
and cooling systems, leading to global warming. New
heat-exchanging systems with better thermal efficiency
are needed in this matter [1,2]. Heat can be transported
by three mechanisms: active, passive, and compound [3].
The active method uses external energy sources like
mechanical support, resulting in a more complex/heavy
system and higher production costs [4]. Meanwhile, the
passive method utilizes the internal energy of the system

to enhance heat transport efficiency by changing the
flow pattern of the circulating medium or selecting
high thermal conductivity fluids [5]. The combination
of twisted-tape inserts and nanofluid is the technical
solution within a heat exchanger [6]. Despite the signif-
icant advantages of applying the passive approach, such
as higher heat transfer performance, low cost, and less
maintenance, it still shows higher pressure loss [7,8]. As
a result, the compound approach incorporates active
and passive procedures into a single system.

1.2 Adopted literature review on nanofluid-
based twisted pipes

Laboratory work and numerical simulations were per-
formed using the passive methodology to evaluate the
thermal efficiency of twisted-tape tubular heat exchan-
gers [9]. Khoshvaght-Alabadi et al. [10] tested experimen-
tally three twist ratios (α = 0.33, 0.67, and 1)with different
values of width/depth for peripheral cuts (β = 0.33, 0.5,
0.67, 1, 1.5, 2, and 3) and three metallic nanofluids (Cu/
distilled water [DW], Fe/DW, and Ag/DW). A maximum
enhancement of 18.2% was identified using Ag/DW com-
pared with base fluid, while the maximum rise in the
pressure drop is only 8.5%. Also, 25 and 39mm pitch
wire coil turbulators were examined experimentally in
heat transfer and pressure loss in the presence of Al2O3/
DW in different concentrations [11]. The increase in heat
transfer was larger when a 25 mm pitch wire coil was used
in the fluid than when a 39mm pitch wire coil was used.
Meanwhile, the friction factor of the heat exchanger with
turbulators was greater than that of the heat exchanger
without turbulators. Furthermore, TiO2/DW nanofluid was
tested in twisted-tape inserts in a dimpled pipe [12]. The
maximum thermo-hydraulic performance of 1.258 was
attained by inserting twisted tape with a twist ratio of
3 and 0.15vol%-TiO2/DW in a dimple angle of 45°. The
heat transfer and CuO/DW nanofluid flow were simu-
lated through a helical profiled pipe under turbulent
single-phase and two-phase scenarios [13]. The most
excellent performance efficiency coefficient in a tube
with one twisted tape was 2.18, but it was 2.04 in a
tube with two twisted tapes under the conditions of
two-phase flow, Re = 36,000 and 4vol%-CuO/DW. The
turbulent flow and heat transfer of a non-Newtonian
aqueous solution containing carboxymethyl cellulose
(CMC) and CuO nanoparticles in plain and helical pro-
filed tubes were numerically investigated [14]. The aver-
aged total thermal performance criterion using a twist
ratio of 5 and 1.5% nanofluids was 2.02, with an
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enhancement of 38% relative to that at a twist ratio of 83
and 0.1% nanofluids. The effects of twisted-tape inserts on
heat transfer parameters and pressure drop using gra-
phene oxide nanofluid were computationally discussed
and optimized through an artificial neural network and
genetic algorithm [15]. Based on the results, the optimal
inputs are Re = 19,471, the twist pitch is 0.0376, and the
volume fraction is 0.0383, producing Nu of 263.57 and a
friction factor of 0.0725.

Meanwhile, investigators need much attention to
evaluate nanocomposites inside pipes with twisted-tape
turbulators. The hydrothermal properties (Nuavg = 132%)
and (f = 55%) increased by reducing the twist ratio, redu-
cing the V-cut width ratio, and increasing the V-cut depth
ratio in the presence of Al2O3@TiO2/DW [16]. Maddah
et al. [17] concluded that applying Al2O3@TiO2 hybrid
nanofluid inside a double pipe heat exchanger modified
with twisted-tape insertion increased the exergy effi-
ciency. A higher V-cut depth or lower width ratio yielded
more heat transfer and pressure drop in the presence of
DW-based Al2O3 and phase change material (PCM) nano-
fluids and Al2O3 + PCM hybrid nanofluids [18]. Bahiraei
et al. [19] analyzed the entropy generation of graphene–
platinum (Gr@Pt) hybrid nanofluid in double co-twisted
tapes (CoTs) and double counter-twisted tapes (CTs) with
various twisted ratios. The CoTs were recommended based
on the outcomes since they demonstrated a reduced entropy
production rate. Also, experimental reports on Al2O3@MgO
hybrid nanofluid utilizing a tapered wire coil turbulator
were investigated by Singh and Sarkar [20]. They observed
that the maximum value of thermal performance factor
(TPF)was 1.69 for D-type wire coil. The heat transfer prop-
erties, pressure loss, and hydrothermal efficiency were
experimentally examined using various V-cut twisted-
tape and tapered wire coil configurations in the presence
of Al2O3@MWCNT hybrid nanofluid [9]. For all arrange-
ments, the performance assessment criteria (PEC) and
figure of merit (FOM) were found to be >1. The V-cut
twisted tape with a twist ratio of 5, a depth ratio of 0.5,
and a width ratio of 0.5 represented the maximum values
of PEC and FOM, whereas the least values were found in C-
and D-type tapered wire coil. The thermal performance of
MoS2–Ag/DW hybrid nanofluid was tested inside a solar
collector having wavy strips in the absorber tube [21]. The
results revealed that using composite nanofluid with a 5%
concentration in a twisted strip with a height of 40mm
provided the highest heat transfer rate. Moreover, the
energy (ηth), exergy (ηex), and PEC of DW-based MWCNT-
MgO hybrid nanofluid were discussed inside a parabolic
solar collector having a symmetrical twisted turbulator
[22]. Their two-phase mixed model showed that the values

of PEC are more than 1 for all cases. In addition, for case of
φ = 3%, as Re increased from 10,000 to 25,000, ηth and ηex
were enhanced by 45.98 and 31.67% for pitch ratio (PR) = 1
and 0.25, respectively. In another numerical study, the
maximum value of PEC is 4.7 and belongs to Re = 12,000
for a pipe with a lower number of turns (case 2), whereΦ =
1% [23]. They utilized ((CH2OH)2)/Cu–SWCNT hybrid nano-
fluid with different volume concentrations and Reynolds
numbers. In this regard, the simulation of ternary hybrid
nanofluids is carried out by suspending six different nano-
particle combinations and four different surface profiles of
regenerative evaporative coolers [24]. Compared with the
flat surface, the maximum energy performance, coefficient
of performance, and exergy efficiency were 30, 10.68, and
0.29%, respectively. Moreover, the performances of dif-
ferent water-based binary hybrid nanofluids (Al2O3–Cu,
Al2O3–CNTs, Al2O3–graphene, Cu–graphene, and Cu–CNTs,
CNTs + graphene) and tri-hybrid nanofluids (Al2O3–
Cu–CNTs–water, Al2O3–Cu–graphene, Al2O3–CNTs–graphene,
Cu–CNTs–graphene–water) at 100W and 0.9vol%were tested
for single‐phase natural circulation loop [25]. It can be
observed that the ternary nanofluid shows better perfor-
mance than the binary nanofluids [26,27]. The ternary nano-
fluids have a lower reduction in mass flow rate, higher
enhancement in effectiveness, and higher reduction in
the entropy generation rate as compared to water [28].

1.3 Research novelty and objectives

According to the previous studies and works of researchers,
it can be easily recognized that less attention was paid to
the problems of twisted tapes using ternary hybrid
nanofluids. Accordingly, one of the motivations of the
current research is to examine a new type of twisted
tape based on ternary hybrid nanofluids. In the current
research, single nanofluids (Al₂O₃/DW, SiO₂/DW, and
ZnO/DW), hybrid nanofluids (SiO2 + Al2O3/DW, SiO2 +
ZnO/DW, and ZnO + Al2O3/DW) in the mixture ratio of
80:20, and ternary nanofluids (SiO₂ + Al2O3 + ZnO/DW)
in the mixture ratio of 60:20:20 were compared with
different volumetric concentrations (1, 2, 3, and 4%).
The shear stress transport (SST k-ω) three-dimensional
turbulence model was used to solve the thermohydraulic
performance. The favorable properties (heat transfer) and
negative properties (frictional pressure drop) were opti-
mized to select the practical working fluids in engineering
systems. The previous experimental and numerical inves-
tigations on nanofluids as working fluids in twisted pipes
are summarized in Table 1.
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2 Numerical methodology

2.1 Physical model and numerical method

The basic configuration under examination is a plain pipe
with L = 900mm and Dh = 20mm. Meanwhile, the twisted
pipe has the same total length and hydraulic diameter.
The helical profile length, width, and path were 20 mm,
0.5 mm, and 30mm, respectively. Meanwhile, the twisted-
tape angle was 45°. Different heat transfer fluids such as
DW, single nanofluids, hybrid nanofluids, and ternary
nanofluids enter the heat exchangers under the condi-
tions of Tin = 303 K, different volumetric concentrations,
and different Reynolds numbers. The external walls of
plain and twisted-tape pipes were heated under a con-
stant heat flux to study the heat transfer enhancement
parameters.

The schematic diagram of the twisted-tape insert
pipe is illustrated in Figure 1, along with the applied
boundary conditions and the grid domain. Here, the
input variables are the inlet temperature Tin; the wall
temperature Tw; the inlet velocity vin; the outlet pressure
Pout, which is set to atmospheric pressure; and the dif-
ferent geometrical parameters. As for the output para-
meters, Pin is set to be the pressure at the inlet, which
is compared against Pout, the pressure at the end of the
twisted pipe, which is the relevant section of the simula-
tion. Temperature Tout is also taken at the end of the
twisted pipe. The twisted tape does not cover the full
length of the pipe because pressure outlets near obstacles
can produce backflow errors, leading to poor convergence [29].

The pressure-based solver has been applied in this simu-
lation. Meanwhile, the partial differential equations have
been solved (discretized) by the second-order upwind
method using ANSYS FLUENT 2020R1 software based on
the finite volume method. All computational fluid dynamics
simulations in this study are run with double-precision vari-
ables to avoid such inaccuracies. Iteration errors occur when
solutions are not completely converged or oscillate between
values. This error is frequently addressed by performing
enough iterations to ensure convergence. Furthermore, the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) Consistent algorithm is implemented to couple the
velocity and pressure. It should be noted that the conver-
gence for the residual of mass and momentum and energy
equations is considered below 10−3 and 10−6, respectively.

2.2 Mathematical formulations and
assumptions

The nanofluids employed to improve heat transport are
typically diluted solid–liquid blends. These metallic par-
ticles can roughly be said to act like a fluid because they
are fluidizable and ultrafine (less than 100 nm). The
nanofluid can be considered a regular pure fluid if it is
assumed that there is no motion slip between the discon-
tinuous phase of the scattered ultrafine particles and the
continuous liquid and that there is local thermal equilibrium
between the nanoparticles and the fluid [30,31]. In this
study, the effective single-phase flowworks due to the above
assumptions and hypotheses.

Figure 1: Physical problem and computational domain of pipe with twisted-tape inserts.
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The nanofluid flow is assumed to be turbulent, incom-
pressible, Newtonian, and steady-state conditions. In this
study, compression work and viscous heating are not
significant. The thicknesses of the inner and outer pipe
walls are not considered. All the equations of continuity,
motion, and energy for the pure fluid are directly extended
to the nanofluid [32]:

Governing equation for mass:

( )∇·
→

=ρV 0, (1)

Governing equation for momentum:

( ) (( )( ))∇·
→→

= −∇ + ∇· + ∇
→

+ ∇
→

+
→ρV V P u u V V ρg ,t

T (2)

Governing equation for energy transport:

( ) ( )∇·
→

= ∇· ∇ +ρC V k ρT ϵ,p eff (3)

where
→
V is the mean velocity vector, Keff = K + Kt

is the effective thermal conductivity of covalent and
non-covalent nanofluids, and ϵ is the energy dissipa-
tion rate.

The turbulent nanofluid flow in plain and twisted
pipes was simulated in this work for Reynolds numbers
ranging from 5,000 to 15,000. These simulations and the
convective heat transfer coefficient were calculated using
Menter’s two-equation SST k-ω turbulence model, which
uses the benefits of the k-ω model and the k-ε model by
defining weight functions [33,34]. Governing equations of
the SST k-ω turbulence model are as follows:

Kinematic eddy viscosity:
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Turbulence kinetic energy:
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Specific dissipation rate:
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Closure coefficients and auxiliary relations:
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* =β 9
100

,

= =σ σ0.85, 1,k k1 2

= =σ σ0.5, 0.856,ω ω1 2 (12)

where S is the strain rate magnitude and y is the distance
to the next surface. Meanwhile, α1, α2, β1, β2, *β , σk1, σk2,
σω1, and σω2 represent all model constants. F1 and F2 refer
to the blending functions. Note that F1 = 1 inside the
boundary layer and 0 in the free stream.

The turbulent convective heat transfer and nanofluid
flow are examined through several parameters as fol-
lows [35]:

Reynolds number:

=
ρvD

μ
Re ,h (13)

Prandtl number:

=
μC

k
Pr ,p (14)

Heat gain (W):

( )= × × −Q m C T Ṫ ,Gain p out in (15)

Heat transfer coefficient (W/m2. K):

( )
=

× −
h Q

A T T̅ ̅ ,tc
Gain

w f
(16)

Nusselt number:

=Nu hD
k

,avg
h (17)

Friction factor:

=
× ×

× ×
f P D

ρ v L
2 Δ ,h

2 (18)

Pressure drop:

= −P P P∆ ,in out (19)
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Dittus–Boelter equation:

= × ×Nu 0.023 Re Pr ,avg
0.8 0.4 (20)

Blasius equation:

=f 0.3164
Re

,0.25 (21)

Thermohydraulic performance:

⎜ ⎟
⎛

⎝

⎞

⎠
=

/

η f
f

Nu
Nu

,Thermohydraulic
TP

PP

TP

PP

1 3
(22)

where ρ, v, Dh, and μ refer to the density, working fluid
velocity, hydraulic diameter, and dynamic viscosity.
C kandp are the specific heat capacity and thermal con-
ductivity of the working fluid. Also, ṁ refers to the mass
flow rate and −T Tout in represents the outlet/inlet differ-
ence temperatures. TP and PP refer to twisted and plain

pipes.
( )

= =
−A T T TπDL, ̅
2f

out in , and ∑=T T
n

̅ .w
w

3 Thermophysical properties of
mono, hybrid, and ternary
nanofluids

The thermophysical properties of single, hybrid, and
ternary nanofluids were estimated empirically through
a set of equations and models under 303 K. Nanofluids
are preferred because nanoparticles have a larger sur-
face-to-volume ratio than bulk materials [36], resulting
in unique behavior. The suspension of nanoparticles into
base fluids augments the thermophysical properties of
heat transfer fluids [37]. In the literature, several studies
have discussed the thermophysical properties of single
and double nanofluids [38–40]. The development of
innovative triple nanofluids has recently gained consid-
erable interest [41,42]. In this research, three different
nanomaterials, such as Al2O3, SiO2, and ZnO, were sus-
pended in DW in different volumetric concentrations
(1, 2, 3, and 4%) (Table 2). The hybrid nanofluids were
SiO2@Al2O3/DW, SiO2@ZnO/DW, and ZnO@Al2O3/DW in
the mixture ratio of 80:20. Meanwhile, the ternary nano-
fluids were SiO2@Al2O3 + ZnO/DW in the mixture ratio of
60:20:20. The current mixing ratios are optimized using
Prandtl number values. As a result, the selected mixing
cases have a higher Prandtl number than base fluids,
resulting in improved heat transfer mechanisms. The
density of single, hybrid, and ternary nanofluids can be
predicted via the following set of equations [41]:

( )= + −ρ Φ ρ Φ ρ1 ,nf np np np DW (23a)

( )= + + − −ρ Φ ρ Φ ρ Φ Φ ρ1 ,nf np np np np np np DW1 1 2 2 1 2 (23b)

(

)

= + + + −

− −

ρ Φ ρ Φ ρ Φ ρ Φ

Φ Φ ρ

1

.
nf np np np np np np np

np np DW

1 1 2 2 3 3 1

2 3

(23c)

Moreover, the specific heat capacity of single, hybrid, and
ternary nanofluids can be predicted via the following set
of equations [41]:

( )= + −C Φ ρ C Φ ρ C ρ1 ,pnf np np pnp np DW pDW nf (24a)

(

)

= + + −

−

C Φ ρ C Φ ρ C Φ

Φ ρ C ρ

1

,

pnf np np pnp np np pnp np

np DW pDW nf

1 1 1 2 2 2 1

2

(24b)

( )

= + +

+ − − −

C Φ ρ C Φ ρ C Φ ρ C

Φ Φ Φ ρ C ρ1 .

pnf np np pnp np np pnp np np pnp

np np np DW pDW nf

1 1 1 2 2 2 3 3 3

1 2 3

(24c)

As a result, the following equations may be used to esti-
mate the thermal conductivity of single, hybrid, and
ternary nanofluids [43]:

( )

( )
=

+ + −

+ − −

k
k

k k Φ k k
k k Φ k k

2 2
2

,nf

DW

np DW np DW

np DW np DW

1 1 1

1 1

(25a)

( )

( )
=

+ + −

+ − −

k
k

k k Φ k k
k k Φ k k

2 2
2

,nf

DW

np DW np DW

np DW np DW

2 2 2

2 2

(25b)

( )

( )
=

+ + −

+ − −

k
k

k k Φ k k
k k Φ k k

2 2
2

,nf

DW

np DW np DW

np DW np DW

3 3 3

3 3

(25c)

( )
=

+ +
k

k Φ k Φ k Φ
Φ

.nf
nf 1 nf 2 nf 31 2 3 (25d)

Similarly, the dynamic viscosity of single, hybrid, and
ternary nanofluids may also be calculated using the
equations as follows [43]:

( )= + +μ μ Φ Φ1 2. 5 ,nf DW 1 1
2

1 (26a)

( )= + +μ μ Φ Φ1 2. 5 ,nf DW 2 2
2

2 (26b)

( )= + +μ μ Φ Φ1 2. 5 ,nf DW 3 3
2

3 (26c)

Table 2: Thermophysical properties of base fluids and nanomater-
ials at 303 K [44]

DW Al2O3 SiO2 ZnO

Density, ρ (kg/m³) 995.65 3,970 2,200 5,600
Specific heat, Cp (J/kg K) 4178.8 765 703 495.2
Thermal conductivity, k
(W/mK)

0.6182 40 1.2 13

Dynamic viscosity, μ (Ns/m²) 7.97 × 10−04 / / /

Thermohydraulic performance of thermal system  7



( )
=

+ +

μ
μ Φ μ Φ μ Φ

Φ
.nf

nf 1 nf 2 nf 31 2 3 (26d)

4 Results and discussion

4.1 Verification and validation with
literature

Grid independence tests were carried out for three grid
sizes to ensure that the simulations were independent of
the grid size. Numerical instability caused by the mesh,
or the model can occasionally impair the convergence.
Discretization errors happen when the mesh is not pre-
cise or of appropriate quality, frequently representing the
geometry incorrectly or failing to reflect the gradients
present in the problem adequately. Four different grids
were plotted against the Nusselt number (Nuavg) from the
Dittus–Boelter equation (Figure 2a) and friction factor (f)
from the Blasius equation (Figure 2b). Grids 1, 2, 3, and 4

were with a number of elements of 374,609, 228,925,
194,025, and 152,742. The average errors among grids
1, 2, 3, and 4 with Dittus–Boelter and Blasius equations
were 4.233 and 2.102%, 3.244 and 4.773%, 3.124 and
5.843%, and 2.947 and 6.683%, respectively. The accuracy
of Nuavg readings increased by decreasing the number of
elements. Meanwhile, the accuracy of friction factor values
showed completely different behaviors. Grid 2 was used to
assess thermohydraulic performance as the main mesh
domain in the simulation cases.

The study of Eiamsa-ard et al. [45] was used as the
validation reference. They experimentally discussed the
heat transfer rate (Nuavg), friction factor (f), and thermal
enhancement index (η) of DW flow in a tube fitted with
twin twisted tapes. Their results demonstrated that the
Nusselt number (Nuavg), friction factor (f), and thermal
enhancement index (η) increase with decreasing twist
ratio. In Figure 3(a and b), the experimental values of
Nuavg and f were compared with the current numerical
results. The average errors between the experimental and
numerical results were 4.406% (Nuavg) and 10.497% (f),
respectively.

20

40

60

80

100

120

4 ,000 7 ,000 10 ,000 13 ,000 16 ,000

N
u a

vg

Re

a

Dittus-Boelter equation

Grid (#1)

Grid (#2)

Grid (#3)

Grid (#4)

0.025

0.028

0.031

0.034

0.037

0.04

0.043

4 ,000 7 ,000 10 ,000 13 ,000 16 ,000

f

Re

b

Blasius equation

Grid (#1)

Grid (#2)

Grid (#3)

Grid (#4)

Figure 2: Grid independence results between simulation and
empirical correlations for DW: (a) average Nusselt number and (b)
friction factor.
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ical results: (a) average Nusselt number and (b) friction factor
for DW.
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4.2 Thermophysical properties

The number of nanoparticles added to the base fluids
significantly impacts the thermophysical properties of
nanofluids. The thermophysical properties of single nano-
fluids (Al2O3/DW, SiO2/DW, and ZnO/DW), hybrid nano-
fluids (SiO2@Al2O3/DW, SiO2@ZnO/DW, and ZnO@Al2O3/
DW) in the mixing ratio of 80:20, and ternary nanofluids
(SiO2@Al2O3-ZnO/DW) in the mixture ratio of 60:20:20 were
estimated using equations and correlations under the con-
dition of 303 K. As shown in Table 3, density, thermal
conductivity, and viscosity were increased by increasing
the volumetric concentration. Meanwhile, the specific heat
was decreased by increasing the volumetric concentration.
ZnO/DW achieved the highest density enhancement with
18.554% and ZnO+Al2O3/DW with 16.946% at 4vol%. The
highest drop in the specific heat was 14.514% by ZnO/DW,
and the ternary nanofluid showed a slight decrement by
about 1.518% at 4vol%. Also, the best improvement in
thermal conductivity was presented by Al2O3/DW, ZnO/DW,
and ZnO+Al2O3/DW by about 20.600, 17.785, and 14.830%,
respectively, at 4vol%. The augmentation in the thermal
conductivity of single, double, and triple nanofluids can
be attributed to the nature of heat transport in nanoparticles
and clustering phenomena, the Brownian motion of nano-
particles, and liquid layering at the particle interface [46].
Moreover, hybrid and ternary nanofluids reduced the unde-
sired increment in the dynamic viscosity from 67.383 to
40.668 and 24.086%, respectively, at 4vol%. Meanwhile,
the growth in dynamic viscosity of ternary nanofluids
relative to DW can be credited to the other layer mixture
in the triple nanofluid. As nanoparticle volume fraction
increases, dynamic viscosity of nanofluids increases.
Also, the increase in the viscosity of the triple nanofluid
is attributed to the internal viscous stress and the for-
mation of clusters in the fluid [47,48].

4.3 Thermohydraulic enhancement of
plain pipe

In this section, single, hybrid, and ternary nanofluids
with 4vol% are tested in the plain pipe under different
Reynolds numbers through various parameters, including
outlet temperature, heat gain, heat transfer coefficient,
average Nusselt number, friction factor, and pressure loss.
The outlet temperature of the base fluid and nanofluids
decreases by increasing the working fluid velocity inside
the plain pipe (Figure 4a). The higher outlet temperature

was presented by base fluid (DW); meanwhile, SiO₂/DW
nanofluids show a lower Tout value. This behavior is due to
a change in nanofluid properties (i.e., density and dynamic
viscosity) by increasing the Reynolds number at the con-
stant volumetric fraction. The thermal system gains more
heat by increasing the Reynolds number for base fluid
and all types of nanofluids (single, hybrid, and ternary)
(Figure 4b). ZnO/DW and Al2O3/DW nanofluids show the
best energy gain. Meanwhile, base fluid and SiO₂+A-
l2O3+ZnO/DW offer the worst heat gain performance.
Figure 4c and d exhibits the heat transfer enhancement
parameters (htc and Nuavg) for base fluid and nanofluids
at different Reynolds numbers. htc and Nuavg enhance by
increasing Reynolds number for DW, single, hybrid, and
ternary nanofluids. Al₂O₃/DW nanofluid shows a higher
heat transfer coefficient. Meanwhile, SiO₂/DW nanofluid
presents higher values of Nuavg. The heat transfer is
enhanced by using higher nanoparticle volumetric frac-
tion and nanofluids with better thermal conductivity.
The condition of constant Reynolds number for base
fluid and nanofluids leads to an increase in dynamic
velocity and density values. Therefore, the lower tem-
perature gradients enhance the heat transfer efficiency
[35]. Figure 4(e and f) illustrates the pressure drop and
friction factor values of DW, single, hybrid, and ternary
nanofluids in 4vol% at different Reynolds numbers.
The pressure loss increases as the Reynolds number
increases, but the friction factor decreases. As shown in
Figure 4e, DW presents the lower pressure loss against
Re, and single nanofluids show higher pressure reduc-
tion values in the order of SiO2/DW, Al2O3/DW, and ZnO/
DW, respectively. Because the friction factor is only
determined by the Reynolds number, using different
working fluids (DW and nanofluids) has no effect.

4.4 Thermohydraulic enhancement of
twisted pipe

In this section, single, hybrid, and ternary nanofluids
with 4vol% are tested in the twisted pipe under different
Reynolds numbers through various parameters, including
outlet temperature, heat gain, heat transfer coefficient,
average Nusselt number, friction factor, and pressure
loss. The outlet temperature of the water and nanofluids
decreases by increasing the working fluid velocity inside
the plain pipe (Figure 5a), which can be attributed to
short heat exchange duration. The higher outlet tem-
perature was presented by base fluid (DW); meanwhile,
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Ta
bl
e
3:

Th
er
m
op

hy
si
ca
l
pr
op

er
ti
es

of
D
W

an
d
di
ff
er
en

t
ty
pe

s
of

si
ng

le
,
hy

br
id
,
an

d
tr
ip
le

na
no

fl
ui
ds

at
30

3
K

Pr
op

er
ti
es

A
l 2
O
3
/D

W
S
iO

2
/D

W
Zn

O
/D

W

1%
2%

3%
4%

1%
2%

3%
4%

1%
2%

3%
4%

ρ
(k
g/
m
³)

10
21
.6
94

10
47

.7
37

10
73

.7
8
1

10
99

.8
24

10
0
7.
6
94

10
19
.7
37

10
31
.7
8
1

10
43

.8
24

10
41
.6
94

10
8
7.
73

7
11
33

.7
8
1

11
79

.8
24

C p
(J/

kg
K
)

40
58

.5
13

39
44

.2
0
5

38
35

.4
43

37
31
.8
31

41
0
3.
8
33

40
30

.6
37

39
59

.1
50

38
8
9.
31
2

39
8
0
.7
75

37
99

.5
14

36
32

.9
76

34
79

.4
36

k
(W

/m
K
)

0
.6
94

9
0
.7
10

9
0
.7
28

6
0
.7
47

0
0
.6
41
2

0
.6
42

1
0
.6
45

7
0
.6
50

1
0
.6
8
17

0
.6
96

6
0
.7
12
7

0
.7
29

6
μ
(N
s/
m
²)

8
.7
9
×
10

−
0
4

9.
8
4
×
10

−
0
4

1.
12

×
10

−
0
3

1.
30

×
10

−
0
3

8
.7
9
×
10

−
0
4

9.
8
4
×
10

−
0
4

1.
12

×
10

−
0
3

1.
30

×
10

−
0
3

8
.7
9
×
10

−
0
4

9.
8
4
×
10

−
0
4

1.
12

×
10

−
0
3

1.
30

×
10

−
0
3

S
iO

2
+
A
l 2
O
3
/D

W
[8
0:
20

]
S
iO

2
+
Zn

O
/D

W
[8
0:
20

]
Zn

O
+
A
l 2
O
3
/D

W
[8
0:
20

]

1%
2%

3%
4%

1%
2%

3%
4%

1%
2%

3%
4%

ρ
(k
g/
m
³)

10
10

.4
94

10
25

.3
37

10
40

.1
8
1

10
55
.0
24

10
14
.4
94

10
33

.3
37

10
52

.1
8
1

10
71
.0
24

10
37

.6
94

10
79

.7
37

11
21
.7
8
1

11
6
3.
8
24

C p
(J/

kg
K
)

40
94

.6
6
9

40
12
.9
73

39
33

.6
0
9

38
56

.4
78

40
78

.5
6
2

39
8
1.
97

9
38

8
8
.8
56

37
99

.0
0
9

39
96

.0
8
3

38
27

.5
95

36
71
.7
37

35
27

.1
39

k
(W

/m
K
)

0
.6
50

9
0
.6
50

5
0
.6
52

6
0
.6
55
6

0
.6
48

3
0
.6
47

9
0
.6
50

0
0
.6
53

0
0
.6
8
0
7

0
.6
8
99

0
.7
0
0
3

0
.7
11
3

μ
(N
s/
m
²)

8
.5
1
×
10

−
0
4

9.
16

×
10

−
0
4

9.
96

×
10

−
0
4

1.
0
9
×
10

−
0
3

8
.5
1
×
10

−
0
4

9.
16

×
10

−
0
4

9.
96

×
10

−
0
4

1.
0
9
×
10

−
0
3

8
.5
1
×
10

−
0
4

9.
16

×
10

−
0
4

9.
96

×
10

−
0
4

1.
0
9
×
10

−
0
3

S
iO

2
+
A
l 2
O
3
+
Zn

O
/D

W
[6
0:
20

:2
0]

S
iO

2
+
A
l 2
O
3
+
Zn

O
/D

W
[5
0:
30

:2
0]

S
iO

2
+
A
l 2
O
3
+
Zn

O
/D

W
[6
0:
20

:2
0]

1%
2%

3%
4%

1%
2%

3%
4%

1%
2%

3%
4%

ρ
(k
g/
m
³)

10
17
.2
94

10
38

.9
37

10
6
0
.5
8
1

10
8
2.
22

4
10

17
.2
94

10
38

.9
37

10
6
0
.5
8
1

10
8
2.
22

4
10

17
.2
94

10
38

.9
37

10
6
0
.5
8
1

10
8
2.
22

4
C p

(J/
kg

K
)

40
6
9.
52

8
40

49
.1
6
2

40
28

.7
96

40
0
8
.4
30

40
6
9.
52

8
40

49
.1
6
2

40
28

.7
96

40
0
8
.4
30

40
6
9.
52

8
40

49
.1
6
2

40
28

.7
96

40
0
8
.4
30

k
(W

/m
K
)

0
.6
58

3
0
.6
57

0
0
.6
58

2
0
.6
6
0
3

0
.6
58

3
0
.6
57

0
0
.6
58

2
0
.6
6
0
3

0
.6
58

3
0
.6
57

0
0
.6
58

2
0
.6
6
0
3

μ
(N
s/
m
²)

8
.3
1
×
10

−
0
4

8
.7
0
×
10

−
0
4

9.
14

×
10

−
0
4

9.
6
5
×
10

−
0
4

8
.3
1
×
10

−
0
4

8
.7
0
×
10

−
0
4

9.
14

×
10

−
0
4

9.
6
5
×
10

−
0
4

8
.3
1
×
10

−
0
4

8
.7
0
×
10

−
0
4

9.
14

×
10

−
0
4

9.
6
5
×
10

−
0
4

10  Omer A. Alawi et al.



SiO2/DW nanofluid shows a lower value of Tout. The
thermal system gains more heat by increasing Reynolds
numbers for base liquid and all types of nanofluids
(single, hybrid, and ternary) (Figure 5b). ZnO/DW and
Al2O₃/DW nanofluids show the best energy gain. Mean-
while, water and SiO₂ + Al2O₃ + ZnO/DW show the worst
heat gain performance. According to equation (15), and
because the inlet temperature for DW and nanofluids
has been fixed, three primary parameters are playing a
major role in the system absorbing more heat and
energy, which are mass flow rate, Cp, and working fluid
outlet temperature. Figure 5c and d exhibits the heat
transfer enhancement parameters (htc and Nuavg) for
base fluid and nanofluids at different Reynolds numbers.

htc and Nuavg enhance by increasing Reynolds number for
DW, single, hybrid, and ternary nanofluids. Al₂O₃/DW
nanofluid shows a higher heat transfer coefficient. Mean-
while, SiO₂/DW nanofluid presents higher values of Nuavg.
The use of twisted-tape turbulator has significantly influ-
enced flow directions in heated pipes. The helical shape
twisted-tape turbulator may induce swirl fluid flow in
pipes and promote fluid mixing along the walls. Turbula-
tors can be used to destroy turbulent fluid layers in twisted
pipes, improving heat transfer performance [49,50]. How-
ever, this phenomenon might result in a larger pressure
drop penalty in twisted pipes with nanofluids. The values
of pressure drop and friction factor of DW, single, hybrid,
and ternary nanofluids in 4vol% at various Reynolds
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numbers are shown in Figure 5(e and f). The pressure loss
increases as the Reynolds number increases, but the fric-
tion factor decreases. As shown in Figure 5e, DW has a
more minor pressure loss than Re, but single nanofluids
have larger pressure reduction values in the order of SiO2/
DW, Al2O3/DW, and ZnO/DW. Employing various working
fluids, such as DW and different types of nanofluids, has
little impact because the friction factor is solely dictated by
the Reynolds number (Figure 5f). Furthermore, inserting
twisted tape causes more significant pressure decreases.
The increase in pressure drop with increasing Reynolds
number is because of the rise in nanofluid viscosity, which
produces more friction loss and a greater, more significant
pressure drop [35].

4.5 Comparison of plain and twisted pipes

Figure 6 discusses the enhancements/improvements in
the thermohydraulic parameters using plain and twisted
pipes under 4vol% and Re = 900. In general, Tout increases
in the twisted pipe by about 1.056% relative to the plain
pipe using the same working fluids. In both plain and
twisted pipes, SiO₂/DW presents the lower increment in
the outlet temperature, followed by Al2O3/DW, SiO₂ +
Al2O3/DW, SiO₂ + ZnO/DW, ZnO/DW, SiO₂ + Al2O3 +
ZnO/DW, and ZnO + Al2O3/DW. This can be attributed to
the formation of rotational flow throughout the tube, good
flow mixing, and subsequently better heat transfer in the
twisted-tape tube. Also, heat gain increases in the twisted
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pipe by about 36.469% relative to the plain pipe using the
same working fluids. ZnO/DW presents the best enhance-
ments in the heat gain values with 39.259% (plain pipe
relative to DW) and 38.914% (twisted pipe relative to
DW) followed by Al₂O₃/DW with 35.841% (plain pipe
relative to DW) and 35.406% (twisted pipe relative to
DW). Moreover, hybrid (ZnO + Al2O3/DW) nanofluid
shows 25.360% (plain pipe relative to DW) and 25.186%
(twisted pipe relative to DW). Heat transfer parameters (htc
and Nuavg) enhance the twisted pipe by about 84.009%
relative to the plain pipe using the same working fluids
(DW and different nanofluids). Al2O3/DW presents best
enhancements in the heat transfer parameter values with
33.427%

(plain pipe relative to DW) and 34.928% (twisted pipe
relative to DW). Meanwhile, lowest enhancements in the
heat transfer parameters values are presented by SiO2 +
Al2O3 + ZnO/DW with 13.122% (plain pipe relative to DW)
and 13.720% (twisted pipe relative to DW). Heat transfer
parameters improved as the Reynolds number increased
due to the rising turbulence level in the twisted pipe and a
higher mixing of the working fluid. Inserting twisted tapes
inside the pipe significantly improved heat transfer (rela-
tive to plain pipe). The fluid moving through the small
gaps has a more incredible velocity, resulting in a thinning
of the thermal/velocity boundary layer and, consequently,
an increase in heat transfer [50]. Moreover, the heat
transfer depends on the changes in thermal conductivity
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values using different nanofluids and the increment in the
Prandtl number for the same Re [51]. Furthermore, the
hydrodynamic properties (ΔP and f) increase in the twisted
pipe by 265.454% relative to the plain pipe using the same
working fluids (DW and different nanofluids). SiO₂/DW
presents the maximum augmentations in the hydrody-
namic property values with 167.114% (plain pipe relative
to DW) and 166.994% (twisted pipe relative to DW). Mean-
while, the lowest augmentations in the hydrodynamic
property values are presented by SiO₂ + Al2O3 + ZnO/DW
with 41.588% (plain pipe relative to DW) and 41.518%
(twisted pipe relative to DW). Helical profiled pipe suf-
fering of high-pressure loss because of the swirling flows
and turbulent intensities due to the larger surface area,
which enhanced the interaction of the pressure forces
with inertial forces in the boundary layers. Meanwhile,
the increased flow resistance created by the counter-colli-
sion of fluid streams is attributed to the more considerable
friction losses [50]. This phenomenon may lead to the
division of the cross-sectional area in the tube; thus, the
flow velocity increases, and the complicated pipeline struc-
ture enhances the disturbance, which leads to the increase
in the flow resistance [52].

Figure 7(a and b) depicts the local Nusselt number
against axial position for plain and twisted-tape pipes
filled with various nanofluids at 4vol% and Re = 9,000.
The collected data, comprising the bulk and wall tem-
peratures, as well as the heat flow of the test area, could
be used to compute the local Nusselt number. The
results clearly reveal insignificant variations in the Nus-
selt number data of the nanofluids in the plain pipe
under the fully developed condition of the turbulent
flow region and the local Nusselt number in the thermally
developing region because the local Nusselt number is
somewhat enhanced [53]. Meanwhile, because the axial
locations are measured at the helical cross sections of
twisted-tape pipe, Figure 7(b) displays more variations
than Figure 7(a).

The double effects of thermal and frictional proper-
ties should be considered in engineering applications.
The thermohydraulic efficiency (ηThermohydraulic) was pro-
posed to evaluate the total performance of plain and
helical profiled pipes in more depth. The formula for cal-
culating the (ηThermohydraulic) value is presented in equa-
tion (22). Overall, ηThermohydraulic > 1 for all tested working
fluids (DW, single, hybrid, and ternary nanofluids) versus
Reynolds numbers (Figure 8). When the Reynolds number
is increased, the ηThermohydraulic rises quickly at first, then
gradually declines. As a result, there is a crucial Reynolds
number, and the largest value of ηThermohydraulic may be
produced. The heat transfer augmentation effect supplied

by the nanoparticle suspension is no longer noticeable at
Reynolds numbers of 7,000 and 9,000 or greater than
15,000, and the impact of frictional pressure drop progres-
sively rises, resulting in a decline in thermohydraulic effi-
ciency values [52]. The negative effect of frictional pressure
drop in the helical pipe on the ηThermohydraulic is the smal-
lest. The heat exchanging effect caused by its disturbance is
the maximum; therefore, the ηThermohydraulic value peaks at
the moment. Different types of nanofluids show almost the
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same thermohydraulic trends/behaviors. In general, the
suspension of nanoparticles in DW shows the opposing
effects as follows [54]:
1) increased thermal conductivity and nanoparticle col-

lisions improve the heat transport rate,
2) the increase in working fluid viscosity reduces fluid

flow and, therefore, the heat transfer rate decreases.

The current result indicates that improved thermal
conductivity and increased nanoparticle collisions at the
current range are more significant than the effect of
increased viscosity. In this study, DW shows higher
ηThermohydraulic values than nanofluids. DW achieves the
highest ηThermohydraulic value at Re = 15,000 with 1.678.
The lowest ηThermohydraulic value is achieved by SiO₂/DW
at Re = 7,000 with 1.181.

4.6 Velocity contours and profiles

Figure A1 shows the velocity contours and profile of DW,
single nanofluids (Al2O3/DW, SiO2/DW, and ZnO/DW),
hybrid nanofluids (SiO2 + Al2O3/DW, SiO2 + ZnO/DW,
and ZnO + Al2O3/DW), and ternary nanofluids (SiO2 +
Al2O3 + ZnO/DW). Velocity contours of twisted pipe under
different planes (slices), namely, P-1, P-2, P-13, P-14, and
P-27 were presented at Re = 9,000. The five planes were
chosen to represent various twisted-tape directions. Figure A1
indicates that the insertion of the twisted tape leads to the
significant increase in the velocity of the flow near it.
Moreover, figures illustrate that the velocity at the center
of the tube near the twisted tape is larger, and conse-
quently, the flow resistance increases. Clearly, because
of the geometry of twisted tapes and the fluid having to
overcome additional barriers to flow through the pipe, the
ΔP of the twisted tape is greater than the smooth one.

5 Conclusions

Plain and tilted twisted-tape pipes were computationally
evaluated via k-omega SST turbulence models in the
5,000 ≤ Re ≤ 15,000. Single nanofluids (Al₂O₃/DW, SiO₂/
DW, and ZnO/DW), hybrid nanofluids (SiO₂ + Al₂O₃/DW,
SiO₂ + ZnO/DW, and ZnO + Al₂O₃/DW) in the mixture ratio
of 80:20, and ternary nanofluids (SiO₂ + Al₂O₃ + ZnO/DW)
in the mixture ratio of (60:20:20) were estimated in dif-
ferent volumetric concentrations (1, 2, 3, and 4%). Other

thermohydraulic parameters were studied, and the most
significant conclusions are as follows:
1) Thermophysical properties were estimated at 303 K.

The higher increments in thermal density, thermal
conductivity, and viscosity were 18.554% for 4vol%-
ZnO/DW, 20.600% for 4vol%-Al₂O₃/DW, and 67.383%
for 4vol%-Al₂O₃/DW, respectively. Meanwhile, the
higher reduction in specific heat was presented by
4vol%-ZnO/DW with 14.514%.

2) The average errors among grids 1, 2, 3, and 4 with
Dittus–Boelter and Blasius equations were 4.233 and
2.102%, 3.244 and 4.773%, 3.124 and 5.843%, and
2.947 and 6.683%, respectively.

3) SiO₂/DW recorded the lower outlet temperature at
4vol% and Re = 900 such as 310.933 K (plain pipe)
and 313.842 K (twisted pipe).

4) ZnO/DW presented the highest increment of heat gain
at 4vol% and Re = 900 with 39.259% (plain pipe) and
38.914% (twisted pipe) relative to DW.

5) Heat transfer parameters enhanced by about 86.978%
when using SiO₂/DW at 4vol% and Re = 900 through
twisted pipe relative to plain pipe.

6) SiO₂/DW presented the higher pressure drop at 4vol
% and Re = 900 with 167.114% (plain pipe) and
166.994% (twisted pipe) relative to DW.

7) The plots of local Nusselt number versus the axial
locations revealed insignificant variations in both
plain and twisted-tape pipes using different types
of working fluids.

8) All tested heat transfer fluids showed ηThermohydraulic >
1. At Re = 900, DW recorded the best ηThermohydraulic

with 1.496 followed by SiO₂/DW with 1.214. Meanwhile,
the higher ηThermohydraulic value was 1.678 using water at
Re = 15,000.
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Appendix

Figure A1: Velocity profiles of DW, single, hybrid, and triple nanofluids under different planes at Re = 9,000.
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Figure A1: (Continued)

Thermohydraulic performance of thermal system  19



Figure A1: (Continued)
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Figure A1: (Continued)
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