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Abstract

The new generation information technology (IT) services like mobile Internet, Inter-
net of things (IoT), cloud computing, processing of big data, applications of artificial
intelligence, etc. are becoming popular with the development of the information and
communication technology (ICT) industry. In this industry, the dependency on the data
centers is also increasing to ensure the quality of services (QoS). Thus, the energy con-
sumption of the data centers is increasing with the increasing demand for computational
resources in it because the load sections of the data center with sensitive equipment run
24 hours a day, 365 days of the year. Regarding data center operation, it is becoming
a technical challenge to make a trade-off between reducing the energy consumption to
limit the operational costs and ensuring higher reliability of the data center.

A way to help data center operators to cope with the posed challenges is by iden-
tifying the “right size of the computational resource”, considering the power losses and
service availability of the data center. This endeavor requires power consumption models
that can consider different load sections with different types of equipment. The power
consumption models of the load sections can address the electrical load demand and the
power losses, especially losses in the internal power conditioning system (IPCS). On the
other hand, the service availability of the data center mainly depends on the availability
of the computational resources like servers and on the availability of the power supply
through the IPCS. It is important to characterize the servers’ failure and repair times to
develop the stochastic model of the server unavailability in operation. The availability
of adequate power supply through the IPCS depends on its component failures and the
power supply capacity of its components. The bottleneck of the power supply capacity
of the IPCS is subjected to the power losses of the equipment in the IPCS. Additionally,
the voltage disturbances like voltage dips and swells in the IPCS also interrupt the power
supply units (PSUs) of the servers, which also degrades the QoS of the data center.

The outcomes of this thesis can be synthesized as follows: 1) A comparative analysis
of the energy consumption models of the major load sections in the data center, and an
analysis of the impact of the power losses in the IPCS on the outage probability of the
servers. 2) Reliability indices to assess the adequacy of the computational resources in
the data center considering the outages of power supplies and the servers in operation. 3)
The impacts of voltages disturbances in the IPCS on the power supply outages, hence on
the interruptions of servers. 4) An analysis of the trade-off between the energy efficiency
and reliability in operational planning of the data center.

i



ii



Acknowledgments

The research project has been funded by the Swedish Energy Agency, and Cloudberry
Datacenters Project. The research has been conducted at the Electrical Power Engineer-
ing group in Lule̊a University of Technology, Skellefte̊a. I sincerely appreciate the project
funding and hope that the research outcomes of this thesis will bring knowledge for the
funders and people interested in the subject given in this thesis.

I would like to my supervisors, Prof. Math Bollen, Dr. Manuel Alvarez, and Prof. Sarah
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Chapter 1

Introduction

“The first wave of the Internet was really about data transport. And
we didn’t worry much about how much power we were consuming, how
much cooling requirements were needed in the data centers, how big the
data center is in terms of real estate.” Padmasree Warrior, President &
CEO, Fable.1

The intervention of Internet in the data transfer facility has revolutionized the commu-
nication medium during the last decade of the previous century. The popularity of the
data transfer facility through Internet in every sector of the society was getting in a
pinnacle that introduced a novel data processing facility called data center2. Later, the
data center technology evolved through different stages to increase the computational
capability of the data centers, which has also posed different operational challenges, as
mentioned by Mrs. Warrior in 2009. With that view in mind, it is attempted in this
thesis to develop suitable data center operational methodology to handle the challenges.
This chapter introduces the research background and motivation followed by the objec-
tive of this work. The research approach and scope is briefly explained in this chapter
based on the objective of this thesis. The contributions and the publications originated
from this research are included towards the end of this chapter.

1.1 Background

A data center is a complex cyber-physical system that contains servers, network devices,
cooling facility, and a power conditioning system to ensure the required quality of service
(QoS). A data center provides different services for information technology (IT) compa-
nies like Google, Facebook, Microsoft, Amazon, etc. known as “hyper-scale data center”
[2]. Beside these IT companies, many other businesses and enterprises like banks, air-
lines, health care, etc are now dependent on the data center services to ensure smooth
operation of their business. Thus, the data center itself becomes a business which offers
the computational services and virtual computational resources to other small companies

1https://www.brainyquote.com/quotes/padmasree_warrior_577609
2https://storymaps.arcgis.com/stories/a21d93abf29d4b6990370cfcba143cd9
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2 Chapter 1: Introduction

who want cloud based services rather than the physical computational facilities. Data
centers providing services to other companies are known as “enterprise data centers” [2].
Regardless the type of the data center, ensuring the reliable service of the computational
resources plays the most important role in data center operation since the QoS and the
revenue of the data center depend on it. One of the earliest uses of the term “data
center” is found in 1940s for ENIAC, which refers to huge computer rooms [3]. The term
“data center” has some other similar names e.g., data hall, data farm, data warehouse,
computer room, server room, etc. that have been used by researchers. According to the
U.S. Environment Protection Agency (EPA), a data center is a collection of electronic
equipment that is used for processing data (in servers), storing the data (in storage equip-
ment) and communications including networking tools and devices [4]. The data center
requires power conversion and backup supply to ensure the power quality of the supply
to the mentioned information technology (IT) equipment. Specially, it is important to
ensure the uninterrupted operation of servers since the servers are the main force of the
computational resource of a data center. The data center also needs the cooling and envi-
ronmental control devices to maintain proper temperature and humidity for the sensitive
equipment in the IT load section [2]. Thus, a typical data center contains the following
three main subsystems [5, 6, 7]:

• The IT loads including servers, memory, hard disk drives, network devices, storage
devices, local fans, etc.

• The power conditioning devices with the protective devices in the internal power
conditioning system (IPCS), and

• The cooling loads

These load sections consume a significant amount of electrical energy that is a major con-
tribution to the overall operational cost of the data center. Recently, advanced energy
management techniques have been used in data centers to limit the energy consumption,
especially the energy consumption of the cooling loads by utilizing the heat generated in
the data center for other purposes like district heating, agriculture, etc.

The demand of the computational resources in data centers is increasing recently
with the increasing popularity of the IT services. The devices in the data centers usu-
ally run 24/7 all year round [8]. These devices are energy intensive with typical power
densities of 500− 2000W/m2 that sometimes can reach up to 10 kW/m2 [9]. The global
energy consumption of the data centers has increased over the last years. It was esti-
mated around 19TWh in total (roughly 1% of the global demand) in 2014 [10], while the
consumption was expected to reach about 270TWh by 2022 [11]. According to a report
published by Lawrence Berkeley National Laboratory, the total energy consumption of
the data centers in the US was approximately 70 billion kWh or 1.8% of its national yearly
energy consumption in 2014. This energy consumption was expected to be doubled in
2020 [12], which may cost $ 13 billion in annual electricity bills [12]. Beside the energy
consumption, data centers are estimated to have the fastest growing carbon footprint
across the whole information and communication technology (ICT) sector [13], which
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is approximately 2% of the global carbon dioxide (CO2) emissions. Against the back-
ground of a growing energy consumption of data centers, the Nordic region in Europe
has attracted significant investments for data centers due to environmental benefits. The
Nordic countries have become a preferred location with an increasing number of data
center investors [14]. Therefore, the data centers are opening new business opportunities
while posing challenges for the distribution system operators (DSOs) to ensure the sup-
ply of electrical energy. On the other side, the data center operators are focusing on the
energy efficient operation of the data center to reduce the operational costs and trying
to ensure the highest level of service availability to satisfy the service level agreements
(SLA) with the clients.

As it is mentioned, the operational challenges of the data center are to minimize
the operational costs, and to ensure the highest service availability of the data center
that depends on the availability of the servers. The servers are the main source of
computational capability of a data center that process the computational workloads.
The availability of the servers depends on the reliable operation of the IPCS and on
the availability of the servers itself. The uninterrupted power supply (UPS) unit, the
power distribution unit (PDU), and the power supply unit (PSU) are the main functional
components in the IPCS to ensure continuity of the supply and voltage quality of for
the IT loads. These equipment in the IPCS also consumes energy, which account for
the power losses in the IPCS. The power supply capacity of the IPCS often becomes
inadequate for the IT load demand due to the increasing power losses in the IPCS. This
results interruption in servers’ operation. Additionally, The PSUs in the IPCS are prone
to have interruptions due to voltage disturbances in the IPCS. The data center operators
usually over-provision or over-size the computational capacity with additional servers as
idle. Recently, Google indicates in a study that a typical server cluster utilizes only 10%
to 50% on average of its computational capacity [15]. Due to the idle servers in operation,
the data centers incur unnecessary electrical energy and associated operational costs since
a idle server consumes about 50% of its rated power. Therefore, it plays an important
role in the data center operation to assess the adequacy of the computational resources
considering the possible interruptions in server operation to have a trade-off between
energy efficiency and reliability of the data center.

1.2 Motivation

The motivation of this thesis is to develop the data center operational tools to iden-
tify the relation between energy efficiency and reliability in operation. The analysis,
proposed models, and data center operational tools are developed for the data center
operators, which includes developing the models for component-level energy consump-
tion, power losses, reliability assessment, operational risk assessments to identify suitable
operational set-points having a balance between energy-efficiency and reliability in data
center operation.
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1.2.1 Power Consumption and Energy Efficiency

The overall power consumption and the operation costs of data centers are increasing
rapidly due to the increasing demand of the computational resources in data centers, as
explained in Section 1.1. The energy efficiency of the data center depends on various as-
pects like the type of cooling system, network architecture, data center workloads, etc.[1]
including the power losses in the load sections. The loads in the complex cyber-physical
system of the data center can be classified into three sections: IT loads, cooling and
environmental control loads, and IPCS with power conditioning and protection devices.
The power consumption of the miscellaneous loads including office appliances, lighting,
fire security etc. are not considered as a part of data center consumption rather as of-
fice support [1, 16]. The power consumption of the IT loads and the power losses in
the IPCS are the main focus of this thesis since they depend on each other and it is
reported that 8% − 10% of the total power consumption of a data center is consumed
by the IPCS [6, 17]. The power losses of the IPCS increase with the increasing power
demand by the servers in operation that could also leads to have interruption in PSUs,
hence causes server outages because of power supply capacity shortage in the IPCS. The
power consumption models of the components of the IPCS and the IT loads are needed
to be obtained as a function of the computational workloads to quantify the load demand
depending on the workloads. The power consumption models of the loads could help to
address the power losses, hence improving the energy efficiency in operation [17].

1.2.2 Reliability and Operational Risks

It is important for the data center operator to ensure the reliable operation of the com-
putational resources at the level of planning and operation scheduling to limit the risks
in data center operation, as explained in Section 1.1. The servers are only considered as
the computational resource of the data center in this thesis, as the servers (including the
CPUs, memories, HDDs) are the main component in data centers to handle the compu-
tational workloads. The servers including other components in the data center often fail
during operation, which may lead to service interruptions of the data center [17]. It is a
general practice to schedule idle servers to handle the failures in operation in data centers,
hence to improve the service availability of the computational resources to maintain the
QoS. The power consumption of the IT load section, and the power losses in the IPCS
increases with the increasing number of servers in operation even if the servers are idle,
which also stresses the energy efficiency of the data center. The outage probability of
the servers due to increasing power losses in the IPCS is quantified [18], and a reliability
assessment model is developed to quantify the adequacy of the rack-level servers consid-
ering the failures in the PSUs [19]. A reliability index called loss of workload probability
(LOWP) is developed that assesses the adequacy of the number of rack-level, and is able
to identify the required number of servers for rack-level computational resource expan-
sion planning for the data center operator [19]. Another reliability index called risk of
computational resource commitment (RCRC) is proposed in this thesis, which identifies
the required number of idle servers in operation to limit the risk of having insufficient



1.3. Objective and Research Questions 5

servers for the workloads due to server failures [20]. The failure and repair time of the
servers are analyzed for real data and the probability distribution functions (PDFs) of
the time to failure (TTF) and time to repair (TTR) of the servers are also modeled. The
PDF of the TTF of the servers are further used in the reliability assessment models [21].
Meanwhile, the characteristics of the failure and repair time of the servers are needed to
analyze so that it could be used for predictive maintenance or clustering the servers in
an organized way.

Fault occurrence in the industrial power supply system is typical that creates voltage
disturbances (i.e., voltage sag or voltage dip) [22, 23]. The voltage-tolerance of the PSUs
in the IPCS is needed to be investigated since the PSUs ensure the voltage quality of
the supply to the servers and cause interruption in servers’ operation because of voltage
disturbances (voltage dips, and voltage swells). Other power quality issues like harmonics
and supraharmonics in the IPCS can also cause interruptions, but voltage dips and swells
have bigger impacts on server interruptions in operation than others [24, 25]. The impact
of the voltage disturbances (i.e., voltage sag or voltage dip) needs to be investigated in
the IPCS of the data center and the service reliability of the servers is assessed based
on the voltage disturbances in [26, 27] since the PSUs and the servers are sensitive to
voltage disturbances [28, 29].

1.2.3 Relation Between Energy Efficiency and Reliability

The reliability of the data center can be judged by its service availability, while the service
availability of the data center relies on the availability of the computational resources.
The servers are considered as the main computational resources in this thesis. The service
availability of the servers is subject to the availability of the servers itself in operation, the
power losses, and the voltage disturbances in the IPCS. Therefore, the energy efficiency of
the data center in terms of power losses in the IPCS, and number of servers in operation
considering the server failures are related to the service availability of the data center.
The number of servers are needed to be identified in data center operation to make a
trade-off between energy efficiency and reliability of data center. The proposed data
center operation methodology in [20] could help the data center operator to schedule
servers in operation to limit the excess power losses for the idle servers and to limit the
risks in operation.

1.3 Objective and Research Questions

The objective of this thesis is to reveal the relations between the energy efficiency and
the reliable operation of the data center that could support the computational resource
planning process and help in data center operation. The energy efficiency of the data
center is attempted to be improved by identifying the weak points in terms of power
losses in the IPCS, and the power consumed by the idle servers not used to handle
computational workload but for enhancing reliability. The modular modeling approach
is taken into consideration for modeling the power consumption of the load sections, where
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the components of the load sections are treated as the building blocks of the overall data
center model. The reliability of the data center, hence the service availability of the
computational resources is assessed in terms of outage probability of the servers due to
the power supply capacity shortage in the IPCS, voltage disturbances (voltage dips and
swells) in the IPCS for faults, and server failures by themselves. The service availability
analysis leads towards a proposals of reliability indices, which asses the computational
resource adequacy to cope with the expected workloads for operational planning, and
quantify the operational risk with a certain number of idle servers in operation of the
data center.

The following research questions have been identified considering the objectives of
the thesis:

• How can a trade-off be made between energy efficiency and reliability in data center
operation?

• What is the impact of the power consumption modeling on the relation between
the power consumption of the IT loads and the power losses in the IPCS?

• Which phenomena or events in the IPCS can lead to server outages? What are
suitable methods to quantify server outage probability due to power losses and
voltage disturbances in the IPCS?

• Which reliability indices can quantify the computational resource adequacy and
the data center operational risk considering the workloads and server failures?

• What are the uncertainties to be considered to model server failures in data center
operation? What is a suitable methodology to model the server failure and repair
events considering the uncertainties and the available data?

1.4 Scope

The scope of the work presented in this report is divided into three parts, as follows:

Power consumption modeling

1. The development of the power consumption models for the IT load
section and the power losses of the equipment in the IPCS. The energy
efficiency of the data center will be improved by limiting the number of servers
and the other components in the IPCS since the servers and the components in the
IPCS consume energy. The power consumption models of these devices in the data
center load sections need to be addressed properly to quantify the improvement in
energy efficiency. The power consumption models for IT loads and the IPCS have
been proposed in this work as a function of computational workload, hence the
server utilization [6]. The power losses in the IPCS are also addressed in this work.
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2. The analysis to address the relation between the increasing power con-
sumption of the IT loads with the increasing power losses in the IPCS
that causes capacity shortage in the IPCS. The power consumption models
of the server and the power conditioning equipment in the IPCS are developed as
a function of server utilization. The power losses of the equipment in the IPCS
increase with the increasing power consumption of the servers and often touch the
bottle neck of the power supply capacity of the equipment in the IPCS [18].

Reliability evaluation

1. The development of a probabilistic computational resource outage model
in operation due to the power supply capacity shortage in the IPCS.
The proposed methodology of the outage probability model accounts the increasing
power loss of PDU in the IPCS with increasing server power demand.

2. Analyzing server outages due to voltage dips and swells caused by faults
downstream of the UPS in the IPCS. A typical IPCS architecture is used to
study the impacts of the voltage disturbances (voltage dips and swells).

3. The development of reliability indices that can address the adequacy of
the computational resources and the operational risk as a function of
the number of spare servers in operation. The proposed indices take into
account the outage probability of the servers and the expected computational work-
load. The applications of the proposed methodologies in computational resource
planning, extension, and deployment in operation are studied.

4. An analysis of the failure and repair times of the servers in a hyper
scale data center. The analysis considers the reported failure and repair times in
a real dataset published by Google [30, 31]. The probability distribution function
(PDF) for the mean time to failure (MTTF) and mean time to repair (MTTR)
for the servers in operation are used to quantify failure and repair times. The
failure rate of the servers is obtained using the PDF of the MTTFs in a stochastic
simulation model.

A Trade-off between energy efficiency and reliability

1. Develop a data center operational tool to identify the allowable opera-
tional zones or set points by making a trade-off between the number of
spare servers and the availability of the servers in operation. The aim
of the methodology is to assess the operational risk considering the server failures
and operational lead time (OLT).
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1.5 Appended Papers

The following are the publications that originated from this research:

• Paper A [32] K. M. U. Ahmed, J. Sutaria, M. H. Bollen, and S. K. Rönnberg,
“Electrical Energy Consumption Model of Internal Components in Data Centers,”
in Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe,
ISGT-Europe 2019.

• Paper B [21] K. M. U. Ahmed, M. Alvarez, and M. Bollen, “Characterizing
Failure and Repair Time of Servers in a Hyper-scale Data Center,” in Proceedings
of 2020 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2020.

• Paper C [33] K. M. U. Ahmed, M. Alvarez, and M. H. J. Bollen, “Reliabil-
ity Analysis of Internal Power Supply Architecture of Data Centers in Terms of
Component Energy Losses,” Electric Power Systems Research, Vol 193, April 2021.

• Paper D [19] K. M. U. Ahmed, M. Alvarez, and M. H. J. Bollen, “A Novel
Reliability Index to Assess the Computational Resource Adequacy in Data centers,”
in IEEE Access, vol. 9, pp. 54530-54541, 2021.

• Paper E [34] K. M. U. Ahmed, M. H. J. Bollen, and M. Alvarez, “A Review
of Data Centers Energy Consumption and Reliability Modeling,” in IEEE Access,
vol. 9, pp. 152536-152563, 2021.

• Paper F [26] K. M. U. Ahmed, R. A. de Oliveira, M. Alvarez, and M. H. J.
Bollen, “Risk Assessment of Server Outages Due To Voltage Dips In The Internal
Power Supply System Of A Data Center,” CIRED 2021 - The 26th International
Conference and Exhibition on Electricity Distribution, 2021, pp. 708-712.

• Paper G [27] K. M. U. Ahmed, M. H. J. Bollen, M. Alvarez and S. S. Letha,
“The Impacts of Voltage Disturbances Due to Faults In the Power Supply System
of A Data Center,” 2022 20th International Conference on Harmonics & Quality of
Power (ICHQP), 2022, pp. 1-6.

• Paper H [35] K. M. U. Ahmed, M. H. J. Bollen, and M. Alvarez, “A Stochastic
Approach to Determine the Optimal Number of Servers for Reliable and Energy
Efficient Operation of Data Centers,” Submitted to IEEE Transactions on Sustain-
able Computing, 2022.

Other publications

• J. Sutaria, K. M. U. Ahmed, S. Rönnberg, and M. Bollen, “Propagation of
Supraharmonics through EMI Filters with Varying Loads”. In IEEE Cigré Norpie
2019.
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• H. Bakhtiari, K.M.U. Ahmed, M.H.J. Bollen, and J. Zhong. “A stochastic mod-
elling of electrical vehicle load and its impacts on a Swedish distribution network.”
CIRED 2021 - The 26th International Conference and Exhibition on Electricity
Distribution, 2021, pp. 2406-2410.

1.6 Contributions

The contributions of this work are as follows:

Power consumption modeling

1. The power and energy consumption models of the major components in the IT
loads, cooling and environment loads, and the IPCS section are reviewed using a
systematic literature review (SLR) method in Paper E [34]. The power consump-
tion models of the servers are classified in four groups to analyze the advantages
and disadvantages of the models in applications. The analysis in Paper E [34]
identifies the lack of knowledge in power consumption modeling of the IPCS equip-
ment and recommends to prioritize the availability of the model parameters above
the accuracy in application.

Paper E [34]

2. Models are proposed for the power consumption of the servers and rack-level cooling
fans in the IT load section, and the power conditioning equipment in the IPCS
as a function of server utilization in Paper A [32], and Paper D [19]. The
proposed power consumption models are fitted with measurements of the server
utilization in Paper D [19]. The equivalent computational workload duration
curve is obtained using the total power consumption of the servers in a rack to
identify the computational resource adequacy in Paper D [19].

Paper A [32], Paper D (Section IV) [19], and Chapter 2 (Section 2.5)

3. The dependence of the power consumed by the power conditioning devices i.e.,
UPS, PDU, and PSU in the IPCS on the assigned loads on the devices is explained
in Paper A [32]. Depending on the IPCS architecture, it is found that the total
power consumption of PDUs in the IPCS is more than the total power consumed
by the UPSs [19], and the total power consumption of the PDUs increases rapidly
with the increasing load, while the total power consumption of the UPS increases
linearly with the increasing load in Paper A [32], and Paper C [33]. It is shown
in Paper C [33] that due to the increasing power loss of the PDUs with increasing
load often it causes a shortage of power supply capacity to the PDUs in the IPCS.

Paper C (Section 4.1.3) [33], Paper D (Section IV-A) [19], and Chapter 2
(Section 2.5.2), Chapter 3 (Section 3.5)
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Reliability evaluation

1. It is shown in Paper C [33] that the availability of the IPCS increases with increas-
ing number of PSUs considering the redundant power supply source for the servers.
Depending on the IPCS architecture, each server needs power supply for a PSU,
but could be connected with two PSUs to avail a redundant power supply source.
Therefore, the number of PSUs increases in the IPCS with increasing number of
servers in the data center, which also increases the total power loss of the PSUs, as
described in Paper C [33].

Paper C (Section 4.1.3)[33], and Chapter 3 (Section 3.5)

2. The analysis in Paper C [33] shows that the PDUs face power supply capacity
shortage due to the increasing power losses in the IPCS with increasing number
of servers and PSUs. Due to the power supply capacity shortage in an use-case it
results 20% outage of the computational resources at rack-level.

Paper C (Section 4.1, 4.2) [33], and Chapter 3 (Section 3.5)

3. A reliability index called loss of workload probability (LOWP) is introduced in
Paper D [19] to analyze the adequacy of the rack-level computation resources
considering the failure of the PSUs and the expected computational workloads. The
LOWP defines the probability that computational workloads cannot be satisfied due
to failures in PSUs at the rack [19]. The application of the LOWP is also discussed
considering computational resource expansion planning and designing the clusters
of racks for latency-sensitive workloads.

Paper D (Section IV-B-2) [19] and Chapter 4 (Section 4.1)

4. A probabilistic reliability index called risk of computational resource commitment
(RCRC) is proposed in Paper H [35]. This index quantifies the data center oper-
ational risk of having insufficient servers considering the failure rate of the servers
and the operational lead time (OLT). Additionally, a methodology is developed
using the complement of the RCRC to assess the readiness of the computational
resources in data center during the OLT to assure the quality of service (QoS) and
maintain the service level agreement (SLA) in [35].

Paper H (Section IV-C,D,E) [35] and Chapter 4 (Section 4.2)

5. The methodology developed in Paper H [35] identifies the secure operative zones
or set points considering the OLT and the failure rate of the servers in operation.

Paper H (Section IV-F) [35] and Chapter 4 (Section 4.2.1)
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6. The proposed stochastic modeling approach of the servers’ failure rate in [35] ex-
plains the methodology to obtain the failure rate of the servers using the failure
times in operation at a hyper-scale data center. In hyper-scale data centers less
servers fail more frequently in operation following the Pareto principle [36]. Mean-
while, a methodology is proposed to obtain the PDF of the time to failure (TTF)
and time to repair (TTR) for the servers in operation. This allow the develop-
ment of the server failure frequency-based grouping/clustering approach to form
the reliable cluster of servers for latency-sensitive workloads in [21].

Paper B [21] and Chapter 3 (Section 3.4.1)

7. The risk of server outages due to voltage disturbances (voltage dips and swells) in
the IPCS originated by a single phase fault downstream to the UPS is analyzed in
Paper E [26], and Paper G [27]. Additionally, Paper G explains the inverter’s
current limitation in the UPS during the fault, which results in residual voltage at
the load buses dropping to almost zero during a fault. The interruption of the PSUs,
hence the servers in operation further initiates the voltage swells in the neighboring
sections of the IPCS that also causes interruptions of the servers. Paper E [26],
and Paper G [27] also compare two different models of the UPS to assess the
voltage disturbances in the data center IPCS.

Paper E and G [26, 27] and Chapter 5

A Trade-off between energy efficiency and reliability

1. The sensitivity analysis of the OLT and the failure rate of the servers contributes
to identify the secure operative region with low operational risk in Paper H [35].

Paper H [35] and Chapter 4 (Section 4.2.1)

2. The color mapping methodology introduced in Paper H [35] shows the required
number of idle servers and the power consumed by the idle servers to lower the
operational risk. The color map depicts the energy-sensitive operational region.

Paper H (Section IV-G) [35] and Chapter 6

3. The introduced data center operation tools in Paper H [35] help the data center
operator to make a trade-off between energy efficiency and reliable operation of the
data center.

Paper H (Section IV-G) [35] and Chapter 6
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1.7 Structure of the Report

The remainder of this thesis is organized as follows: Chapter 2 presents the electrical
load models of the data center load sections. The stochastic failure models of the data
center equipment and devices are explained in Chapter 3. The proposed reliability indices
and the application of the indices are explained in Chapter 4. Chapter 5 presents the
fault related voltage disturbances and the impacts on the server operation in the data
center. Chapter 6 explains the trade-off between energy efficiency and reliability in
data center operation. Chapter 7 discusses the societal impacts of the research work.
Chapter 8 presents the discussions and limitations of the thesis including the findings,
recommendations, and future works.



Chapter 2

Electrical Load Modeling of Data
Centers

This chapter contains explanations of the data center’s infrastructure as an electrical
load with the power consumption models of the loads in a typical data center. The power
consumption models of the major components and devices in the load sections play a
key role in the pursuit of an energy efficient and reliable operation since the models help
to obtain an optimal design of the internal power supply facility in the data center. The
contents of this chapter are explained based on Paper A, Paper D, and Paper E.

2.1 Electrical Loads in Data Centers

A data center typically accommodates and interconnects ICT equipment (e.g., servers,
network switches, routers, I/O devices) to provide data storage, data processing, and
data transport services [37]. The internal structure of the data center is typically built
with three major load sections: IT loads, cooling and environmental control section, and
the internal power conditioning system (IPCS). The IT load section contains servers, rack
fans, network switches, etc. that consumes energy to serve the computational workloads
and provide the IT services [19]. The cooling and environmental control loads and the
internal power conditioning devices are responsible to assure the reliable and energy-
efficient operation of the IT loads. Therefore, the energy consumed by the equipment in
the cooling and IPCS load section correlates with the computational workloads of the IT
load section [6, 38, 1]. The load sections of a typical data center is shown in Figure 2.1.

The amount of power consumed by these three major load sections in data center
depends on the design of the data center and the efficiency of the equipment. The largest
power consumer in a typical data center is the IT equipment (45%) and network equip-
ment (5%) in the IT load section, while the cooling loads (38%) rank second, as shown in
Figure 2.2 [6, 16]. Apart from these two load sections, the power conditioning devices in
the IPCS consume 8% of the total power consumption of a data center. In this thesis the
power consumed by the power conditioning devices in the IPCS (e.g., UPS, PDU, and
PSU) is considered as power losses, and modeled as a function of computational work-
loads to analyze the impacts of the power losses in the IPCS on the overall performances

13
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Figure 2.1: Data center load sections.

Figure 2.2: Power consumption distribution in a data center.

of the data center in terms of reliability of the services.

Importance of the Power Consumption Models

A mathematical model is a formal abstraction of a real system [39]. Therefore it is
needed to model the components and the devices in the load sections properly to obtain
the power consumption of individual load sections, and consumption of the entire data
center. The importance of the power consumption models reflects more precisely at
the applications of the models, especially for a complex cyber-physical system like data
center. The applications of the power consumption models of the loads in a data center
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are as follows [17]:

• Designing the IPCS for the data center:
The power consumption models of the IT loads and the cooling load section are
essential for the initial design of the IPCS of energy intensive industries like the
data centers. It is not feasible to design and build a physical power supply system
without having prior knowledge about the expected power consumption level and
profile of the loads [40]. The IPCS could be designed considering the power ratings
of the loads. The total power loss of the IPCS increases since the devices in the
IPCS consume at idle mode. The Data Center Efficiency Building Blocks project
has proposed a new simulation tool in [41] that can evaluate the power usage
effectiveness (PUE) and other analysis related to energy usage in data center. The
simulation tool focuses on the average or maximum loads as data centers typically
do not operate at full load all the time, and the type of load in data center also
varies. This type of simulation tool requires the power consumption models of the
data center components.

• Forecasting the trends for ensuring energy efficient operation:
The data center operator often applies different energy management techniques at
different levels of data center to ensure energy efficient operation. Such manage-
ment techniques require to analyze the trend of the power consumption of the load
sections. In this case, real-time power measurement alone can not provide enough
information. The forecasted power consumption of the load sections is needed for
operational planning [42]. The measurements also do not provide a link between re-
source usage and power consumption [40], while experimental verification using real
test data is generally expensive and inflexible. The data center operators typically
do not publish the measurement data sets and the measured power consumption
of the loads depends on the size of the data center. Therefore, the measurement
data only does not help much for data center operation without the knowledge of
power consumption models. The data center operation is more adaptive towards
lower the energy consumption with the availability of power consumption models
parameters [43].

• Power consumption optimization:
Different power consumption optimization schemes have been developed on top of
power consumption models for data centers. The power consumption models of the
load sections are used in mathematical optimization problems in [44, 45].

However, it is not straightforward to model the exact power consumption characteristics
of the data center, either at the system level or at the individual component level. The
power consumption of a data center depends on multiple factors like hardware specifica-
tions, workloads, cooling requirements, types of applications, type of data center, etc.,
which cannot be modeled easily [45, 46, 47]. Besides these facts, the power consumption
of the hardware in the IT load section, the cooling section, and the IPCS of the data
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center are all closely correlated [48]. The development of the component level power con-
sumption models helps in different activities such as new equipment procurement, system
capacity planning, resource expansion etc. The power consumption modeling approach
is called “modular modeling approach” in Paper A[6], where the components and the
devices in different load sections are considered as the individual building blocks of the
whole systems regardless of the actual placement of the components and the devices in
the real system. Paper A contributes to develop the “modular modeling approach” that
provides the flexibility to include any new components or devices in the data center [6].
The power consumption models of different load sections are described in the forthcoming
sections.

2.2 IT Load Models

All the components that has been discussed in this section may appear at different levels
of the data center functional hierarchy, but specifically attribute to the IT load section.
The servers are the main computational resources in a data center. They contains the
central processing units (CPUs), memory devices, network devices, hard disk drives,
power supply and cooling fans. The local cooling fans at rack-level are deployed to
extract the heat from the server stacks, which are considered as IT loads in this thesis
since these fans at rack level directly get the power supply from the PDUs, and UPSs,
as shown in Figure 2.1.

2.2.1 Power Consumption Model of Servers

The CPU is the dominant power consuming component in a server. It consumes 32% of
the total server power, followed by peripheral slots (including network card slot and the
I/O devices), conduction losses, memory, motherboard, disk/storage, and cooling fan,
as shown in Figure 2.3. The conduction losses of the server are considered as a part of
server power consumption in [49]. However, the power consumption of the associated
PSU with the server is a considerable part of the conduction loss of the server, which
depends on the CPU’s utilization, hence the server’s total power consumption [1, 38].
The server’s power and energy consumption models in the literature are analyzed and
classified in four groups (e.g., Additive model, Base-active model, Regression model, and
Utilization-based model) based on the mathematical formulation of the proposed models
in Paper E. The application, advantages, and disadvantage of these models are given in
Table 2.1 from Paper E.

The utilization-based model of the server is used in this thesis because of the sim-
plicity of the model, and the availability of the model parameter i.e., CPU utilization.
The accuracy of the utilization based model to predict the power consumption of server
is lower than other models. However, the availability of the model parameter i.e., CPU
utilization has been prioritized in this thesis, since the aim of the model is to obtain the
trend of the power consumption of the servers in a hour scale and use further to model
the power consumption of other load sections. The CPU utilization-based server power
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Figure 2.3: Component-wise energy consumption of a server [1].

consumption model is given in (2.1).

Pserver = Pidle + (Pmax − Pidle) · uCPU (2.1)

where, Pidle and Pmax are the idle power and the rated power of the server respectively.
uCPU is the CPU utilization, and Pserver is the power consumed by the server for a given
utilization.

2.2.2 Power Consumption Model of the Local Server Fans

Apart from a heat sink attached cooling fan on top of the CPUs, independent server
cooling fans are also installed with each individual server. Recent high-density servers
have variable airflow control to ensure a reliable operation of the server cooling system.
The required airflow rate depends on the heat generated by the server equipment and
determines the required rotational speed and energy consumed by the fans. Based on the
thermal characteristics of servers that are analyzed in [38, 65, 66], the equivalent thermal
resistance of the server R can be expressed as:

R =
Tdie − Tamb

PCPU

(2.2)

where, Tdie, and Tamb are the CPU die temperature, and the ambient temperature re-
spectively. PCPU is the power consumed by the CPU.

In [38], the thermal resistance is modeled as the summation of the equivalent thermal
resistances of the heat sinks Rhs, and the thermal resistance of the CPU case Rcase. Here,
Rhs depends on its convective heat transfer rate as a function of wind speed on the surface
of the heat sink. The wind speed is determined by the cooling fans’ revolution speed (Ω)
(expressed in revolutions per minute or RPM). Rcase can be assumed as constant [38].
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Table 2.1: Applications, advantages, and disadvantages of server’s consumption models.

Additive model
Application Virtual machine (VM) placement model considering energy cost, VMs

placement cost, developing the entire data hall (server room) energy
consumption model, and simulate the proposed model in EnergyPlus,
OpenStudio simulation interfaces[50]. Optimize the server energy con-
sumption [51, 52].

Advantages Use widely to predict the power consumption of servers at large scale IT
setup, which could be extended further to other section of data center
level, as applied in [53].

Disadvantages It requires different parameters to track the power consumption tend of
the components of the servers (e.g., CPU, memory, fans, etc.).

Base active model
Application To formulate a stochastic program that captures the data center-level

load balancing, the server-level configuration, monitoring the QoS [54].
Managing the IT load of data center to make a balance between energy ef-
ficiency and QoS [55]. Power consumption estimation of CPU-dominated
servers, medium utilization systems, cooling load calculation, and cloud
computing management [56, 57].

Advantages It only monitors one parameter that is the active power consumption
of the server. The approach is suitable for relating the IT load power
consumption with other load sections, specially to predict the cooling
load section’s power consumption.

Disadvantages Suffers with large prediction error for less CPU dominated systems, limit
to partial utilization regions and server types since it considers the un-
defined power consumption as the base power consumption of the IT
load.

Regression model
Application Energy consumption modeling of data center [58]. Optimize the energy

consumption of mobile edge computing environment [59, 60].
Advantages Easy to model the IT load section specially for applications like energy

management and energy optimization for data centers.
Disadvantages Most of the models are developed based on experiments with a specific

type of experimental setup.

Utilization-based model
Application Optimized the VM allocation and resource prediction [61], dynamic con-

solidation of VM, enhance utilization of resources, and assessing the
SLAs including an experimental results to validate the proposed model
[62]. Overall consumption monitoring, energy optimization considering
the power consumption of IT loads[63, 64], and other load sections[18].

Advantages It can capture the power consumption trend of different types of servers
with different workloads, which is easy to related further with other ap-
plication like energy optimization, power loss reduction, etc.

Disadvantages Similar to the simple regression model thus power consumption models
from this group are not suitable for predicting the power consumption of
serves precisely.
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Therefore, the equivalent thermal resistance R can be expressed as a function of (Ω), as:

R = a1 +
a2
Ωa3

=⇒ Ω = 10

(
log

a2
R−a1
a3

)

(2.3)

where, the constants a1 and a2 depend on the airflow properties and the CPU case; and
the parameter a3 depends on the level of turbulence in the airflow [38].

Finally the power consumed by the fan can be calculated as a function of Ω, as:

Pfan = a4 + a5Ω + a6Ω
2 + a7Ω

3 (2.4)

2.2.3 Rack Power Consumption Model

The servers are mounted in racks in high density and the rack mounted local fans help to
control the temperature inside the rack. It is not typical to measure the power consump-
tion of every server, but the aggregated power consumption of the servers and fans at
rack-level [6], as shown in (2.5). Additionally, the total power consumed by the IT loads
is obtained by the aggregated power consumption of all the racks in the data center, as
shown in (2.6).

PRack =
Ns∑

i=1

PServeri +

Nf∑

j=1

Pfanj
(2.5)

PITtotal
=

NR∑

m=1

PRackm (2.6)

where, PRack is the total rack power consumption with NS number of servers and Nf

number of local fans. The total power consumption of the IT loads is PITtotal
with NR

number of racks in the data center.

2.3 Power Conditioning System Modeling

The UPSs, PDUs, and PSUs are the main functional components of the IPCS. The
UPS with the battery backup is used to supply power to the IT loads during short
interruptions. The PDUs and the PSUs are used to maintain specific voltage levels for
the IT loads [6, 49]. The PDU transforms the high voltage to the low voltage for the
PSUs. The PSU rectifies the AC supply to DC supply for the server. In this thesis a
rack is considered to host 10 servers with 10 PSUs and a PDU unit, while 100 PDUs are
connected with 1 UPS, referred to Figure 2.4. The equations of the power consumed by
the PDU and UPS are given in (2.7),(2.8).

PLoss
PDU = P idle

PDU + ΦPDU

( ∑

server

Pserver

)2

(2.7)
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Figure 2.4: Topology of the IPCS in a data center.

where PLoss
PDU represents the power loss of the PDU. ΦPDU is the PDU power loss coefficient,

and P idle
PDU is the power consumed by the PDU in idle mode.

PLoss
UPS = P idle

UPS + ΦUPS

( ∑

PDUs

PPDU

)
(2.8)

where, PLoss
UPS represents the power loss of the UPS. ΦUPS represents the UPS power loss

coefficient, and P idle
UPS is the power consumed by the UPS in idle mode.

As mentioned in Section 2.2.1, the power loss of the PSU is a significant part of
the conduction loss of a server that depends on its supplied power to the server [38, 49].
The power loss of a PSU is assumed to be 1% of the supplied power to the server in this
thesis.

The conduction losses of the cable sections are calculated from the current supplied
by the UPS and the resistance of the cables, as shown in (2.9).

PLoss
Cable =

(
PRack + PLoss

PSU + PLoss
PDU

Vnom · PF

)2

Rcable (2.9)

where, Rcable, PRack, P
Loss
PSU , and PLoss

PDU are the cable resistance, the rack power, losses of
the PSU and the PDU, respectively. The nominal voltage is Vnom 230 V, and PF is the
power factor.

2.4 Cooling and Environmental Load Section Mod-

eling

A data center consists of several components in the cooling and environmental load sec-
tion for handling the heat generated inside the server room, mainly by the IT equipment.
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The server-racks are arranged in aisles in the data-hall that is serviced by the Computer
Room Air Handlers/Coolers (CRAH/CRAC) to maintain the temperature and humid-
ity. The power and energy consumption models of the devices in this load sections are
reviewed in Paper E [17]. Different type of devices could be included in this load section
in various numbers depending upon applied cooling methodology in the data center (e.g.,
free cooling, water cooling, hybrid cooling, etc.). The cooling load sections should typi-
cally contain two devices to handle the heat generated by the IT loads: 1. CRAH/CRAC
unit to remove the heat from the server-hall, and 2. Chiller to remove the heat from the
coolant and push the coolant back to the server-hall. The power consumption models of
these devices are proposed in Paper A [6]. However, it is not straightforward to identify
the source of the heat in the data-hall because of air-recirculation between hot and cold
aisles in the hall [49]. An equivalent heat generation model in the data-hall based on
thermodynamic conditions is proposed in Paper A [6], as given in (2.10). To quantify
the amount of heat re-circulation a containment index (κ) is introduced in (2.10).

Q̇Server = κ.ṁair.CPAir
. (TOutlet − TInlet) (2.10)

where ṁair is the mass flow rate of air through the server (kg/s), and CPAir
is the

specific heat capacity of air (kJ/kgK). TOutlet and TInlet are the server outlet and inlet
temperature (K), respectively.

The heat removed by the CRAH is modeled in [49] using the modified effectiveness-
NTU method [67], as shown in (2.11). The CRAH power consumption is dominated by
fan power, which grows with the cube of mass flow rate to some maximum (PCRAHDyn

),
together with a constant power consumption for sensors and control systems (PCRAHIdle

),
shown in (2.12). Some CRAH units are cooled by air rather than chilled water or contain
other features such as humidification systems, which are not considered here.

Q̇CRAH = E · κ · ṁServer · CPAir
· f 0.7 (κTOutlet + (1− κ)TInlet − TWater) (2.11)

where E is the transfer efficiency at the maximum mass flow rate (0 to 1), f represents
the volume flow rate as a fraction of the maximum volume flow rate, and TWater is the
chilled water temperature.

PCRAH = PCRAHIdle
+ PCRAHDyn

f 3 (2.12)

The volume flow rate f can be determined by solving (2.11).
The chiller plant removes heat from the warm coolant that returns from the server-

hall. This heat is transferred to external cooling towers using a compressor. The power
drawn by the chiller depends on the amount of extracted heat, the chilled water temper-
ature, the water flow rate, the outside temperature, and the outside humidity. According
to [8], the chiller’s power consumption quadratically increases with the amount of heat
to be removed and thus with the data center utilization. The size of chiller plant has to
be 70% of the maximum heat generated by the IT loads in order to provide sufficient
cooling; the chiller plant power consumption model is derived, in (2.13).

Pchiller = 0.7× Pmax
sf

(
αU2 + βU + γ

)
(2.13)
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Figure 2.5: Taxonomy developed based on the proposed modular modeling approach

where α, β and γ are obtained by performing curve fitting of several samples from the
real data center.

The power consumption models of the equipment in the three load sections (i.e.,
IT, IPCS, and cooling and environment load section) are reviewed in Paper E[17]. The
analysis recommends to emphasize on the application of the consumption models rather
on the accuracy of the model, since the models proposed in literature with complicated
parameters and variable that are not so easy to always avail during research [17]. Based
on this recommendation, a taxonomy of energy consumption modeling approach is de-
veloped, as shown in Figure 2.5

2.5 Results of the Work on Power Consumption Mod-

els

The power consumption models of the IT loads, cooling loads, and the power loss of the
devices in the IPCS are reviewed in Paper E [17]. A modular modeling approach is
proposed in Paper A [32] to model the power consumption of the servers and local fans
in the IT loads section as a function of CPU utilization. Further the IT loads power
consumption is used to model the power loss of the UPS, PDU, and PSU in data centers
in Paper A [32]. The server utilization published in the Google data set [30] is fitted
with the proposed models in Paper D [19]. The structure of the IPCS is not mentioned
in the Google data set. Therefore, a standard design from [68] is used for modeling the
data center in Paper A [32] and Paper D [19]. Some key aspects of the design steps
used in the work are as follows:

• It is assumed that each rack of the data center hosts 10 servers with all the com-
putational resources. Additionally, each rack has 40 local fans, i.e., 4 fans for each
server to manage sufficient airflow into the racks. The rated power of a server is
assumed to be 800W, and the server consumes 400W in the idle mode.
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Table 2.2: Local fan power consumption model parameters.

Parameter Value
a1 0.1352
a2 17440
a3 1.56
a4 0
a5 0.0003
a6 −3× 10−8

a7 7× 10−12

• The rating of the devices in the IPCS depends on the power demand of the rack-
level IT loads. It is assumed in this thesis that every server is equipped with an
800W PSU that also consumes 1% of the supplied power. The racks with PSUs are
distributed between PDUs, where each PDU can supply a maximum of 10 servers
or a rack. Further, each UPS will be connected with 100 racks or 100 PDUs for
backup power supply with a rated power of 900 kVA.

2.5.1 Power Consumption of a Server and Connected Local
Fans

The Google data set has information of 12, 583 servers during 29 days [30]. In the data-
set, the consolidated utilization of CPUs per server is given in 300 s interval for each
server distinguished with an unique machine ID. The detailed information of the number
of CPUs in a server or the individual utilization of a CPU is not revealed in the data-set.
Therefore, the consolidated utilization of the CPUs is considered as the utilization of the
server, hence the equivalent computational workload of a server. The details of the data
set and the data processing steps to get the utilization of the servers are explained in
Paper B [21] and Paper C [19] respectively.

The server utilization, server power consumption, and the power consumption of the
attached local fans of a highly utilized server (server ID 4820240534 in the data set) are
shown in Figure 2.6. The power consumption of the server follows the CPU utilization
pattern. But it is not the case for local fans since their total power consumption depends
on die temperatures Tdie, ambient temperature Tamb, and rotational speed Ω, where the
rotational speed of fans depends on the equivalent thermal resistance R that is inversely
proportional to the CPU power consumption PCPU as given in (2.2) - (2.4). The fans’
power consumption does not vary linearly with the speed thus it does not follow the
power consumption pattern of the server. The parameters used to calculate the power
consumption of the local fans are taken from [38], as shown in Table 2.2. The outliers in
the box-plot of the day-wise utilization of all the servers show that few servers occasionally
have been highly utilized during the measurement time, while the servers are utilized
among 8 − 15% most of the time per day, as depicted in Figure 2.7(a). The power
consumption of the servers per day has the same pattern, as the servers’ utilization, as
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Figure 2.6: Utilization, server, and fans power consumption of a single server

Figure 2.7: Box-plot of the day-wise (a) utilization and (b) power consumption of the
servers

shown in Figure 2.7(b).

The data set has reported information for 12, 583 servers, which are randomly dis-
tributed among 1, 259 racks. The power consumption of a rack for 28 days of measure-
ment is shown in Figure 2.8(a). The power consumption of all the racks shows a weekly
pattern that has a higher power consumption, hence large computational workloads to
the servers, as shown in Figure 2.8(b). Moreover, the total power consumption of the
racks never falls below 4.5 kW in Figure 2.8(b) since the idle power consumption of the
server is assumed to be 450W and each rack is modeled with 10 servers in this thesis.
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(a) Power consumption of a rack
(b) Power consumption of all the racks

Figure 2.8: Power consumption trend at rack-level.

The computational workloads of servers are not uniform and have fluctuations within
the period of the measurement, as shown in Figure 2.7(a). The intermittency of the
computational workloads introduces additional stress on the server management system
[36] and introduces risk of outages in the IPCS [18]. The data center operators typically
‘overprovisioned’ the servers in data centers [69], which causes increasing power losses in
the IPCS, hence increase the risk of crossing the bottle neck of the power supply capacity
of the devices in the IPCS [18]. Therefore, it is important to analyze the computational
capacity against the duration of the peak workloads. However, the methodological chal-
lenge is to relate the computational capacity e.g., number of servers installed in the
data center with the computational workloads. As a solution, the electrical equivalent
workload duration curve is proposed in [19] that converts the cumulative computational
workloads of the servers in a rack into the electrical equivalent workload duration curve.
The workload duration curve is further used to obtain a reliability index called loss of
workload probability (LOWP) and to quantify the risk of having unsolved computational
workloads due to failures. The methodology to obtain the reliability index LOWP is ex-
plained in Section 4.1. An example of the electrical equivalent workload duration curve
at rack-level obtained from the computational workloads of the servers for 28 days is
shown in Figure 2.9, which shows that the equivalent electrical load of the rack is around
5.6 kW during 60% of the time.

2.5.2 Power Consumption of Power Conditioning Devices

The power consumption of the power conditioning devices i.e., the UPSs, PDUs, and
PSUs are considered as the power losses in the IPCS. The power loss of each of these
devices in the IPCS is shown in Figure 2.10(a). The power loss of these devices in the
IPCS has been calculated for a week (168 hrs) based on the power consumption by the
rack-level IT loads, shown in Figure 2.8(b). As a single unit, the UPS consumes almost
5806 times more power than a PSU and 61 times more than a PDU on average, hence
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Figure 2.9: Computational workload duration curve of a rack.

the efficiency of a PDU is better than a UPS, as claimed in [49, 70]. However, it is not
possible to judge the overall performance of these devices based on the power consumed
by the individual devices, as shown in Figure 2.10(a) since the power loss of these devices
depends on the supplied power to the IT loads, as given in (2.7),(2.8). According to
the design architecture of the modeled data center (shown in Figure 2.4) the assigned
load to the UPS is almost 100 times higher than the PDU. Therefore, the power losses
of the devices in the IPCS are quantified at a common point in the system that is set
to be at the rack-level. The power loss of the PSU, PDU, and UPS is quantified as a
percentage of the rated power of the servers in a rack (8 kW in this case), as given in
(2.14) - (2.16). The overall performance of these devices in operation to supply the load
of a rack is assessed with this. The percentage of power loss of the PSU, PDU, and
UPS is shown in Figure 2.10(b). The average power loss of a PDU is 5.8% of the rack
rated power, 2.8% for a UPS, while only 0.65% on average for 10 PSUs of a specific rack.
Additionally, the percentage of power loss of a PDU is more than a UPS during the time
of the measurement, as depicted in Figure 2.10(b). The dominant trend of the total
power loss of the PDUs over the UPSs’ total power loss is observed in the comparative
analysis of the power losses and the total IT loads of the modeled data center, as shown
in Figure 2.11. Due to the total number of PDUs in the system and the series loss of the
PDUs represented by the square term in (2.7), the overall power consumption of PDUs
is more than the UPSs and PSUs consumption.

%PPSU =
PLoss
PSU

P rated
rack

(2.14)

%PPDU =
PLoss
PDU

P rated
rack

(2.15)

%PUPS =
PLoss
UPS

P rated
rack

(2.16)

where, %PPSU , %PPDU and %PUPS are the power loss in percentage of the assigned load
to the PSU, PDU, and UPS, respectively. PLoss

PSU , P
Loss
PDU , and PLoss

UPS are the power loss of
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(a) Power losses of a PSU, PDU, and UPS (b) Percentage of losses for PSU, PDU, and UPS

Figure 2.10: Power consumption trend at rack-level.

Figure 2.11: Total power loss of PSUs, PDUs, and UPSs

the PSU, PDU, and UPS in kW, respectively. P rated
rack is the rated power of the servers in

a rack.

2.6 Chapter Summary

This chapter has explained the power consumption models of the major devices in the
three load sections (i.e., IT, cooling and environmental, and IPCS), which are the building
blocks of the data center modular models. The power consumption of the server, local
fans at racks are modeled as a function of CPUs’ utilization, hence the computational
workload of the server. The power consumption models of IT load and IPCS are fitted
with the consolidated server utilization from the Google dataset. The electrical equivalent
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workload duration curve for a rack has obtained to identify the computational capacity
margin at rack-level. The analysis of the power losses of the devices in the IPCS shows
the dominant behavior of the PDUs’ power loss over that of UPS. Finally, the overall
analysis, explanations, and findings of this chapter are related to this thesis contributions
mentioned in “Power consumption modeling” part of Section 1.6 in Chapter 1.



Chapter 3

Stochastic Failure Modeling in
Data center

This chapter explains the potential component-level failures, which interrupt the
servers and other IT loads. The stochastic failure models of the power supply units
(PSUs) and the servers are explained, which are used to develop the reliability indices.
The contents of this chapter are related to the contents of Paper B, Paper C, Paper
D, and Paper H.

3.1 Failures and Interruptions in Operation

It is crucial to distinguish between failures and interruptions in data center operation, es-
pecially for data center’s reliability study. The difference between failure and interruption
in data center operation is explained with an example in [71] as follows:

“If the UPS in the power supply system fails and all the connected loads for the data
center lose power, that would obviously be a “failure.” But what about one 20A circuit
breaker trips and one rack of equipment losing power? Is that a “failure” for the data
center?” [71].

The answer would be negative because the connected racks and the hosted servers
in the racks will lose the power supply due to the tripping of the circuit breaker, which
will not be considered as a failure of the entire data center. It will be rather considered
as a service interruption of the servers in operation. Therefore, a component failure
or outage could result a service interruption (e.g., losing power of rack load for circuit
breaker tripping) or a system failure (e.g., failure of the data center for a failure in the
UPS).

The difference between system failure/outage and service interruption would be more
clear according to the definition of “failure” stated in the Standard 493−2007 [72] as: “the
failure is the loss of power to a power distribution unit.” In general the failure could be
defined as the component level outage. The servers in a rack are considered as failed if the
associated power distribution unit loses the power supply due to circuit breaker tripping,
hence the service of the servers would be interrupted as a consequence. Apart from this
component level outages/failures, there could be other issues like network connectivity

29
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failure, task/job failures, latency issues, which do not necessarily cause server failures
but the service could be interrupted [73, 74, 75]. Therefore, it is important to consider
the consequences of any failures/outages, and interruptions in data center, which hamper
the regular operation of the servers, hence servers’ service interruptions. In other words,
it is needed to identify the “failure state” of the studied system to assess the reliability of
the whole system [76]. In this thesis, the following component level failure/outage that
is associated with the service interruption of the servers is considered.

• Failure in the PSU

• Failure in the servers in operation

• Failure in the PDU

• Failure in the cables

The stochastic failure models of these components are explained in the following
sections of this chapter. The stochastic failure models are further used to analyze the
reliability of the servers in operation and to develop the reliability indices in Chapter 4.
The traditional classification of data centers named “Tier classification” based on the
standardize IPCS designing methods is also explained in this chapter since the reliability
of the studied IPCS is compared with the Tier classified ones.

3.2 Tier Classification of the Data Center

The Uptime Institute is the pioneer for doing research to standardize the design of the
data centers and describe the redundancy of its underlying power supply systems over
many years. According to The Uptime Institute’s classification system, the internal
infrastructure of data centers has evolved through at least four distinct stages in the last
40 years, known as “Tiers of Data center” [71, 77, 78]. As of April 2013, the Uptime
Institute had awarded 236 certifications for built data centers around the world [79]
based on that tier classification. The core objective of the tier classification is to make a
guideline of the design topology that will deliver desired levels of availability as dictated
by the owner’s business case [79], as depicted in Figure 3.1.

The tier classification system evaluates data centers by their capability to allow
maintenance and to withstand a fault in the power supply system. Tier I (the least
reliable) to Tier IV (the most reliable) are defined depending on the redundant and
parallel power supply path to the load sections. The details of the IPCS structure is
analyzed in [71, 79]. The specifications, redundant options, and the required availability
of the IPCS are summarized in Table 3.1 [71, 77, 78].

3.3 Stochastic Failure Model of the PSU

The PSU is the last component in the IPCS according to the infrastructural hierarchy,
as shown in Figure 2.4. According to its working principle, the PSU works as a rectifier
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Figure 3.1: Data center tier classification.

Table 3.1: Overview of the tier classification requirements.

Tier I Tier II Tier III Tier IV
Utility Supply
(Connection point)

Single point Single point Single point Dual

No of backup
Generator

Optional N N+1 2N

Backup system
(UPS)

N N+1 N+1 2N

Maintenance
outage for
maintenance

outage for
maintenance

concurrently
maintainable

fault tolerant

Availability 0.999947 0.9999512 0.9999791 0.9999976

to convert the AC supply from the PDU to DC with adequate voltage level for the server
[18]. A server typically gets connected with a single PSU, however, a PSU could be feeded
by a single PDU or two PDUs to avail a redundant power supply path for the servers,
as shown in Figure 3.2. The racks are modeled containing 10 servers and the servers are
connected with 10 PSUs, according to the design of the IPCS as shown in Figure 3.2. It
is assumed that all the PSUs and servers are identical, meaning that the PSUs have the
same power rating; although the supplied power of the PSUs varies depending on the
computational workloads of the servers.

The 10 PSUs in a rack are assumed to fail independently since they do not have any
electrical connection among them. The stochastic failures of the PSUs at rack-level can
be expressed using the binomial distribution, as given in (3.1), assuming the associated
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Figure 3.2: The PSU connection in the IPCS (a) with single supply (b) with a redundant
supply.

servers are available in operation.

(p+ q)n where, p+ q = 1 (3.1)

where, p and q are the availability and unavailability of a PSU respectively. The total
number of PSUs in the rack is n.

In order to obtain the probability to have r number of failed PSUs in operation
among n the expression (p + q)n is needed to be expanded, as (3.2). The coefficient of
the (r+1)th term in (3.2) represents the combinations of having r failed PSUs or having
(n − r) available PSUs in operation that is

(
n
r

)
. The state probability that r PSUs are

out of operation Pr is formulated as (3.3) .

(p+ q)n =pn + np(n−1)q +
n(n− 1)

2!
p(n−2)q2 (3.2)

+ ....+
n(n− 1)....(n− r + 1)

r!
p(n−r)qr + qn = 1

Pr =
n!

r! (n− r)!
p(n−r)qr (3.3)

=

(
n

r

)
p(n−r)qr

3.3.1 Reliability of a PSU and the Outage Probability Table of
the PSUs in a rack

The statistical failure data of the PSU in a data center operation is neither available in
the literature nor in datasets published by data centers. The data-sheets of the PSU
published by the manufacturers come with the statistical failure data following specific
test methods [80]. Therefore, the statistical data of the PSU along with other devices and
components in the IPCS are taken from IEEE Gold Book, Standard 493-2007 [72], which
is a standard practice guide for industrial applications and includes the reliability related
statistical data of common industrial equipment. The reliability related statistical data
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of the PSU is not explicitly mentioned in the IEEE gold book; given that the working
principle for industrial rectifiers is assumed to be the same as for the PSU. The data found
for industrial rectifiers have been used in this thesis. The availability p and unavailability
q of the PSU are given in (3.4), where, tMTTF = 1960032 hr and tMTTR = 16hr.

p = tMTTF

tMTTF+tMTTR

= 0.999991836934606

q = 1− p

= 8.1630653943× 10−6





(3.4)

The outage probabilities of the PSUs at different stages from the binomial distribu-
tion are calculated using the value of p and q from (3.4) in (3.2), as given in Table 3.2.
The failure probability of four or more PSUs at a time is very low, as given in the Ta-
ble 3.2. A PSU is very reliable in operation with a MTTF of 1960032 hr, and the states
in the binomial distribution in (3.2) consider the probable simultaneous failures of the
PSUs known as common mode or overlapped failures. Therefore, the probability of the
simultaneous failures of PSUs, hence the state probability Pr at a time drops with in-
creasing number of PSUs, as given in Table 3.2. The state probability of the PSUs (Pr)
at rack-level is used further to obtain the LOWP index in Chapter 4.

Table 3.2: Outage probability table with 10 PSUs in a rack.

States
No of failed PSUs

(r)
Probability (Pr)

(%)
Interpretation

0 0 99.991837234460 No failure
1 1 0.008162465693 Any 1 out of 10 failed
2 2 0.000000299841 Any 2 out of 10 failed
3 3 0.000000000007 Any 3 out of 10 failed
4 4 9.3× 10−19 Any 4 out of 10 failed
5 5 9.13× 10−24 Any 5 out of 10 failed
6 6 6.21× 10−29 Any 6 out of 10 failed
7 7 2.90× 10−34 Any 7 out of 10 failed
8 8 8.87× 10−40 Any 8 out of 10 failed
9 9 1.61× 10−45 Any 9 out of 10failed
10 10 1.31× 10−51 All 10 failed
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3.4 Stochastic Failure Model of Servers in Data Cen-

ter

The TTFs and TTRs of servers in data center applications have been published in [31, 30].
The TTFs of the servers are used in a MCS in this thesis to obtain the stochastic model
of the server failures in operation. The state-space models including different Markov
chain models and stochastic Petri nets have been used to assess the reliability of large
systems [81, 82, 83]. The application of Markov chain models for data center component’s
reliability assessment is limited. The Markov model is proposed for a single server in [84],
which is developed based on the failure probability of a specific type of blade-server. The
application of the Markov chain models for modeling the TTF and the failure rate of
servers is limited since it considers a constant failure rate of the component, hence it
avoids the aging effects and the non-linear state-space model or the time-variant state-
space model [85]. The MCS approach is comparatively simpler than Markov models to
model, and able to generate time dependent failure and repair events of a component
based on statistics to analyze the reliability of the system. The data center demands a
very high availability of the servers that is addressed in terms of nines [18]. Thus, a few
failures of the servers in thousands of other events (i.g., repair, upgrade) are important
to be considered to model the TTFs and the server failure rates [85]. The measurement
time of the data set should be long enough to capture enough failures of servers. It is
very rare to obtain a dataset with servers’ failure events measured for a long time period.
The Google trace [31] is one of the few datasets with the TTFs of the servers measured
over a period of 29 days with around 30, 000 failure events on average and its classified in
eight clusters, as shown in Table 3.3. Therefore, the MCS approach is proposed in this
thesis for modeling the stochastic failure rate of the servers operating in the data center.

3.4.1 Monte Carlo Modeling Approach

The TTFs of the servers are measured from eight clusters of one of Google’s data centers
[31]. The servers are identified with a unique machine ID to measure the up times,
downtimes, and upgradation times of each individual server. In this paper, only the
uptime or TTFs are taken into consideration since the failed servers’ repair/ replacement
action is ignored during the observation time. The servers are arranged in clusters and
the MTTF is obtained for each cluster using the given dataset in [31]. The number of
failed servers, total reported failure incidents, and total number of reported events are
given in Table 3.3. The root cause of the failures is not given in the data set. It has been
observed that a small number of servers fail more frequently when operated in a cluster
compared to operated outside a cluster, which means the servers in clusters follow the
Pareto principle [18]. The server failure rate (λ) modeling methodology aims to consider
the random server failure events, without being biased towards a specific group of servers’
failure events. In the MCS, 100, 000 samples of the TTF are randomly chosen for the
servers in clusters so that failure events of all reported servers in the cluster get an equal
probability to be considered. Further, the MTTF of the servers in each cluster is obtained
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Table 3.3: Summary of Cluster-wise Server Failure Events.

Cluster
Total number of
failed servers

Total number of
failures

Total number of
events

A 10001 27777 46219
B 10047 25208 40547
C 13246 31458 50655
D 12577 31077 50042
E 14123 39572 65627
F 12202 30380 49603
G 12796 33770 56828
H 11593 28415 46374

as given in (3.5).

tMTTF (c) =

∑M
j t(j, c)

M
, j∀c (3.5)

where M is the number of samples taken in the MCS, t(j, c) is the time to failure of jth

server in the cth cluster. The jth server is randomly selected in the MCS from the cth

cluster. tMTTF (c) is the MTTF of the servers in the cth cluster that is obtained from the
MCS. The useful lifetime of the servers is considered in this methodology. Therefore, the
failure rate (λ) is assumed constant during the evaluation time. The relation between
the failure rate and the MTTF:

tMTTF =
1

λ
(3.6)

where tMTTF and λ are the mean time to failure and the failure rate of a server, respec-
tively.

3.4.2 Server Failure Modeling in Cluster

A cluster is assumed with N servers in total. Out of N servers ns, (ns < N, ns ∈ N)
servers are assigned as spare in operation considering the uncertainty of the active server
failures during the OLT (TOLT ). The spare servers remain idle without any computational
workloads, while the active servers handle the workloads. It is assumed that the number
of allocated servers is fixed, and that failed servers are not repaired or replaced during
the OLT. All the servers in a cluster are assumed to be identical with a failure rate λs,
and each of the servers is represented by a two-state model (i.e., operating and failed),
as shown in Figure 3.3, where the availability and unavailability of the server are ps and
qs, respectively.

The probability that a server is in operation at time t, [t ≤ T ] is defined as the
availability of the server, ps. The probability that the server is failed during the time
t, [t < T ] is defined as the unavailability of the server, qs. State 0 and State 1 are depicting
the available state and the unavailable state of the server in operation in Figure 3.3. The
transition rates i.e., failure rate (λs) and the repair rate (µs) are considered as constant
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Figure 3.3: Two-state model of the server in operation.

as the paper considers the server is within its useful lifetime [18]. It is assumed that the
server should be either in State 0 or in State 1 during the OLT if the data center operator
decides to connect the server with the system that is given in (3.7)

ps + qs = 1 (3.7)

The probability of the server to be in the State 0 (available state) and in the State 1
(unavailable state) at a short interval dt after a time in operation t are given in (3.8) and
(3.9), respectively.

ps(t+ dt) = ps(t)(1− λsdt) + qs(t)(µsdt)

=⇒ ps(t+ dt)− ps(t)

dt
= −λsps(t) + µsqs(t) (3.8)

qs(t+ dt) = qs(t)(1− µsdt) + ps(t)(λsdt)

=⇒ qs(t+ dt)− qs(t)

dt
= λsps(t)− µsqs(t) (3.9)

As dt → 0

lim
dt→0

ps(t+ dt)− ps(t)

dt
=

dps(t)

dt

lim
dt→0

qs(t+ dt)− qs(t)

dt
=

dqs(t)

dt

thus, (3.8) and (3.9) can be derived as follows:

dps(t)

dt
= −λsps(t) + µsqs(t) (3.10)

dqs(t)

dt
= λsps(t)− µsqs(t) (3.11)

The Laplace transform of the linear differential equations in (3.10), and (3.11) are given
in (3.12), and (3.13), respectively

sps(t)− ps(0) = −λsPs(s) + µsQs(s)

=⇒ Ps(s) =
µs

s+ λs

Qs(s) +
1

s+ λs

ps(0) (3.12)
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where s is the Laplace operator, Ps(s) is the Laplace transform of ps(t), and ps(0) is the
initial value of ps(t). Qs(s) is the Laplace transform of qs(t) and qs(0) is the initial value
of qs(t).

sqs(t)− qs(0) = λsPs(s)− µsqs(t)

=⇒ Qs(s) =
λs

s+ µs

Ps(s) +
1

s+ µs

qs(0) (3.13)

Now, (3.12) and (3.13) can be solved for Ps(s) and Qs(s) as linear simultaneous
equations using substitution method as given in (3.14) and (3.15).

Ps(s) =
µs

λs + µs

[
ps(0) + qs(0)

s

]
+

1

λs + µs

· 1

s+ λs + µs

[λsps(0)− µsqs(0)] (3.14)

Qs(s) =
λs

λs + µs

[
ps(0) + qs(0)

s

]
+

1

λs + µs

· 1

s+ λs + µs

[µsqs(0)− λsqs(0)] (3.15)

The inverse Laplace transform of (3.14) and (3.15) return back to the time domain
equations of ps(t) and qs(t) as given in (3.16) and (3.17), respectively.

ps(t) =
µs

λs + µs

[ps(0) + qs(0)] +
e−(λs+µs)t

λs + µs

[λsps(0)− µsqs(0)] (3.16)

qs(t) =
λs

λs + µs

[ps(0) + qs(0)] +
e−(λs+µs)t

λs + µs

[µsqs(0)− λsps(0)] (3.17)

The server should be initially committed at State 0 as an available server in operation
that implies ps(0) = 1, and qs(0) = 0. According to (3.7), ps(0) + qs(0) = 1, which
simplifies (3.16) and (3.17) as given in (3.18) and (3.19).

ps(t) =
µs

λs + µs

+
λse

−(λs+µs)t

λs + µs

(3.18)

qs(t) =
λs

λs + µs

− λse
−(λs+µs)t

λs + µs

(3.19)

The probabilities ps(t) and qs(t) are the probability of the servers in the available state
and failed state respectively, given that the server is committed in the available state
initially at t = 0.

The repair or replacement of a server during TOLT is neglected that gives the repair
rate µs = 0. The availability ps and the unavailability qs of the server at the end of the
operation lead time T are given in (3.20). The OLT is considered to be short as the
repair/replacement possibility of the failed servers is ignored during T . Therefore, ps and
qs in (3.20) are approximated considering λsT � 1 as given in (3.21).

qs =
λs

λs + µs

− λs

λs + µs

e−(λs+µs)T

⇒ qs = 1− e(−λsT )

ps = 1− qs = e(−λsT )





(3.20)



38 Chapter 3: Stochastic Failure Modeling in Data center

qs ≈ 1− λsT

ps ≈ λsT

}
(3.21)

The failures of servers in a cluster with N servers can be expressed by the binomial
equation, as given in (3.22)

(ps + qs)
N =ps

N +

(
N

1

)
ps

(N−1)qs +

(
N

2

)
ps

(N−2)qs
2 + ...+

(
N

k

)
ps

(N−k)qs
k + ...+ qs

N = 1, (k ≤ N, k �= 0) (3.22)

where, k is the number of available servers after the failure of (N − k) servers among N
at the end of the OLT.

The probability Pr{k} of having k servers available among N is obtained from (3.22),
as given in (3.23)

Pr{k} =

(
N

k

)
pkqN−k =

N !

k! (N − k)!
pkqN−k (3.23)

3.5 Failure model of the PDU

The inherent failure characteristics of the PDUs in the IPCS are not taken into consider-
ation due to lack of available data. Alternatively, the power supply capacity shortage of
the PDUs due to power losses in the IPCS is analyzed to quantify the outage probability
of the supply to the servers at racks. The studied IPCSs with the cable sections specified
in [86] are shown in Figure 3.4. This IPCS corresponds to a Tier I and Tier IV data
center respectively, as shown in Figure 3.1. The power loss in the IPCS increases with
increasing number of servers in the IT load, as explained in Section 2.5.2.

(a) IPCS - 1

(b) IPCS - 2

Figure 3.4: The IPCS architecture with cable specification.

The power consumption of the servers and the power loss in the IPCS-1 (Fig-
ure 3.4(a)) as the number of the server increases is given in Table 3.4. In this case,
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Table 3.4: Power loss as a function of the IT load.

Nr. of
servers

1 2 3 4 5 6 7 8 9 10

Total IT load
(kW)

0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8

Total Loss
(kW)

0.50 0.58 0.68 0.80 0.94 1.10 1.28 1.49 1.71 1.95

% of Loss * 14.70 9.87 8.82 8.80 9.19 9.79 10.49 11.25 12.04 12.85

*% of power loss is the ratio of the total losses to the total delivered power by the UPS
expressed as a percentage.

Figure 3.5: Power supply capacity of a PDU with increasing number of servers in a rack.

it is assumed that all the servers are being utilized at 100% of the capacity. The power
loss of the PDU and the UPS are calculated with an increasing number of servers ac-
cording to (2.7) and (2.8), while 1% of the supplied power is considered as the PSU loss
because it has no idle loss as mentioned in Section 2.3. The cable losses depend on the
load current and cross-section of the cables according to (2.9). To analyze the impact
of the losses with increasing number of servers at rack-level, the percentage of losses is
evaluated as the ratio of total losses of PDU, cable, and PSUs to the total supplied power
by the UPS, referred to Table 3.4. Almost 15% of the delivered power by the UPS is
dissipated in the IPCS to feed a server, while it drops to 8.80% with 4 servers. The power
loss of in the IPCS again starts increasing with the increasing number of servers in the
rack from 5 to 10 as given in Table 3.4. The power loss increases due to the dominant
series loss of the PDU as given in (2.7). The power loss of PDU increases and exceeds the
rated power supply capacity of 8 kW, as shown in Figure 3.5. The PDU in the IPCS-1 in
Figure 3.4(a) is supposed to feed 10 servers but the power supply capacity exceeds the
limit when simultaneously 8 fully utilized servers get connected, as shown in Figure 3.5.
The IT resources are supposed to be fully utilized to maximize the efficiency of the data
center. In this case, 2 servers out of 10 (20% of the computational resource) will be out
of operation due to the lack of power supply from the PDU, as it is shown in Figure 3.5.
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(a) Total power loss and the availability of the
IPCS with the increasing number of servers.

(b) Reliability block diagram of IPCS - 1.

Figure 3.6: The IPCS architecture with cable specification.

The total power losses of the IPSS and the overall system availability (expressed
in a number of nines) with the increasing number of servers in IPCS-1 are shown in
Figure 3.6(a). The availability of the IPCS increases in number of nines from 4.88 to
5.31 when the second server and PSU are added to the rack. The additional server comes
with an additional PSU in the IPCS assuming that the additional PSU is available in
operation. The additional PSU increases a parallel component in the IPCS according to
the reliability block diagram (RBD) shown in Figure 3.6(b), which improves the overall
availability of the IPCS. However, the availability of the IPCS remains at 5.31 further
with additional servers and PSUs since the additional PSUs can not improve the system
performance because of the cable section with relatively low availability among others
(0.99983). The availability of the IPCS components is given in Table 2 in Paper C [18].
The overall availability of the IPCS does not improve after adding the second server in
the system, however, the total power loss increases with increasing number of servers,
as shown in Figure 3.6(a). The IPCS -1 is equivalent to the power supply system of a
Tier I data center, however, the servers has 20% outage probability due to power supply
capacity shortage of the PDU in the IPCS.

The servers outage caused by the capacity shortage of the PDU at rack-level for a
modified structure of IPCS - 1 and IPCS - 2 is also analyzed in Paper C [18].

3.6 Cable Failure Modeling

The MTTF and the MTTR of a 1000 ft industrial cable given in [87] are used to obtain
the availability of the cable in data center application, as given in (3.24). It is assumed
that the cable sections are identical, each cable has uniform failure rate, and the cable
sections do not have cable joints.

ACBL =
tCBL
MTTF

tCBL
MTTF + tCBL

MTTR

(3.24)
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where, tCBL
MTTF and tCBL

MTTR are the MTTF and MTTF of a 1000 ft cable. ACBL is the
availability of the cable in operation.

The cable sections are different in lenght in the analyzed IPCSs in Figur 3.4 (i.e.,
IPCS - 1 and IPCS - 2). The MTTF and the MTTR of a 1000 ft or 304.8m cable are
considered as the reference parameters i.e., trefMTTF and trefMTTR. Let, the length of the
cable is reduced to αm and the factor is x = α

304.8
.

tMTTF (x) =
1

x
· trefMTTF (3.25)

tMTTR(x) = x · trefMTTR (3.26)

where, tMTTF (x) and tMTTR(x) are the MTTF and the MTTR of a cable that has lenght
smaller than 304.8m. The reference MTTF and MTTR of a 304.8m cable are trefMTTF ,
and trefMTTR respectively.

ACBL(x) =
tMTTF (x)

tMTTF (x) + tMTTR(x)
= 1− tMTTR(x)

tMTTF (x) + tMTTR(x)
(3.27)

where, ACBL(x) is the availability of the cable section with a factor x.
Generally, the time to failure of cable is much higher than the repair time
(tMTTF (x) >> tMTTR(x)).
Thus,

ACBL(x) = 1− tMTTR(x)

tMTTF (x)
= 1− x · trefMTTR

1
x
· trefMTTF

= 1− x2 · t
ref
MTTR

trefMTTF

(3.28)

Boundary condition of the design parameter The availability of the selected
cable section ACBL(x) can not be more than unity or 100%. Thus, the boundary condition
to obtain a valid solution from to (3.28) is

ACBL(x) = 1− x2 · t
ref
MTTR

trefMTTF

< 1

=⇒ x >

√
trefMTTF

trefMTTR

(3.29)

3.7 Chapter Summary

This chapter explains the stochastic modeling approaches of the PSUs and servers failure
in data center operation. The stochastic models are further used to obtain the reliability
indices called LOWP and RCRC in Chapter 4. Additionally, the impact of the increasing
power losses in the IPCS with increasing number of servers in the rack is explained in
this chapter. The analysis shows that, the power supply capacity exceeds the rated
power of the PDU due to increasing power loss of the PDU in the IPCS. This causes the
outage of the PDU, hence interruptions in servers. The availability of the cable with a
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specific lenght is also explained at the end of the chapter, which is used in Paper C [18]
to assess the overall availability of the IPCS and compare with the Tier classified data
centers. The availability model of the cables is also used in Paper F [26] and Paper
G [27] to quantify the risk of server outages due to voltage disturbances and faults in
the IPCS. Finally, the analysis and the methodologies of this chapter follows the thesis
contributions in details mentioned in the “Reliability evaluation” part (contributions nr.
1-4, and 6) found in Section 1.6 in Chapter 1.



Chapter 4

Chapter 4: Reliability Indices and
their Application in Operation

This chapter explains the methodology to obtain the reliability indices namely “loss
of workload probability (LOWP)” and “risk of computational resource outage (RCRC)”.
The application of these indices in data center operational planning is also demonstrated
in this chapter. The contents of this chapter are related to Paper D, and Paper H.

4.1 Loss of Workload Probability

The LOWP index addresses the adequacy of the computational resources at rack-level
as the number of required servers per rack to cope with the failures of the PSUs. The
stochastic failure model of the PSUs at rack-level is explained in Section 3.3 that provides
the computational capacity outage table of a rack, as given in Table 3.2. The computa-
tional capacity, hence the number of servers in a rack is combined with the computational
workloads to quantify the probability of loss of workloads.

The computational workloads are converted to an hourly power consumption of the
servers at rack-level, hence the hourly power supplied by the PSUs to the rack. The
equivalent computational workload duration curve of the servers is obtained from the
hourly power consumption of the servers, as shown in Figure 2.9. The probability that
the workload will not be served due to failures of the PSUs is quantified as a reliability
index called loss of workload probability PrLOWP , as given in (4.1).

PrLOWP = P [C ≥ Ctj ] · P [L > Ctj ] =
ptj · tj
100

(4.1)

where C is the cumulative rated power of the available PSUs at the rack
Ctj is the computational rated power of the available PSUs at the rack for hour tj.
L= the IT load demand of the rack.
P [C ≥ Ctj ] is the probability to have less remaining power supply capacity of Ctj than
the cumulative rated power of available PSUs of C due to failures of PSUs at rack.
P [L > Ctj ] is the probability that the IT load demand L will be more than the remaining
power supply capacity Ctj .

43
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(a) Rack configuration. (b) Computational workload duration curve.

Figure 4.1: Rack configuration with workload duration curve for LOWP calculation

ptj is the probability to have a power supply capacity Cj during the observation time tj.
tj is percentage of measurement time with an IT load demand equal or more than the
remaining power supply capacity.

4.1.1 Example of LOWP calculation and Application of LOWP
for Resource Planning at Rack-level

A rack of 10 servers with local fans is supplied by 10 identical PSUs as shown in Fig-
ure 4.1(a). The capacity outage table of the rack considering the failure probabilities
obtained from (3.2) is given in Table 4.1. The electrical equivalent workload demand is
at least 5.4 kW, as shown in the workload duration curve in Figure 4.1(b).

The failure probability of the PSUs from State 4 is negligible compared to the earlier
states, which shows the failure probability of four PSUs at a time is almost negligible
in this use-case, as given in Table 4.1. If three PSUs fail in operation, the remaining
power supply capacity of the rack will stand at 5.6 kW as given in Table 4.1, and the
computational workload demand persists almost 60% of the time at 5.6 kW. Therefore,
the risk of having three failed PSUs at a rack, hence the probability to loss workloads
can be quantified according to (4.1) as given in (4.2)

PrLOWP = P3 ×
60

100
= 3.9162× 10−14% (4.2)

The LOWPs for all the racks in the data center are obtained considering the same
capacity outage table given in Table 4.1, assuming that the PSUs in the racks in the
data center are identical and each of the PSU has the same power rating of 800W. The
racks with a higher workloads for a longer time have more risk to have unsolved/lost
workloads, hence a higher value of LOWP. The racks with higher value of LOWP are
marked with red dots in Figure 4.2(a), while the pink dots close to the horizontal line
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Table 4.1: Capacity outage table of the rack

Nr. of
failed
PSUs

Cumulative
capacity
(kW)

Capacity
outage
(kW)

Capacity
remaining
(kW)

Probability
Pr (%)

0 - 0 8 99.991837234460
1 0.8 0.8 7.2 0.008162465693
2 1.6 1.6 6.4 0.000000299841
3 2.4 2.4 5.6 0.000000000007
4 3.2 3.2 4.8 9.3× 10−19

5 4 4 4 9.13× 10−24

6 4.8 4.8 3.2 6.21× 10−29

7 5.6 5.6 2.4 2.90× 10−34

8 6.4 6.4 1.6 8.87× 10−40

9 7.2 7.2 0.8 1.61× 10−45

10 8 8 0 1.31× 10−51

(a)
(b)

Figure 4.2: (a) The LOWP index of all racks (b) The methodological framework of the
LOWP

in Figure 4.2(a) depict a lower LOWP. Therefore, the LOWP index could be used for
clustering the racks for latency-sensitive workloads.

The sensitive workloads are supposed to be assigned to the servers in racks with low
LOWP. Moreover, the capacity outage table and the workload duration curve, hence the
modeling approach of the LOWP index has a potential use in computational resource
expansion planning since the outage table shows the minimum computational capacity
to solve the base computational workloads. The data center operator could incorporate
this methodology in the data center operational planning to set the expansion plan of
the computational resource (number of servers), so that the overprovisioning of the com-
putation resources could be avoided. The proposed methodological framework to obtain
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Figure 4.3: The methodological framework to obtain the RCRC index.

the LOWP index is given in Figure 4.2(b).

4.2 Risk of Computational Resource Commitment

The servers are scheduled for a specific time according to the expected computational
workloads, while the data center operator allots spare servers considering the intermit-
tency of the computational workloads and potential failures in the system [88]. The risk
of computational resource commitment (RCRC) quantifies the risk of having insufficient
servers during operation considering the OLT (TOLT ) and servers’ failure rate (λs). The
failure rate of servers (λs) in a cluster is obtained using the TTFs of the servers in a
MCS, explained in Section 3.4.1. Further, the RCRC index is obtained from the failure
model of the group of the servers in operation using failure rates from the MCS together
with the selected value of the operational lead time (OLT).

Assuming a cluster with N identical servers in operation and the probability (Pr{k})
of having (k, k < N) servers in operation at any time within the OLT (TOLT ) is given by
(3.23). The data center operators typically allot some spare servers to cope with having
failures in servers during operation. In this case, it is assumed that the operator allots
ns servers at the beginning of the OLT. Therefore, if the number of available servers
k drops below (N − ns) the demanded computational workloads will be satisfied. The
probability of having insufficient servers available in the data center is the operational
risk of committing ns spare servers, as given in (4.3). The methodological framework to
obtain the RCRC index for a group of servers is shown in Figure 4.3

PRCRC =
N−ns−1∑

k=1

Pr{k} = 1−
N∑

k=N−ns

Pr{k} (4.3)

where, PRCRC is the RCRC index: the cumulative probability of Pr with k available
servers at the end of TOLT . ns is the number of committed spare servers among N
servers.

The servers’ failure times from eight clusters published by Google [31] have been ana-
lyzed in Paper H [20]. The servers from cluster A have a failure rate (λ) of 0.0876 failure/day
[20]. The RCRC is obtained assuming 1000 servers in cluster A with TOLT = 1day, as
shown in Figure 4.4(a). The data center operator needs to assign at least 99 servers among
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(a) RCRC (b) Complement of the RCRC

Figure 4.4: The RCRC index analysis for the servers in cluster A

1000 as spare to lower the operational risk below 10%, as depicted in Figure 4.4(a). In
other words, the operator needs to assign 9.9% of the installed computational capacity
of 1000 servers to ensure the QoS of the data center.

The complement of the RCRC (RCRC ′) index measured in number of nines measures
the readiness of the installed capacity in operation, which is related to the SLA of the
data center. The RCRC ′ obtained for 1000 servers in cluster A shows that 122 servers
are required among 1000 in a group to avail the RCRC ′ with 5 nines, as shown in
Figure 4.4(b). There is no benchmark to lower the operational risk below 10% that is
applied in this thesis, however, the minimum availability with 5 nines is the requirement
to be classified as a Tier IV data center. The impact of the λs and the TOLT on the
RCRC index, and on the required number of spare servers is analyzed in Paper H [20].
The required number of spare servers increased with increasing OLT and failure rate, as
explained in Section 4.4 and Section 4.5 in Paper H [20].

4.2.1 Application of the RCRC Index

The increasing number of spare servers in the data center degrades the energy efficiency.
The spare servers consume almost 50% of their rated power without contributing to the
computational resources. Therefore, it is important to analyze the data center operational
boundary considering the RCRC to identify the optimal number of spare servers. The
operational boundary shows the acceptable operational zones for the data center with
varying OLT and failure rate of the servers in the cluster. The operational boundary
of a server in cluster A is shown in Figure 4.5. The yellowish zones have higher RCRC
meaning a higher risk of server outages compared to the bluish zones; the zones with
higher RCRC have higher value of (λs · TOLT ). According to (3.20), the unavailability of
a server qs increases and the availability ps decreases with the high value of the negative
exponential function. Therefore, the operation of the server in cluster A becomes more
risky with increasing failure rate and OLT, as depicted in Figure 4.5. As an example, if
the data center operator decides an OLT of 10 days with failure rate of 10λs, the RCRC



48 Chapter 4: Reliability Indices and their Application in Operation

Figure 4.5: The allowable operative zone of a server with varying OLT and failure rate

is around 100%, while the RCRC drops below 10% with the OLT of 2 day and failure
rate of 2λs, as shown in Figure 4.5. The sensitivity analysis of the OLT and the failure
rate of a server contributes to identify the allowable operative zones. The methodology
of the operative zone selection for a server is developed further to identify the required
number of the spare servers in group of 1000 servers to make a trade-off between risk in
operation and energy consumption of the idle servers, which is explained in Chapter 6.

4.3 Chapter Summary

The methodologies and the modeling approaches of the reliability indices named LOWP
and RCRC are introduced in this chapter. The state-of-the-art related to this indices to
quantify the QoS and the SLA are explained in Paper D [18], and Paper H [20]. The
application of the LOWP index in the data center’s computational resource expansion
planning and the application of the RCRC index in data center operational planning are
also explained in this chapter. The analyses of this chapter are relate with the thesis
contribution number 3,4, and 5 in the “Reliability evaluation” part of Section 1.6.



Chapter 5

Voltage Disturbances in the Power
Conditioning System

This chapter contains the modeling approach of voltage disturbances in the IPCS
that interrupt the PSUs and the servers in operation. The voltage tolerance of the PSUs
is defined according to the recommendation by the Information Technology Industry
Council (ITIC) for the manufacturer of the power supplies. A comparative analysis of
the data center’s PSU and server to withstand the voltage disturbances with an offline
and online UPS is also part of this chapter. Finally the risk of such server outages caused
by L-G fault associated voltage disturbances are quantified in this chapter.

5.1 Voltage Disturbances in Data Center

According to IEEE std. 1159, a voltage dip (also known as voltage sag) is a reduction in
the RMS voltage in the range of 0.1 − 0.9 p.u. (retained) for a duration of half-cycle to
1 minute [89]. Meanwhile, the increase in the RMS voltage level to 1.1− 1.8 p.u. of the
nominal at the fundamental frequency for a duration of half cycle to 1 minute is defined
as a voltage swell. The voltage dip is typically caused by faults, starting equipment
with a large starting current, and energizing of transformers, while the swell in voltage
is caused by the switching of large loads and lines, by energizing capacitor banks, or
by earth faults [90]. Electronic devices like personal computers (PCs), adjustable-speed
drives, and process-control equipment are very sensitive to voltage dips, and swells.

The industrial cable has lower MTTF, hence a lower availability compared to the
other devices in the IPCS, according to Table 2 in Paper C [18]. Therefore, a line-to-
ground (L-G) fault is consider in the failure prone cable section to evaluate the voltage
disturbances in the IPCS and to assess the risk of outages due to the voltage disturbances.

49
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5.2 System Architecture - UPS and IPCS with Load

Modeling

The studied IPCS has three identical load sections; each section is connected with one
phase of the load-side of a three phase UPS, as depicted in Figure 5.2. The IPCS
architecture of a data center typically contains an automatic transfer switch (ATS) to
transfer the loads from the utility power supply to the backup generators. The utility
power supply is considered only with the UPS since the aim is to investigate the impacts
of the voltage disturbances caused by the L-G faults downstream of the UPS. However,
the voltage dips characteristics depend on the mode of UPS operation. The impact of
the voltage dips in the IPCS is analyzed with a 3 phase voltage source model of the UPS
in Paper F [26], and with a double conversion type online UPS in Paper G [27]. The
voltage source mode (Model-1) and the double conversion type online model (Model -2)
are shown in Figure 5.1. The voltage source model of the UPS contains three phase
AC voltage sources that means the IPCS and the IT loads are connected directly with
the utility grid in Model 1. The double conversion online type UPS model contains a
utility-side diode based rectifier and a load-side inverter sharing a double capacitor DC
bus to integrate the batteries, as shown in Figure 5.1(b). The utility-side filter, placed
after the rectifier, contains an inductor (0.47µH) whereas the load-side filter uses an LC
combination (10mH and 200µF).

(a) Model 1

(b) Model 2

Figure 5.1: (a) Voltage source model of the UPS. (b) Double conversion type online UPS
model.

Apart from the UPS, the studied structure of the IPCS with other components i.e.,
PDUs, PSUs, CBs, cable sections with cross-section and length, and servers in racks
are shown in Figure 5.2. The PSU rectifies the AC supply from the PDU to a number
of different DC voltages. The PSU normally uses switch-mode power supply (SMPS)
as is typical for electronic equipment [6]. The SMPS contains a diode bridge rectifier
that converts AC to DC and supplies the DC power to a large filter capacitor. The
bypass switch is used in parallel with an online type UPS to transfer the IT loads to the
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Figure 5.2: Studied IPCS architecture.

utility supply to energize initially without the UPS [27]. The bypass switch also acts
like a backup protection in case of failures of the UPS. However, voltage transients are
observed in the output voltage of the UPS during the switching of the bypass switch, as
shown in Figure 5.3. The voltage spikes at the output of the UPS in Model 2 are observed
when the UPS connects with the IPCS (t=0.3 s). Moreover, the output voltages of the
UPS are heavily distorted during the online mode in Model 2, as shown in Figure 5.3.
The output impedance of the UPS in Model 2 is much higher than the grid impedance.
In the simulation, the double conversion UPS model is used without any voltage and
current control loop, and the filer capacitors in the UPS are initially considered to be
fully charged that creates the spike in the phase voltages. The performance of Model 1
and Model 2 of the UPS are analyzed in terms of voltage disturbances in Section 5.4.1.

The racks with the servers are assumed to be equally distributed among the three
phases with three feeder cables (10m, 30m, and 60m), as shown in Figure 5.2. A
simplified network model of the loads in a phase is shown in Figure 5.4. L-G faults at
two locations in the 10m cable with the load bus, shown in Figure 5.4(a) are simulated
in MATLAB R© Simulink. The 10m cable with the load bus is selected to analyze the
impact of a L-G fault because any fault in upstream networks will activate the area CB or
the 3 phase CB. The servers in a phase will be out of operation if the area CB trips, hence
the power supply of a phase interrupts. The tripping of the 3-phase CB will result in a
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Figure 5.3: The time response of the UPS output bus voltages.

total power interruption. The point of common coupling (PCC) for voltage disturbances
will be the cable junction close to the 3-phase CB for tripping of the area CB, which will
propagate further up to the UPS output bus. In case of tripping the 3 phase CB the
output bus of the UPS is the PCC for having voltage disturbances. The control system
of the UPS must handle the voltage disturbances at its output bus.

The “Load” block contains the PDU, PSUs and the servers in the rack, as shown
in Figure 5.4(b). The detail models of the PDU and PSU are not available in the
literature. Therefore, the power losses of these devices are added with the servers’ power
consumption to obtain the load impedance. The load load impedance is obtained using
(5.1). The servers are assumed to fully utilized, hence consume 800W of power per
server. The power factor at the load bus is assumed to be unity since low-power devices
like the PDU and the PSU use power factor correction circuit.

Zload =
V 2

Pracks + PPSUs + PPDU

(5.1)

where Pracks, PPSUs, and PPDU represents the power consumption of the servers, PSUs,
and PDU, respectively. The supplied voltage of 230V is denoted by V ; Zload is the
equivalent load impedance.

5.3 Voltage - Tolerance Guideline for Power Supply

Systems

The first voltage-tolerance curve for the power supply unit for persona computers was
introduced by the Computer Business Equipment Manufacturers Association (CBEMA)
for mainframe computers [91] and later was introduced by the IEEE as the guideline for
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Figure 5.4: (a) Model of the load section connected with 10m feeder cable (b) Structure
details of the Load block.

Table 5.1: ITIC Guideline for power supplies under over voltages.

Percentage in nominal RMS voltage 500 200 14 120 110
Duration in (60Hz) cycles 0.01 0.40 0.60 1-80 80-10000

the power supply unit manufacturers [92]. The CBEMA curve has been further modified
by the ITIC since power quality monitoring has shown a large number of voltage sags
under the CBEMA curve [90, 93]. The CBEMA and ITIC voltage - tolerance curves are
given in Figure 5.5. The sensitivity of the power supply to the voltage dip is assessed
in terms of the voltage dip magnitude and duration for both cases [28, 90, 94, 95],
therefore, the ITIC curve gives stronger requirements than the CBEMA curve, as depicted
in Figure 5.5. The experimental results discussed in [28, 90, 94, 95] showed that voltage
dips with residual voltage 50−70% of 230V during 30−170ms results in PCs restarting
or rebooting. The same voltage tolerance level of a personal computer power supply unit
is consider for the PSUs in the data center.

The ITIC guideline for overvoltage is summarized in Table I. Voltage above 120% of
the nominal for less than one half cycle also causes outages for the power supplies, hence
power supply interruptions for the sensitive devices like servers [28].

5.4 Analysis of Voltage Disturbances in the IPCS

The voltage disturbances (i.e., voltage dip and voltage swell) are analyzed due to a L-G
fault in the IPCS shown in Figure 5.2. The 10m single-phase cable (black color) with
a resistance of 1.7 × 10−3Ω/m and inductance 190 × 10−9H/m is selected to have the
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Figure 5.5: The CBEMA and ITIC voltage - tolerance curve

fault. The single phase 10m cable is most sensitive to have fault and to have voltage
disturbances at the load buses as a consequence since the voltage disturbance will appear
in the output bus of the UPS due to the fault in the upstream network, as explained in
Section 5.2. Meanwhile, a phase fault (L-G fault) in the 10m cable between the Row and
Rack CB is isolated by these CBs, however, creates voltage disturbances in the PCC in
Figure 5.4(a). The voltage disturbance further propagates to the neighboring load buses
that causes PSU outages, hence power supply interruptions for the servers. The voltage
disturbances are analyzed in the load buses caused by the L-G fault at both ends of the
10m cable, represented by Case 1 and Case 2 respectively, as shown in Figure 5.4(a).
Regarding the fault clearing time of the CBs it is chosen 100ms, which is typical response
time of industrial CBs [96, 97].

5.4.1 Voltage Dips in the Load Bus with Two UPS Models

The voltage dips due to L-G fault at two different locations in the 10m feeder cable
are analyzed with two different models of UPS (i.e., Model-1 and Model-2), as shown
in Figre 5.1. The voltage dip at the PCC in Figure 5.4(a) for a L-G fault in the load
bus (Case 1) with Model-1 and Model-2 of the UPS are shown in Figure 5.6(a) and
Figure 5.6(b) respectively. The residual voltage at the PCC during with Model-2 of the
UPS is 1.3% of the nominal voltage, while the voltage rises to 125% of the nominal after
clearing the fault in Case 1, as shown in Figure 5.6(b). Meanwhile, the RMS voltage at
the PCC drops to 92% of the nominal voltage for the same L-G fault at the load bus in
Case 2 with Model-1 of the UPS, as depicted in Figure 5.6(a). The voltage drops more
with Model-2 compared to the voltage dips with Model-1 of the UPS for a fault 10m
away from the load bus in Case 2, as shown in Figure 5.7. The magnitude of the voltage
dip at the PCC does not vary much depending on the fault location with the double
conversion online UPS in Model-2, due to the current limitation of the load-side inverter
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(a) Voltage dip with Model 1 of the UPS. (b) Voltage dip with Model 2 of the UPS

Figure 5.6: Voltage dip at the PCC with a L-G fault at load bus in Case 1.

in the UPS model, as shown in Figure 5.1(b). The output currents of Model-2 in Case 1
and Case 2 are shown in Figure 5.8. The fault currents from the UPS in both cases are
noticeably lower in Model-2 than the typical fault current that is tens of kilo ampere as it
shown in the output currents of the UPS in Figure 5.8. The MOSFET-based inverter in
Model-2 limits the fault current in these cases, which results in a voltage dip at the PCC.
Therefore, the voltages at the PCC are dropped around 1.3% of the nominal voltage in
both cases, as shown in Figure 5.6(b) and Figure 5.7(b). Moreover, the RMS voltage at
the PCC experiences voltage swells after clearing the fault in Case 1 and Case 2 with
Model-2 of the UPS, as shown in Figure 5.6(b) and Figure 5.7(b). The voltage swells
are not found in the RMS voltages at the PCC after clearing the fault with Model-1.
The loads at the PCC drop to two third after clearing the fault and the load-side filters
with the online type UPS takes time to adjust load current through the PCC in Model-2.
Therefore, the voltage swells are observed at the PCC in Case 1 and Case 2 after clearing
the fault with Model-2 of the UPS.

The double conversion type online UPS in Model-2 limits the fault current through
the load-side inverter that causes larger dips in the load voltages at the PCC, which is
more realistic for faults in the IPCS. The voltage source model of the UPS in Model-1
reacts like a strong grid with the IPCS. Therefore, it nullifies the effects of the L-G fault,
hence the voltage dips at the PCC by providing a huge fault current. The online type
UPS, on the other side, is the most applicable back-up solution for short interruptions in
data center. Therefore, Model-2 of UPS (double conversion type online UPS model) is
further used in this thesis to analyze the impact of the L-G faults on server operations.
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(a) Voltage dip with Model 1 of UPS (b) Voltage dip with Model 2 of UPS

Figure 5.7: Voltage dip at the PCC with a L-G fault at load bus in Case 2.

Figure 5.8: Time domain waveform of the inverter currents (a) fault location at the PCC
(Case 1) (b) fault location at load bus (Case 2).

5.4.2 Propagation of Voltage Disturbances from the PCC

The L-G fault is assumed to be occur in the 10m cable at the load bus (Case 1 ) and
10m away from the load bus (Case 2), as shown in Figure 5.4(a). The L-G fault causes
voltage disturbances at the PCC like voltage dips before fault clearing and voltage swells
after clearing the fault. Additionally, the voltage dip and swell also propagates to healthy
neighboring branches connected with 2m and 8m cables.

The propagated voltage dips at the health branches with the 2m and 8m cables
for the fault in Case 1 and Case 2 are shown in Figure 5.9(a,c) and Figure 5.10(a,c),
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respectively. The load currents in these branches drop to zero because of the inverter
current limitation, as shown in Figure 5.9(b,d) and Figure 5.10(b,d). The output-side
inverter in Model 2 of the UPS has lower current carrying capacity compared to the
fault current, as explained in Section 5.4.1. Thus, the load current drops to almost
zero in the healthy neighboring branches with 2m and 8m cables before the CBs isolate
the faulted cable and connected loads from the IPCS, as shown in Figure 5.9(b,d) and
Figure 5.10(b,d).

Figure 5.9: Voltage and current at neighboring load buses for fault at the load bus (Case
1) (a) RMS load voltage with 2m cable (b) load current with 2m cable (c) RMS load
voltage with 8m cable (d) load current with 8m cable

The magnitude of the voltage dips at the neighboring load buses are similar to the
magnitude at the PCC; because the cable between the load buses and the PCC are
shorter than other cable section in the IPCS. According to the ITIC voltage tolerance
guideline shown in Figure 5.5, the PSUs connected with the neighboring load branches
will be interrupted, hence the associated servers will lose power supply.

The servers connected to the 30m and 60m feeder cables in Figure 5.2 also experience
voltage disturbances due to L-G fault in the 10m feeder cable that has been analyzed in
this section. The loads of the feeder cables are equally distributed among the three phases
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Figure 5.10: Voltage and current at neighboring load buses for fault at the PCC (Case
2) (a) RMS load voltage with 2m cable (b) load current with 2m cable (c) RMS load
voltage with 8m cable (d) load current with 8m cable

of the UPS (i.e., Phase A with 10m feeder, Phase B with 30m feeder, and Phase C with
60m feeder). The voltage impact of voltage disturbances initiated due to a L-G fault
in any phase on the servers connected with other phases is analyzed in Paper G [27].
The analysis is summarized in Table 5.2. The voltage dips in the load buses connected
with 10m and 60m feeder cable for having an L-G fault in the load section of the 30m
feeder cable do not violate the ITIC guideline, as given in Table 5.2. Additionally, the
magnitude of the voltage in the load buses with 60m feeder cable are less than the load
voltages with 10m cable. The similar level of voltage dips in the load buses are observed
in the load sections with 10m and 30m feeder cable for the L-G fault in the load section
with 60m feeder cable.

Moreover, the magnitude of the swell in the load bus voltages with 10m feeder cable
are more than 123% for the faults at 30m and 60m feeder cable, which are highlighted
in Table 5.2. The highlighted load voltages with 10m cable violate the ITIC voltage-
tolerance guideline. Therefore, it seems that the load section close to the fault location,
hence connected with shorter feeder cable (10m in these cases) have experienced higher
voltage swells in the load buses. Meanwhile, the voltage dips at the load buses do not
violate the ITIC guideline for these use-cases.
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5.4.3 Risk Assessment of Server Outage

The cables are assumed to have uniform failure rate, as mentioned in Section 3.6. The
failure rate of the 10m cable connected between the Row and Rack CBs is given in (5.2).

λ10m =
λstd × 10

304.8
=

0.03204× 10

304.8
= 1.05× 10−3failure/yr (5.2)

where, λstd is the failure rate of a cable per 1000 ft or 304.8m, and λ10m denotes the
failure rate of the 10m cable.

The servers connected with the faulted and the neighboring load branches interrupt
due to the L-G fault and the voltage dips at the load buses, respectively. The servers
with the load section closest to the fault location also interrupt due to voltage swells.
Therefore, the voltage disturbances (i.e., voltage dips and swells) caused by L-G fault in
any of the six 10m cable with the load bus in the Figure 5.2 violate the ITIC voltage-
tolerance guideline for PSUs, hence interrupt the servers. The associated risk of server
outages due to the fault is quantified as given in (5.3). It can be explained further as the
data center has a risk to lose 2

3
of the installed servers (60 out of 90 servers) for 6.3×10−3

failures per year.

Rout = Nl × λ10m = 6.3× 10−3failure/yr (5.3)

where, Nl represents the number of fault critical cables that are connected with the load
buses. Rout is the risk of server outages due to fault in the cable with failure rate of λ10m.

The total downtime of 60 servers in the data center is 90.72min/yr or 3.78 hr/yr as
given in (5.4), considering the downtime per failure of a server is 240min/yr [98]. The
availability of the data center is three nines according to (5.5), which is less than the
minimum required availability of a Tier I data center according to the Tier classification,
as explained in Section 3.2.

Tdown = 240× 6.3× 10−3 × 60 = 90.72min/yr (5.4)

A =
Tup

Tup + Tdown

= 0.9995 = 3 nines (5.5)

5.5 Chapter Summary

The impact of the L-G faults and associated voltage disturbances (i.e., voltage dip and
voltage swell) in the IPCS on the server outages is explained in this chapter. The analysis
shows that a L-G fault and the related voltage disturbances at the load buses are one
of the potential threat in data center operation that could interrupt 2/3 of the installed
servers, hence the server availability degrades considering the voltage disturbances com-
pared to the requirement of a Tier I classified data center. Additionally, the online UPS
that is commonly used in data center as backup supply for the IT loads contains load-
side inverters with fault current limitation. The voltage drops to almost zero due to the
current limitation of the inverter at the PCC, which increases the number of interrupted
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servers in operation. The contents and analyses of this chapter is related with the the-
sis contribution number 7 mentioned in “Reliability evaluation” part in Section 1.6 of
Chapter 1.
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Chapter 6

Trade-off Between Energy
Efficiency and Reliability

This chapter explains the application of the allowable operation zones of the group of
servers to identify the required number of spare servers, while making a trade-off between
energy-efficiency and reliability in data center operation.

6.1 Number of Spare Servers and Energy Consump-

tion

The risk of computational resource commitment (RCRC) quantifies the risk of data
center operation considering the failures of the servers together with the operational lead
time (OLT). The OLT varies depending on various conditions (i.e., available spare-parts,
maintenance personnel, etc.) in data center operation. The failure rate of the servers in
cluster also varies depending on the servers’ aging, overprovisioning of server, unbalanced
distribution of workloads among servers, and thermal management issues that causes
failures in servers. The methodology to identify the secure zones of a server in operation
is explained using RCRC in Section 4.2.1. In regular clusters in data center hundreds of
servers are deployed to handle the workloads. The allowable operation zones are needed
to be identified for a group of servers with changing failure rate (λs) and OLT (TOLT )
rather than a single one. The criterion is set to lower the RCRC below 10% and RCRC ′

with 5 nines for selecting the allowable operation zone. Here, the complement of the
RCRC is addressed by the RCRC ′. Additionally, the operation zones are addressed with
the required number of spare servers and the power consumption of the spare servers.
The number of spare servers and the power consumed by the spare servers would help
the operator to keep a balance between the energy efficiency and service reliability by
lowering the risk in operation.

63
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6.2 Allowable Operation Zone Selection for a Group

of Servers

The allowable operation zone of a servers in a cluster is obtained considering the unavail-
ability qs, hence the risk of servers’ outages in operation with varying failure rate and
OLT, as shown in Figure 4.5. Lets assume 1000 identical servers are in a group. The
failure rate of server (λs) is considered for cluster A, given in Table 2 in Paper H [35].
The risk of outages of the servers in a group with different combinations of OLT and
failure rate is defined by the RCRC according to (4.3). The required number of spare
servers in each operation zone is obtained by the RCRC below 10%, and the RCRC ′ with
five nines. The method to quantify the RCRC and RCRC ′ with the required number of
spare servers to have the desired RCRC and RCRC ′ is shown in Figure 6.1.

Figure 6.1: Methodology to obtain the required number of spare servers to lower the
operational risk.

The allowable operation zones and the associated required number of servers to lower
the RCRC below 10% is shown in Figure 6.2(a). The changes in the color from blue to
yellow of the operation zones depict the propagation of operation set point with less
number of spare servers (bluish zones) towards higher number of spare servers (yellowish
zones) to lower the RCRC below 10%. The required number of spare servers increases
with the higher order combination of failure rate and TOLT , as shown in Figure 6.2(a). The
increasing value of the failure rate and the TOLT degrades the availability of a server, as
explained in Section 4.2.1. Therefore, the service availability of a group of 1000 identical
servers with the same failure rate also degrades with the increasing value of the λs ·TOLT ,
which demands more spare servers to deploy as standby/idle to lower the RCRC below
10%, according to (3.23). As an example, the required number of spare servers increases
from 9.5% of the total servers (95 out of 1000) to 56.6% when failure rate is scaled up
from λs to 10λs. Similarly, the required number of spare servers increases from 9.5%
to 56.6% of the total number of servers when the TOLT increases 10 times, as shown in
Figure 6.2(a). The demand of the spare servers (to have the RCRC below 10%) increases
around 100% of the total server (999 among 1000) when both the failure rate and OLT
are increased to 8 times . The white cells in Figure 6.2(a) shows the operation zones
where the available servers among 1000 in the group will not be enough to handle the
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(a) (b)

Figure 6.2: Number of spare servers needed among 1000 in cluster A with different com-
bination of OLT and failure rate to ensure (a) the RCRC below 10% (b) the complement
of the RCRC with five nines.

computational workloads.
The allowable operation zones and corresponding required number of spare servers

are identified to avail the complement of the RCRC with 5 nines, as shown in Fig-
ure 6.2(b). The required number of the spare servers increases when the operation zones
are moved towards left of the x-axis and up of the y-axis, as depicted in Figure 6.2(b).

6.3 Power Consumption of the Spare Servers

The energy efficient operation is one of the data center operational challenges, as ex-
plained in Section 1.2. At the same side, it is also necessary to ensure QoS and SLA,
hence to lower the operational risk due to the server outages. The scheduling approach
of the spare servers among the installed computational capacity, explained in Section 6.2
shows it demands more spare servers in the system to lower the operational risk in terms
of RCRC. However, the increasing number of spare servers in the system degrades the
energy efficiency, according to (6.1). The idle servers consumes almost 50% of the server’s
rated power [6], hence η degrades with the increasing number of spare servers in the sys-
tem. Therefore, the data center operators need to make a trade-off between the energy
consumption and operational risk to schedule the spare servers.

η =
POP

POP + PSpare

(6.1)

where the power of the servers in operation is POP , and the power of the spare servers is
PSpare. The efficiency of the system is η.

The same servers in cluster A are taken into consideration to illustrate the ratio
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(a) (b)

Figure 6.3: The percentage of total power consumed by the required spare servers in
cluster A to ensure (a) the RCRC below 10% (b) the availability with 5 nines

of the idle servers’ power consumption to the total power consumption of the installed
servers in the allowable operation zones, shown in Figure 6.3. The scheduled spare servers’
consumption varies between 5% to 45% to lower the RCRC below 10% of the total power
of the installed servers, as shown in Figure 6.3(a). The power consumption of the spare
servers to the total power consumption to ensure the availability with 5 nines is also
illustrated in Figure 6.3(b). The color mapping of the spare servers’ power consumption
considering RCRC and complement of RCRC could be an useful tool for the data center
operator to make a trade-off between energy efficiency and reliability of the servers in
the data center operation.

6.4 Chapter Summary

This chapter explains the methodology to identify the secure operation zones with varying
OLT and failure rate of the servers, and the given examples illustrates the trade-off
between energy consumed by the spare servers to lower the risk in operation. The color
map can be used by the operators to set an operation zone with the required number
of spare servers in operation while ensuring an adequate QoS and committed SLA. The
analyses and examples of this chapter are related to the thesis contribution mentioned
in “A trade-off between energy and reliability” part in Section 1.6 of Chapter 1.



Chapter 7

Societal Impacts of The Research

“Social-impact partnerships address our moral responsibilities to ensure
that social programs actually improve recipients’ lives, and to do so in a
fiscally prudent manner.” Todd Christopher Young, American attorney
and United States senator.1

In the light of the statement by Mr. Young, it could be assumed that the actions of
the data center operators should bring about some positive changes to society, apart
from ensuring financial benefits. The research outcomes of this thesis include data center
operational tools to ease the operation and reduce energy costs of the datacenter and
hence contribute to the financial benefits. Furthermore, the research also has some non-
financial impacts on society. The social impacts and expected changes from the societal
aspects through this research are explained in this chapter.

7.1 Societal Impacts of Research

The interests of national governments and other academic research funders have shifted
away from the field of nuclear physics after the complicated period of World War II [99].
In the report “Science, the endless frontier” Vannevar Bush, the Chief of the U.S. office
of Scientific Research and Development during World War II, argues that the publicly
funded research would always pay off for society [100]. Later Bush’s philosophy became
visible as the government and other academic research funders started prioritizing the
socio-economic outcomes and impacts of the research from 1990s, which helped to develop
the “Performance-based research funding system” in the UK and later in the European
Union as a framework to measure the economic returns from the research [101]. Today,
there is an increasing demand from governments and other funders of academic research
projects to justify the research expenditure by showing economic benefits, policy uptake,
improved health and community outcomes, industry application and/or positive envi-
ronmental effects [102], which is broadly defined by the term “social impact of academic
research” described as a Kuhnian revolution for evaluation criteria [103].

1https://www.azquotes.com/quote/1216295
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The “impact factor” of an academic publication was suggested as an index to assess
the social impact of the research. The impact frequency is basically the frequency of
the citations to an earlier academic publication by later academic publications [104]. A
broader overview about the social impact of the academic research assessment frame-
works is explained in [105], where the authors emphasize the inclusion of non-academic
organization(s) or actor(s) outside the university to assess the impacts of the research as
the social impacts need to be demonstrated rather than assumed. It is generally agreed
that academic impact is reflected in citation analysis, whereas “measuring societal im-
pact is problematic” [106]. The evaluation method and/or the index to assess the social
impacts of research is still a debate in the scientific community [107], therefore an at-
tempt has been made to describe the impacts of this thesis outcomes towards achieving
the “Sustainable development goals (SDGs)” as described by the United Nations2. The
SDGs are taken into consideration assuming that the contributions of this research stand
for the goals in a positive way.

7.2 Sustainable Development Goals

A set of action plans ware developed and agreed upon by 178 countries in June 1992 at the
“Earth Summit” in Rio de Janeiro, Brazil to build a global partnership for sustainable
development to improve human lives and protect the environment [108]. Further, the
action plans originating from the “Earth Summit” were stressed and commonly agreed
upon by all the member countries of the United Nations in 2015 and became known as
“Sustainable development goals (SDGs)”. The 17 targets in the SDGs were developed
with commitment to ensure improved health and education facility, reduce inequality, and
spur economic growth with a shared target to save the planet for peace and prosperity
of all people [109].

This thesis potentially contributes to some of the SDGs: directly for some of them,
indirectly for others. The indirect contributions are as innovations in data center tech-
nology ease the process towards achieving the goals. Therefore, a distinction is made
between the direct and indirect impacts of data center technology on SDGs.

7.2.1 Directly Impacted Sustainable Development Goals

• Goal 7: Ensure access to affordable, reliable, sustainable and modern energy for all
Under this SDG, the targets are set to ensure the access to affordable, reliable,
energy efficient and clean energy and related services to everyone by 20303. The
research outcomes broadly explain the importance and necessity to operate the
data center energy-efficiently and reliably, which also will likely lead to less power
losses, and less power consumption. Therefore, research like the one in this thesis
could help governments to achieve the SDG by 2030.

2https://sdgs.un.org/goals
3https://sdgs.un.org/goals/goal7
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• Goal 9: Build resilient infrastructure, promote inclusive and sustainable industri-
alization and foster innovation
SDG:9 has eight specific targets to affiliate industries and other enterprises to de-
velop quality, reliable, sustainable, and resilient infrastructure by 20304. The data
center industry is one of the largest business areas nowadays that is growing fast
with increasing energy demand. The outcome of this thesis could bring positive
changes in the design stage of the data center to ensure reliable operation and
better services for the users.

• Goal 11: Make cities and human settlements inclusive, safe, resilient and sustain-
able
In this thesis the proposed methodologies and the analysis have focused on data
center operation. However, the analysis could be utilized by local authorities and
city planners to allocate the space for new data centers, considering both energy
demand and reliable operation. Regarding this, the thesis could impact positively
towards achieving the SDG:11 by ensuring a safe, resilient, and sustainable settle-
ment of the data centers in cities.

7.2.2 Indirectly Impacted Sustainable Development Goals

• Goal 3: Ensure healthy lives and promote well-being for all at all ages
The research outcomes will affiliate the data center business and will enhance the
applications of the data centers in society. In this regards, application of data
center services in different research fields (e.g., health care, medicine, and disease
studies) could have a large impact. Research on health care and medicine needs
large amounts of data to process and store. Under SDG:3 the member countries
of the United Nations have set 13 targets, i.e. develop the ability to fight against
epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and com-
bat hepatitis, water-borne diseases and other communicable diseases, reduce the
mortality rate and the number of global deaths and injuries from road traffic ac-
cidents, and broadly to develop a framework under World Health Organization to
ensure better healthcare for all of mankind 5. The targets of SDG:3 demand large
amounts of sensitive data to be processed and stored by ensuring adequate security,
which could be offered by different data center services like cloud storage, cloud
computing, blockchain technology etc. Thus, by affiliating the data center business
through this research indirectly it impacts positively towards achieving SDG:3.

• Goal 4: Ensure inclusive and equitable quality education and promote lifelong learn-
ing opportunities for all
This SDG with its 10 targets have been proposed to build sustainable and effective
learning environments for all, ensuring human rights, gender equality, promotion of
a culture of peace and non-violence, global citizenship and appreciation of cultural

4https://sdgs.un.org/goals/goal9
5https://sdgs.un.org/goals/goal3
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diversity and of culture’s contribution to sustainable development6. The Covid-19
pandemic has shown the world the necessary of integration of the digital technolo-
gies into education because different types of digital technologies can offer freedom,
flexibility, and fairness in the education system so that anyone has the same op-
portunity. The digital services can be offered in a more reliable and affordable way
by integrating the educational services with the data center services.

• Goal 8: Promote sustained, inclusive and sustainable economic growth, full and
productive employment and decent work for all
The methodologies and analysis in this thesis help to reduce the operation costs of
data centers by reducing the energy consumption of the data center, and ease to
handle the challenges for the data center operator to maintain the QoS. Therefore,
the research outcomes broadly affiliats the growth in data center business by ensur-
ing financial benefits for the data center operators, which also enables creating new
employments in the data center industry that align with the targets of SDG:87.

• Goal 13: Take urgent action to combat climate change and its impacts
Among the five targets in SDG:138, the most emphasized target is to integrate
climate change measures into national policies, strategies and planning. Most of
the member countries of the United Nations have already set a target to reduce
carbon emission. The research outcomes of this work contribute to less energy
consumption in the data center, hence less carbon emission. Thus, the expenditure
for the carbon footprint certification will be reduced for data center operation.

The methodologies and analysis part of research on data centers have social, economic,
and environmental impacts that have been addressed by the SDGs. However, data center
technologies also have a dark side that could impact negatively on society. Although the
data center provides affordable services to different social sectors like education, finance,
health, etc.; it also affiliates unethical activities that hamper the social harmony. The
applications of data center technologies in social media enterprises are crucial. There is
no denial for the negative impacts of social media on our social life. Additionally, crim-
inal activities can be organized based on the data center technology like “unauthorized
crypto-mining” where the research outcomes could be used to design a data center for
crypto-mining. With the essence of the discussion in this chapter, it could be concluded
that the research outcomes of this thesis have the promise to bring positive changes to
society though data center services. However, it is not possible to deny the possibility to
utilize the research outcomes against the social norms and morals. Thus, the data center
operator and the regulatory authorities should assure the application of the research for
the betterment of the society.

6https://sdgs.un.org/goals/goal4
7https://sdgs.un.org/goals/goal8



Chapter 8

Conclusion, Discussion,
Recommendation & Future Work

This chapter presents the findings, related discussions, recommendations, and fu-
ture work derived from this thesis. The contents of this chapter are divided into three
parts corresponding to the thesis contributions as presented in Section 1.6 i.e., power
consumption modeling, reliability evaluation, and the trade-off between energy efficiency
and reliability.

8.1 Power consumption modeling

8.1.1 Findings

The power consumption models of the major load sections of a data center i.e., the
information technology (IT) load, cooling and environmental load, and the internal power
conditioning system (IPCS) are reviewed inPaper E [17]. The literature review identifies
that the availability of the model parameters and variables is more important than the
accuracy of the power consumption models. It is also found from the literature review
that the reliability assessment methodologies for data center operational research often
depend on the power consumption models of the load sections.

A modular modeling approach is proposed in this thesis to model the power con-
sumption of the equipment and the devices in the load sections. The modeling approach
is able to consider the dynamic structure of the data center architecture since the power
consumption models of the equipment are proposed as a function of CPU utilization. The
CPUs, hence the servers are the main functional component of the IT load section. The
power consumption of the supporting load sections i.e., the cooling and environmental
loads, and the IPCS also increases with the increasing power consumption of the IT load
section.

The power consumed by the devices in the IPCS is considered as power loss in this
thesis. The power distribution units (PDUs) in the IPCS consume more power than the
uninterrupted power supplies (UPSs) and power supply units (PSUs) at the aggregated
level, which can also cause degradation of the data center reliability. It is found that the
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increasing power losses of the PDU with an increasing number of servers could cause a
shortage of power supply capacity of the PDU at the rack-level. Due to the shortage of
the power supply capacity 20% servers in the associated rack could be interrupted. The
increasing power supply capacity of the PDUs could not help in this case since the PDU
has an idle power consumption, which depends on the rated power of the PDU according
to (2.7).

8.1.2 Discussions

The power consumption of the devices (i.e., UPS, PDU, and PSU) in the IPCS is consid-
ered as the power loss of the IPCS. The power losses of the cooling and environmental
loads and power consumption of other supporting load sections in the data center are
not considered in this thesis. The scope of this thesis is to focus on the IPCS and the IT
loads to reveal the facts and causes of server interruptions, hence to identify the causes
of having degraded the service availability related to the internal power system. There-
fore, the energy consumption and the power losses of the cooling and environmental load
section are not considered. However, inclusion of these power losses in the data center
other that IPCS will degrade the system performance in term of energy efficiency.

The modular modeling approach considers the central processing unit’s (CPU’s)
utilization to model the utilization of the entire server unit as a function of the compu-
tational workloads. The power consumption of the CPUs in the servers is the dominant
(32% of the total consumption) and depends on computational workloads. The power
consumption of the other components in a server like memory, hard disk, network equip-
ment, etc. is mostly independent of the workloads and consumes a few percentage of the
total server power. The power consumption of these components is assumed to be inde-
pendent of the computational workloads and a part of the idle power consumption of the
server (50% of the rated server power consumption). Additional questions might arise
here about removing the idle servers from the system to increase the energy efficiency.
Some techniques are proposed in literature to reduce the idle power consumption of the
servers by changing the supplied voltage and frequency or by removing the idle servers
from the system. However, the findings of Paper H [20] explain that it needs a certain
number of spare servers to lower the operational risk in data center.

8.1.3 Recommendations and Future works

Based on the power consumption modeling analysis for the data centers, the recommen-
dation is to select the suitable power consumption models of the equipment depending
on the application. The availability of the power consumption model parameters and
variables should be prioritized more than the accuracy for applying the models in prac-
tical installations. Additionally, the availability of the data from real data center needs
to be ensured by the industry to verify and where needed improve the proposed models
and methodologies. The applied power consumption models of the server, and the IPCS
devices in the proposed modular modeling approach are not validated with actual power
consumption of a data center. The detailed data of the actual power consumption of
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the load sections are not available. The data center operators should come forward to
provide such data for research and education to reveal more insights about the power
losses in the IPCS and in other part of the electrical network since the power loss in the
electrical network degrades the reliability of the data center.

8.2 Reliability Evaluation

8.2.1 Findings

Data center operators can quantify the adequacy of the computational resources or num-
ber of servers using the proposed methodologies and reliability index in Paper D [19]
and Paper H [20]. The loss of workload probability (LOWP) index is proposed based
on the computational workload duration curve and the outage probability of the PSU.
The data center operators can use this index at the planning stage to deploy the servers
with lower LOWP index for latency-sensitive workloads, and can use the capacity outage
table for planning the rack-level extension of computational resources.

The risk of computational resource commitment (RCRC) index quantifies the opera-
tional risks considering the failures of the servers within the operational lead time (OLT)
in Paper H[20]. The RCRC index could be used to schedule the spare servers to keep
the balance between active and spare servers in operation to lower the operational risk.
The complement of the RCRC index reflects the availability of the servers, hence the
readiness of the servers to maintain the QoS that is quantified by the number of nines as
in the Tier classifications.

The power losses and the power supply capacity shortage of the devices in the IPCS
voltage disturbances in the IPCS are also analyzed to assess the probability of server
interruptions during operation. The PDUs in the IPCS have more power loss than
the UPS and PSUs at the aggregated level. The increasing power loss of the PDUs in
the IPCS often touches the threshold of the power supply capacity and causes server
interruptions. Due the shortage of the power supply capacity of the PDUs almost 20%
of the installed servers in a data center could be interrupted as found in Paper B [33].

The performance of the servers and the PSUs to withstand the voltage dip and
voltage swell is quantified considering the ITIC guideline in Paper E [26] and Paper
F [27]. The voltage disturbances are observed at the point of common coupling (PCC)
between the load bus and a distribution node in the IPCS due to a line to ground (L-
G) fault. The voltage dips and swells propagate from the PCC to the load buses in
the healthy neighboring branches in the IPCS that violates the ITIC guideline. This
may cause outages for the PSUs and server interruptions. The availability of the servers
degrades comparing with the Tier I data center as found in Paper F [27].

8.2.2 Discussions

The proposed methodologies to obtain the outage probability of the servers due to power
losses in the IPCS and the reliability index called LOWP depending on the workload
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duration curve are developed based on a specific structure of the IPCS and racks with
servers. Data center operators do not provide any information about the internal ar-
chitecture of the data center, therefore an example of a real data center given in [86] is
used to illustrate the method in this thesis. The specific structure of the IPCS could
impact the probability of server outages due to power loss, or could change the value of
the LOWP index; however, the proposed methodology will be the same.

Common mode failures associated with the failure root cause, e.g., fatal hardware
failure, software error, task/job processing error, human error, local cooling fault, etc.
are not considered in the proposed method, due to lack of information about them. Data
on common mode failures need to be tracked and published by the data centers, since
this information helps to improve the stochastic failure model of the servers.

The voltage dips and swells are analyzed in this thesis since these are known to
interrupt the PSUs and servers. The performance of the PSUs are evaluated considering
ITIC guideline, which is originally proposed for power supplies for personal computers.
Apart from voltage dips and swells, power quality issues like harmonics, supraharmonics,
intraharmonics could also impact the performances of the PSUs. However, these power
quality issues should be taken into consideration in data center planning and operation
since these may result in server interruptions.

8.2.3 Recommendations and Future works

The proposed methodologies of LOWP and RCRC should be analyzed with real mea-
surements of the power consumption of servers and with the details of the IPCS structure
in existing data centers.

Collection of failure and repair data of equipment like servers, PSUs, and PDUs is
important for root cause analysis of server interruptions. It is also needed to analyze
the common mode failures in data centers. Having detailed failure and repair data is
recommended for the data center operator.

The model of the PSU and PDU is important for the voltage dip and swell analysis
in the IPCS, while the load model of these devices is used in this thesis. Additionally,
Model 2 of the UPS has the switching transients when the UPS switched between grid
connected mode to the backup mode since the voltage and current control of the UPS is
not included in the Model 2. Therefore, developing detailed model of the PSU and PDU
is recommended with the voltage and current control for the UPS model to analyze the
impact of voltage disturbances in the IPCS.

The ITIC recommended guideline is proposed for power supplied of personal comput-
ers since there is no industrial guideline yet for the PSU’s manufacturer. The performance
of the PSUs should be tested regarding voltage dips and voltage swells in a laboratory
environment.
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8.3 A trade-off between energy efficiency and relia-

bility

8.3.1 Findings

The probabilistic risk index called RCRC has been applied to assess the operational risk
considering the failure rate of the servers with in the operational lead time (OLT). RCRC
quantifies the risk of having degraded quality of services (QoS) and the complement of
the RCRC quantifies the risk of inadequacy of the computational resources (“readiness
of the resources”).

An increasing number of spare servers in a data center lowers the RCRC, however, it
increases the overall power consumption of the IT loads. Therefore, it demands a trade-
off between the operational risk and energy efficiency with optimal number of servers
in the data center. In this thesis, the threshold is set to have the RCRC at or below
10% and RCRC′ with five nines. The number of required spare servers increases with an
increasing failure rate of the servers and OLT. The sensitivity analysis of the failure rate
and OLT helps to identify the secure operative zones for a group of servers.

The number of spare servers and the power consumed by the spare servers could be
analyzed beforehand to set the operation zone for a group of servers in a data center.

8.3.2 Discussions

The thresholds of the RCRC and the RCRC′ are set at or below 10%, and with five
nines, respectively. However, there is no benchmark for the data center’s operational
risk. It will solely depend on the data center operator to select the RCRC according
to the proposed methodology. Selecting a low value of the RCRC impacts the energy
efficient operation since more spare servers need to be assigned.

The sensitivity analysis of the failure rate and the OLT to obtain the secure operative
zones considers a group of 1, 000 servers. The server population in the group can not be
increased because of the computational constraints. The mathematical formula of the
RCRC, hence the probability of having remaining active servers after failures has the
combination term of total and available servers, as given in (3.23). Simulation software
like Matlab has limitations to calculate the factorial of a number.

The TTFs of the servers are taken from a real dataset published by Google to obtain
the MTTF of the servers in a cluster. The dataset does not explain the sequence of the
server failures and the root cause of the failures, while a smaller number of servers failed
more frequently. Therefore, MCS is used to obtain 100, 000 samples of the TTFs from
each cluster, so that every failure incident and server get equal probability to be chosen.
However, it is important to have knowledge about the root cause of failure and the
sequence of the servers failures to mimic the failure incidents similar to the real failures,
where sequential MCS could be used.
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8.3.3 Recommendations and Future works

The root cause of the servers’ interruptions has importance for the RCRC analysis and
in the MCS. The data centers typically do not publish the root causes or explanation of
the failure modes. The impact of power supply outages from the upstream grid on the
servers should be included in the explanation of the failure modes because all the failures
do not cause interruptions in servers operation. Some of the failures degrade the services,
whereas some interrupt the servers, hence degrade the QoS. The failure data sets should
contain the details of the impacts on servers operation, and should be reflected properly
in the MCS to model the servers’ failures. Thus, it is a recommendation to the data
center operator to keep the statistics of the component failures and server interruptions
information properly and do some “postmortem” analysis of the failure data to reveal
the root cause of the failures.

The failure rate obtained from the MCS is considered to be same for all the servers
in a cluster in this thesis. So, the degradation of the performance with age of the
servers is not considered in the MCS, hence in the RCRC model. An old spare servers
could fail more frequently than a new one in real operation. Therefore, other probability
distribution functions except the exponential distribution of the MTTF are recommended
to use in the methodology to obtain the RCRC.

The repair rate of the servers is ignored in the proposed methodology of the RCRC
since the OLT is considered to be short to repair the failed servers. The repair rate
(µ) could be introduced in the model as future work to improve the performance of
the model. In this regards, the data center operators should focus on replacing the
failed servers rather repair since server repair time is longer than the replacement time.
However, the replacement time depends on other operational plannings like inventory
management, availability of the replacement personnel, etc.

8.4 Final Words

The theoretical framework attempts to depict the proposed methodologies and data cen-
ter operational tools that has explained in this thesis in Figure 8.1. In its essence, this
thesis has provided a few data center operational planning tools and a number of pro-
posed methodologies to contribute with the “Technical Know-How” of the data center
operational planning considering the reliability and energy efficiency during operation.
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Abstract—In the context of modern information technology
(IT) industry, cloud computing is gaining popularity for big data
handling. Therefore, IT service providers like Google, Facebook
and Amazon are expanding their technical resources by building
data centers to improve the data processing and data storage
facilities under cloud service pattern. However, data centers
consume a large amount of electrical energy. In recent years,
a lot of research has been done to reduce the electrical energy
consumption of data centers by high performance computing.
However, very few researchers have focused on the electrical
energy consumption by the electrical components inside the
data center. In this paper, a component based electrical energy
consumption modelling approach is presented to identify the
losses of different components as well as their interactions
to the total electrical energy consumption of the data center.
The electrical energy consumption models of servers and other
components are presented as a function of server utilization.

Index Terms—server utilization, component loss modelling,
PDU and UPS, data center.

I. INTRODUCTION

With the rapid development of cloud computing and data
storage, data center technologies have become the main con-
cern part of innovation for IT industries. Thus the performance
improvement is not the only requirement for data centers
deployment, a lot of attention is being paid for data centers’
electrical energy consumption [1]. A recent study shows that
the data centers worldwide consumed 270 TWh of electrcial
energy in 2012 and this consumption had a Compound Annual
Growth Rate (CAGR) of 4.4% from 2007 to 2012 [2]. A
typical data center may consumes thousand times higher en-
ergy than households, e.g. Barcelona Supercomputing Center
(a medium-size data center) pays an annual bill of about e1
million for its electrical energy consumption of 1.2MW, which
is equivalent to 1,200 households [3]. Against the background
of a growing energy consumption of data centers, the Nordic
region has attracted significant data center investments. For
example, after Google and Facebook entered the region in
2009 and 2011, the Nordic countries have become a preferred
site location by an increasing number of data center investors.
A report by Business-Sweden estimates that the Nordics by
2025 could attract investments for data centers in the order
of e2-4 billion. This is based on the forecast of worldwide
demand for data center services corresponding the data center

investments of the Nordic countries [4]. Considering those
facts, researchers have paid much attention to the problem
of enhancing data center efficiency including data scheduling
and cooling infrastructure [5]. However, most of the literature
focuses on modelling and analyzing subsystems of a data
center, e.g. uninterrupted power supply unit (UPS), power
distribution unit (PDU), Computer room air handling system
(CRAH) etc, as independent entities without considering the
influences they have on the electrical energy consumption of
other parts of the data center [6], [7].

This paper presents the models of above-mentioned mod-
ules for a data center with N server racks. Detailed energy
consumption modelling for each component as well as the
interactions between all components are presented to identify
component losses of the internal grid of data center. Unlike
existing research, the presented modular simulation model is
independent of the main source of electricity and can take
different design structures of data centers into account to
provide hourly electrical energy consumption profiles for each
component. The same modelling approach can be utilized in
renewable integrated microgrid interfaces for simulation.

II. DATA CENTER MODELLING IN LITERATURE

Numerous academic studies and industrial white papers
describe the electrical energy consumption models of indi-
vidual data center subsystems. [8] presented the component
based energy consumption model of the data center for the
first time, shown in Fig. 1. A comparison of the energy
consumption level of different components is shown in Table I
[5]. Although IT loads and cooling stand for almost 86% of the
energy consumption in Table I, losses in power conditioning
equipment and network equipment (13%) also affect the
efficiency [9]. Other studies have focused on understanding
the thermal implications of data center design [9], [10]. Energy
consumed by the lighting facilities are reported to be negligible
in most of the literature [8], [10]. As sophisticated power
management features proliferate, the dynamic range of data
center power drawn (as a function of utilization) is increasing,
and interactions among power management strategies across
subsystems grow more complex. However, few attempts have
been made to identify the component-based losses of data
centers, which is presented in this paper.

The next section will describe a detailed model of the IT
equipment with server rack fans, power conditioning equip-978-1-5386-8218-0/19/$31.00 ©2019 IEEE
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ment and cooling systems. In Section IV, the simulation results
will be discussed and analyzed to identify the amount of
consumption of different components. Section V will conclude
the paper with recommendations to reduce the losses of the
data center.
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Fig. 1: Power consumption in data center model [8]

TABLE I: Component based energy consumption

Servers Cooling Power Cond. Eqip. Network Eqip. Lighting
56% 30% 8% 5% 1%

III. MODELLING OF COMPONENTS IN DATA CENTER

As mentioned earlier, the main goal of this paper is to
propose a component based energy consumption modelling
approach. Finally, the total power consumption profile of any
data center is calculated considering its components and envi-
ronmental data. The following sections will present models for
the energy consumption of the IT system and cooling system
of a typical data center.

A. IT System Modelling
The servers in a typical data center contain processing

units, memory devices, hard drives, power supply and
cooling fans. Some specialized servers are integrated with
Graphics Processing Unit (GPU) and related supply unit for
high-end data processing. For simplicity, only the typical
server units showing predominant energy consumption have
been considered for this study. Losses of the server power
supply unit (PSU) are neglected for this study, because
the loss of PSU does not vary with server utilization [11].
For developing the energy consumption model of a typical
server unit we consider, 16 blade server rack with 2 CPU,
6×4GB memory and 2×75GB hard disk drive per blade [12].

1) CPU heat generation: The CPU heat generation (i.e.,
power usage) that determines the thermal characteristics of a
server varies with CPU utilization and CPU die temperature
(i.e. junction temperature) [11], expressed in (1). The CPU
dynamic power, Pdynamic can be expressed in terms of the CPU
utilization, uCPU , that varies in proportion to the CPU clock
frequency, f and CPU supply voltage, Edd , in (2), where the
constant term Ce is the effective switching capacitance. Also,
the CPU static power Pstatic is associated with the current
leakage depending on the CPU die temperature Tdie, shown
in (3) [11].

PCPU = Pdynamic +Pstatic +Pidle (1)

Pdynamic =
1
2

CeE2
dd f = a1uCPU (2)

Pstatic = a2Tdie +a3T 2
die (3)

Compared with the CPU energy consumption, other parts of
server like memory units, power supply and hard disk drives
consumes few percentage of server power (1.5%, 4.5% and
8% of CPU energy consumption, respectively) [11]. Thus the
total consumed energy of the CPU (which accounts for most
of the generated CPU heat) is assumed to be equal to the total
energy consumption by IT loads (4). The die temperature, Tdie
of any processor depends on the design fabrication process
and efficiency of the heatsink on top of that. Based on the
empirical values given in [11], depending on server utilization
Tdie varies between 70°C to 95°C. Thus a linearized model of
individual server power can be derived as a function of server
utilization, as (5). Regarding the idle power, Pidle, an IT load
scheduling approach (PowerNap) has been proposed in [13],
which is out-of-scope for this paper.

Server utilization, ui is a unitless quantity that can vary
between 0% (no work load) to 100% (maximum work load).
If the server cluster is assumed to be homogeneous for N

number of servers, the degree of utilization can be express as
(6)

PIT ∝ PCPU = a0 +a1uCPU +a2Tdie +a3T 2
die (4)

PITi = Pidle
i +(Ppeak

i −Pidle
i )ui (5)

U=
1
N

N

∑
i=1

ui (6)

where ui is the utilization of ith server, which varies depending
on the work load and resource allocation to this server.

2) Server fan consumption: Apart from heatsink attached
cooling fan for CPUs, independent server cooling fans are
installed with each individual server. Recent high-density
servers have variable airflow control to ensure the reliable
operation of the server cooling system. In [11] the power
drawn by the server fan, Ps f an is shown as a function of
fan rotor speed, RPM using empirical values (7). Controlled
rotor speed ensures the required airflow into the server, which
relates with the thermal model of server inside environment.
However, thermal resistance Rtot of the server depends on the
difference of server room ambient temperature, Tamb and CPU
die temperature, Tdie, referred by (8) and (9).

Ps f an = a4 +a5RPM+a6RPM2 +a7RPM3 (7)

Rtot =
Tdie −Tamb

PITi

(8)

Rtot = a8 +
a9

(RPM)a10
(9)

3) Server power consumption: In general, it is not a
practice to measure the actual power consumption of every
server unit (10). Therefore, the impact of task consolidation
L for the running servers is modelled as in (11), where L= 1
means perfect load balancing between maximum number of
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running servers and L = 0 represents unbalanced load distri-
bution between running servers. Considering the best case of
uniformly distributed work load (U = ui for L = 1) the total
power consumed by the servers, Ps f is the summation of power
consumed by all running server, shown in (12)

Pserver = PITi +Pf an (10)

ui =
U

U+(1−U)L
(11)

Ps f =
N

∑
i=1

Pserveri (12)

4) Power conditioning system: Data server equipment is
very sensitive to any kind of disturbance in the electrical
supply system. Thus, the internal grid of data center requires
considerable electrical infrastructure with specific rating to
distribute uninterrupted power, with stable voltage to the
server. PDUs transform the high voltage distributed power
to different low voltage levels (12V,5V,1.2V ) for different
server components. Typical PDUs have a switch mode power
supply unit (SMPSU) to deliver DC supply to the racks. In
the first stage, line AC voltage is rectified and passed to a
capacitor, followed by a voltage regulator. As the demand of
racks varies, the SMPSU controls the switching frequency to
transfer more or less stored electrical energy from the capacitor
[14]. Thus for different power electronic devices with high
frequency switching, PDUs incur a constant power loss as
well as a power loss proportional to the square of the server
load [8], as in (13)

PLoss
PDU = Pidle

PDU +ΦPDU

(
∑

servers
Pserver

)2

(13)

where PLoss
PDU represents power loss by the PDUs, ΦPDU repre-

sents the PDU power loss coefficient, and Pidle
PDU the idle power

drawn by PDU. PDUs typically consume 3% of their input
power. As in current practice, all the PDUs remain connected
with the supply system, which increase the idle losses of
PDUs [5]. We consider perfect load balancing to identify the
power consumed by the PDUs at data center as an independent
module.

UPSs provide backup support during relatively short voltage
interruptions (up to some tens of minutes) voltage dips and
other severe disturbances in the supply voltage. UPS systems
are typically placed in series between the utility supply and
PDUs. In commercial data centers with large number of
servers, different UPS topologies are used to allow proper
energy management [15]. However, without considering any
energy management techniques the power loss of UPS follows
the relation [8] as below

PLoss
UPS = Pidle

UPS +ΦUPS

(
∑

PDUs
PPDU

)
(14)

where, ΦUPS represents the UPS power loss coefficient. A
UPS typically consumes around 9% of its input power at full

load. However, it is very unlikely to run the UPS at full load
constantly, because the PDUs connected with a single UPS
always tends to change the load level depending on the server
load, referred by (13),(14).

B. Cooling System Modelling

A datacenter consists of several components for handling
the heat generated inside the server room, mainly by the IT
equipment. Normally, a server room consists of several racks
of IT equipment arranged in rows of hot-aisle and cold-aisle.
Rack mounted fans control the air flow and air temperature
rise inside the rack (discussed in section III-A2). The data
center room is serviced by the Computer Room Air Handlers
(CRAC/CRAH), providing accurate temperature and humidity
control for critical environments. There is some constructional
difference between these two types of cooling system. The
CRAH unit mainly uses a chiller and cooling tower to circulate
the chilled water [5].

1) CRAH unit power consumption modelling: According
to thermodynamics, the rate of heat removed with air re-
circulating is shown in (15). Air re-circulation makes that
perfect insulation cannot be achieved between hot and cold air,
which requires a lower cold air temperature and greater mass
flow rate to maintain server inlet temperature within a safe
operating range [5]. To quantify the amount of re-circulation,
a containment index (κ) is introduced with (15). A value of κ
equal to 1 implies no recirculation (perfect containment). The
containment index varies across servers and CRAHs (and may
vary with changing airflows).

Q̇Server = κ.ṁair.CPAir .(TOutlet −TInlet) (15)

where ṁair is the mass flow rate of air through the server
(kg/s), CPAir is the specific heat capacity of air (kJ/kgK) and
TOutlet and TInlet are the server outlet and inlet temperature,
respectively (K).

As mentioned in the previous section, the chilled water
is supplied to the CRAH unit where a heat exchanger and
cooling fans handle the heat transfer process. Efficient heat
transfer in a data center relies heavily on the CRAH’s ability
to provide sufficient airflow to prevent recirculation of hot
server exhaust to server inlets, and to act as a heat exchanger
between server exhaust and some heat sink, typically chilled
water. The amount of heat handled by the CRAH unit depends
on the transfer efficiency of the heat exchanger and the flow
rate. In [5] the heat removed by the CRAH is modeled using
the modified effectiveness-NTU method [16], shown in (16)

Q̇CRAH =E.κ.ṁServer.CPAir . f
0.7 (κTOutlet +(1−κ)TInlet −TWater)

(16)
where E is the transfer efficiency at the maximum mass flow
rate (0 to 1), f represents the volume flow rate as a fraction
of the maximum volume flow rate, and TWater is the chilled
water temperature.

CRAH power is dominated by fan power, which grows with
the cube of mass flow rate to some maximum (PCRAHDyn ),

Authorized licensed use limited to: Lulea University of Technology. Downloaded on October 28,2022 at 10:07:00 UTC from IEEE Xplore.  Restrictions apply.



together with a constant power consumption for sensors and
control systems (PCRAHIdle ), shown in (17). Some CRAH
units are cooled by air rather than chilled water or contain
other features such as humidification systems, which are not
considered here.

PCRAH = PCRAHIdle +PCRAHDyn f 3 (17)

which can be determined by solving (16) for f . As the
volume flow rate through the CRAH increases, both the mass
available to transport heat and the efficiency of heat exchange
increase. This increased heat transfer efficiency somewhat
offsets the cubic growth of fan power as a function of air flow.

2) Chiller power consumption: The chiller plant removes
heat from the warm coolant that returns from the server
room. This heat transferred to external cooling towers using
a compressor. The chiller plant’s compressor accounts for the
majority of the overall cooling cost in most data centers. The
power drawn by the chiller depends on the amount of extracted
heat, the chilled water temperature, the water flow rate, the
outside temperature, and the outside humidity. According to
[7], the chiller’s power consumption quadratically increases
with the amount of heat to be removed and thus with the data
center utilization. The size of chiller plant has to be 70% of
maximum heat generated by the IT loads in order to provide
sufficient cooling; the chiller plant power consumption model
is derived as shown in (18).

Pchiller = 0.7×Pmax
s f

(
αU2 +βU+ γ

)
(18)

where α , β and γ are obtained by performing curve fitting of
several samples from the real data center.

IV. SIMULATION & RESULT DISCUSSION

A. Server loads and related losses

As a use-case study we assume a data center with a server
farm consisting of 40,000 server racks, which is a moderate
size compared to the existing tech-giants [15]. Additional
energy consumption from office buildings, lighting systems
and security systems to facilitate the operation of data center is
not considered in this study. Each of those racks contains, 16-
Blade server with typical computational resources described
in Section III and 10 cooling fans to manage the sufficient
air flow into the racks (considering Dell PowerEdge M1000e)
[17]. Based on the data analyzed in [18] for different server
racks, we choose power consumption for each rack varying
between 750 W (at idle mode) to 1500 W (at peak load).
Regarding the utilization of servers, it is also assumed that
the server clusters are homogeneous and load is balanced,
as mentioned in Section III-A. We used random generated
server utilization factors for each server, to calculate the
power consumption of CPUs and fans of the racks in (1) - (7).

The total consumption pattern of the IT loads and fans over
a week time is shown in Fig. 2. Rack mounted fans consume

around 9 kW while IT loads consume 46.5 MW on average
over a week. Within this time period, fluctuations with some
peaks are being observed for both cases; peaks in IT loads
correlate with peaks of fan consumption as shown in (7) - (9).
Though, the RPM generated by the fans is related to Rtot which
is inversely proportional to PIT , but fan’s power consumption
does not vary linearly with speed as in (9). The coefficients
chosen for (7) - (9) are given below [19].

• Fan: a4 = 0, a5 = 0.0003, a6 =−3×10−8, a7 = 7×10−12

• RPM: a8 = 0.1325, a9 = 17440, a10 = 1.56
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Fig. 2: Comparison of IT loads and Server fan consumption

Considering the losses of the electrical equipment (UPS and
PDS), which directly relate to the total IT power consumption,
as mentioned in (13) (14), hence related with total server farm
utilization. The total losses of UPS and PDU as a function
of total utilization are shown in [5], which has been used to
calculate those losses for our case study. It is assumed that
PDUs and UPSs are loaded uniformly where each PDU is
connected with 10 server racks and each UPS supports 10
PDUs [8].
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Fig. 3: Losses of electrical equipment (single unit)

Fig. 3 is showing the power losses of a single PDU com-
pared with a single UPS. A single PDU is more energy
efficient than the UPS, because of the built-in power electronic
converters in the UPS that consume more than the PDU.
However, total PDU loss is higher than the total UPS loss
as depicted in Fig. 4. Considering the uniform distribution,
the total number of PDU is ten times higher than the number
of UPS, which results in the PDUs to be the most energy
consuming power conditioning equipment.
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B. CRAH and Chiller unit power consumption

In this paper a single value of κ is used to simplify the
model of the conservation of airflow between the CRAH
and servers. All electrical energy consumed by the IT load
and server fans converts to heat which is handled by CRAH
and chiller unit, shown in Fig. 5. For CRAH unit, the power
consumption is led dominated by the fans, varies with the
cube of airflow rate, which is observed by the variation of
CRAH power consumption in Fig. 5. Together, the CRAH and
chiller unit consume an amount of power more than half of
the heat generated by the server farm. In [11] the electrical
energy consumption of the chiller and CRAH unit are analyzed
according to data center’s thermal guidelines of ASHRAE TC
9.9. This correlates with the results shown in Fig. 5, although
a different approach is used to model the cooling units based
on server load and utilization.
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Fig. 5: Comparison of heat generation and cooling unit con-
sumption

V. CONCLUSION

In this paper, a component based modelling approach for
data centers is presented. The model used for individual
components consists of a detailed analysis of the power con-
sumption as a function of server utilization as well as interac-
tions between the power consumption of different components.
The presented modular simulation approach can take different
design structures of a data center into account and provide
hourly power consumption profiles for each component. A
data center as a whole is a huge load; hence, a reduction
of few percent would save a significant amount of electricity
cost. An interesting outcome of this study is the dominant
contribution of PDUs power consumption to the total electrical
losses, which motivates to reduce the number of PDUs in the
internal grid of a data center. It is also found that, chillers or

the cooling unit consume a significant amount of energy to
handle the heat generated in the server farm. Hence, there is a
scope of improvement in electrical power consumption of the
cooling system.
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Abstract—Hyper-scale data centers are used to host cloud
computing interfaces to support the increasing demand for
storage and computational resources. For achieving specific ser-
vice level agreements (SLA), this infrastructure demands highly
available cloud computing systems. It is necessary to analyze
the server failure incidents to determine the way of improving
the reliability of the system since the computational interruption
causes financial losses for the data center owners. Regarding the
reliability analysis, it is important to characterize the time to
failure and time to repair of the servers. In this paper, a publicly
available data set from Google cloud-cluster data center will be
analyzed to find the distribution function for the time to failure
and the time to repair for the servers in a cloud based data
centers.

Index Terms—availability, reliability, cloud clustering, data
center

I. INTRODUCTION

Considering the growing demand for cloud services, com-
mercial cloud providers like Google, Facebook or Amazon
are now depending on hyper-scale data centers to meet their
computational requirements. Service availability is one of
the important requirements to achieve specific service level
agreements (SLA). In order to find effective solutions to
improve the service availability in hyper-scale data centers, it
is important to analyze the real data set with server failure and
repair events and characterize the time to failure and the time
to repair using probability distribution function. According to
the definition of cloud computing by the National Institute
of Standards and Technology (NIST), hardware or software
failures in such computational systems cause degradation in
reliability and quality of service (QoS) that leads to economic
losses for data center owners [1]. It is a critical and chal-
lenging research problem to ensure both reliability and cost-
effectiveness, known as the dependability of data centers [2].

A typical data center hosts tens of thousands of servers with
multiple storage devices, memory modules, processing units
and network cards as computational resources, each of which
can fail during the job execution period. These computational
resources consume significant amount of electrical energy [3],
thus causes energy wastage in case of failures. Considering
the service availability different types of failure modes could
hamper the dependability, namely hardware failures, software
failures, management system failures, human operational faults
and environmental failures [4]. With the advancement in
cloud computing research using virtualization techniques that

provide redundancy and parallelism, the degradation of service
could be restricted. However, there are some critical appli-
cations such as mission-critical systems, user authentication,
and online transaction systems that need a fault tolerance
system where parallelism could not satisfy the availability
requirements [5]. On the other side, access to the empirical
data sets related to failures in data centers are very restricted
for confidentiality reasons. The Google cluster-trace data set
is one of the few publicly available data sets, released in
November 2011 that has recently dragged the attention of
researchers [6]. The objective of this paper is to analyze the
Google data set to quantify the statistical parameters such as
time to failure and time to repair of servers and characterize
it with a suitable distribution function.

The rest of the paper is organized as follows: Section
II presents a literature review of related works. The Data
structure and its attributes are described in Section III. Next,
in Section IV the failure and repair incidents are analyzed for
individual server and group of servers. Finally, the discussion
and conclusions are summarized in Section V.

II. RELATED WORK

Most early studies was done with Google cloud trace
data set that focused on the workload characterization, server
classification and resource utilization [7]–[10]. Recent works
have analyzed the relation of machine failures and job/task
failures using the same data set [11]–[13]. The causes of job
terminations and failures are investigated in [13], where the
authors mentioned that the main reason is related to the dif-
ference in requested CPU and memory usage between finished
and failed jobs. The relations of machine failures and job
failures using filter (Tukey′s method) to remove the outliners
from the data are presented in [11], [12]. In [14], a similar
type of study characterizes the failure, update, and repair rate
of the physical servers using exponential distribution function
for the time to failure and the time to repair. Comparing with
the results shown in [15] the use of exponential distribution
function is not suitable for reliability analysis of a cloud based
data center. In this paper, a comparative study has shown to
identify the suitable distribution function for time to failure
and repair of servers using Google cluster data set for further
reliability studies of the related systems.
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Virtual, October 26-28, 2020

978-1-7281-7100-5/20/$31.00 ©2020 IEEE 660

Authorized licensed use limited to: Lulea University of Technology. Downloaded on October 28,2022 at 10:11:05 UTC from IEEE Xplore.  Restrictions apply.



III. DATA STRUCTURE

The Google cloud trace log [6] reports 37,780 server
incidents and over 25 million unique assigned tasks associated
with 12,583 servers over the time of 29 days. All servers are
homogeneous in terms of CPU and memory capacity [10]. The
data set is made up of six types of data: machine attributes,
machine events, job events, task events, task constraints and
task usage. Each data set can contain a single table in one
file or to be splited into 500 files. Computational challenges
have been faced for executing complex queries to extract
information from this big-data size trace log (approximately
100 GB data distributed in more than 1200 comma separated
files). Additionally, limited information in schema [6] and
the unprocessed nature of the data, requires an extensive
understanding of different attribute relationship. The server
failure events are reported in the machine attribute table in this
data set. The table contains three types of server events namely
Add, remove, and update. The “Add” and “Remove” events
specify if the server is available or unavailable respectively.
The “Update” event specifies that the available resources in
the server have changed; the causes of the “Update” events
are not mentioned. Moreover, the “Remove” event is occurred
due to failure or maintenance [6]. So the rest of the paper
will consider the server is unavailable for both failure and
maintenance. Regarding the “Update” events, mostly a server
went back to available state after an update, but in some cases
the server failed and a “Remove” event was reported.

IV. RESULTS AND ANALYSIS

In this section, the Google data set is analyzed to character-
ize the time to failure and time to repair of the servers. This
data set reveals that the number of failures was 8,957 over the
course of 29 days that involved 5,141 distinct servers. So more
than 40% of all servers in the cluster failed at least once within
29 days, and the average number of failures was almost 309
per day. Moreover, about 59% of all servers (7,442 non-failed
servers) never experienced a failure event, while 1,268 server
resources were updated over this time. The server failures
trend during these 29 days is shown in Fig. 1 that depicts a
weekly pattern. The reported number of server failures on the
17th, 19th, 25th and 26th day was much higher than the average
(309 f/day). The reasons for such pattern are addressed in
[11], [12]. Further details for the individual server failure and
group of server failures analysis are described in the following
sections.

A. Time to Failure and Repair Analysis

The failure frequencies are summarized in Table I for
servers that have higher than the average number of failures
per day reported on 17th, 19th, 25th and 26th day. Studies
about reliability of large distribution systems show that a
small number of components failed frequently in a given
time, known as Pareto principle [12], [16]. Similar failure
behaviours are found for server failure incidents in this case,
shown in Table I. Servers (ID - 4246147567 and 567616)
failed most frequently on these days. It is important to

Daily Failure Analysis

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9

Days

0

100

200

300

400

500

600

N
o
. 
o
f 

F
a
il

u
re

s

Fig. 1: Day-wise failure analysis

analyze these two servers with higher failure frequency for
29 days to characterize the failure and the repair time precisely.

1) Individual Server Failure Analysis: In this section, in-
dividual servers with higher failure frequencies are analyzed
to find the time to failure and the time to repair. The servers
with ID 4246147567 and 567616 will be mentioned as Server
A and Server B respectively in the remaining of this paper.

Server A failed 165 times over the course of time of 29
days, with an average of 5.7 failures per day (λ = 5.7 f/day).
Server B had 117 failures within the same time period, with
a failure rate of λ = 4.03 f/day. But it is also crucial to find
the mean time to failure (MTTF) and mean time to repair
(MTTR) of these servers, for the sake of reliability evaluation
of the cluster with similar components. The transition time
between “Add” to “Remove” event is considered as uptime
or time to failure, and the transition time from “Remove” to
“Add” is accounted as downtime or time to repair. As it is
mentioned in Section IV, only 1% of all the machines were
updated and among those very few went to an “Remove”
state directly. So the transition time from update to failure has
not considered in this study. The time to failure (TTF) and
time to repair (TTR) of Server A for 165 failure incidents are
shown in Fig. 2. This server failed within short times after
getting repaired compared to the repair times, thus the MTTF
(= 0.1393 min) is much lower than MTTR (= 185 min). In
Fig. 3 the failure and repair times for Server B are shown
with 117 failure incidents during 29 days that gives the failure
rate (λ ) of 4.03 f/day. The MTTF and the MTTR for this
server are 232.24 min or 0.16 day and 80.60 min respectively.
So, these two servers with higher failure frequencies have
different characteristics considering the MTTF and the MTTR.
The same parameters for other servers with higher failure
frequencies are shown in Table II. Based on the statistics

TABLE I: Summary of Failure Events

Day
No. of

Failures
No. of

Servers
Server ID

with higher failures

17th 504 217
4246147567 (10 failures),
567616 (8 failures)

19th 515 454
4246147567 (10 failures),
567616 (6 failures)

25th 458 372 567616 (15 failures)

26th 542 442 4246147567 (9 failures)

661
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shown in Table II, the MTTF and the MTTR of the worst
performing servers are random. But it is needed to generalize
the characteristics of MTTF and MTTR for reliability study
of the cluster, hence the whole data center. It is possible to
solve this issue by identifying the root cause of the failures
[15] or by grouping them based on their performance [12].
The server grouping approach is described in the following
part of this paper.

2) Group of Server Failure Analysis: In this section, the
sequences of server failures in a group have been analyzed as
a stochastic process to obtain the probabilistic distribution of
the TTF and the TTR. Here it is assumed that all the servers
are homogeneous considering the CPU and memory capacity,
and the root cause of the failures is unknown as it is not
mentioned in the trace log data. Some grouping techniques
have been proposed by researchers based on job/task failures,
node failures and server failures [12]. However, the accuracy
of such grouping techniques is based on benchmarked cloud
simulation platforms, which is not the aim of this paper. On
the other side, evaluating the availability of a group of servers
in a cluster should consider the physical server failures as

TABLE II: MTTF and MTTR Analysis of Different servers
No. of

failure
Failure

per day
MTTF

(min)
MTTR

(min)
Server A 165 5.70 0.139293 184.9939

Server B 117 4.03 232.2393 80.59483

Server C* 94 3.25 254.2766 188.5426

Server D** 85 2.93 304.9882 42.10714

*Server ID 6201459631; **Server ID 363428200

well as the virtual machines (VM/containers) failures [15].
But the Google trace log does not provide any details about
the VM/container failures, thus only physical server failures
are considered in this analysis. The servers are grouped based
on their failure frequencies in three groups to obtain the
probability distribution function of the TTF and the TTR. The
grouping details are shown in Table III.

TABLE III: Grouping Details
Group Failure frequency range No. of servers
A 1-19 5126
B 20-84 11
C 85-165 4

a) Analysis of Group A: As it is shown in Table III,
Group A comprises 5126 servers with the lowest failure
frequency range; hence this group is projecting as the most
reliable cluster in the data center. The most prioratized tasks
should be handled by this group as a task scheduling approach
[12]. The equation of the cluster MTTF and MTTR are shown
in (1) and (2),

MT T FCluster =
∑N

i=1 ∑ki
j=0 T T Fi j

∑N
i=1 ki

(1)

MT T RCluster =
∑N

i=1 ∑ki
j=0 T T Ri j

∑N
i=1 ki

(2)

where N and ki is the number of servers in the group/cluster
and the number of failure/repair event of i− th machine.

The MTTF and the MTTR of this group of servers using (1)
and (2) is 13,550.30min and 344.36min respectively. With an
assumption that both the TTF and the TTR have an exponential
distribution, the failure rate (λ ) and the repair rate (µ) equals
0.000073 and 0.003 respectively, which significantly differs
from the results shown in [11]. The causes of this variation
can be explained by analyzing the statistical parameters of the
actual data and exponentially distributed data. The squared
coefficient of variation (C2) of the actual data is 0.897,
whether it should be always 1 for an exponential distribution.
Additionally from the operational point of view, the failure
characteristics depend on workloads that vary with a smaller
time scale. For such systems, exponential distribution does not
provide a good fit for TTF and TTR [15]. Based on these
analyses some basic probability distribution functions, i.e,
Weibull, Poisson, Gamma and Exponential will be analyzed
in the following part of this section, to find the best fit. The
cumulative distribution function (CDF) of the TTF and the
TTR of the group of servers are shown in Fig. 4. The statistical
parameters from the actual data of TTF and TTR are given in
Table IV.

The probability distribution function (PDF) for Weibull and
Gamma distribution is determined by two parameters (scale
and shape factors), while Exponential and Poisson distribution
depends on a single parameter (mean). In case of the TTF,
the shape factor for Weibull PDF is varied between 0.85 to
1 to find the best fit, while it is varied from 0.7 to 0.9 for
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Fig. 4: CDF of the TTF and TTR (Group A)
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Fig. 5: Comparison of CDFs with actual data for TTF (Group A)

the Gamma PDF. The shape factor of the TTR is varied
between 0.5 to 0.8 for the Weibull PDF and between 0.4
to 0.6 for the Gamma PDF. The visual inspection process is
not suitable to identify the best-fitted one among these four
PDFs, because of the similar trends in the CDF plot for the
TTF and the TTR in Fig. 5 and Fig. 6. Here, the Pearson
correlation theory is applied to show the correlation between
the distribution functions and the actual data. The correlation
coefficients are plotted in a matrix (called heat map) to find
the best-fitted PDF for the TTF and the TTR in Fig. 7 and
Fig. 8. Based on the statistics showed in Fig. 7 and Fig. 8, the
Poisson distribution does not fit with the actual distribution of
the TTF and the TTR, while the Weibull and Gamma fitted
better than the Exponential distribution. The choice of the
Weibull PDF for TTF is also suggested in [17] considering
the task failures in specific predefined architectures of cluster.
However, considering the low failure frequency for the servers
in a group/cluster the Weibull and Gamma PDFs are found
to be the best-fitted distribution function for both TTF and
TTR. In the following parts of this section other groups of
the servers are also being analyzed to find the best-fitted
distribution function.

TABLE IV: Statistical Parameters of the actual data (Group A)
Mean
(min)

Standard Deviation
(min)

Squared Coefficient
of Variance, C2

TTF 13,550.30 12840.39 0.897
TTR 344.36 1140.05 10.96

b) Analysis of Group B: This group is considered with
11 servers having 45 to 20 failures in 29 days. The CDF plot of
the Poisson, Weibull, Exponential and Gamma PDFs compared
with the actual TTF of this group of servers, is shown in Fig. 9.
A similar approach is applied for tuning the Weibull (shape
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Fig. 6: Comparison of CDFs with actual data for TTR (Group A)
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Fig. 7: Heat map of correlation coefficients (TTF-Group A)

factor: 0.4− 0.65) and the Gamma (shape factor: 0.3− 0.5)
PDFs, as explained in Section IV-2-a. Regarding the TTR
of this group, similar results are found, where the Weibull
and Gamma distributions are substantially well fitted to the
actual PDF compared to the Poisson distribution, shown in
Fig. 10. Furthermore, the Weibull and Gamma PDFs are tuned
by varying the shape factors from 0.7− 0.85 and 0.1− 0.3
respectively, for getting the best fit for the TTR of this group,
as shown in Fig. 11. In this case, the Weibull and Gamma
PDFs are fitted better with the actual distribution of TTR
compared to Exponential and Poisson PDFs, which is depicted
in the correlation coefficient shown in Fig. 12.

c) Analysis of Group C: According to Table III, this
group is formed with 4 servers that has the highest failure
frequency, i.e; 165−85 failures in 29 days. The same method-
ology is applied as before to find the best fitted PDF for the
TTF and the TTR of this group of servers . The statistical
values are shown in TableV, that shows the Weibull and
Gamma PDFs are also the best fit compared to the Poisson
and Exponential distributions.

TABLE V: Comparison of Correlation Coefficients For Different
Distributions

Actual
Data Poisson Weibull

(0.4-0.65)
Exponential
(0.5-0.65 )

Gamma

TTF 1 0.7514 0.9858 0.9498 0.9871
TTR 1 0.7895 0.9465 0.9121 0.9406

V. DISCUSSION AND CONCLUSION

This research work has quantified and analyzed the charac-
teristics of the TTF and the TTR for individual and group
of servers in a cloud based data center. The Weibull and
Gamma PDFs are found to be the best fit for the TTF and the
TTR for a group of servers, as major contribution. The failure
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frequency based grouping approach is another contribution of
this paper. This grouping method can be used for clustering
the servers into reliable and risky groups by leveraging the
Pareto principle; without considering the root causes of server
failures. Since the outcomes of this paper can be used to
evaluate the availability of groups of servers in data centers;
the future work will quantify the energy-waste due to server
failures.
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A B S T R A C T   

The number of data centers and the energy demand are increasing globally with the development of information 
and communication technology (ICT). The data center operators are facing challenges to limit the internal power 
losses and the unexpected outages of the computational resources or servers. The power losses of the internal 
power supply system (IPSS) increase with the increasing number of servers that causes power supply capacity 
shortage for the devices in IPSS. The aim of this paper is to address the outage probability of the computational 
resources or servers due to the power supply capacity shortage of the power distribution units (PDUs) in the IPSS. 
The servers outage probability at rack-level defines the service availability of the data center since the servers are 
the main computational resource of it. The overall availability of the IPSS and the power consumption models of 
the IPSS devices are also presented in this paper. Quantitative studies are performed to show the impacts of the 
power losses on the service availability and the overall availability of the IPSS for two different IPSS architec-
tures, which are equivalent to the Tier I and Tier IV models of the data center.   

1. Introduction 

With the development of web-based services and applications, the 
number of data centers is increasing globally, with the increasing de-
mand for electrical energy and operational costs as a consequence [1,2]. 
In 2013, the electrical energy demand for the data centers in U.S. was 
around 90 TWh which is projected to grow to 140 TWh by 2020 (an 
increase of 55%) [2]. The total electrical energy demand of data centers 
was around 3% of the global energy demand in 2019, while it was 
estimated around 19 TWh in total (roughly 1% of the global demand) in 
2014 [2]. Regarding the efficient operation of the data center, it is 
important to enhance energy efficiency by minimizing the component 
level power losses. The highest level of service availability of the data 
center is also meant to be ensured to customer satisfaction [3]. The 
service availability of the data center mainly depends on the availability 
of the servers since the servers are the main computational resource of 
the data center. The availability of the servers can be degraded due to 
power supply capacity shortage of the devices in the internal power 
supply system (IPSS) caused by their power losses. Therefore, the service 
availability and the energy efficiency of the data center depend on the 
power losses of the IPSS. 

The structure of the load sections and the IPSS are not the same for 

every data center; it depends on the size of the data center [4,5]. 
Moreover, the overall availability of the IPSS depends on the architec-
ture of the system [6–8]. Thus, the components’ power consumption and 
the availability of the IPSS depend on the internal architecture of the 
data center, which causes difficulties to model the power consumption 
of the components [9,10], also to evaluate the availability of the IPSS. 
Numerous researchers have evaluated the availability and reliability of 
different system architectures for data centers, namely Tier I, II, III, and 
IV [6–8], but the impacts of the increasing number of servers on the total 
power losses of the IPSS and on the service availability of the compu-
tational resource at rack-level are yet to be analyzed. In this paper, a 
quantitative study method is proposed and applied to quantify how the 
increasing number of servers at the rack impacts the total power losses of 
the IPSS and the service availability of the computational resources at 
rack-level. The study considers the power losses and related IPSS 
availability calculation at rack-level because the rack of servers is the 
smallest unit in the data center, regardless of the size and type of data 
center. In this regard, the service availability of the rack-level compu-
tational resources or servers are considered as the reliability index to 
assess the availability of the data center; and the power consumption 
models of the load sections and the IPSS are presented as a function of 
server utilization. 

The data centers typically consist of four major load sections: IT 
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loads, cooling equipment, power conditioning system and miscellaneous 
components, depicted in Figure 1. The IT load section accommodates 
and interconnects the computational resources and the network devices, 
while the cooling load section ensures the thermal and environmental 
control of the server-hall. A significant amount of electrical energy is 
consumed by the IT loads and cooling system [10,11]. Apart from these 
major energy-consuming sections, the IPSS, consisting of cable sections 
and the power conditioning equipment also consume energy [9], which 
are considered as power losses in this paper. The power conditioning 
equipment, namely uninterrupted power supply (UPS) unit, power dis-
tribution unit (PDU), and power supply unit (PSU) ensure a reliable 
backup supply and adequate power quality for the IT loads. The power 
consumption models of IT loads, i.e, CPU, rack fans, and servers are 
presented in authors’ previous work in [9]. In this paper, the impacts of 
increasing IT loads at rack on the power losses of the power conditioning 
devices are addressed for two IPSS architectures, equivalent to the 
classified Tier I and Tier IV data center. The servers are considered to be 
fully utilized to find the IT load, hence, the power losses of the IPSS 
components for the use-case. This work evaluates the rack-level 
computational resource outage probability due to the power losses in 
the IPSS, as the main contribution. The study also identifies the relation 
between the power losses of the components in IPSS and the IT loads at 
rack-level. The power losses of the IPSS result in a non-zero probability 
of power-supply capacity shortage for power distribution units (PDUs) at 
the rack-level. The power losses and “percentage of loss” of the PDU are 

higher than that of the PSUs and UPSs at the rack-level that causes PDU 
power supply capacity shortage. The shortage of power supply capacity 
of PDU leads to the service unavailability of servers at the rack-level. The 
“percentage of loss” is the ratio of the total losses of the PSUs, cable 
sections, and PDU to the total supplied power by the UPS. 

The used methodology of the paper can address the design-step 
challenges of the data center for the operator because the methodol-
ogy can identify the availability of the computational resources 
considering power losses of the IPSS at the rack-level. The method used 
and the results obtained can help the operators to avoid the over-
provisioning of the computational resources at rack-level and manage 
the computational workloads so that the energy demand of the rack 
never touches the bottle-neck of the rate power of the PDU. The key 
findings of this paper are listed below:  

• The power losses of the IPSS increase with increasing number of 
servers at racks that causes power supply capacity shortage for PDUs, 
hence, server outages.  

• The detailed reliability models of the IPSS including cable sections 
and circuit breakers (CBs), show similar levels of availability as the 
standard Tier I and Tier IV system. This justifies the accuracy of the 
proposed system architecture and the reliability modeling approach 
used in this paper for the IPSS.  

• The availability of the studied architectures of the IPSS in terms of 
number of 9’s becomes constant with additional PSUs, while the 
percentage of power loss and the total losses increase with an 
increasing number of servers and PSUs. The term percentage of 
power loss is the ratio of total losses of the IPSS to the supplied power 
by the UPS. 

In the remainder of this paper, Section 2 is a literature review of the 
related works. The methodology for developing the power consumption 
models of IT loads and power conditioning equipment and to assess the 
availability of the components in the IPSS are presented in Section 3. 
Section 4 contains the results and analysis related to the availability and 
the power losses of different IPSS architectures and a sensitivity analysis 
of service availability on the power losses of IPSS. The discussions and 
the contributions of the paper are included in Section 5, followed by the 
conclusion in Section 6. 

2. Literature review 

The literature related to the power consumption modeling ap-
proaches of the IT loads, the power conditioning equipment, and cable 
sections of the IPSS, with the reliability evaluation methods of IPSS are 

Nomenclature 

PCPU CPU power consumption 
Pidle

CPU Idle power consumption of the CPU 
uCPU Utilization of the CPU 
Pserveri Server power consumption of the ith server 
Pidle

i Idle power consumption of ith server 
Ppeak

i Peak power consumption of ith server 
ui Utilization of the ith server 
PRack Rack power consumption 
PLoss

PDU Power loss of PDU 
Pidle

PDU Idle power loss of PDU 
ϕPDU Power loss coefficient of PDU 
PLoss

UPS Power loss of UPS 
Pidle

UPS Idle power loss of UPS 
ϕUPS Power loss coefficient of UPS 

PLoss
Cable Power loss of cable 

Vnom Nominal voltage 
PF Power factor 
Rcable Cable resistance 
Acom Availability of a component 
Aser Availability of series connected components 
Asys Availability of a system 
Apar Unavailability of parallel connected components 
Acom Unavailability of a component 
MTTFcom Mean time to failure of a component 
MTTRcom Mean time to repair of a component 
MTTRref Mean time to repair of a 1000 ft cable 
MTTFref Mean time to failure of a 1000 ft cable 
Acbl43.5m Unavailability of a 43.5 m cable 
Acbl43.5m Availability of a 43.5 m cable  

Fig. 1. The load sections of the data center [9].  
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discussed in the following parts of this section. 

2.1. Power consumption modeling approach of the IT loads and the power 
condition equipment 

Recently, the power and energy consumption models of the data 
center have been reviewed in [5,12], which include the power con-
sumption models of IT loads, the cooling systems, and the power con-
ditioning equipment. The power consumption proportionality of 
different load sections of a typical data center is depicted in Figure 2. 
The power consumption of the power conditioning equipment in the 
IPSS is the third highest followed by the IT loads and cooling loads. The 
power consumed by the power conditioning equipment and cables in the 
IPSS are considered as the power loss in this study. Component-based 
power consumption models for CPU, memory, disk and servers are 
analyzed in [10,13,14]. The utilization based power consumption 
models of the server components are presented in [9,15,16]. One of the 
earliest CPU utilization based power consumption model appeared in 
2003 [17], which can be extended to the server-level power consump-
tion [9]. The total power consumption of the server varies with the CPU 
utilization and CPU power power consumption that contributes 32% of 
the server power consumption of a server, as depicted in Figure 3. 
Therefore, most of the server power consumption models of data centers 
leverage the CPU utilization factor [4,9,10]. 

The power conditioning equipment in the IPSS, namely UPS, PDU, 
and PSU are responsible for delivering electric power to the loads with 
adequate power quality [18,19]. The PSUs are responsible for providing 
consistent power supply to the rack at the desired voltage level that is 
distributed by the PDUs, while the UPS ensures power supply during 
failures or interruptions in the upstream grid of the UPS. These devices 
in the IPSS consume significant amounts of energy. The power con-
sumption models of UPS and PDU are presented in [20,21]. The power 
consumed by the PSU is not addressed so much in literature because of 
its higher efficiency compared to the PDU and UPS, however, the power 
consumption is also load dependent [9,21,22]. 

2.2. Reliability analysis of the data center 

According to The Uptime Institute’s classification system, the inter-
nal infrastructure of data center has evolved through at least four 
distinct stages during the last 40 years, known as “Tiers of Data center” 
[6–8]. Tier I to Tier IV are classified based on the system availability, 
which depends on the component-level redundancy and parallel power 
supply paths in the IPSS. The four tiers are summarized in Table 1 [7,8]. 
More recently, different techniques and approaches have been presented 
to evaluate the availability of different sections in data center. Data 
centers reliability evaluation techniques and methodologies are 
explained in [23–26]. The reliability of the thermal or cooling system of 
the data center has been analyzed in [27,28]. The availability of the 
servers in terms of job/task failures are presented in [29–31]. The 

dependencies between the data center sub-systems are also analyzed. i.e, 
the impact of the ambient temperature on overall reliability and effi-
ciency of the data center has been analyzed in [32]. However, the author 
did not consider the power losses of the IPSS to evaluate the efficiency 
and reliability of the data center. The reliability of the electrical and 
thermal subsystems of the data center has been evaluated and compared 
using stochastic Petri nets (SPN) in [22], where the authors did not 
consider the dependencies between computational resources and elec-
trical subsystems. Beside these dependencies of sub-system reliability 
analysis, different reliability assessment methods like RBD [33,34], SPN 
[22], Markov chain (MC) with Markov chain Monte Carlo (MCMC) [35], 
Cut set [36], and failure modes effects with criticality analysis (FMECA) 
and Energy Flow Model (EFM) are presented in [37]. 

Based on the related works, the impacts of increasing power losses of 
the IPSS on the service availability of the data center are yet to be 
addressed that is analyzed in this paper, where the power consumption 
models of the power conditioning devices in the IPSS are proposed as a 
function of server utilization. The proposed power consumption 
modeling approach can identify the impact of IT loads on the IPSS power 
losses. Moreover, the availability of the data center is addressed through 
the server outage probability that also shows the service availability of 
the data center because servers are the main computational resource of a 
data center. 

3. Methodology 

In this section the power consumption models of the IT loads and the 
devices of the IPSS are explained. The configuration of the IPSS in a 
typical data center is shown in Figure 4. The methodology to evaluate 
the availability of the IPSS is also included in this section. 

3.1. Power consumption modeling of the load sections 

3.1.1. IT loads power consumption modeling 
Different types of server e.g., blade, tower, and rack-able, contains 

similar hardware blocks: processors (CPUs), memory, chipset, input/ 
output (I/O) devices, data storage, peripherals, voltage regulators, 
power supplies, and cooling systems (fans and heat sinks) [4,10]. The 
blade type servers are widely used in data centers among these 
generic-type of servers, because the blade servers can be installed in high 
density in a standard rack chassis [4]. As it is shown in Figure 2, the 
CPUs have the largest contribution to the server’s power consumption 
(32%) followed by peripheral slots (20%) for additional network and 
I/O devices, conduction losses (15%), memory (14%), motherboard 
(10%), disk/storage (5%), and cooling fan (4%) [4,10]. The power 
consumption and the CPU utilization depends on the computational 
workloads, while the power consumption of other server components 
except the CPUs do not vary with computational workloads and almost 
constant [13,14]. The detailed power consumption models of the CPUs 
are explained in our previous work in [9]. The power consumption of 
CPUs depends on the computational workload or on CPU utilization, as 
given in (1). The power consumption of the server is equivalent to the 
power consumption of the CPUs, assuming that the power consumed by 
the other components in the servers is constant and considered as server 
idle power, as given in (2). Here, the server utilization ui is the ratio of 
utilized resource capacity to available capacity considering the 
computational workloads, expressed in percentage that varies between 
0% (no computational workload) to 100% (maximum computational 
workload). 

PCPU = Pidle
CPU +

�
Ppeak

CPU �Pidle
CPU

)
uCPU (1)  

Pserveri ∝PCPUi = Pidle
i +

�
Ppeak

i �Pidle
i

)
ui (2)  

3.1.2. Power consumption model of rack 
In this paper, the blade server configuration is considered due to its Fig. 2. Analysis of power consumption proportionality in data center [4,9].  
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popularity and scalability feature. Usually, the blade servers are 
mounted in racks in high density with fans to control the temperature 
inside the rack. In general, it is not a practice to measure the power 
consumption of every blade server, but the power consumption of each 
rack unit [9]. The total power consumed by a rack is the summation of 
the power consumed by the servers that are mounted in the rack, as 
shown in (3). 

PRack =
∑N

i=1
Pserveri (3)  

3.2. Power consumption models of the IPSS 

The main task of the power conditioning devices in the IPSS is to 
maintain continuous power supply and ensure power quality for the IT 
load section. The UPS, PDU, and PSU are the main functional compo-
nents of the IPSS. Different architectures of UPSs are available with 
battery backups to supply power to the IT loads for short interruptions. 

The PDUs and PSUs are used to maintain specific voltage levels for the IT 
loads [9]. However, backup generators are also essentially present in the 
system to supply power to the data center during long interruptions in 
the public grid. Since the focus of this study is on the IPSS of the data 
centers thus the backup generators are not considered. 

3.2.1. Power consumption model of uninterrupted power supply (UPS) 
The UPSs provide backup support during relatively short power 

supply interruptions (up to some tens of minutes), voltage dips, and 
other severe disturbances from upstream of the UPS. Different power 
electronic converter topologies are used for controlling the charging and 
discharging phase of the UPS. The “online type UPS is normally used in 
the data centers for having short start up time, while it causes idle losses. 
The power consumption model by the UPSs depends on the supplied 
power regardless of the topologies, as shown in (4). Here, ϕUPS repre-
sents power loss by the UPS [5,21] and it is unitless considering (4). 

PLoss
UPS = Pidle

UPS + ϕUPS⋅
∑

PDU
PPDU (4)  

3.2.2. Power consumption model of power distribution unit (PDU) 
The PDU transforms the supplied high AC voltage to low AC voltage 

levels to distribute the power among the racks. The PDUs get the sup-
plied power from the UPS, while the UPS are typically connected with 
the utility supply. Based on the regional standard, the data center sup-
plied voltage can vary from 480 VAC to 400 VAC that needs to be step 
dawn before distributing among racks [38]. The PDU works as a power 
converter to maintain the adequate voltage quality of the rack supply. In 
the PDU, the AC line voltage is rectified and passed to a capacitor, fol-
lowed by a voltage regulator. The PDU invert the DC voltage to supply 
the AC voltage to rack-level PSUs. As the demand of racks varies, the 
switch mode power supply unit (SMPSU) changes the switching fre-
quency and/or duty cycle to control the amount of stored electrical 

Fig. 3. Power consumption of the components in server [4,10].  

Table 1 
Overview of Tier Classification Requirement.   

Tier I Tier II Tier III Tier IV 

Utility Supply 
(Connection 
point) 

Single point Single point Single point Dual 

Backup 
Generator 

Optional N N+1 2N 

Backup system 
(UPS) 

N N+1 N+1 2N 

Maintenance outage for 
maintenance 

outage for 
maintenance 

concurrently 
maintainable 

fault 
tolerant 

Availability 0.999947 0.9999512 0.9999791 0.9999976  

Fig. 4. Configuration of the IPSS in a typical data center.  
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power transferred from the capacitor [39]. Power electronic devices 
with high frequency switching like PDUs, incur a constant power loss as 
well as a power loss proportional to the square of the server load [9], as 
shown in (5). The PDU typically consumes 3% of its input power [9,21]. 
As in current practice, all the PDUs remain connected with the supply 
system, which increases the idle loss of PDU [21]. Here, ϕPDU represents 
power loss coefficient of the PDUs [5,21] and the unit is in per Watt 
considering (5). 

PLoss
PDU = Pidle

PDU + ϕPDU ⋅

(
∑

servers
Pserver

)2

(5)  

3.2.3. Power consumption model of power supply unit (PSU) 
The power loss of PSU depends on its supplied power [9,21,40]. In 

[38], the power consumed by the PSU is explained as a load dependent 
without any constant losses, while comparing the efficiency of the PDU 
and PSU at different voltage levels of the data center. The efficiency of a 
PSU (87.56%) is less than the efficiency of PDU (94.03%) for a 480 Vac 
system in data center [38]. The efficiency is calculated based on the 
input and output power of each unit in [38]. However, the total power 
loss of all PDUs is higher than the total power loss of all PSUs, because a 
PDU supplies more than ten PSUs in a typical IPSS topology of a data 
center, as shown in Figure 4. The power loss of a PSU is assumed to be 
1% of the supplied power. 

3.2.4. Conduction loss of cables 
The IPSS is a combination of AC and DC system, as shown in Figure 4. 

The conduction loss of the cables between the PSUs and servers is 
neglected because the distance between the PSUs and servers is rela-
tively shorter than the rest of the sections in the IPSS. The conduction 
loss of the cables in the AC system is calculated using the load current 
supplied by the UPS and the cable resistance, as shown in (6). In this 
regard, the power conditioning devices e.g., the UPS, PDU, and PSU 
typically come with filters and power factor correctors by the manu-
facturer. Therefore, the power factor PF remains reasonably high in the 
IPSS, which is assumed to be 0.98 in this study. 

PLoss
Cable =

(
PRack + PLoss

PSU + PLoss
PDU

Vnom⋅PF

)2

Rcable (6)  

3.3. IPSS availability calculation method 

A system consists of a set of components, where the reliability of the 
system depends on the component’s reliability and on the configuration 
of the system. The reliability of such systems can be evaluated using 
logic diagrams also called reliability block diagrams (RBD). The RDB 
does not need to be similar to the system configuration in reality. The 
RBD is so designed to indicate which combination of component failures 
result in the failure of the entire system. 

Regarding the IPSS in data centers, it contains the power condi-
tioning devices, CBs, and the cables that are assumed to be repairable. 
Therefore, the reliability of the system will depend on these compo-
nents’ availability, while the availability of a repairable component 
depends on its mean time to failure (MTTF) and mean time to repair 
(MTTR) [41]. The availability and unavailability of a repairable 
component is shown in (7). 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Acom =
MTTFcom

MTTFcom + MTTRcom

Acom = 1 � Acom

(7) 

In a given RBD, the components can be in series, parallel, or a 
combination of series-parallel structure, based on the impacts of 
component failures on system availability, as shown in Figure 5. If any of 
the series connected components (A1, A2, and A3) fail the system will 

fail, while for failure of all the components in parallel branch (A4, A5,

and A6) are needed to be failed for system failure. The availability of the 
series branch Aser is the product of all the components’ availability, as 
given in (8). The unavailability of the parallel branch Apar is the product 
of all the unavailabilities, as given in (9). Finally, the availability of the 
system can be derived using the availability of the series and parallel 
branch, as shown in (10). It is important to mention that, the system 
availability improves with the increasing number of parallel compo-
nents in the system. 

Aser = Π
m

Am = A1⋅A2⋅A3 (8)  

Apar = Π
n

An = A4⋅A5⋅A6 (9)  

Asys = Aser⋅
(

1�Apar

)
(10)  

4. Results and analysis 

4.1. Availability and power losses of the IPSS 

In the following section, the availability of the IPSS has been 
analyzed with detailed structure of the system that includes the cables, 
CBs, and the power conditioning devices. The cable length and imped-
ance are taken from [42]. Regarding the parameters for the availability 
calculation i.e, failure and repair rates, MTTF, and MTTR of the com-
ponents are taken from the IEEE Gold book [43] that are summarized in 
Table 2. The PSU is considered as a rectifier and the PDU is considered as 
an industrial dry transformer based on their working principle in the 
system to select the parameter from [43]; these devices are not 
mentioned directly in the IEEE Gold Book. The availability and the 
power losses of different topologies of the IPSS are described in the 
following part of this section. 

4.2. IPSS without component level redundancy - System 1 

An IPSS topology without any redundant components is considered 
as System 1, as shown in Figure 6. The proposed IPSS in System 1 is the 
simplest structure, equivalent to Tier I architecture for the data center. A 
rack with 10 servers with 10 PSUs are connected with a PDU and a UPS. 
The specifications of cable length, cable resistances, and the CBs for 
sectionalization are taken from [42], as given in Figure 6. However, the 
three-phase UPS unit is supplied by the utility with or without a backup 
generator, which is not included in this analysis since the study has 
focused on the IPSS. As it is mentioned in Table 2, the MTTF and MTTR 
of cable depend on the length of the cable. This system has 43.5 m long 
cables. The MTTF of the cable increases, while the MTTR decreases with 
the decreasing length of the cable, thus the overall availability of the 
cable section will increase in this case, as shown in (11). The length 
dependent availability calculation of the cable is added in Appendix A. 

Fig. 5. Series-parallel combination of a RBD  
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MTTF43.5m =
(

304.8
43.5

)
⋅MTTFref

MTTR43.5m =
(

43.5
304.8

)
⋅MTTRref

Acbl43.5m = 1 �
(

43.5
304.8

)2

⋅
MTTRref

MTTFref

Acbl43.5m = 1 � Acbl43.5m

(11)  

4.2.1. Overall unavailability and availability of the IPSS 
As depicted in the RBD of System 1 in Figure 6, the server failures 

have no impact on the availability of the IPSS. However, any failure in 
any of the PSUs in the rack will cause a failure in the server that is 
associated with that faulted PSU. Therefore, the availability calculation 
of the IPSS in System 1 accounts UPS, CBs, cable, PDU, and PSUs except 
servers, where the PSUs in the rack is considered as parallel in RBD. 
Meanwhile, the connected racks with all servers will be unavailable for 
any component level failure from PDU to the upstream system. Thus, the 
UPS, CBs, cable, and PDU are considered as series connected in the RBD, 
as shown in Figure 6. 

A sensitivity analysis of the IPSS unavailability and availability due 
to the component failures are presented in Table 3 and Table 4. The 
unavailability of such a system like the IPSS shows the dependability of 
the system on its component failures [44]. The overall unavailability of 
the IPSS is too small thus a scaling factor of 10�6 is used in Table 3. The 

overall unavailability (×10�6%) of the IPSS improves with the 
increasing number servers and PSUs in the rack, as shown in Table 3, 
hence, the availability also increases in terms of number of 9’s in 
Table 4. The overall unavailability of the IPSS increases for all the cases 
after considering the cables in the study, as shown in the third row of the 
Table 3. Therefore, the reliability of the IPSS degrades the most for cable 
failures. Meanwhile, the overall availability of the IPSS in System 1 with 
all the components in working state is 0.9999951 for 10 PSUs and 
servers. This value is similar to a typical Tier I data center, as given in 
Table 1. The overall availability of the IPSS in all cases increases with the 
increasing number of PSUs and servers since the number of parallel PSUs 
increases in the IPSS, which improves the overall availability, as 
explained in Section 3.3. However, the availability of the utility and 
backup generator is not included in this study, which could reduce the 
overall availability of the IPSS. 

4.2.2. Power loss analysis of the IPSS at Rack-level 
All the servers of System 1 are considered to be fully utilized, hence 

consuming maximum power, as shown in (2). The servers are fed by the 
PSUs individually at rack-level, where the PSUs are assumed to be 
identical. The power loss of the PDU and the cables are calculated using 
(5) and (6), while 1% of the supplied power is assumed to be consumed 
by the PSU, as mentioned in Section 3.2.3. To analyze the impact of the 
power losses with the increasing number of servers at rack-level the 
percentage of power loss is analyzed, which is the ratio of the power 
losses of PDU, cable, and the PSUs to the total supplied power by the 
UPS, as shown in Table 5. The total power loss of the IPSS increases with 
the increasing number of servers from 1 to 10, as shown in Figure 7. The 
IT load PIT increases from 0.8 kW to 8 kW and the associated power 
losses also increase linearly with the increasing number of servers in the 
rack, as shown in Table 5. However, the percentage of power loss of the 
IPSS decreases from 14.702% to 8.806% with the increasing number of 
servers from the 1st to the 4th server, and increases further up to 12.85% 
with the increasing number of servers. The total power loss increases 
linearly, while the percentage of power loss does not vary linearly with 
the increasing number of servers at rack-level, as shown in Figure 7. Due 
to the series power loss the PDU that is characterized by the square of the 
supplied load term in (5), the power loss of the PDU start dominating 
over the other losses with increasing IT demand at rack, as depicted in 
Table 5. 

4.2.3. Total loss and availability of the IPSS 
The total power losses of the IPSS and the overall system availability 

(expressed in a number of 9’s) with the increasing number of servers at 
rack-level is shown in Figure 8. The availability of the IPSS increases 
from 4.88 to 5.31 when the second server and PSU are added with the 
rack. The availability of the IPSS remains at 5.31 for the increasing 
number of PSUs above two in the RBD, as shown in Figure 6. But the 
total power loss of the IPSS increases linearly with the increasing 
number of servers and PSUs, as shown in Figure 8. There is a possibility 
to have power supply capacity shortage of some of the components in 
the IPSS due to the increasing power losses. Especially for the PDU, the 
increasing power loss of the PDU pushes the PDU towards the rated 
capacity that is assumed to be 8 kW for this study. Thus it is a design 
challenge at the design step of the IPSS for a data center to identify the 
loading capacity of the PDU. 

In this use-case, the PDU connected with the rack exceeds the rated 

Table 2 
Parameters related to availability.   

MTTF (hr) MTTR (hr) Availability =
MTTF

MTTF + MTTR  
UPS 9499764.7 6.0 0.999999368405 
PDU 14432242.4 4.0 0.999999722842 
PSU 1960032.0 16.0 0.999991836934 
Cable* 47620.0 8.0 0.999832031578 
CB 2553936.0 37.5 0.999999890000 
*per 1000 ft or 304.8 m   

Fig. 6. IPSS architecture and RBD of System 1.  

Table 3 
Sensitivity Analysis Based on Unavailability (×10�6) of System 1.  

No. of PSUs with Servers 1 2 3 4 5 6 7 8 9 10 

UPS, PDU, PSUs 9.0718 0.9088 0.9088 0.9088 0.9088 0.9088 0.9088 0.9088 0.9088 0.9088 
UPS, PDU, PSUs, CBs 9.6218 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 1.4588 
UPS, PDU, PSUs, Cable 12.4935 4.3306 4.3305 4.3305 4.3305 4.3305 4.3305 4.3305 4.3305 4.3305 
UPS, PDU, PSUs, CBs, Cable 13.0435 4.8806 4.8805 4.8805 4.8805 4.8805 4.8805 4.8805 4.8805 4.8805  
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power supply capacity when simultaneously 8 servers connect with the 
rack, as shown in Figure 9. The IT resources are supposed to be fully 
utilized ideally, to maximize the efficiency of the data center and the 
IPSS should be designed to handle the full IT load. Regarding the bottle 
neck of the rated power of PDU, the last two servers with the PSUs (20% 
of rack-level computational resource) will be out of operation due to the 
lack of power supply from PDU, as depicted in Figure 9. Therefore, the 
service availability of the IPSS is not assured, although the reliability of 
the IPSS is 0.9999951 that is similar to a Tier I data center. Meanwhile, it 
has 20% computational resource outage probability at rack-level due to 

the power supply capacity shortage. 
The rack manufacturers are focusing now to host more servers in 

racks to cope up with the increasing demand of computational resources 
at rack-level. Thus an additional PDU with 8 kW rated power is added 
with the existing PDU in System 1, to supply power to the additional 
servers from 9 to 20. The modified IPSS architecture is shown in 
Figure 10. The demand of the (9th and 10th) servers are transferred to the 
additional PDU and further increase the number of servers up to 20 to 
investigate the impact of increasing IT load on the power losses and on 
the service availability of the IPSS. Assuming full computational load for 
each of the additional servers, the related power losses and total IT load 
at rack-level are summarized in Table 6. The supplied power of the 
additional PDU also falls back to the rated power that is highlighted with 
gray color in Table 6. After adding eight servers simultaneously with full 
computational workloads, the demand of PDU hits the rated power 
supply capacity. Therefore, the last four servers, which is 20% of the 
rack-level computational resource will be out of service because of the 
capacity shortage of the additional PDU due to increasing power losses 
of the additional PSUs and PDU with the increasing number of servers. 

These sequential events related to the increasing power losses and 
capacity shortage of the PDUs cause degradation of the service avail-
ability of the IPSS, as shown in Figure 11. The service availability of the 
IPSS in number of 9’s is similar to the Tier I and remains constant but 
after adding the 17th server the service availability is reduced to zero 
because the last four servers in the rack can not be supplied by the IPSS. 
Meanwhile, after adding the second PDU unit the percentage of loss of 
the IPSS system decreases initially, then increases again up to 13.22% 

Table 4 
Sensitivity Analysis Based on Availability (no of 9’s) of System 1.  

No. of PSUs with Servers 1 2 3 4 5 6 7 8 9 10 

UPS, PDU, PSUs 5.042 6.042 6.042 6.042 6.042 6.042 6.042 6.042 6.042 6.042 
UPS, PDU, PSUs, CBs 5.016 5.8359 5.8359 5.8359 5.8359 5.8359 5.8359 5.8359 5.8359 5.8359 
UPS, PDU, PSUs, Cable 4.9033 5.3635 5.3635 5.3635 5.3635 5.3635 5.3635 5.3635 5.3635 5.3635 
UPS, PDU, PSUs, CBs, Cable 4.8846 5.3115 5.3115 5.3115 5.3115 5.3115 5.3115 5.3115 5.3115 5.3115  

Table 5 
Percentage of power losses with increasing IT load at rack-level.  

No of servers 1 2 3 4 5 6 7 8 9 10 

Total IT load, PIT (kW)  0.8 1.6 2.4 3.2 4 4.8 5.6 6.4 7.2 8 

PSU power loss, PLoss
PSU (kW)  0.008 0.016 0.024 0.032 0.04 0.048 0.056 0.064 0.072 0.08 

PDU power loss,           
PLoss

PDU (kW)  0.1298 0.1592 0.2081 0.2767 0.3648 0.4725 0.5999 0.7467 0.9132 1.0993 

Cable conduction loss, PLoss
Cable (W)  0.0867 0.1640 0.2432 0.3243 0.4071 0.4917 0.5781 0.6664 0.7564 0.8483 

ower supplied by UPS, PIT + PLoss
PSU + PLoss

PDU + PLoss
Cable (kW)  0.9379 1.7754 2.6323 3.5090 4.4052 5.3210 6.2565 7.2114 8.1860 9.1801 

Percentage of power loss* 14.702 9.877 8.826 8.806 9.198 9.791 10.492 11.251 12.044 12.855 
*Percentage of power loss is the percentage of the ratio of total power losses and total delivered power by UPS  

Fig. 7. Total power loss and the percentage of power loss in the IPSS for Sys-
tem 1. 

Fig. 8. Total power loss and the availability of the IPSS with the increasing 
number of servers. 

Fig. 9. PDU supplied power with increasing number of servers  
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with an increasing number of servers as shown in the scatter plot in 
Figure 11. Therefore, the reliability of the IPSS not only depends on the 
component failures or on the overall availability index, but it also de-
pends on the power losses of the IPSS that is addressed by the service 
availability of the IPSS. Meanwhile, the service availability of the IPSS 
degrades with the increasing number of servers at rack levels. 

4.3. IPSS with redundant components - System 2 

In this section, the system is considered with 20 servers with 20 dual 
corded PSUs in the rack. Dual corded PSUs are fed by two power supply 

paths, which are assumed to be identical and similar to the IPSS in 
System 1, as shown in Figure 12. These two power flow paths, equipped 
with identical components (i.e., UPSs, CBs, cables, and PDSs) share 50% 
of the IT loads in normal operating condition, while each of the path can 
support the IT demands for the failure or maintenance in the adjacent 
path. In this regard, the design structure of IPSS in System 2 is fault- 
tolerant, which is equivalent to the Tier IV data center, as given in 
Table 1. The overall availability of the IPSS improves, as shown in 
Figure 13 because of the redundant power flow paths that are parallel, 
according to Section 3.3. The number of 9’s of the availability of the IPSS 
in System 2 is increased from 5.08 to 10.62, as shown in Figure 13, while 
it is found 5.311 for System 1 in Figure 8. Meanwhile, the total power 
loss of the IPSS increases with an increasing number of servers at the 
rack in System 2. The total loss of the IPSS with 20 servers in the 
modified System 1 is shown 3.6805 kW in Figure 11, which increased to 
3.8778 kW for System 2, as shown in Figure 13. The power losses in the 
IPSS increase in System 2 with the same IT load compared to the 
modified System 1, due to the additional redundant components in the 
IPSS. 

The total power losses, the percentage of power loss, and the service 
availability of IPSS are shown in Figure 14. The aggregated power 
supply capacity of the PDUs of 16 kW becomes short to supply the rack 
demand when the 17th server needs to be fed simultaneously with other 
servers, due to the increasing power losses with the increasing number 
of servers. Therefore, the last four servers that are 20% of the rack-level 
computational resource will be out of the service like the modified 
System 1, which implies 20% of rack-level server outage probability is 
still presents in the modified IPSS. Moreover, the system performance in 
terms of percentage of losses improves faster for System 2 with an 
increasing number of serves compared to the modified design of System 
1, as shown in Figure 14. The percentage of power loss in System 2 is 
24.02% of the total supplied power by the UPSs for one server that de-
creases at the lowest of 8.67% for seventh servers and increases up to 
12.67% for full rack load, as depicted in Figure 14. In the modified 
design of System 1, 13.22% of the supplied power is consumed by the 
IPSS component with 20 servers, as shown in Figure 11. Thus, the per-
formance of the IPSS in System 2 improves compared to the modified 
design of System 1 considering the percentage of power loss and the 
availability of the IPSS. However, 20% rack-level server outage proba-
bilities still exist in System 2 due to the capacity shortage of PDUs with 
the increasing number of servers. 

5. Discussion and contribution 

Due to the increasing power loss of the IPSS with the increasing 

Fig. 10. Modified IPSS architecture for System 1.  

Table 6 
Summary of the power losses with additional PDU, PSUs, and serves.  

No of 
Servers 

IT Load 
(kW) 

PSU Loss 
(kW) 

2nd PDU Loss 
(kW)  

2nd PDU Load 
(kW)  

9 0.8 0.008 0.1298 0.9378 
10 1.6 0.016 0.1592 1.7752 
11 2.4 0.024 0.2081 2.6321 
12 3.2 0.032 0.2767 3.5087 
13 4 0.04 0.3648 4.4048 
14 4.8 0.048 0.4725 5.3205 
15 5.6 0.056 0.5999 6.2559 
16 6.4 0.064 0.7467 7.2107  

7.2 0.072 0.9132 8.1852 
18 8 0.08 1.0993 9.1793 
19 8.8 0.088 1.3049 10.1929 
20 9.6 0.096 1.5302 11.2262  

Fig. 11. Power loss versus system availability with additional PDU for 
20 servers. 
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number of servers causes power supply capacity shortage for the PDUs, 
which causes the service unavailability. There is a possibility of 20% 
computational resource or server outages at rack-level because of the 
power supply capacity shortage of PDUs that is found in all the studied 
IPSS architectures in this paper. Meanwhile, increasing the rated power 
of the PDUs by 20% would not be the solution because that will also 
increase the idle loss of the PDUs, hence the power losses of UPSs. Thus 
the required service availability cannot be assured by increasing the 
rated power of PDU, while the optimal number of servers per PDU can 
reduce the possible server outages. This probabilistic approach to 
quantify the IT service unavailability can be used for the operational 
planning of the data centers. 

The novelty of this study is the approach to quantify the service 
availability of the IPSS to server the computational resources consid-
ering the total power losses and the percentage of losses of the IPSS. The 
percentage of loss is the ratio of the power losses of PDU, cable, and PSUs 
to the total supplied power by the UPS, which represents the IPSS per-
formance considering the demand at rack-level. The total power losses 
of the IPSS increase with the increasing number of servers and compo-
nents of the IPSS for all the studied systems in this paper. Meanwhile, the 
percentage of power loss of the IPSS is decreased for System 2, where the 
IT load is equally divided into two power supply paths. Here, it is 
assumed to have servers with full computational workload, hence 100% 
utilization of the servers to calculate the electrical load of the rack, that 
is an engineering practice for designing any power supply system in the 
industry. 

The number of 9’s of the availability of the IPSS for all of the studied 
system architectures remain constant for an increasing number of PSUs 
above two. The outages of the servers are not considered in this study. 
The number of parallel components increases with the increasing 
number of PSUs and servers in the RBDs of the studied system archi-
tectures, as shown in Figure 6 and Figure 12. The system specification of 
Tier I and Tier IV mentioned in Table 1 are similar to the studied ar-
chitectures of IPSS in System 1 and System 2, respectively. However, the 
backup generator and the utility supply are not included in the analysis 
of availability calculation of the IPSS in System 1 and System 2, which 
could be extended in future works. 

Fig. 12. IPSS architecture and RBD of System 2.  

Fig. 13. Power Loss versus availability of IPSS with increasing number 
of servers. 

Fig. 14. Total power loss, percentage of power loss with overall availability of 
System 2. 
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6. Conclusion 

The power consumption models of IT load and the components of 
IPSS are presented in this paper as a function of CPU utilization. The 
cooling load section is not included in this study because the authors are 
focused on the power losses and availability of the IPSS that depends on 
the IT load sections. 

The percentage of power loss and the service availability of the IPSS 
analysis shows that the possibility of the power supply capacity shortage 
of the PDUs can computational resource outages. The outage probability 
of the computational resource at rack-level is identified to be 20% 
because of the PDU power supply capacity shortage. The optimal 
number of servers per PDU could be a solution to ensure the highest level 
of computational resource availability also should be analyzed further as 
future work. 

Moreover, the performance of the IPSSs in data centers are critically 

analyzed in this paper in terms of power losses and service availability 
that can be applied for the designing IPSS of the hyper-scale data cen-
ters. The studied system architectures are equivalent to the standard Tier 
I and Tier IV system of data center, while the reliability model of the 
IPSS has scope to improve further with added components like backup 
generator and utility power supply. 

Declaration of Competing Interest 

None. 

Acknowledgement 

This study is supported by the Swedish Energy Agency under Grant 
43090-2, and in part by the Cloudberry Datacenters project, by Region 
Norrbotten, and by an industrial group.  

Appendix A. Availability of the cable section 

The MTTF and MTTR mentioned in Table 2 for a 1000 ft or 304.8 m cable are considered as the reference variables. 
Let, the reduced length of the cable is α m and the factor is x = α

304.8. 

MTTF(x) =
1
x
⋅MTTFref (A.1)  

MTTR(x) = x⋅MTTRref (A.2)  

Availability, A(x) =
MTTF(x)

MTTF(x) + MTTR(x)
= 1 �

MTTR(x)
MTTF(x) + MTTR(x)

(A.3)  

Generally, the mean time to failure of the cable is much higher than the mean repair time i.e.,(MTTF(x) >> MTTR(x)). 
Thus, 

A(x) = 1 �
MTTR(x)
MTTF(x)

= 1 �
x⋅MTTRref
1
x⋅MTTFref

= 1 � x2⋅
MTTRref

MTTFref
(A.4)  

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.epsr.2021.107025 
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ABSTRACT The energy demand of data centers is increasing globally with the increasing demand for
computational resources to ensure the quality of services. It is important to quantify the required resources
to comply with the computational workloads at the rack-level. In this paper, a novel reliability index called
loss of workload probability is presented to quantify the rack-level computational resource adequacy. The
index defines the right-sizing of the rack-level computational resources that comply with the computational
workloads, and the desired reliability level of the data center investor. The outage probability of the power
supply units and the workload duration curve of servers are analyzed to define the loss of workload
probability. The workload duration curve of the rack, hence, the power consumption of the servers is
modeled as a function of server workloads. The server workloads are taken from a publicly available data
set published by Google. The power consumption models of the major components of the internal power
supply system are also presented which shows the power loss of the power distribution unit is the highest
compared to the other components in the internal power supply system. The proposed reliability index and
the power loss analysis could be used for rack-level computational resources expansion planning and ensures
energy-efficient operation of the data center.

INDEX TERMS Adequacy, data center, energy losses, internal power supply system, reliability.

I. INTRODUCTION
Data centers (DCs) are becoming an essential part of the
modern information technology industry with the increas-
ing popularity of cloud-based services. With the growth in
computation resource capacity and size of DCs, the energy
demand and operational costs are continuously increasing [1].
According to a report published by Lawrence Berkeley
National Laboratory, the total energy consumption of the DCs
in the US was approximately 70 billion kWh or 1.8% of its
national consumption. Their energy demand was projected to
be doubled to roughly 140 billion kWh annually by 2020, cor-
responding to a $13 billion annual electricity bill [2]. A recent
study from Google indicates that a typical cluster utilizes
only 10% to 50% of its installed computational capacity [3].
Due to the overprovisioning of the computation resources,

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiyi Li .

the DCs incur unnecessary electrical energy and associated
operational costs.
In addition, it is also important to limit the energy losses

in the internal power supply system (IPSS) of DC to enhance
the overall efficiency [4], [5]. The losses of the IPSS depend
on the structure of the IPSS and the electrical load demands
of the load sections. The DCs typically have two major load
sections namely, the IT loads and the cooling loads that are
fed by the power conditioning equipment of the IPSS [6]. The
uninterrupted power supply (UPS), the power distribution
unit (PDU), and the power supply unit (PSU) are the main
components of the power conducting section in the IPSS.
All these devices consume a significant amount of power,
which are considered as power losses of the IPSS in this
paper. The power losses of these components increase with
increasing IT loads [5], [6]. The right-sizing of the com-
putational resources considering the energy-efficient opera-
tion of DC are addressed in [7]–[11]. The number of idle
servers considering data traffic and negotiated service level
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agreements (SLAs) can be reduced as proposed in [7]. The
number of active servers is optimized by the consolidation
of workloads through virtualization in [9]–[11]. However,
the reliability of the rack-level PSU is not included in these
studies. So, this paper takes the opportunity to quantify
the computational resource adequacy considering the outage
probability of the PSUs at rack-level. The power consumption
models for UPS, PDU, and PSU are also considered since the
increasing power consumption of these devices degrades the
reliability of the IPSS in DC, as explained in [5].
In this paper, a novel index called loss of workload

probability (LOWP) is introduced. The index addresses the
adequacy of the rack-level computational resources as the
number of required servers per rack. The required number of
servers per rack is calculated considering the computational
workloads taken from a data set published by Google [12],
and the outage probability of the PSUs. The time-series of
the electrical power consumption of the rack is calculated
from the assigned workloads of the servers. Further, the elec-
trical load duration curves of the racks are constructed to
calculate the LOWP, considering the outage probability of
the associated rack-level power supply units (PSUs). The
power consumption model of the server and the power loss
models of the major components of the IPSS are presented
as a function of the server utilization. The server utilizations
from the Google data set are used to fit in the proposed
models that give the overall IT load profile. Besides the IT
loads power consumption, the percentage of power loss of
the IPSS devices and aggregated power loss of the IPSS are
also analyzed using the server utilizations from the Google
data set. It is computationally challenging to process the data
to get the useful time-series of each server utilization and fit
that in the proposed models.
The contributions and findings of this paper are listed

below:

• A novel reliability index called LOWP is introduced
to analyze the adequacy of the rack-level computation
resources considering the computational workloads. The
LOWP defines the probability of computational work-
loads that cannot be satisfied due to failures in PSUs at
the rack. The application of the LOWP is also discussed
considering computational resource expansion planning
and designing the clusters of racks for latency-sensitive
workloads.

• To the best of our knowledge, this is the first attempt
that has been made to use the server utilizations data
published in the Google data set without any scaling to
model the aggregated power consumption of IT loads
and the IPSS of the DC. The analysis shows that total
loss and the percentage of loss of PDUs are higher than
the UPSs and the PSUs at rack-level and aggregated
level. The power conditioning system of the IPSS con-
sumes more than 10% of the rated IT load in DC.

The remainder of this work is organized as follows:
Section II describes the state of the art of the power con-
sumption modeling approaches of the components of DC

and the loss of load probability analysis that is traditionally
used in the power system. Section III shows the formulation
of the power consumption models of the IT load section
and the power conditioning equipment including the struc-
ture of the Google data set. Section IV describes the results
and analysis of the proposed power consumption models
and reliability index for rack-level computational resources.
Section V explains the application of the proposed LOLP
index for planning DC expansion and discusses the limita-
tions of this work. Finally, Section VI contains the conclu-
sions and recommendations.

LIST OF SYMBOLS
� rotational speed of local fan
φPDU power loss coefficient of PDU
φUPS power loss coefficient of UPS
C the cumulative rated power of

the available PSUs at the rack
Cj the computational rated power

of the available
PSUs at the rack for hour j

L the IT load demand of the rack
n the total number of PSUs per rack
Nf number of total local fans
NR number of total racks
NS number of total servers
P[C = Cj] the probability to have remaining power

supply capacity of Cj after failures
P[L > Cj] the probability to have IT load demand L

more than the remaining power supply
capacity Cj supply capacity of Cj after
failures of PSUs at rack

pa the availability of PSU
pj the probability to have a power supply

capacity Cj for percentage of measurement
time tj

Pfanj power consumption of jth local fan
Pfan power consumption of individual local fan
Pidlei idle power consumption of ith server
Ppeaki peak power consumption of ith server
PidlePDU idle power loss of PDU
PLossPDU power loss of PDU
PRackm power consumption of mth rack
PRack power consumption of individual rack
Pserveri server power consumption of the ith server
Pserver server power consumption
PidleUPS idle power loss of UPS
PLossUPS power loss of UPS
PIT total total IT load power consumption
PrLOWP Loss of workload probability
qu the unavailability of PSU
R thermal resistance
Rcase thermal resistance of the CPU case
Rhs equivalent thermal resistance of the

heat sinks
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tj percentage of measurement time with a IT
load demand equal or more than the
remaining power supply capacity

Tamb ambient temperature of the server hall
Tdie die temperature of CPU
tMTTF Mean time to failure for PSU
tMTTR Mean time to repair for PSU
ui utilization of the ith server

II. STATE OF THE ART
A. RELIABILITY-BASED COMPUTATION RESOURCE
ADEQUACY ANALYSIS
According to The Uptime Institute’s classification, the IPSS
infrastructure of DCs has evolved through at least four dis-
tinct stages in the last 40 years, known as the ‘‘Tiers of
data center’’ [13]–[15]. The tiers of the DC are distinguished
by the redundant components in the power flow paths to
IT loads, without considering the computational workloads,
hence the electrical load of the IT devices. The methodolo-
gies related to the reliable operation of the DC that leads
towards the dynamic right-sizing of computational resources
are addressed in [7]–[11]. These research works are focused
on reducing the number of idle servers based on data traffic
and negotiated Service Level Agreements (SLAs) [7], opti-
mizing the number of active servers through virtualization
[9]–[11], and location-dependent dynamic resource alloca-
tion to control the active servers population at each loca-
tion [8]. However, none of these research works considers the
reliability aspects of the IPSS, since the performance of the
IPSS degrades with increasing power losses in the IPSS [5].
Therefore, the outage probabilities of the rack-level PSUs are
important to consider for the adequacy of the computational
resources in DCs, which can be identified by the LOWP
index.
Regarding the reliability indices for maintaining SLA,

quality of service (QoS), and capacity management, the key
quality indicator (KQI) and key performance indicator (KPI)
are described in [45], [46]. A further application of reliability
assessment is proposed in [47] that use ‘‘service availability’’
of the servers in a performance optimized DC. The reliability
index ‘‘service availability’’ and ‘‘service reliability’’ are also
used in [48], [49] as a function of up-time and down-time of
DC components. Another index named ‘‘Service latency’’ to
assess the system reliability, especially for edge and internet
DCs is studied in [50], [51]; the transaction latency impacts
the quality of experience of end users [45]. Another index
named Defects Per Million Operations (DPM) is discussed
in [46] that asses the system reliability by measuring the
number of failed operations per million of operations. These
mentioned indices accounts component’s up-time, down-
time, operation or task failures, and computational abilities to
assess the DC performance. However, it is important for the
DC operators to assess the computational resource adequacy
beforehand, to ensure operational efficiency and the SLA of
the DC, as explained in Section I. The proposed index LOWP

could address the computational resource adequacy at rack
level.
The LOWP index is inspired by the commonly used reli-

ability index of the power system called ‘‘loss of load prob-
ability (LOLP)’’ that has been proposed by Booth et. al in
1972 [16]. LOLP quantifies the expected load demands that
will not be met by the available generation capacity [17].
A similar probabilistic approach is used in this paper, to quan-
tify the computational workloads that will not be handled
due to the failures of PSUs at the racks in DC. The concep-
tualization of the LOWP is the novelty of the index since
it is proposed to be applied at rack-level to quantify the
computational resource adequacy in the DC, while LOLP is
used in power systems to address the generation adequacy.
The LOLP considers the force outage rate of generators and
the forecasted load of the system. Meanwhile, the LOWP
index is calculated using the computational workloads and
outage probability of the PSUs at the rack-level.

B. POWER CONSUMPTION MODELING OF IT LOADS AND
POWER CONDITIONING DEVICES
The power consumption of the rack is needed to get the
electrical equivalent workload duration curve, which is also
needed for the power consumption models of the components
of the IPSS in DCs [6].
The power consumption models of different components

of the IT load section and the IPSS are presented in
[18]–[20], however, the models are limited to identify the
component level consumption and losses considering the
dynamic structures and topologies of DCs. The modular
modeling approaches can consider the dynamic structures
of the load sections for power consumption modeling from
component-level to aggregated-level [6], [21], [22]. The ear-
liest processor utilization based power consumption model of
CPU appeared in 2002 [23]. This model was extended further
to model the consumption of the whole server [24]–[26].
Moreover, the UPS, PDU, and PSU as the power conditioning
equipment in the IPSS are responsible for ensuring back-up
supply and power quality for the IT loads. These essential
components consume a significant amount of energy during
the transformation processes, which is considered as power
losses in this study. The power consumption model of the
UPS and PDU is analyzed in [18], [27].

C. APPLICATION OF REAL DATA SET IN POWER
CONSUMPTION MODELS
Due to the scarcity of publicly available data sets with real
server workloads, it is difficult to use the server utilization
based models for other purposes. Google and Alibaba are the
only DC owners who released the data sets of their DC with
servers’ utilization data [12], [28]. The Google data set is
used in research works for workload characterization, server
classification, and server failure analysis [29]–[32]. Recently,
the server utilization table of this data set is used for charac-
terizing the server power consumption and validating the pro-
posed power oversubscription model in a benchmarked cloud
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interface in. The authors only consider some selected servers’
utilization by scaling-up the utilizations in [33]. However,
the utilization factors of all the reported servers in the data
set are used in this paper, to find the time series of the server
power consumption without any scaling.

III. METHODS AND PROCEDURES
A. LOSS OF WORKLOAD PROBABILITY (LOWP)
The probability that the computational workload will not be
served by available computational capacity at the rack due
to random failures of the rack-level PSUs is defined as the
loss of workload probability (LOWP), as given in (1). The
computational workloads are converted into electrical loads
or load demand of rack-level IT loads as it is explained in
Section III-B. In this case, the cumulative load curve is mod-
eled from the hourly IT load of the rack, which is known as the
load-duration curve. Meanwhile, the computational capacity
is defined by the power supply capacity, hence the cumulative
rated power of the PSUs at the rack. It is assumed that
every server is connected with a PSU in the rack, as shown
in Figure 1. Therefore, if the remaining power supply capacity
Cj is less than the IT load demand L, for a certain percentage
of observation time tj, the overall probability that the IT load
demand will not met is defined by LOWP, as defined in (1).

PrLOWP = P[C = Cj] · P[L > Cj] =
pj · tj
100

(1)

where C is the cumulative rated power of the available PSUs
at the rack
Cj is the computational rated power of the available PSUs at
the rack for hour j.
L= the IT load demand of the rack.
P[C = Cj] is the probability to have remaining power supply
capacity of Cj after failures of PSUs at rack.
P[L > Cj] is the probability that the IT load demand L will
be more than the remaining power supply capacity Cj.
pj is the probability to have a power supply capacityCj during
the observation time tj.
tj is percentage of measurement time with a IT load demand
equal or more than the remaining power supply capacity. As
the IT load demand L is obtained from the load-duration

FIGURE 1. Power conditioning equipment configuration in a DC.

curve of the rack, which is constructed using the power
consumption of the racks. Therefore, the power consumption
model of the rack is needed to be addressed beforehand.
The power consumption of the servers along with the local
cooling fans are considered in this paper to characterize the
power consumption of the rack, as these are the major power
consuming components in a rack [6]. A flowchart with the
steps to calculate the LOWP index is shown in Figure 2.
The power consumption model of these components, hence
the power consumption models of the rack and other load
sections are presented in Section III-B.

FIGURE 2. Flowchart of the LOWP calculation process.

B. POWER CONSUMPTION MODELS OF LOAD SECTIONS
1) SERVER POWER CONSUMPTION
In this paper, the blade type servers are considered among the
different generalizations (e.g., blade, tower, and rack-able)
since they contain similar basic hardware blocks, i.e, pro-
cessors, memory, chipset, input/output (I/O) devices, storage,
voltage regulators, and cooling systems (fans and heat sinks)
[34], [35]. The power consumption of a server as a function
of utilization is given in (2)

Pserveri = Pidlei + (Ppeaki − Pidlei ) · ui (2)

where ui is the utilization of ith server unit, which varies
depending on the assigned work load and resource allocation
to this server. Server utilization, ui is a unitless quantity that
can vary between 0% (no work load) to 100% (maximum
work load).

2) LOCAL COOLING FAN POWER CONSUMPTION
The local cooling fans are attached to the servers with heat
sinks for handling the heat generated from the IT loads. The
servers contain variable airflow control to ensure the reliable
operation of the server cooling system in current technology.
The required air flow rate depends on the heat generated by
the servers, which determines the required rotational speed
and fans’ power consumption, shown in (3)-(5). The equiv-
alent thermal resistance, R can be expressed as the ratio of
the different of die and ambient temperature and the heat
generated by the CPUs [6], as shown in (3). The thermal
resistance, R also depends on the summation of equivalent
thermal resistance of heat sinks, Rhs and the thermal resis-
tance of the CPU case, Rcase [36], [37], as shown in (4).
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Here, Rhs depends on its convective heat transfer as a function
of the wind speed at the surface of heat sink, determined
by the cooling fans’ revolution speed (i.e., revolutions per
minute, �); hence, Rcase is assumed to be constant in [36].
The constants a1 and a2 depend on the properties of airflow
and CPU package; and the parameter a3 depends on the level
of turbulence in the air flow [36].
In this paper, the thermal resistance of the server, R is

calculated first using (3) that is used to calculate the required
rotational speed of the fans, �, as shown (4). Finally the
power consumption of the fans are calculated as a function
of �, as shown in (5). The constants of the equations a1 to a7
are taken the regression models presented in [36], [37] and
shown in Section IV-2.

R =
Tdie − Tamb
PCPU

(3)

R = Rhs + Rcase =
a1 + a2

�a3
(4)

Pfan = a4 + a5� + a6�2
+ a7�3 (5)

where, R is the thermal resistance, Pserver is the server power
consumption,Tdie is CPU die temperature and Tamb is the
ambient temperature of the server hall. Rhs, Rcase, � and
Pfan represent the equivalent thermal resistance of heat sinks,
thermal resistance of the CPU case, rotational speed, and
power consumption of the local fan, respectively.

3) COMPLETE RACK MODEL
The blade servers are mounted in racks in high density. The
fans control the thermal limit of the server equipment. It is
not typical to measure the power consumption of every blade
server, but the aggregated power consumption of the servers
and fans at rack level [6], shown in. Thus the total power
consumed by the IT loads is the summation of all rack-level
consumption, as shown in (7).

PRack =

Ns∑
i=1

PServeri +
Nf∑
j=1

Pfanj (6)

PIT total =

NR∑
m=1

PRackm (7)

where, PRack is the total rack power consumption with total
NS number of servers and Nf the number of local fans. With
NR number of racks the IT load power consumption is PIT total .

4) CONSUMPTION MODELS OF POWER
CONDITIONING DEVICES
The main task of the power conditioning devices, i.e., the
UPS, PDU, and PSU in the IPSS are to maintain a con-
tinuous power supply and ensure power quality for the IT
load section. Different architectures of UPSs are available
with battery backups to supply power to the IT loads for
short interruptions. The PDUs and PSUs are used to maintain
specific voltage levels for the IT loads [6], [18]. However,
backup generators are also essentially present in the system

to supply power to the DC during long interruptions in the
public grid. Since the focus of this study is on the IPSS of the
DC thus the backup generators are not considered. The IPSS
that is considered in this paper is shown in Figure 1, where
every rack is considered to host 10 servers with 10 PSUs and
a PDU unit, while 100 PDUs are connected with 1 UPS.
The working principles of the UPS, PDU, and PSU are

explained in our previous work [5]. The detailed power con-
sumption models of the UPS and PDU is taken from [5], [6],
that are given in (8) and (9)

PLossUPS = PidleUPS + φUPS

( ∑
PDUs

PPDU

)
(8)

where, PLossUPS and P
idle
UPS represent the UPS power loss and the

idle power loss of UPS. φUPS is the power loss coefficient of
UPS that is unitless considering (8).

PLossPDU = PidlePDU + φPDU

( ∑
servers

Pserver

)2

(9)

where, PLossPDU and PidlePDU represent the UPS power loss and the
idle power loss of UPS. φPDU represents the PDU power loss
coefficient with a unit of per watt, as in (9).
The power losses of PSUs do not depend on the supplied

power [6], [18], [36]. In [38], the power consumed by the PSU
is explained as load-dependent without any constant losses.
In this study, it is assumed that the PSU consumes 1% of its
server electrical load.

C. GOOGLE DATA SET STRUCTURE AND PROCESSING
METHODOLOGY
The Google data set contains 6 tables with various informa-
tion about the operation of 12, 583 servers under a period of
29 days, from May 1, 2011 to May 30, 2011. The data set
contains a table called ‘‘task-usage’’ with information about
resource utilization information (resource refers to CPU,
memory, or disk). This data has been sampled in 5min or at
a value of 12 samples/hr . The data set is divided into 501
comma-separated files (.csv) files (approximately 166GB
in size). It needs a significant amount of data processing
capacity to execute complex queries based on unique server
IDs. Matlab c© R2019b in windows server with 8 core Intel R©

Xeon R© CPU E5 − 4603 and 96GB of Memory has been
used to extract the time-series utilization of all individual
servers. Additionally, limited information in schema [12] and
the unprocessed nature of the data, requires an extensive
understanding of different attribute relationship. The follow-
ings are some specific cases and related assumptions that are
considered during the data processing step.

• The measurement starts on May 1, 2011 at 5 PM thus
we truncate the data of this day and we only analyze the
remaining 28 days.

• If no record exists for a server in a measurement interval,
this means that no task was assigned to that server and
the CPU utilization of that server is assumed to be zero.
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• Out of all the server utilization records, due to measure-
ment errors, 583 records (less than 0.00005%) have CPU
utilization of more than 1. All those values are truncated
to 1.

• No scaling factor is used to bias the reported utilization
factor of the individual server so that the actual trend of
the overall IT load consumption could be replicated.

IV. RESULTS AND ANALYSIS
In order to compute the load duration curve of the rack,
the computational workloads of the servers need to be trans-
lated to power consumption. The power consumption of
servers is calculated using the servers’ utilization factor from
the Google data set according to (2). Thus the analysis
of the power consumption of servers, local fans, racks, and
the power losses of the IPSS components are presented in
Section IV-A. The load demands of the racks are used later to
get the electrical IT load-duration curve of rack for the LOWP
in Section IV-B.

A. POWER CONSUMPTION MODELS
1) POWER CONSUMPTION OF SERVERS, FANS, AND RACKS
As a use-case study, it is assumed that each rack of the
DC hosts 10 blade servers with all computational resources
described in Section III. Additionally, each rack has 40 local
fans, i.e., 4 fans for each blade server to manage sufficient
airflow into the racks [6], [39]. The rated power of a blade
server, hence, the rating for a PSU is assumed to be 800W,
and the server consumes 400W in idle mode [6]. The servers’
utilization data are converted into a time-series; sampled
every 1 hr for all 12, 583 servers to get the power consumption
of the servers, as given in (2). The day-wise analysis of power
consumption of individual servers is shown in Figure 3. The
25th and 50th percentile show that the power consumption of
most of the servers is below 450W in Figure 3. Some of the
servers are utilized highly every day as represented by the
90th percentile in Figure 3, hence the power consumption of
those servers are also high. That means the measurements of
the servers’ workloads are taken from different clusters based
on priority task scheduling. The server utilization, power
consumption, and fans power consumption of such a highly
utilized server (server ID 4820240534) are shown in Figure 4.

FIGURE 3. Daily power consumption analysis of the servers.

FIGURE 4. Weekly analysis of server utilization, server power
consumption, and fans power consumption of a single server (Server ID
4820240534).

This server has higher utilization for the first week which
varies between 20% − 100%. The power consumption
pattern follows the utilization. But it is not the case for local
fans since the power consumption of the fan depends on
temperatures (Tdie, Tamb) and rotational speed (�). Although,
the rotational speed of fans depends on the equivalent thermal
resistance (R) that is inversely proportional to PIT , as given in
(3) - (5). The fans’ power consumption does not vary linearly
with the speed so it does not follow the power consumption
of the server. The following parameters are used to calculate
the local fans’ power consumption.

a1 = = 0.1352, a2 = 17440, a3 = 1.56

a4 = 0, a5 = 0.0003, a6 = −3 × 10−8, a7 = 7 × 10−12

Tdie = 90oC, Tamb = 24 ∼ 27oC

The servers are distributed among 1, 259 racks (10 servers
per rack), while the last rack has only three remaining
servers with 12 local fans. The total power consumption of
the IT loads including servers and local fans is shown in
Figure 5. The total IT load has a weekly consumption pattern,
as depicted in Figure 5. The weekly consumption pattern of
the IT load is also reported for the enterprise and hyper-scale
DCs in [4], [18]. Therefore, the modeled IT load power con-
sumption profile can replicate the scenarios of a real-world
DC and use further for identifying the power losses of the
IPSS.

2) POWER CONDITIONING EQUIPMENT LOSSES
The rating of the IPSS components depends on the power
demand of the rack-level IT loads. For this study, we assume
that every server is equipped with an 800W PSU that also
consumes 1% of the supplied power. The racks with PSUs are
distributed between PDUs, where each PDU could supply a
maximum of 10 servers or a rack. Further, each UPS will be
connected with 100 racks or 100 PDUs for a backup power
supply with a rated power of 900 kVA. The power losses of a
PSU, PDU, and UPS are shown in Figure 6. As a single unit,
the UPS consumes almost 5806 times more energy than a
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FIGURE 5. Total power consumption of the IT loads in 28 days.

FIGURE 6. Power losses of single unit PSU, PDU, and UPS.

PSU and 61 timesmore than a PDU on average. However, it is
not possible to judge the overall performance of these devices
based on the power consumed by individual devices, as shown
in Figure 6; because the power losses of these devices depend
on the supplied power, as given in (8) and (9). The rated
power capacity of UPS is 100 times higher than the PDU
so it consumes more energy than a PDU, as also claimed
in [18], [40]. Thus, the percentage of losses with respect to
the rated power of the rack has been analyzed for the PSU,
PDU, and UPS at rack-level, as shown in Figure 7. The term
percentage of energy loss of a device is the ratio of its power
loss on the rated power of the rack, which is 8 kW in this
case. The average power loss of a PDU is 5.8% of the rack
rated power, 2.8% for a UPS, while only 0.65% on average
for 10 PSUs of a specific rack. The percentage of loss of
the devices shows the device efficiency to supply a rack. So,
the power loss of a PDU is more than a UPS, as depicted
in Figure 7. The total loss of all PDUs is also higher than

FIGURE 7. Percentage of losses for PSU, PDU, and UPS.

FIGURE 8. Total power loss of PSUs, PDUs, and UPSs compared to the
total IT load.

the total loss of the UPSs and PSUs, as shown in Figure 8.
Due to the total number of PDU in the system that is higher
than UPS and the series loss of the PDU represented by the
square term in (9), the overall power consumption of PDUs
is more than UPSs and PSUs. The percentage of losses of
the power conditioning devices with respect to the total IT
load at the aggregated level of DC, as shown in Figure 9.
The percentage of loss at the aggregated level is calculated
as the ratio of the total loss of the devices on the total rated
IT load demand (10.07MW) for the last week of the time-
series. The total power loss of the power conditioning devices
is more than 10% of the total IT load every day of that week,
as depicted in Figure 9. The percentage of loss of the PDUs
at the aggregated level is also higher than the percentage of
losses of the UPSs and the PSUs, as shown in Figure 9. It is
a contribution of this study to identify the higher percentage
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FIGURE 9. The percentage of losses of the UPSs, PDUs, and PSUs.

of loss of the PDUs at the rack-level and aggregated level of
the DC compared to the UPSs and PSUs. The power loss of
PDU increases with the increasing IT load demand, as given
in (9), which could cause a shortage of its rated power supply
capacity as explained in [5]. In that case, some of the PSUs
that are connected with the PDU will be switched off, which
will lead to the outage of servers at the rack. The outage
probability of the PSUs is considered for calculating LOWP
further in Section IV-B.Meanwhile, to enhance the efficiency
of the IPSS the number of PDUs in the IPSS is needed to
minimize depending on rack-level electrical demand.

3) CONSTRUCTION OF LOAD DURATION CURVE OF IT LOAD
The IT load at rack-level is the summation of the power
consumed by the servers and the local fans in the rack,
as explained in Section IV-A1. The hourly power consump-
tion of a rack is shown in Figure 10. The cumulative load
curve also called the load-duration curve of the rack is con-
structed using the power consumed by the IT loads of the
rack, as shown in Figure 11. Therefore, the total rack power
consumption PRack in (6) gives the load demand L in (1) and
the IT load duration curve of the rack, as shown in Figure 11.

B. RACK LEVEL COMPUTATIONAL RESOURCE
ADEQUACY ANALYSIS
The loss of workload probability (LOWP) defines the prob-
ability that the IT load demand of a rack cannot be sup-
plied with the cumulative power supply capacity of the
rack-level PSUs, as explained in Section III-A. According
to the IPSS architecture shown in Figure 1, each of the rack
hosts ten servers connected with ten PSUs, where the PSUs
are assumed to be identical with rated power of 0.8 kW.
Regarding PrLOWP of the rack in (1), the probability to have
certain amount of cumulative power supply capacity pj for
failures of the rack-level PSUs, and the percentage of time tj

FIGURE 10. IT load demand of a rack.

FIGURE 11. Rack-level IT load duration curve.

with IT load L are needed to calculate, which are explained
in the following sections.

1) AVAILABILITY CALCULATION METHOD OF PSU
The related parameters to calculate the availability and
unavailability of the rack-level PSU, i.e, mean time to fail-
ure (MTTF) and mean time to repair (MTTR) are taken from
the IEEE Gold book [43]. The IEEE gold book is a stan-
dard practice guide for industrial applications that includes
the reliability related statistical data of common industrial
equipment. Therefore, it has been assumed that the IEEE
gold book data also could be used to represent the similar
new equipment based on the working principle of the new
equipment. As an example, the PSU is not explicitly men-
tioned in the IEEE gold book; given that theworking principle
for industrial rectifiers is the same as for the PSU, the data
found for the industrial rectifiers have been used instead in
this paper. The availability and unavailability of the PSU are
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TABLE 1. Outage probability and power supply capacity outage of PSUs at rack.

given in (10), where, tMTTF = 1960032 hr and tMTTR = 16 hr.

pa =
tMTTF

tMTTF+tMTTR
= 0.999991836934606

qu = 1 − pa
= 8.1630653943 × 10−6




(10)

2) STOCHASTIC OUTAGES OF PSUs IN THE RACK
The number of available PSUs at the rack will follow the
binomial distribution since all the PSUs are assumed to be
identical [17], [41], [42]. The ‘‘k-out-of-n’’ configuration is
used to assess the reliability of the rack-level PSUs, where
k number of PSUs out of n should be available to serve the
computational workloads [41], [42]. The expansion of the
binomial equation is given in (11). The terms in (11) define
the outage probabilities of the PSUs at different stages that
are summarized in Table 1. The related parameters i.e., avail-
ability, pa and unavailability, qu of the PSU are calculated as
shown in (10).

(pa + qu)n

= pan + npa(n−1)qu
n(n− 1)

2!
+ pa(n−2)qu2 + . . . . + qun = 1 (11)

where, pa and qu are the availability and unavailability of
PSU, and n is the total number of PSUs, respectively.
The minimum number of spare PSUs and servers that are

needed to ensure a certain level of service availability can
be found from the capacity outage table, shown in Table 1.
The probability of having four simultaneous failures of the
PSUs at a rack is very less compared to the previous cases,
as shown in Table 1. Therefore, with an acceptable risk the
rack can be designed with three spare PSUs and servers, else
for a simultaneous failure of three PSUs will cause an outage
of 2.4 kW equivalent computational resource.

3) LOSS OF WORKLOAD PROBABILITY (LOWP)
According to the load duration curve of the concern rack,
the IT base load demand of the rack is about 5.4 kW that
persists 100% of the measurement time, while the peak con-
sumption lasts for less than 1% of the time, as depicted in Fig-
ure 11. In this case, if three of the PSUs fail simultaneously in

FIGURE 12. LOWP analysis for all the racks.

the rack the remaining power supply capacity will be 5.6 kW
for serving the computational workloads, as shown in Table 1.
Meanwhile, the load demand of 5.6 kW remain for 60% of the
time in the rack, as show in Figure 11. Therefore, the LOWP
of the rack will be as follows,

PrLOWP =
p3 × 60
100

= 3.9162 × 10−14% (12)

4) USE CASES
The LOWP of the concern rack could be an issue for DC
operators for those who handle latency sensitivities work-
loads (i.e., banks, financial institute, cryptocurrency mining,
etc), thought the value is low. the DCs that are used for
cryptocurrency mining might face financial lose and data
security issues due to losing such small amount of workloads,
as addressed in [44]. In this case, the proposed LOWP index
could help theDC operators to ensure reliable operation of the
computational resources. The LOWPs for all the racks in the
DC are shown in Figure 12. The same probability outage table
is used for the PSUs, as given in Table 1 since it is assumed
that all the PSUs are identical. The LOWPs for all the racks
considering the simultaneous failure of any three rack-level
PSUs are shown in Figure 12. As the LOWP depends on
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computational workloads, thus if higher workload demand
persists for a longer time duration the value of the LOWP
will be higher. The red dots depict the racks with the highest
LOWP due to having higher workload demands compared
to the remaining capacity (5.6 kW) for a long period of time
in Figure 12. Meanwhile, the pink dots close to the horizontal
line in Figure 12, depict a lower probability of the loss of
workloads because the workloads of the servers in these racks
are less compared to the remaining capacity. Thus, the LOWP
index can use for clustering the racks for latency-sensitive
workloads. The sensitive workloads are needed to be served
by the racks with low LOWP. Moreover, the LOWP index
can be used for expansion planning of the rack-level compu-
tational resources, so that the overprovisioning of the compu-
tation resources could be avoided.

V. DISCUSSION AND CONTRIBUTION
A novel reliability index called loss of workload proba-
bility (LOWP) is introduced in this paper that defines the
rack-level computational resource adequacy. The LOWP
index is inspired by the power system reliability index called
LOLP. The LOWP index identifies the probability of the
rack-level computational workloads that cannot be served by
the servers due to stochastic outages of PSUs. The workload
duration curves of the racks are formed using the power
consumption of the servers in the rack that is calculated using
the power consumptionmodels of the servers and local fans in
the rack. The servers’ utilization data of the Google data set is
used to get the real power consumption of these components
of the IT load. However, the utilization of other components
of the IT load i.e., memory, hard disk, network equipment,
etc. are not considered here since the CPUs consume most of
the energy in a server.
The scope of the LOWP is very wide in the operation

of DCs since it can be used for the computational resource
expansion planning and designing the group of servers for
latency-sensitive workloads. The LOWP gives the number of
spare PSUs and servers per rack to ensure a certain level of
computational resource availability, which also leads towards
the right sizing of the rack-level computational resources.
However, the spare servers will incur idle power, hence
the power loss of the IPSS will increase for the additional
PSUs. Additionally, the racks can be grouped based on
their LOWP index for important, hence latency-sensitive
workloads, which is also demonstrated in this paper for the
modeled racks reported in the Google data set. However,
some specific information about the groups or clusters of
the servers is not given in the data set. Thus ten servers
are randomly chosen for modeling the rack-level power con-
sumptions, hence, the workload duration curve.
The power consumption models of the IT loads and the

major components of IPSS are also presented in this paper
as a function of server utilization. The power consumed by
the components of the IPSS is considered as power losses
in this study. The percentage of loss shows the effect of the
component power loss to supply the IT load demand of a rack.

The total power loss of the PDUs is found higher than the
power losses of the UPSs and PSUs. However, it is typically
claimed in the literature that the UPS are less efficient than
the PDU, which is true for a single device but not for the
aggregated level. The overall performance of the IPSS is also
analyzed at the aggregated level of DC. The IPSS consumes
more than 10% of the rated IT load at the aggregated level
of DC. However, the IPSS architecture that is analyzed in
this paper does not consider the redundant power flow paths
between UPSs and PDUs, and the conduction losses of the
cables. The conduction loss of the cable is neglected because
of the shorter distance between the IPSS devices.
The power consumption models of the IT load and the

components of the IPSS are presented as a function of server
utilization. The server utilization factors of the Google data
set are fitted into the proposed power consumption models
that show a weekly pattern of the IT load in the time-series.
A similar weekly consumption pattern for hyper-scale DC is
reported before. To the best of our knowledge, the data set
is used for the first time in this research to model the energy
consumed by IT loads and the IPSS without any scaling fac-
tor. It is computationally challenging to extract the time-series
of the utilization factor of individual servers because the
data set is splitted into 501 files with measurement errors.
Some required information about the cluster and servers is not
available with the data set thus some assumptions are made
to model the racks with reported servers.

VI. CONCLUSION AND RECOMMENDATIONS
With the increasing popularity of cloud-based services,
the demand for computation resources is also increasing
in the Data centers (DC). It is challenging to identify the
required number of computational resources that can com-
ply with the workloads. This paper has introduced a new
index called loss of workload probability (LOWP) that can
define the adequacy of the rack-level computational resources
for the DC. This index can be used for efficient operation
planning by the DC operator since it can define the group
of server-racks for latency-sensitive workloads. Meanwhile,
the DC owners can also be facilitated by this index because
it can quantify the minimum number of spare servers in a
rack to ensure a certain level of service availability. By this
approach, it could be possible to avoid overprovisioning com-
putational resources, which will ensure less operational cost
and energy-efficient operation of DC.
The modular modeling approach of the IT loads and the

internal power supply system (IPSS) is presented in this
paper. The modeling approach can also consider other load
sections i.e., cooling loads to model the energy demands,
which also depends on the IT loads. The energy losses of the
UPS, PDU, and PSU in IPSS are also analyzed that shows the
PDUs consume more energy compared to the UPSs and the
PSUs at the rack-level and aggregated DC level. Moreover,
the IPSS consumes more than 10% of the rated IT load
(10.07 MW) at the aggregated level of the DC, which is a
significant amount of energy. Reducing the number of PDUs,
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hence, limiting the overall power losses of the IPSS will
improve the overall efficiency of DC.
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ABSTRACT Enhancing the efficiency and the reliability of the data center are the technical challenges for
maintaining the quality of services for the end-users in the data center operation. The energy consumption
models of the data center components are pivotal for ensuring the optimal design of the internal facilities
and limiting the energy consumption of the data center. The reliability modeling of the data center is
also important since the end-user’s satisfaction depends on the availability of the data center services.
In this review, the state-of-the-art and the research gaps of data center energy consumption and reliability
modeling are identified, which could be beneficial for future research on data center design, planning,
and operation. The energy consumption models of the data center components in major load sections
i.e., information technology (IT), internal power conditioning system (IPCS), and cooling load section are
systematically reviewed and classified, which reveals the advantages and disadvantages of the models for
different applications. Based on this analysis and related findings it is concluded that the availability of
the model parameters and variables are more important than the accuracy, and the energy consumption
models are often necessary for data center reliability studies. Additionally, the lack of research on the IPCS
consumption modeling is identified, while the IPCS power losses could cause reliability issues and should be
considered with importance for designing the data center. The absence of a review on data center reliability
analysis is identified that leads this paper to review the data center reliability assessment aspects, which
is needed for ensuring the adaptation of new technologies and equipment in the data center. The state-of-
the-art of the reliability indices, reliability models, and methodologies are systematically reviewed in this
paper for the first time, where the methodologies are divided into two groups i.e., analytical and simulation-
based approaches. There is a lack of research on the data center cooling section reliability analysis and the
data center components’ failure data, which are identified as research gaps. In addition, the dependency
of different load sections for reliability analysis of the data center is also included that shows the service
reliability of the data center is impacted by the IPCS and the cooling section.

INDEX TERMS Data center, data center design, planning and operation, energy consumption modeling,
data center reliability, reliability modeling.

NOMENCLATURE
Af (∞) Functional availability of cooling system.
Ao(∞) Operational availability of cooling system.
Pidle Average power consumption of server in idle

mode.
Pmax Maximum average power consumption of server

when it is fully utilized.
ηheat Efficiency of the CRAC unit.
φPDU Power loss coefficient of PDU.

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

φUPS Power loss coefficient of UPS.
CCoP Coefficent of performance of the CRACR unit.
Ccpu Coefficients of CPU power consumption.
Cdisk Coefficients of hard disk drive power

consumption.
Cmemory Coefficients of memory unit power consumption.
CNIC Coefficients of NIC power consumption.
ConnMaxs Maximum number of connections allowed

on the server s.
Conns[t1,t2] Actual number of connections to the server

s between time interval t1 and t2.
Eboard Energy consumed by peripherals that support

the operation of the board.
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ECPU Energy consumption of the CPU.
ECPU (A) Energy consumption of a CPU while running

the algorithm A.
Edisk Energy consumption of the disk driver in the

server.
Eem Energy consumed by the electro-mechanical

components in the blade server including fans.
Ehdd Energy consumed by the hard disk drive dur-

ing the server’s operation.
EI/O Energy consumption by the input/output

peripheral slot of the server.
Emem Energy consumption of the memory.
Emem(A) Energy consumption of a memory while run-

ning the algorithm A.
ENIC Energy consumption of the network interface

card in the server.
Eserver Energy consumption of the server.
Eserver (A) Energy consumption of a server while run-

ning the algorithm A.
Hactive Active state power consumption of the host

server.
Hidle Idle power consumption of the host server.
i Total number of mainboards or motherboards.
k Total number of PSU attached with the server.
M Number of active VMs on this server.
m Total number of fans attached with the server.
n Total number of pumps attached to the rack.
pt Probability of intended value of room temper-

ature when the cooling system fails.
P� Correction factor of the server power con-

sumption model.
Pactive Active state power consumption of the server.
Pbase Base power consumption of the server.
Pcomp Combined CPU and memory average power

usage.
PCPU Power consumption of the CPU.
PCRACcool Power consumption of CRAR unit.
Pdisk Power consumption of the disk drivers.
PFanj Total power consumption of the local fans.
Pfix Fixed power consumption of the server and

the cooling system.
PI/O Power consumption by the input/output

peripheral slot.
Pmbi Total power consumption or conduction loss

of the mainboards.
Pmem Power consumption of the memory units.
Pnetdev Power consumption of the network devices.
PNIC Average power consumption of the network

interface card.
PidlePDU Idle power loss of PDU.

PLossPDU Power loss of PDU.
PPSUk Total power consumption of the PSUs.
PPump Power consumption of the pump.
Pr Power consumption of the refrigeration

system.

Pserver Server power consumption.
Pmaxsf Maximum amount of heat equivalent power that

can be generated from the server.
Pt Power consumption of server at time t .
PidleUPS Idle power loss of UPS.
PLossUPS Power loss of UPS.
pus Probability of room temperature out of intended

range when the system is under operation state.
Pvar Power consumed by running tasks in the cloud

system.
PVM Dynamic power consumption of a specific VM.
Qinlet Inlet heat of the racks.
Tcomm Total network usage time.
Tcomp Average computation time.
Tdie Die temperature of CPU.
Tnetdev Average running time of the netwrok devices.
ts Supplied coolant temperature of the CRAC unit.
Uuti
x Total CPU utilization of xth host server.

Uuti
y CPU utilization by yth VM.

Ucount Total VMs assigned in the host server.
ucput CPU utilization at time t .
ucpu CPU average utilization.
udiskt Hard disk I/O request rate at time t .
udisk Average utilization of disk.
umemt Memory access rate at time t .
umem Average utilization of memory.
unett Network I/O request rate at time t .
unet Average utilization network device.
Wi Processor utilization ratio allocated to ith VM.

LIST OF ABBREVIATIONS
AC Alternate Current.
BA Base Active.
CDN Content Distribution Network.
CPU Central Processing Unit.
CRAC Computer Room Air Cooling System.
DC Direct Current.
DPM Defects Per Million Operation.
I/O Input and Output devices.
ICT Information and Communication Technology.
IDC International Data Corporation.
IPCS Internal Power Conditioning System.
IT Information Technology.
KPI Key Performance Indicators.
KQI Key Quality Indicators.
LLC Last Level Cache.
MTBF Mean Time Between Failure.
MTTR Mean Time To Repair.
PDM Performance Degradation Due to Migration.
PDU Power Distribution Unit.
PSU Power Supply Unit.
PUE Power Usage Efficiency.
QoS Quality of Service.
RBD Reliability Block Diagrams.
SLA Service Level Agreements.
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SLAV Service Level Aggrement Violation.
SLR Systematic Literature Review.
SMPSU Switch Mode Power Supply Unit.
UPS Uninturrupted Power Supply.
VM Virtual Machine.

I. INTRODUCTION
A. BACKGROUND
With the development of cloud based services and applica-
tions, the commercial cloud service providers like Google,
Facebook, or Amazon are now deploying massive geo-
distributed data centers. According to a research conducted
by the International Data Corporation (IDC), the global
demand for the data transfer and digital services is expected
to be doubled to 4.2 Zettabytes per year, equivalent to 42, 000
Exabyte by 2022 [1]. The number of data centers is increasing
globally to handle this rapidly growing data traffic, while
the energy demand of the data centers is also increasing.
According to [2], the US data centers handled about 300 mil-
lion Terabyte of data that consumed around 8.3 billion kWh
per year in 2016, hence 27.7 kWh per Terabyte with a
carbon footprint of approximately 35 kg CO2 per Terabyte
of data.The Data Center Frontier has mentioned in a report
that, the number of servers in data centers was increased
by 30% during 2010 − 2018 due to the growing demand
of computational workloads [3]. With the growing number
of servers, the number of computational instances includ-
ing virtual machines running on the physical hardware was
raised by 550%, the data traffic was climbed 11-fold, and
the installed storage capacity was increased 26-fold during
the same period [3]. Therefore, the global energy demand
of the data centers grew from 194TWh to 205TWh during
2010 − 2018 [3]. Additionally, the data centers will indi-
rectly affect the CO2 emission because of the growing energy
demands, which has been projected up to 720 million tons by
2030 in [4]. At present, the leading companies in the Infor-
mation and Communication Technology (ICT) business are
now building their new data centers in the high latitude areas
in the Arctic region to avail the natural advantages including
the renewable energy production facilities, the cold air and
the appropriate humidity. Google has built a data center in
Hamnia, Finland in 2011 to use the cold sea-water from the
Bay of Finland and the onshore wind energy; while Facebook
has moved to Sweden in 2013 and Ireland in 2016 for having
natural advantages in the data center operation [4]. These
companies are utilizing the natural advantages to reduce the
energy consumption of the data centers, hence indirectly
reducing their participation in the CO2 emission. There are
two major phases of data center innovation to cope with
the challenges of energy efficiency. In the first phase, the
data center operators have emphasized on improvement of
efficiency of the Information Technology (IT) equipment and
the data center cooling facilities during 2007 − 2014 [3].
During this time, the Nordic region has attracted significant
investments for data centers for environmental benefits. For
example, after Google and Facebook entered the region in

2009 and 2011, the Nordic countries have become a preferred
site location by an increasing number of data center investors.
A report by Business-Sweden estimates that the Nordics by
2025 could attract investments for data centers in the order
of 2 − 4 billion Euro. This is based on the forecast of world-
wide demand for data center services corresponding to the
data center investments of the Nordic countries [5]. In the
second phase, the large data center operators have focused
on procuring renewable energy (i.e., wind, solar) to supply
power for the data center operations instead of traditional
power sources [3].
The data centers are opening new business opportunities

while posing the following operational challenges:
• Increasing the energy efficiency of data centers to limit
the energy consumption andCO2 emission, hence reduc-
ing the operational cost of the data centers.

• Enhancing the service availability of the IT section,
hence enhancing the overall reliability of the data center
to satisfy the Service Level Agreements (SLA) with the
clients of the data center.

• Making a strategical balance at the design stage to
reduce the energy consumption and ensuring higher reli-
ability of the data center.

The energy consumption and reliability models of the data
center are needed to bring solutions for these two operational
challenges in data centers. The energy consumption models
could help to predict the consequences of the operational
decisions, which results in more effective management and
control over the system [6]. Furthermore, reliability modeling
of the data center individual load sections and the reliability
assessment of the data center as a whole are important to
prevent unwanted interruptions in the services and to ensure
the committed SLA [7]. In some cases, the reliability assess-
ment model also demands the energy consumption models of
the devices in load sections. As examples, the power losses
of the Internal Power Conditioning System (IPCS) is taken
into consideration to assess the overall service availability
of the IT loads in [8], while the energy consumption models
of the cooling section devices are used for cooling section’s
reliability assessment in [9]. In this regard, a suitable energy
consumption model or modeling approach does not solely
mean accuracy and precision of the model, while the energy
consumption modeling approach of the data center often
depends on the applications of the components’ energy or
power consumption models.
The purpose of this paper is to provide a review of the

data center energy consumption modeling approaches and
reliability modeling aspects that have been presented in the
literature.

B. RESEARCH GAPS
The authors have reviewed 193 papers that are related to the
data center energy consumption and the reliability modeling
aspects. There exists a lack of review works in the litera-
ture regarding the data center reliability modeling, which is
needed for further research to show the state-of-the-art of data
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center reliability analysis. In this paper, the authors have tried
to fill the research gap by analyzing the reliability modeling
aspects to show the current knowledge-base about data center
reliability affecting factors, reliability indices, and reliability
assessment methodologies.
Besides this, the energy and power consumption models

of the data center loads are analyzed, and the advantages
and disadvantages of the models to apply in research are
explained, which are widely missing from the literature.
Additionally, the power consumed by the devices in IPCS is
also considered and analyzed as a data center load section
like the IT and cooling load section, which is missing in
previous review articles. As the trade-off between reducing
the energy consumption and ensuring higher reliability of the
data center is an operational challenge, which is not addressed
properly in the literature. This paper gives recommendations
to fill the research gaps by the future researchers for making a
trade-off between the reliability and energy efficiency of data
center.

C. OBJECTIVE AND APPROACH
The research interest in the energy-efficient and reliable
operation of data centers has increased in last few decades,
as shown in Figure 1. However, the number of the published
articles on data center reliability is lower than the number
of articles on data center energy efficiency, which shows an
urge to review the state-of-the-art of the data center relia-
bility analysis. Moreover, the number of published articles
on data center reliability analysis has reduced since 2016,
as shown in Figure 1. Due to the lack of research in the data
center reliability modeling the integration of new data center
technologies could be impacted. The adaptation of the new
technologies and equipment in the existing system of a data
center depends on the reliability of the new technologies and
equipment, which demands further research on it [10]. Apart
from the reliability analysis, the energy efficiency analysis
is also important for integrating the new technologies in
data centers since most of the new technologies are coming
with additional environmental challenges for the cooling load
section [10]. Especially in the context of Green data center,
which means the energy-efficient operation of the IT and the
cooling load [10], the research on the data center reliability
and energy consumption modeling should be emphasized.
Therefore, the objective of this article is set to review the
energy consumption models of the components in major load
sections of the data center, and the data center reliability
modeling including reliability indices, methodologies, and
factors that affect the reliability of the data center. This review
article could provide a potential starting point for further
research on these topics.
The authors intend to be as comprehensive as reasonable

to select the published articles on related topics to review in
this paper, however, it is not possible to guarantee that all
the related papers are included. To obtain relevant papers,
authors searched for the keywords ‘‘energy consumption
and management’’ and ‘‘reliability assessment’’ in online

FIGURE 1. Web of Science indexed publication statistics on data center
(Data collected in 27 February, 2021.)

databases like Google Scholar (http://scholar.google.com),
Web of Science (https://apps.webofknowledge.com/), IEE-
Explore (http://ieeexplore.ieee.org), ACM Digital Library
(http://dl.acm.org), Citeseer (http://citeseerx.ist.psu.edu),
ScienceDirect (http://www.sciencedirect.com), SpringerLink
(http://link.springer.com), and SCOPUS (http://www.scopus.
com). Based on the searched results the research trends on
the mentioned topics are shown in Figure 1, however, all the
researched articles are not reviewed in this paper since the
aim of this paper is to review the energy consumption models
of the major components of the data center and the reliability
modeling aspects of the data center. Therefore, the following
keywords are used to filter the articles:

1) POWER CONSUMPTION MODELING
• Data center loads, data center configurations
• Servers power consumption models (additive, base-
active, regression, and server utilization based model)

• UPS, PDU, and PSU in data center application
• Power consumption model of UPS, PDU and PSU
• Data center cooling section
• Power consumption model of chiller, cooling tower,
CRAC, and CRAH

2) RELIABILITY MODELING
• Data center reliability analysis
• QoS and SLA of data center
• Tier classification of data center
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• Service availability and service reliability
• Reliability modeling approach

The Systematic Literature Review (SLR) based method-
ological approach [11] is adopted in this paper with the
above mentioned keywords. All the relevant attributes of the
selected papers are used for constructing the knowledge base
that is presented in this paper.

D. CONTRIBUTIONS & RECOMMENDATIONS
The contributions and the recommendations based on the
review of energy consumption modeling of the data center
are as follows:

• This paper has classified and summarized the pub-
lished review articles based on their contributions for
energy consumption modeling of the data center, while
the absence of review articles on data center reliabil-
ity assessment is also identified. Therefore, the data
center reliability modeling aspects are comprehensively
reviewed in this paper.

• The power and energy consumption models of the com-
ponents and equipment in the major load sections of
the data center are reviewed in this paper. The proposed
consumption models of the servers in IT load section
are classified into four groups depending on the math-
ematical formulation of the models in the literature.
The advantages, disadvantages, and applications of the
server’s power consumption models are also presented
in this paper.

• The energy consumption models of the data center load
sections are often used for analyzing the data center
reliability, along with the aforementioned applications
of the consumption models. The trade-off between the
energy efficiency and the reliability of the data center is
not addressed in research adequately that is found in the
analysis of this paper.

– Based on this analysis the recommendation for the
future research on data center energy modeling
would be choosing suitable energy consumption
models of the equipment depending on the applica-
tion. The accuracy of the models is often prioritize
in research, however, it is found that the availability
of the model parameters and variables are more
important than the accuracy for research applica-
tion. The energy consumption model parameters
and variables that are easily accessible or measur-
able in laboratory facilities offer simplicity and ease
in research applications.

– More research should be conducted towards power
losses and energy efficiency of the IPCS of the
data center. There are research articles that present
the load modeling for IT and cooling load section;
this is not the case for the IPCS section, while the
consumption of the IPCS section is found to be
more than 10% of the total consumption.

The contributions and the recommendations based on
the analysis of the data center reliability modeling and
assessment techniques are as follows:

• This paper reviews the reliability modeling aspects
related to the data center. The reliability indices andmet-
rics for IT, IPCS, and the cooling load sections are ana-
lyzed including the reliability modeling methodologies.
The reliability modeling methodologies are classified
into two groups (i.e., analytical and simulation-based)
depending on the modeling approaches. This research
identifies the state-of-the-art of data center reliability
modeling techniques that are studied so far, which could
be a starting tool for future researchers.

• The need to have a standard code for data center opera-
tion along with the tier classification is identified in this
paper since the failure and the degraded mode of a data
center can impact the reliability differently.
– The recommendation is to focus on the data center

reliability study considering new equipment and
topologies with new technologies. The new tech-
nologies are putting more stress on the load sections
as explained in [10]. The lack of research on data
center reliability aspects could hamper the develop-
ment growth of the individual load section and also
the development of the data center industry.

– The lack of research on the data center’s cooling
load reliability is addressed; thus it is recommended
to give more research focus on the cooling section
reliability assessment.

– The availability of data center component’s statis-
tical failure data is important for reliability stud-
ies at different levels of data centers. Thus, it is
recommended to the data center owner/operators
to publish the statistical failure data of data center
components to ensure the adequacy of resources for
further research.

E. ORGANIZATION
The paper is structured as follows: The contributions and
remarks of the published related review papers are explained
in Section II. Section III analyzes the energy consumption
models of the data center’s major load sections. Section IV
discusses the reliability modeling aspects of the data cen-
ter. The limitations and the future works are explained in
Section V. Finally, Section VI concludes the article with
recommendations and discussions based on the analysis.

II. RELATED REVIEW ARTICLES
According to the Web of Science at least 56 review articles
have been published between 2005−2020, where the articles
have presented the overview of the data center load section’s
energy and power consumption models and the application of
the models in the data center. The articles are searched with
the keywords ‘‘review OR overview OR survey data center
energy consumption model’’ in the database. The published
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TABLE 1. Summary of review articles based on major contributions.

TABLE 2. Number of citations of the review articles.

articles are classified into two categories: 1) the energy effi-
ciency techniques at component-level to data center system-
level, and 2) the energy management techniques. The energy
management techniques also include the thermal environ-
ment design and management, air flow control including free
cooling, thermal metrics, and thermal parameter optimiza-
tion. Moreover, the researchers’ interest in these articles is
also increasing, which is depicted by the increasing number
of citations of the articles. The review articles are analyzed
based on the subjects of review and the number of citations,
as shown in Table 1 and Table 2.
The review articles addressing ‘‘data center reliability

or availability modeling’’ were not found. However, the
research interests on data center reliability modeling have
been observed by the increasing number of published articles
that address various aspects of the data center reliability,
as shown in Figure 1b, which also quests about a SLR
considering the data center reliability modeling for future
researchers.
A taxonomy based on the overview of the energy consump-

tion and reliability modeling of the data center is shown in
Figure 2.

III. REVIEW OF DATA CENTER LOAD MODELING
Data center accommodates ICT equipment, which pro-
vides data storage, data processing, and data transport
services [51]. Data centers typically have three major
load sections: IT loads, cooling and environmental control

equipment, and internal power conditioning system i.e.,
Uninturrupted Power Supply (UPS), Power Distribution Unit
(PDU), and Power Supply Unit (PSU), including security
and office supports, as shown in Figure 3. The IT load
section contains servers, storage, local cooling fans, network
switches, etc. The data center also needs a power conditioning
system with cooling and environmental control to maintain
the adequate power quality and the required temperature
for the IT loads [28], [52], [53]. The IT load section of
the data center is needed to be environmentally controlled
since it houses devices like servers and network switches
that generate a considerable amount of heat. The IT devices
are highly sensitive to temperature and humidity fluctuations,
so a data center must keep restricted environmental condi-
tions for assuring the reliable operation of its equipment [25].
Besides the IT and cooling load sections, the power condi-
tioning section is another important part of the data center
that also consumes power [8], [52]. The amount of power
consumed by the load sections depends on the design of the
data center and the efficiency of the equipment. The largest
power consuming section in a typical data center is the IT
load section including IT equipment (45%) and the network
equipment (5%), while the cooling loads (38%) rank second
in the power consumption hierarchy, as shown in Figure 4
[24], [52]. Besides these two load sections, the power condi-
tioning devices in the IPCS consume 8% of the total power
of the data center, which has not been studied deeply in the
existing literature. However, consideration of every possible
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FIGURE 2. Taxonomy of energy consumption and reliability modeling of the data center.

power consumption is needed to properly model the power
consumption of the entire data center because a model is
a formal abstraction of a real system [54]. Regarding the
power consumption of the load sections in a data center, the
models can be represented as equations, graphical models,
rules, decision trees, sets of representative examples, neural
networks, etc [28]. The following are the main applications
of the power consumption models for the data center.

• Design of the power supply system of a data center:
The power consumption models of the load sections are
necessary for the initial design stage of the IPCS of
energy intensive industries like the data centers. It is
not worth building a IPCS without prior knowledge of
energy demand load sections and the power losses of the
system [55]. A simulation tool is proposed in [56] that
evaluates the Power Usage Efficiency (PUE) and other
energy usage efficiency factors of data centers, which is
applied in the Data Center Efficiency Building Blocks
project to optimize the energy consumption of the data
center considering themaximum loads in the data center,
as explained in [56]. The power consumption models of
the load sections could be a useful tool to design the
internal power supply infrastructure of the data center.

• Forecasting the energy consumption trends and
enhancing the energy efficiency of data centers:
Understanding the power consumption trend of the data
center load sections is important for maximizing the
energy efficiency. In data center operation, the real-time
power measurements cannot help to take decisions and
provide the solutions, thus the predicted power con-
sumption of the load sections is needed alongside [57].
The power consumption models of the data center com-
ponents are used to predict the power consumption of the
load sections in [58]. The forecasted power consumption
trends of the load section helps in data center opera-
tion to optimize the overall consumption of the data
center [59].

• Power consumption optimization:
Different power consumption optimization models
have been applied in data center using the power
consumption models of the data center load sec-
tions to ensure the energy efficiency and cost effec-
tive data center operation. In [10], [60] the power
consumption models of the load sections are used
for optimizing the power consumption of the data
center.
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FIGURE 3. Internal structure of a typical data center.

FIGURE 4. Analysis of power consumption proportionality in data
center. [8], [24].

Modeling the exact power consumption behavior of a data
center, either at the system level or at the individual com-
ponent level, is not straightforward. The power consump-
tion of a data center depends on multiple factors like the
hardware specifications and internal infrastructure, computa-
tional workloads, type of applications of the data center, the
cooling requirements, etc., which cannot be measured easily
[10], [33]. Furthermore, the power consumption of the

hardware in the IT load section, the cooling section, and
the power conditioning infrastructure of the data center are
all closely coupled [61]. The development of the component
level power consumption models helps in different activities
such as new equipment procurement, system capacity plan-
ning, resource expansion, etc. The power consumption mod-
els of different load sections are described in the following
part of this section.

A. IT LOAD MODELS
Some of the discussed components in IT load section may
appear at different other levels of the data center hierar-
chy, however, all of them are specifically attributed to IT
loads of a data center. Traditionally the servers are the
main computational resource in the IT load section. Other
devices like memory, storage, network devices, local cool-
ing fans, and server power supplies are also considered as
IT load in the literature. The most power consuming com-
ponents in the IT load section are the servers [39]–[41].
The percentage of power consumption by the components
of the servers is shown in Figure 5, [23], [24]. The Cen-
tral Processing Unit (CPU) is the largest contributor to the
total server power consumption, followed by peripheral slots
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(including network card slot and Input and Output devices
(I/O) devices), conduction losses, memory, motherboard,
disk/storage, and cooling fan. Therefore, the energy usage or
the power consumption models of the server that has been
presented in the literature are emphasized in this paper.
Server Consumption Model: The proposed power con-

sumption models of the servers are classified into four groups
based on the characteristics of the proposed power and energy
consumption models, namely additive model, baseline-active
model, regression model, and utilization-based model.

1) ADDITIVE POWER MODELS
The power consumption models of the server that are pro-
posed as a summation of the server components’ power con-
sumption belong to this group, as summarized in Table 3. The
most simple server power consumption model was proposed
considering the power consumption of the CPU and mem-
ory unit in [62]. Later, other additive models are proposed
considering additional components in the equation of the
server power or energy consumption model, as shown in
Table 3. Most of the proposed models tried to mimic the
power consumption of the main-board or motherboard as the
power consumption of the servers like in [62]–[64], while the
consumption of motherboard is addressed separately in [65].
The power consumption of the motherboards can be consid-
ered as the conduction loss of the server, as shown in Figure 5.

FIGURE 5. Component-wise energy consumption of a server. [23], [24].

A further extension of the additive server power consump-
tion model is presented in [66], where the overall power
consumption of the server is proposed with a base level
consumption, Pbase, as shown in (1). Pbase accounts for
the un-addressable power losses including the idle power
consumption of the server.

Pserver = Pbase + PCPU + Pdisk + Pnet + Pmem (1)

The power modeling approach as shown in (1), can be
further expanded considering the fact that the energy con-
sumption can be calculated by multiplying the average power
by the execution time [64]:

Etotal = Pcomp · Tcomp + PNIC · Tcomm + Pnetdev · Tnetdev (2)

A different version of (1) is obtained by considering levels
of resource utilization by the key components of a server [67]:

Pt =Ccpun · ucput +Cmem · umemt +Cdisk · udiskt +CNIC ·uNICt
(3)

A similar energy consumption model of the entire server is
described by Lewis et al. in [68]:

Esystem = A0 · (Eproc + Emem) + A1 · Eem
+A2 · Eboard + A3 · Ehdd (4)

where, A0, A1, A2, and A3 are constants that are obtained via
linear regression analysis and remain the same for a specific
server architecture. The terms Eproc, Emem, Eem, Eboard , and
Ehdd represent the total energy consumed by the processor,
energy consumed by the DDR and SDRAM chips, energy
consumed by the electromechanical components in the server
blade, energy consumed by the peripherals that support the
operation onboard, and energy consumed by the hard disk
drive. The close relation between CPU and memory energy
consumption is attributed by assigning the same constant A0
for both CPU and memory.

2) BASELINE - ACTIVE (BA) POWER MODEL
In data centers, the servers do not always remain in the active
state, as servers can be also switched to the idle mode. There-
fore, the power consumption of the server can be divided
into two parts, i.e., (1) Baseline power (Pbase), and (2) Active
power (Pactive). The idle power consumption of the server also
includes the power consumption of the fans, CPU, memory,
I/O, and other motherboard components in their idle state,
denoted by Pbase. It is often considered as a fixed value
[73], [74]. Pactive is the power consumption of the server
depending on the computational workloads, hence, on the
server resource utilization (i.e., CPU, memory, I/O, etc).
Therefore, the power consumption model can be expressed
as the sum of the baseline power and active power, as given
in (5). Similar server power consumption models related to
the Base Active (BA) modeling approach are presented in
Table 4.

PBA = Pbase + Pactive + P� (5)

where, P� is the correction factor of the server power con-
sumption model, which can be either a fixed value or an
expression.
The active state power consumption of the server, Pactive of

the BA models can be expressed as a function of server uti-
lization, coolant pump power consumption, Virtual Machine
(VM) utilization factor, etc., as depicted in Table 4.

3) REGRESSION MODELS
The regression model of the server power consumption con-
siders the correlation between the power consumption and
performance counters of the functional units of the servers
i.e., CPU, memory, storage, etc. The regression models cap-
ture the fixed or idle power consumption and the dynamic
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TABLE 3. Summary of the proposed additive server power models found in the literature.

TABLE 4. Summary of the base - active models found in the literature.

power consumption with changing activity across the func-
tional units of the servers. Therefore, the regression based
server power consumption models are also known as ‘Power
Law models’, which has become popular in data center
application during 2010 − 2014. The regression models are
mostly adopted in research because of the simplicity and
interpretability of the models, however, these models are not
suitable to track the server power consumption in cloud inter-
faces since the server workloads fluctuate frequently [77].
The accuracy of the regression models are analyzed in [78],
where it is mentioned that the regression models can predict
the dynamic power usage well with the error below 5%.
However, the error can be around 1% for non-linear models
depending on the usage case [23]. In this paper, the regres-
sion models of the servers are classified into three groups
(i.e., simple regression model, multi regression model, and
non-linear model).

• Simple regression model
The correlation between the power consumption and the

performance counters that captured the activity of the
CPU was first proposed in [79], while the mathematical
model was first presented in [78], as given in (6). Addi-
tionally, the power consumption model presented in [78]
was also validated by the experimental results.

Pserver = Pidle + (Pactive − Pidle) · u (6)

A similar model for cloud based systemwith VMs is pre-
sented in [80], which has the scope to use different inde-
pendent variables for different application scenarios:

Px = Hidle + (Hactive − Hidle) ·
Uuti
x∑Ucount

y=1 Uuti
y

(7)

Similar simple regression models presented in different
articles are summarized in Table 5.

• Multiple regression model
The simple regression models that are shown
in (5)-(6) are based on CPU utilization, but addressed
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TABLE 5. Summary of the simple regression models found in the literature.

from different points of view. These power con-
sumption models can provide reasonable accuracy for
CPU-intensive workloads, however, cannot show the
change in power consumption of servers caused by I/O
and memory-intensive applications [73].
The server power consumption model as a function
of utilization of the CPU, memory, disk, and network
devices is presented in [84], as shown in (8). It assumes
that subsystems such as CPU, disk, and I/O ports show
a linear power consumption concerning their individual
utilization, as discussed in [85].

Pserver = 14.45 + 0.236 · ucpu − (4.47 × 10−8) · umem
+ 0.00281 · udisk + (3.1 × 10−8) · unet (8)

A classified piecewise linear regression model is pre-
sented in [86] to achieve a more accurate power pre-
diction, as shown in (9). It is noteworthy that nVM
in (9) is the number of VMs running on a server, which
is assumed to homogeneous in configuration thus the
weights α, β, γ and e for each VM are the same. The
proposed model considers the components of the server
to be connected as building blocks of the server, which is
valid for blade servers. It also assumes that subsystems
show a linear power consumption concerning their indi-
vidual utilization, as shown in (9). In this contrast,
Kansal et al. proposed further detailed model of server
power consumption in [87], considering CPU utiliza-
tion, the number of missing Last Level Cache (LLC),
and the number of bytes read and written, as shown
in (10). These two consumption models are basically
the same, except the additional term NLLCM , as it is

depicted by the comparison of (9) and (10). The term
NLLCM represents the number of the missing LLC dur-
ing T , and αmem and γmem are the linear model param-
eters. A more generalized power consumption model is
presented in [88] based on the server’s components per-
formance counters (i.e., CPU cycles per second, refer-
ences to the cache per second, cache misses per second),
as given in (11). Later, the power consumption model
in (11) is further extended by Witkowski et al. [89] by
including the CPU temperature in the model.

Pserver = α ·

n∑
k=1

UCPU (k) + β ·

n∑
k=1

Umem(k) + γ

·

n∑
k=1

UI/O(k) + e · nVM + Pconst (9)

Eserver = αCPU · uCPU (p) + γCPU + αmem · NLLCM
+ γmem + αio · bio + γdisk + Estatic (10)

P = P0 +

I∑
i=1

αi · Yi +
J∑
i=1

βj

L∑
l=1

Xjl (11)

where the power consumption of a server by a combina-
tion of variables Yi, i = 1, . . . , I , and Xjl , j = 1, . . . , J
describing individual processes l, l = 1, . . . ,L. The
power consumption of a server with no load is denoted
by P0 (the intercept), and the respective coefficients of
the regression model are αi and βj.
The ambient temperature, CPU die temperature, mem-
ory and hard disk consumption, including the energy
consumed by the electro-mechanical components are
added to the regression model in [90], as shown in (12).

152546 VOLUME 9, 2021



K. M. U. Ahmed et al.: Review of Data Centers Energy Consumption and Reliability Modeling

These models can predict the energy consumption pre-
cisely as long as the trend of workload does not change.

Eserver = α0 · (Eproc + Emem) + α1 · Eem + α2 · Eboard
+ α3 · Ehdd (12)

• Non-Linear Models
A non-linear model is proposed in [78] that includes
a calibration parameter r , which minimizes the square
error, as shown in (13). The square error needs to
be obtained experimentally since it depends on the
type of the server. This same model is also presented
in [83], [91]

Pu = (Pmax − Pidle)(2u− ur ) + Pidle (13)

where r is a calibration parameter that minimizes the
square error which needs to be obtained experimentally.
The power model in (13) performs better than the regres-
sion models to project the power consumption of the
servers [78], however, it needs to determine the cali-
bration parameter r which is a disadvantage associated
with the model. Meanwhile, Zhang et al. in [58] has
used high-degree polynomial models to fit the server
power consumption, finding that the cubic polynomial
model as in (14c) is the best choice compared to (14a)
and (14b). Similarly, the relationship between power
consumption and the second order polynomial of server
utilization is provided in [92].

Ptotal = a+ b× RCPU (14a)

Ptotal = a+ b× RCPU + c× R2CPU (14b)

Ptotal = a+ b× RCPU + c× R2CPU + d × R3CPU (14c)

where R is the resource utilization, a, b, c, and d are the
constants of the polynomial fit.

4) UTILIZATION-BASED POWER MODEL
Most of the system utilization-based power models leverage
CPU utilization as their metric of choice in modeling the
entire server’s power consumption since CPU is the most
power consuming component in the server, as shown in
Figure 5. One of the earliest CPU utilization-based server
power models has appeared in [93], as shown in (15), which
is an extension of the basic digital circuit power model, given
in (16). The Pdyn is the dynamic power consumption of any
circuit caused by capacitor switching, where A denotes the
switching activity (i.e., Number of switches per clock cycle),
C as the physical capacitance, V as the supply voltage, and
f as the clock frequency. Different techniques can be applied
for scaling the supply voltage and frequency in a larger range,
as shown in (15).

P(f ) = c0 + c1 · f 3 (15)

Pdyn = ACV 2f (16)

It is important mentioning the voltage is proportional to
the frequency f as V = (constant) × f [93]. The constant

c0 includes the power consumption of all components except
for the idle power consumption of the CPU in (15). The term
c1 = AC(Vf )

2 are obtained from (16) where A and C is the
switching activity (i.e., number of switches per clock cycle)
and the physical capacitance, respectively.
Further in 2007, another notable CPU utilization-based

power model is presented in [78] which has influenced recent
data center power consumption modeling research signifi-
cantly, as given in (17). This power consumption model of
the server can track the dynamic power usage with a greater
accuracy at the PDU level [94], [95]. This power consump-
tion model of the server also fits into the catalog of simple
regression models because of the mathematical formulation,
as shown in (6).

Pserver = (Pmax − Pidle) · u+ Pidle (17)

This model assumes that the server power consumption
and the CPU utilization have a linear relationship. Studies
have used this empirical model as the representation of the
server’s total power consumption in [58], [96]. However,
certain researches define a different utilization metric for the
power consumption model of the server. The power model
defines the utilization as the percentage between the actual
number of connectionsmade to a server against themaximum
number of connections allowed on the server in [81], which
is used for a specific use-case to model the power con-
sumption of a content delivery network server. A non-linear
server power model based on CPU utilization is proposed in
[83], [91], as shown before in (13).
Importance of Server Power Consumption Model:Accord-

ing to [97], saving 1W of power at the CPU level could
turn into 1.5W of savings at the server level, and up to 3W
at the overall system level of the data center. The overall
power consumption of the IT equipment can be reduced
by reducing the power consumption of a single device or
distributing the workload to the server clusters [98]–[100].
Thus, the power consumption model of the server is impor-
tant to ensure the cost-effective operation of the data center.
Regarding the applications of power consumption models,
accuracy and simplicity are the main requirements, but they
are contradictory and restricted [23]. As an example, a simple
regression power consumption model of the serves is used to
obtain the power consumption of the IT load, which is used
further to assess the reliability and the voltage dips impacts
in the IPCS [8], [101]. Meanwhile, the higher order regres-
sion models (i.e., quadratic and polynomial) of the server
power consumption models are more complicated compared
to the linear models. The complicated higher order regression
model of server power consumption is used in [58] to improve
the power efficiency of the servers by scheduling the task
in a cloud interface, where the authors have focused on the
accuracy of the model except the simplicity. Thus, the trade-
off between accuracy and the simplicity of the consumption
models of the servers depends on the application. The appli-
cations of the analyzedmodeling approaches with advantages
and disadvantages are summarized in Table 6.
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TABLE 6. Applications, advantages, and disadvantages of the power consumption models.

B. INTERNAL POWER CONDITIONING SYSTEM MODEL
The IPCS of a data center consists of UPS, PDU, and PSU
including the protection and power flow control devices (cir-
cuit breakers, automatic transfer switch, by-pass switch. etc.).
The IPCS ensures the voltage quality and reliability of the
power supply to the IT load section that guarantees the desired
QoS [8], [18]. The IPCS of a data center consumes a sig-
nificant amount of power during the voltage transformation
process which is treated as power losses in [8], [52]. In a
typical data center power hierarchy, a primary switchboard
distributes power among multiple online UPSs. Each UPS
supplies power to a collection of PDUs. A PDU feeds the IT

load demand of the servers in a rack through PSUs located in
the racks. A rack contains several chassis that host individual
servers. The general representation of the IPCS is shown in
Figure 6, which is explained in [8], [111], [112].
The PDU transforms the supplied high AC voltage to low

AC voltage levels to distribute the power among the racks
through the connected PSUs. The PDUs get the power from
the UPS, while the UPSs are typically connected to the
utility supply and backup generators, as shown in Figure 6.
Depending on the region, the data center supplied voltage can
vary from 480VAC to 400VAC that needs to be step down
before distributing among racks [114]. The PDU works as a
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FIGURE 6. An example of the internal power conditioning system. [113].

power converter to maintain the adequate voltage quality of
the rack supply and the PSUs at racks rectify the supplied
voltage for the servers using Switch Mode Power Supply
Unit (SMPSU) [8]. The power electronic devices with high
frequency switching like PDUs, incur a constant power loss
as well as a power loss proportional to the square of the server
load [52], as shown in (18). The PDU typically consumes
3% of its input power [52], [115]. As in current practice,
all the PDUs remain connected with the supply system,
which increases the idle loss of PDU [115]. The power loss
coefficient of the PDU is represented by φPDU in (18) as
explained in [28], [115].
The UPSs provide backup support during power sup-

ply interruptions up to some tens of minutes, voltage dips,
and other disturbances originating upstream the UPS. Dif-
ferent types of UPS have been studied to evaluate the
efficiency and performance for specific uses, while the
Online UPSs are claimed to be the most-reliable choice
for data center application because of the fast response
time [114], [115]. Advancement has made recently to the
internal topology of the online typeUPS to improve the power
quality [116], [117], efficiency [118], and performance
[119], [120]. However, research on the power consumption or
loss modeling of the UPS for data center application is very
limited. The power consumptionmodel of theUPS depending
on the supplied IT load is proposed in [115] and later also
used in [28], [52], [121]. The power consumed by the UPSs
depends on the supplied power regardless of the topologies
as shown in (19)
The power consumption of the PSUdepends on its supplied

power to the server [52], [53], [111]. The efficiencies of the
PDU and the PSU are compared at different voltage levels of
the data center in [114]. The efficiency of the PSU (87.56%),
is less than the efficiency of the PDU (94.03%) for a 480VAC
system in data center [114]. The efficiency is calculated based
on the input and output power of each unit in [114]. However,

the total power consumption of all PDUs is higher than the
total power consumption of all PSUs [113] in the IPCS,
because of the ideal power loss and the non-linear relation
of the PDU’s loading and power loss as shown in (18).

PLossPDU = PidlePDU + �PDU

( ∑
servers

Pserver

)2

(18)

PLossUPS = PidleUPS + φUPS
∑
PDU

PPDU (19)

A comparative study is shown in [52], where the perfor-
mance of these devices in the IPCS has been evaluated in
terms of consumed power by the IT loads in the data center.
The PDUs are claimed to be the most power consuming
equipment in the IPCS compared to UPS and PSU in [52],
which can even lead to outages as explained in [8]. Due to
the series power loss component in PDU that is represented
by the square term in (18), the total power loss of the PDUs
goes higher than the total power loss of the UPSs and PSUs
[8], [52]. However, the efficiency of the PDU is compared
with the UPS that shows the efficiency of PDU is higher than
UPS [114], [115]. The power consumption of the devices in
the IPCS in terms of percentage of the served IT loads for
a hyperscale data center is shown in Figure 7. The analysis
has been done based on the information that is presented
in [112], [121] about the idle power consumption and the
power loss coefficients of the UPS and PDU. The data center
is considered with 10, 000 servers with a rated power of
1 kW. A similar IPCS configuration is considered as shown
in Figure 6, where each rack with 10 servers needs a PDU to
distribute the power between the connected PSUs at the rack.
Therefore, the data center is simulated with 10000 servers in
1000 racks that need 10MW power for the servers. The racks
are assumed to be supplied by 10 identical units of the UPS.
The devices in the IPCS has consumed 1, 301 kW of power
to server 10MW of the IT loads, which is around 13% of the
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power consumed by the IT loads, as depicted in Figure 7a.
The power consumed by the devices in the IPCS is considered
as the power loss in the IPCS [113]. In the assessed data
center, the PDUs consume 7.3% of the power consumed by
the IT loads while the UPS consumes 4.7% assuming the full
computational loads for the servers, as shown in Figure 7b.
The power loss of the PSU is assumed to be 1% of the
supplied power to the servers since the power loss of the PSU
is load dependent [113]. This analysis also shows the total
power loss of the PDUs are more than the power loss of the
UPSs as claimed in [8], [52].

FIGURE 7. Power consumption of the IT loads and the equipment in the
IPCS.

C. COOLING SECTION MODELS
The cooling and environmental control system is used to
maintain the temperature and humidity of the data center. This
sections mainly contains the Computer Room Air Cooling
System (CRAC) unit, cooling tower, humidifiers, pumps, etc.
to ensure the reliable coolant flow in the data hall. The highly-
dense IT loads generate enormous amount of heat in data
center, which is handled by the cooling load sections. The
cooling loads ensure the environmental control and the IPCS
ensures the power quality of the supply to the IT loads; while
both of these load sections are needed to ensure uninterrupted
service of the IT loads in the data center. The cooling load
section of the data center is the biggest consumer of power
among the non-IT load sections followed by power condi-
tioning system losses in a typical data center, as shown in
Figure 4. The energy consumption models of the cooling

section have various applications in data centers operation
i.e., cooling section energy consumption management, opti-
mization, generated heat utilization, thermal control, etc. The
power consumptionmodels of the cooling load section’s com-
ponents are essentially needed for the mentioned methods.
The power consumption of the cooling load section

depends on multiple factors like the layout of the data center,
the spatial allocation of the computing power, the airflow rate,
and the efficiency of the CRAC [112], [122]–[124]. There are
two major working components in the cooling section. (1) the
CRAC unit, and (2) the chiller or a cooling tower.

1) CRAC UNIT MODELS
The CRAC has recently drawn attention regarding efficiently
handling the coolant flow in the data centers [125]–[127]. The
heat generated from the servers, hence the IT loads in the data
center are removed by the CRAC units installed in the server
room. The cooling power that is consumed by the CRAC
units is proposed in [125] as a function of supplied coolant
temperature ts and coefficient of performanceCCoP, as shown
in (20). The authors use the HP CRAC model in [125] with
a CCoP = 0.0068 · t2s + 0.0008 · ts + 0.458, where ts
is the maximum temperature of the supplied coolant from
the CRAC. The maximum efficiency of the CRAC unit can
achieve by finding the maximum value of ts that guarantees
the reliable operation of the servers [125].

PCRACcool =
Qinlet
CCoP

(20)

Another power consumption mode of the CRAC sys-
tem is presented in [128], where the CRAC is assumed to
be equipped with variable frequency drivers (VFDs) which
showed the following empirical relationship between indi-
vidual CRAC unit power consumption Pcraci and relative fan
speed θi for the CRAC unit,

Pcraci = Pcraci,100(θi)
2.75

The impact of racks arrangement, ambient temperature,
outside temperature, and humidity on the power consumption
of the CRAC unit is analysed in [129]. As explained in [129]
the power consumption of CRAC is proportional to the vol-
ume of the airflow, f , and also depends on the heat generated
by the servers, as shown in (21), (22). The required volume of
air flow in a server room can be determined by f = fmax ×U ,
where fmax is the maximum standard air flow (14000m3/hr
for a 7.5 kW CRAC unit). The power required to transfer the
heat Pheat from the server room is shown in (22), where the
idle power of the CRAC unit, PidleCRAC can be considered as 7%
to 10% of Pmaxsf .

Pheat = 1.33 × 10−5
×
Pmaxsf

ηheat
× f (21)

PCRAC = PidleCRAC + Pheat (22)

Recently a power consumption model of the CRAC is
presented in [52] dominated by fan power, which grows with

152550 VOLUME 9, 2021



K. M. U. Ahmed et al.: Review of Data Centers Energy Consumption and Reliability Modeling

the cube of mass flow rate to some maximum (PCRACDyn ),
together with a constant power consumption for sensors and
control systems (PCRACIdle), shown in (23). Some CRAC units
are cooled by air rather than chilled water or contain other
features such as humidification systems, which are not con-
sidered here.

PCRAC = PCRACIdle + PCRACDyn f
3 (23)

On the contrary, the power consumption of the CRAC in
data centers is addressed in terms of thermal management
in [126], [130], [131], where the authors relate the power
consumption of the CRAC to the temperature of the data hall
and the heat generated from the IT load section to optimize
the power consumption of the cooling load section.

2) CHILLER AND COOLING TOWER POWER CONSUMPTION
MODEL
There is not so much that has been done to address the chiller
power consumption for the specific use case of data centers.
The chiller plant removes heat from the warm coolant that
returns from the server room. This heat is transferred to exter-
nal cooling towers using a compressor. The chiller plant’s
compressor accounts for the majority of the overall cooling
power consumption in most data centers [128]. The power
drawn by the chiller depends on the amount of extracted heat,
the chilled water temperature, the water flow rate, the outside
temperature, and the outside humidity. According to [18],
the chiller’s power consumption increases quadratically with
the amount of heat to be removed and thus with the data
center utilization. The size of the chiller plant depends on the
maximum heat generated from the IT load section. According
to the design practice the chiller should handle at least 70%
of Pmaxsf in order to provide sufficient cooling [132]. The
chiller plant power consumption model is shown in (24).
Another chiller power consumption model is given in [128],
which depends on the power consumption of the refrigeration
system Pr , as shown in (25). The constants α, β and γ are
obtained by performing a curve fitting of several samples
from the real data center.

Pchiller = 0.7 × Pmaxsf

(
αU2

+ βU + γ
)

(24)

Pchiller = Pr/η (25)

where η and U are the efficiency of the chiller system and the
average utilization of the servers in the IT load section.

3) POWER CONSUMPTION MODEL OF THE COOLING
SECTION
The additive power models are common for modeling the
data center’s cooling section power consumption like IT
load section. An additive model for power consumption of
the cooling system of the data center is presented in [133]
and shown in (26). The power consumption model includes
the CRAC fan, refrigeration by chiller units, pumps of the
cooling distribution unit, lights, humidity control, and other
miscellaneous items [133]. Prf corresponds to the total power

consumption of the cooling system for a raised floor archi-
tecture, known as a refrigeration system. PCRAC is the power
consumed by computer room air conditioning units. Pcdu
denotes the power dissipation for the pumps in the cooling
distribution unit (CDU) which provides direct cooled water
for rear-door and side-door heat exchangers mounted on the
racks. Pmisc is the power consumed by the miscellaneous
loads in the cooling system. This model is almost equal to
the model of raised floor cooling system power consumption
described in [128].

Prf = PCRAC + Pcdu + Pmisc (26)

The total power consumption of the CRACs and total
power consumption of the CDUs could be expressed as fol-
lows, where i and j corresponds to the number of CRAC and
CDU units, respectively. PCRAC and Pcdu are the total power
consumption of the CRAC and CDU units.

PCRAC =

∑
i

PCRACi , and Pcdu =

∑
j

Pcduj

A summary of the data center load modeling analysis with
the references is given in Table 7.

IV. REVIEW OF THE RELIABILITY MODELING OF DATA
CENTERS
Data centers should be environmentally controlled and
equipped with power conditioning devices to ensure the reli-
able operation of the IT loads including servers and network
devices. Data center operators take every possible measure
to prevent deliberate or accidental damage to the equipment
in the data center so that the load sections could ensure a
high degree of reliability in operation. By definition, relia-
bility is the probability of a device or system performing its
function adequately under specific operating conditions for
an intended period of time [134], [135]. Here the degree of
trust is placed in success based on past experience, which is
quantified as the probability of success for a mission oriented
system like a data center in this case. This reliability defini-
tion considers only the operational state of the component or
system without any interruptions. Meanwhile, the probability
of finding the component or system in the operating state is
known as ‘‘availability’’, which is used as a reliability index
for a repairable system [135]. In this case, the components in
the data center load sections are repairable that also includes
the replacement process, therefore the availability index is
widely used in data center reliability modeling [136].
The data center industry has come to rely on ‘‘tier classi-

fications’’ introduced by the Uptime Institute as a gradient
scale based on data center configurations and requirements,
from the least (Tier 1) to the most reliable (Tier 4) [136].
The Uptime Institute defines these four tiers of data centers
that characterize the risk of service impact (i.e., unavailability
and downtime) due to both service management activities and
unplanned failures [137].
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TABLE 7. The summary of the reviewed topics in data center load section modeling with the references.

A. TIER CLASSIFICATION OF DATA CENTERS
The core objective of the tier classification of data centers
is to make a guideline of the design topology that will
deliver desired levels of availability as dictated by the owner’s
business case, which is introduced by the Uptime Institute
[136], [137]. The tier of the data center is determined by
the availability of the IPCS including the utility and backup
generator supply [136], [137]. The Uptime Institute is the
pioneer in researches to standardize the data center design
and describe the redundancy of its underlying power supply
systems. According to The Uptime Institute’s classification
system, the internal infrastructure of data centers has evolved
through at least four distinct stages in the last 40 years,
which is used for the reliability modeling and known as
‘‘Tiers of Data center’’ [136]–[138]. As of April 2013, the
Uptime Institute had awarded 236 certifications for build-
ing data centers around the world based on the tier clas-
sification [139]. This is a combination of quantitative and
qualitative classification approach, as depicted in Figure 8.
The combination of these two approaches is used by the
Uptime Institute for tier certification, however, the reliability
assessment approach depends on the data center owner’s
business cases, which is discussed further in Section IV-D.
The tier classification system evaluates data centers by their
capability to allow maintenance and to withstand a failure
in the power supply system. Tier I (the least reliable) to
Tier IV (the most reliable) are defined depending on the
redundant components in the parallel power supply path to the
critical load sections. However, the deterministic approach
used in [136], [139] to calculate the availability for different
tiers has ignored the outage probability of the grid supply,
different failure rates of the IPCS components, and random
failure modes in the power supply paths. The specification

and redundant options from [136]–[138] are summarized in
Table 8.
The availability of the data center for different tiers that are

given in Table 8 are criticized in [140]. The availability of the
data centers that are shown in [140] are less than the former
ones. Due to considering more detailed failure possibilities
in the data center internal infrastructure the risk of failure
increases, hence the availability decreases for the studied sys-
tem in [140]. Therefore, the redundancy in the power supply
path can not only improve the availability of the data center;
the availability could degrade due to common mode failures,
which demands statistical data for further research. Although
a crude framework and design philosophy that is provided
in [136]–[138] is still useful, the results are presented based
on some assumptions, as follows:

• The fault tolerance of the tiers does not solely depend on
the redundancy of the power supply path because there is
a possibility to have common mode failures. The impact
of the common mode failures in rack-level PSUs on the
availability of the servers are presented in [113].

• The studies only consider the single point of failures
in specific critical output distribution points like PDUs
and provide a solution to use dual corded PDUs in
Tier IV data center. However, it is argued in [8] that the
dual corded PDUs also could fail to supply the required
power to the servers because of power supply capacity
shortage.

• The articles have followed a deterministic approach with
constant failure and repair rates of the components to
assess the availability of small IPCSs, while the IPCSs
in real data centers are large and complex with a high
number of uncertainties to have component outages at
different levels in the IPCS.
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FIGURE 8. Data center tier classification.

TABLE 8. Overview of tier classification requirement [136]–[138].

B. FACTORS TO CONSIDER FOR THE RELIABILITY
MODELING IN DATA CENTERS
The most important factor for assessing the reliability of the
data center is the failure of the components in the system.
Arno et al. has formulated an example in [136] as follows:
‘‘If the UPS in the power supply system fails and all the

connected loads for the data center lose power, that would
obviously be a ‘‘failure.’’ But what about one 20 A circuit
breaker trips and one rack of equipment losing power? Is that
a ‘‘failure’’ for the data center?’’ [136]
According to the definition of failure given in Chapter 8 of

the IEEE Gold Book, Standard 493-2007 [141], ‘‘the failure
is the loss of power to a power distribution unit (or UPS
distribution panel in case of the data center).’’ Thus the loss
of an entire UPS would impact the overall mission of the
connected facility that is a failure of the data center by defi-
nition. However, if a circuit breaker trips and the connected
racks lose power then it will not be considered as a failure of
the data center, rather the servers at the racks are considered
as failed or unavailable for operation. Therefore, the first
step of any reliability analysis is to define the ‘‘failure state’’
of the studied system. A similar explanation is presented
in [7] about ‘‘error and failure’’ for a cloud system, where
the term ‘‘failure’’ is used for fatal faults in the system that
are irreparable and catastrophically impact the system oper-
ation. However, ‘‘errors’’ degrades the system performance

(i.e. latency, decreasing throw put) since the errors can be
solved automatically and the system can recover to the initial
state [7]. Additionally, the mentioned failure definition in
the IEEE Gold Book, Standard 493-2007 [141] contradicts
with the tier classification of data center, which shows failure
with degraded performance mode is needed to be defined for
data centers. The reliability analysis in [113] is an example
in this regard. The failures of the rack-level PSUs are con-
sidered in [113] to assess the adequacy of the computational
resources, hence the degraded performance of the data center.

C. RELIABILITY INDICES AND METRICS USED FOR
RELIABILITY MODELING IN DATA CENTERS
In this section the reliability indices and metrics that are used
in literature for data center reliability modeling are analyzed
in three groups depending on the load sections. The applica-
tions of the reliability indices in reliability modeling differs
for different load sections because the interpretation of the
reliability assessment outcomes are not similar for the load
sections, as mentioned in Section IV-B.

1) RELIABILITY INDICES FOR IT LOADS AND SERVICES
The indices that are used for IT load section could be classi-
fied into two groups, (1) the indices that are related to the IT
performance and services, and (2) the indices related to the
readiness of the IT load section in data center. The QoS is
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a key indicator to assess the performance of the data center,
which also includes Key Quality Indicators (KQI) and Key
Performance Indicators (KPI) for the IT services provided
by the data center as explained in [7]. These indices are
used for IT service monitoring and computational capacity
management in data center. The ‘‘service reliability’’ and
‘‘service availability’’ indices are used to maintain SLA with
the client or user of the data center. In other words, the
service availability or reliability characterizes the readiness
of a data center system to deliver the promised IT service to
a user. The readiness of a system is commonly referred to as
being ‘‘up’’ [142]. Mathematically, the service availability is
estimated as given in (27). The ‘‘service availability’’ index is
used in [8] for addressing the reliability of the IT loads or the
servers at rack-level. The authors have also shown the server
‘‘outage probability’’ as a reliability index that varies with the
increasing power losses in the IPCS in the data center.

AService =
tup

tup + tdown
(27)

where, AService is the service availability. tup and tdown are the
uptime and downtime of the system, respectively. Apart from
the probability of outages, the ‘‘service reliability’’ is also
emphasized in [142] since the probability to fulfill the ser-
vice requests without latency is characterized by this index.
Importantly session-oriented services in data centers measure
both the probability of successfully initiating a session with
service, called ‘‘accessibility’’, and the probability that a
session delivers service with promised QoS until the session
terminates, called ‘‘retainability’’ [142]. In this regards the
Defects Per Million Operation (DPM) is an index that mea-
sures the failed operation per million operations to assess the
system reliability, as given in (28).

RDPM =
Of
Oa

× 1, 000, 000

rService = 100% −
RDPM

1, 000, 000
(28)

where, RDPM , Of , and Oa are the defects per million oper-
ation, the number of failed operation, and attempted oper-
ation, respectively. The service reliability is represented
by rService.
Another index named ‘‘Service latency’’ is mentioned with

importance to assess the system reliability specially for edge
and internet data centers in [143], [144]. Transaction latency
directly impacts the quality of experience of end users;
according to [142], 500 millisecond increases in service
latency causes a 20% traffic reduction for Google.com, and a
100 millisecond increase in the service latency causes a 1%
reduction in sales for Amazon.com. The service availability
index is explained considering the average CPU load level,
hence computational workloads, and CPU hazard function,
with a new index ‘‘load-dependent machine availability’’
in [145]. Similar load-dependent reliability indices named
‘‘average performance’’ and ‘‘average delivered availability’’
are proposed in [146].

The basics of the QoS and the service reliability indices
are similar; mostly based on the indicators of the service
availability and the IT system performance. The IT system
performance indicators are modeled in different ways, such
an example is given in (28).
Apart from the mentioned QoS oriented reliability indices,

there are other indices i.e., Mean Time Between Fail-
ure (MTBF), Mean Time To Repair (MTTR), availability,
reliability that are used in reliability modeling for the physi-
cal components of the IT load section [147]–[149]. A sim-
ilar reliability index called ‘‘loss of workload probability
(LOWP)’’ is proposed based on the server outages proba-
bility at the rack-level in [113]. The risk of server outages
due to electrical faults and the consequent voltage dips are
analyzed in [101].
Additionally, the IT load performance based SLA-aware

indices are also used for the software-based solutions in data
centers. The SLA-aware indices i.e., Performance Degra-
dation Due to Migration (PDM), Service Level Aggrement
Violation (SLAV) are applied to evaluate the performance
of the IT loads with consolidated workloads in the cloud
system [150], [151].

2) RELIABILITY INDICES FOR IPCS SECTION
The indices that are used to assess the reliability of the
IPCS in the data center are compiled with a logical expla-
nation in [136]. The authors specify five different reliability
indices in [136] i.e., MTBF, MTTR, availability, severity and
risk (measured in terms of financial losses caused by the fail-
ure) for assessing the reliability of the IPCS in data centers.
These indices are significantly impacted by the definition of
‘‘failure’’ that is used for the studied system architectures as
explained in Section IV-B. The indices are also impacted by
the size of the facility and the number of the critical loads used
in the studied models [114]. A different reliability assessment
approach is explained in [8], where authors showed the power
supply capacity shortage probability of the PDUs due to
increasing power losses in the IPCS that eventually results
in server outages, hence failure in the IT loads. The index
named ‘‘outage probability’’ is used for PDUs to relate with
the service availability of the IT loads [8].
There are also reliability studies focused on the IPCS com-

ponents (i.e., UPS, PDU, and PSU). These articles are out
of scope of this review since the component based research
is focused on lifetime enhancement, cost-effectiveness, and
energy-efficiency of the particular component but not focused
on data center applications.

3) RELIABILITY INDICES FOR COOLING SECTION
A reliability evaluation method for a hybrid cooling system
combining with a lake water sink for data center is presented
in [152], where the operational availability index AO(∞) is
used for repairable system components. In [152] the opera-
tional availability index is defined as the probability that the
system will be in the intended operational state, and math-
ematically expressed as a function of system’s failure rate
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λsys and repair rate µsys, as given in (29). Another reliability
index called functional availability Af (∞) is also used based
on predicted server room temperature and servers’ working
conditions in [152], as given in (30). As explained in [152],
the overall functional availability of the data centers cooling
system is mainly determined by the operational availability,
heat density, heat transfer characteristics of room temper-
ature, start-up time of cooling system and repair time of
cooling system failure.
Similar functional condition based analysis has been done

for the data center air-conditioning system based on the air-
conditioning power supply capacity [153].

AO(∞) =
1

λsys
µsys

+ 1
(29)

Af (∞) = Ao(∞) × (1 − pus) + (1 − Ao(∞)) × pt (30)

where AO(∞) and Af (∞) are the operational and functional
availability of the cooling system. The failure rate and repair
rate of the cooling system are λsys and µsys, respectively.
pus is the probability of room temperature out of intended
range when the system is under operation state. pt is the
probability of intended value of room temperature when the
cooling system fails.
A different reliability modeling approach has been applied

in [9], where authors emphasized on dependability of the
cooling system since dependability is related to both fault
tolerance and reliability. The reliability importance (Ii) and
reliability-cost importance (Ci) indices are used in [9],
as given in (31)

Ii = Rs(Ui, pi) − Rs(Di, pi)

Mi = Ii × (1 −
Ci
Csys

) (31)

where, Ii is the reliability importance of component i;
pi represents the component reliability vector with the ith

component removed; Di and Ui represent the failure and up
state of i component, respectively. Ci is the acquisition cost
of the component i and Csys is the system acquisition cost.

Apart from the mentioned indices, the typical indices like
availability based on MTBF, MTTR, failure, and repair rates
are widely used for reliability modeling of the cooling load
section of data center [154], [155]. It is important to mention
that the research on data center cooling system reliability is
not adequately addressed yet, while the cooling infrastructure
for commercial buildings has already drawn the interest of
the researchers intensively in the last decade. The research
on reliable cooling infrastructure of the data center is much
needed since the temperature sensitivity of the data center’s
server hall needs to be compared to the other building facil-
ities [154]. One of the very few articles that have critically
evaluated the reliability of the cooling system of data center
recently is [154].

D. METHODOLOGIES USED FOR RELIABILITY MODELING
Different research methods have been used for reliability
modeling of the data center’s load sections individually

and also the data center as a complete system. All the
proposed methodologies could be classified in two groups
i.e., analytical research group, and simulation based research
group [156].

1) ANALYTICAL APPROACHES FOR RELIABILITY
ASSESSMENT
The applications of analytical approaches like Reliability
Block Diagrams (RBD) and fault tree analysis are very
common in data center reliability modeling because of the
simplicity and less requirement of the computational capac-
ity. One of the earliest of such research was published in
1988 [157], where the authors analyzed and compared the
unavailability of the distributed power supply system of a
telecommunication control room with the centralized power
distribution system. A similar analytical approach has been
explained in [158], where the reliability of the typical Alter-
nate Current (AC) distribution system is compared with the
Direct Current (DC) power distribution system in data centers
using RBD. The failure of the power distribution system
is only considered without considering the failures of the
IT loads in [158], [159], while the availability of the IPCS
considering the failure probability of the IT loads including
PSUs are presented in [8]. Depending on the voltage level
in the IPCS the reliability of different IPCS structures are
evaluated using RBD in [160], [161]. The reliabilitymodeling
of the computation resource infrastructures (IT load section)
of data centers has been conducted using RBD model in
[162], [163]. A similar type of analysis is presented in [164],
where the authors have used the directed and undirected
graphs using minimum cut sets. The analytical approach is
also applied to evaluate the reliability of the data center’s
network topologies by applying the concept of cut set the-
ory [165], [166], and optimizing the resource allocations
for reliable networks [167]. The analytical approach i.e., the
RBD, stochastic Petri net and energy flow model are used for
reliability assessment of the IPCS in [168]. An extended RBD
model is proposed in [169] that can consider the dependency
of the IPCS components’ reliability on the overall reliability
of the IPCS. The proposed model is called Dynamic RBD,
which is further compared with colored Petri net model in
order to perform behavior properties analysis that certifies
the correctness of the proposed model for IPCS reliability,
as explained in [169]. The fault tree analysis technique is used
to estimate the failure rates, MTBF, MTTR, and reliability of
different UPS topologies in [170]–[172].
The RBD is also used for data center cooling system

reliability analysis in [9], [152]. The availability of a water-
cooled system is evaluated using maximum allowable down-
time in the proposed RBD model in [152], while the RBD
and stochastic Petri net model are used for quantification
of sustainability impacts, costs, and dependability of data
center cooling infrastructure in [9]. A comparison of data
center sub-systems’ reliability is presented in [148], where
the reliability of the network, electric, and thermal system of
the data center is modeled using the failuremodes effects with
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TABLE 9. The summary of the reviewed topics in data center reliability analysis with the references.

criticality analysis (FMECA) and energy flow model (EFM).
The proposed methodologies in these mentioned articles are
evaluated using the components’ statistical failure and repair
data. There are common sources of these data for industrial
applications like [173], [174]. However, the infrastructures of
the data centers are more critical than typical buildings and
industries as argued in [154]. The statistical data of the data
center’s component failure is needed for further research to
improve the competent reliability in data center application.
There is a publicly available data set that publishes the failure
and repair times of the servers [175], while the failure and
repair data of other components (i.e., PDUs, PSUs, cooling
devices) are not part of any publicly-available set of data. The
data center operator’s tendency to hold the confidentiality and
secrecy of the internal information of the data centers are the
main reasons behind the lack of such data sets [176].

2) SIMULATION-BASED APPROACHES OF RELIABILITY
ASSESSMENT
Along with the analytical models, the probabilistic model-
ing approaches are also common for data center reliability
assessment. The state space models including Markov model
and Markov chain Monte Carlo (MCMC) are used for relia-
bility modeling of large scale and repair-able systems, there-
fore the application of Markov models have become popular
for reliability modeling of data centers recently [177], [178].
To avoid the time-variant non-linear state space model in
Markov model, the failure and repair rate of the compo-
nents of the studied systems are assumed to be constant. The
failure and repair rate could be constant for a component
if the aging effect is ignored considering a constant failure
rate [135]. Therefore, the simulation based reliability models
for assessing the reliability of the data centers are widely used
in research nowadays.
Monte Carlo is one of the most used simulation-based

approaches for data center reliability modeling. The Monte
Carlo simulation approach is mostly used to generate time-
dependent failure and repair events of the system components
using probability distribution function, and observe the over-
all system performance based on the stochastic data [156],

[179], [180]. The Monte Carlo simulation method is also
used for reliability modeling of the components that are used
in data centers i.e., UPS [181], [182], optical network sys-
tem [180]. In simulation-based approaches the failure model
of the system’s component is important since the simulated
result of overall reliability can vary depending on the fail-
ure mode, especially for the high reliability application like
the data center [8]. As an example, the availability of the
Tier IV data center is required to have five to six 9’s, which
means very few failure events will be observed in a million
stochastic events. Therefore, accuracy in failure mode con-
sideration and component’s failure modeling are important in
the simulation-based approaches for reliability modeling of
data centers. Apart from the number of samples and failure
mode of the components, the probability distribution func-
tions of the failure and repair events of the components in the
studied system also play a crucial role in the simulation-based
approaches in case of reliability modeling. The probability
distribution functions and the applications of the distribution
functions for reliability modeling of the servers in the data
center are analyzed in [183]–[185]. The distribution function
of the failure and repair time of the network devices and
other server components i.e., hard-disk,memory, and network
cards are presented in [176], which is further used for relia-
bility modeling of the overall system. Besides Monte Carlo,
stochastic petri nets [32], and Markov chain Monte Carlo
(MCMC) [186] are also used for reliability modeling of the
data center.

E. DEPENDABILITY OF THE DATA CENTER LOAD
SECTIONS AND SUB-SYSTEMS
The dependability of a system is defined as the ability
of the system to deliver the service that can justifiably
be trusted [187]. Alternatively, providing the criterion for
deciding if the service is dependable is the dependabil-
ity of a system [188]. As an example, the dependence
of system A on system B represents the extent to which
system A’s dependability is (or would be) affected by that
of system B. The dependability of a system can be rep-
resented by attributes i.e., availability, reliability, integrity,
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maintainability, etc [188]. This section analyses the depend-
ability of the data center sub-systems and load-section since
the service availability of the data center depends on the
continuity of the services provided by the components of the
sub-systems, as explained in Section IV-C.

1) DEPENDABILITY ON THE COOLING LOAD SECTION
A dependability analysis of data center sub-systems has
been presented in [148], where the authors considered the
availability of the three major sub-system (electric, cooling,
and network) and also evaluate the impact of sub-system’s
availability on the data center reliability. The impacts of the
electrical and thermal subsystem’s availability on the overall
reliability of the data center are presented in [32]. The impact
of the ambient temperature on the overall reliability and
energy efficiency of data centers has been analyzed in [147].
It has shown that the battery life in the IPCS is reduced by
50% due to increase in operational temperature by 10o C;
while the passive elements in the servers like capacitors’
reduce the life time by 50% for 10o C increment in the
temperature [147]. The author in [147] has also concluded
that increasing the data hall temperature improves the energy
efficiency but it impacts the reliability of the servers and the
PSUs in the IPCS. The power consumption of the cooling
loads depends on the servers arrangement in data hall, hence,
dense server arrangement causes high energy consumption
by the cooling loads [32]. Additionally, the network and
storage latency increases due to have overloaded cooling
loads and have more un-utilized or idle servers, which also
impact the overall relaiblity of the data center placement
strategies, as explained in [32]. However, these articles have
not considered the power losses of the IPCS to evaluate the
reliability of the data center.

2) DEPENDABILITY ON THE IPCS
The impacts of the power losses on the service availability of
the IT loads of the data center are analyzed in [8]. The service
availability of the severs, hence the IT services of the data
center is quantified considering the total power losses in the
IPCS. According to [8], the server outage possibility could be
20% of the installed capacity from the system because of the
power loss of the PDUs in the IPCS.Moreover, the impacts of
electrical faults and unwanted outages in the IPCS on servers’
outages in data centers are presented in [101], [113]. The
faults in the IPCS causes voltage dips and leads to trip the
PSUs and the servers, as explained in [101]. The amount of
workload that cannot be handled for such unwanted failures
are quantified in [113], since the failure could cause almost
33% of the insulated servers to be out of order in extreme
cases [101]. The reliability-centric dependability analysis is
further extended to control the computational resources to
reduce the overall power consumption, hence the number of
servers in the data center by balancing and scheduling the
workloads in [189], [190]. The term ‘‘right-sizing’’ is used
in this regards, although right-sizing is also used for reducing
the number of idle servers based on data traffic and negotiated

SLA in [191]. The number of active servers is optimized by
workload consolidation through virtualization as proposed
in [192], [193]. A different approach is presented in [113],
where the authors address the required number of servers per
rack considering the workloads and stochastic failure of PSUs
in the IPCS. The broader aim of these analyzed articles is
to improve the reliability and energy efficiency of the data
center, here the consumption models of the load sections are
necessarily used. The energy consumption models are used
either for internal structural modification to reduce the power
losses [189], [190] or for allocating servers to minimize the
consumption [191]. Therefore, the trade-off between energy
efficiency and reliability enhancement in the data center is
important to be considered in data center operation, where the
energy consumption models of the data center load sections
are often necessary for data center reliability assessments.
A summary of the data center reliability analysis with the

references is given in Table 9.

V. LIMITATIONS AND FUTURE WORKS
This paper does not consider the energy management tech-
niques that are used for improving the efficiency of the
data center, whether the authors are focused on the energy
consumption models of the data center’s major components.
Moreover, the adaptation of the sustainable and green energy
sources in data centers are the novel challenges in data center
operation. The impacts of the green technologies i.e., renew-
able energy generation and free cooling techniques in the
energy consumption modeling approaches are not addressed
in this paper. The adaptation of the sustainable energy sources
in the data centers and its impacts on the reliability of the data
center will be analyzed in future.
The detailed mathematical models of different simulation

methods i.e., Monter Carlo, Markov Chain Monte Carlo,
stochastic petri nets, etc. are not included in this review.
These models are used as a tool for data center reliability
assessment. This paper only reviews the applications of these
models in the simulation-based reliability assessment tech-
niques of the data center without considering the mathemati-
cal models, which could be considered for further study.

VI. CONCLUSION AND RECOMMENDATIONS
Being the backbone of today’s information and communi-
cation technology (ICT) developments the energy-efficiency
and higher reliability of the data centers are needed to be
ensured in data center operation. In this paper the energy
consumption modeling and reliability modeling aspects of
the data centers are reviewed. The review has revealed the
state-of-the-art of the aforementioned topics and the research
gaps that exist in published review articles. This paper con-
tributes to fill the research gaps related to data center energy
consumption modeling by analyzing the energy consumption
models of data center load sections, which will ease the
models application in further research. It is worth mentioning
that this paper reviewed the data center’s reliability assess-
ment models and methodologies for the first time, which
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also shows the existing research gaps as recommendations.
The identified research gaps, hence the recommendations
based on the analysis of data center reliability assessment
review are needed to be filled by the future researcher to
ensure the adaptation of new equipment and technologies in
the data center. Additionally, it has been revealed that the
energy consumption models of the data center components
are often necessary for the data center reliability models,
although the energy consumption models have also other
applications (summarized in Table 1) for the data center
energy management.
This paper recommends based on the review of the energy

consumption models of data center components to emphasize
more on the availability of the energy consumption model
parameters and variables than the accuracy for applying in the
research. The higher accuracy of such models often makes
the application complicated and could not contribute much
to the improvement of the proposed methodology. Addition-
ally, the lack of research on the energy consumptionmodeling
of the internal power conditioning system’s (IPCS) equip-
ment is identified in this review. The total power consumption
of the IPCS could be rich up to 10% of the total demand of
the data center, which could also cause outages and reliability
issues in data centers. This review also contributes to show the
relation between the power consumption and the reliability
of the data center, and concludes more research should be
conducted to reduce the power consumption specially in IPCS
section, as a recommendation.
The data center reliability modeling aspects are reviewed

in this paper that shows a need of standard code for data
center operation along with existing tier classification, which
is mentioned as recommendation. The analysis also con-
tributes to show the state-of-the-art of the analytical and
simulation-based reliability modeling approaches that could
help future researchers to choose suitable models based on
application. The analysis has shown the need of statistical
failure and repair data of the data center components that
is rarely available due to the operator’s lack of willingness
to share. Therefore, it is recommended to publish the com-
ponent’s statistical failure and repair data so that it could
be used for further research. It is also a recommendation
of this paper to give more focus on improving the cooling
section reliability analysis and analyze the dependency of the
data center’s overall reliability on other load sections more in
details. In its essence, this review has identified a few research
gaps and a number of recommendations for the researcher to
continue the research and improve the understanding of the
data center’s energy consumption and reliability modeling.
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Abstract

The data centers host sensitive electronic devices like servers, memory, hard disks, network devices, etc., which are 
supplied by the power supply units. The regulated direct current (DC) output of the power supply units fluctuates with 
input voltage variation since they typically contain single phase switch-mode power supplies. The voltage dips caused by 
faults in the internal power supply system of the data center can be large enough to violate the Information Technology 
Industry Council (ITIC) proposed voltage-tolerance guideline. The output of the power supplies, hence the operation of 
the servers will be interrupted due to such voltage dips. In this paper, the outage probability of the servers caused by the 
voltage dips are analyzed for different fault location in the internal supply system of a data center.

1 Introduction
Data centers are becoming an essential part of the modern 
information and communication technology (ICT) industry. 
With the increasing use of electronic equipment in 
industries like data centers, the power quality issues have 
received more attentions to ensure the reliable operation 
[1]–[3]. Different topologies of active power filters are used 
in similar industries to the minimize power quality problems 
[4], but voltage dips require solutions at both utility and 
customer level [5]. According to IEEE std. 1159, a voltage 
dip (also known as voltage sag) is a reduction in the RMS 
voltage in the range of 0.1 to 0.9 p.u. (retained) for a 
duration of half cycle to 1 minute [6]. Voltage dips occur 
due to starting equipment with a large starting current, 
energizing of transformers, and faults. Electronic devices 
like personal computers (PC), adjustable-speed drives, and 
process-control equipment are very sensitive to voltage 
dips. However, the voltage dips caused by the faults in the 
internal power supply system (IPSS) of the data center have 
not been analyzed yet. The server outage probability for 
voltage dips caused by faults in the IPSS of a data center are 
presented in this paper, where the structure with the cable 
specification of the IPSS is used from [7].

The remainder of this paper is organized as follows: 
voltage dip impacts in data center are presented in Section 2. 
The state of the art of the voltage dips analysis in the data 
centers is described in Section 3, followed by the 
methodology of the voltage dip analysis in Section 4. 
Section 5 contains the voltage dips analysis caused by faults 
at different location of the studied IPSS with the risk 
analysis of the server outages. Finally, the conclusions and 
discussions are included in Section 6.

2 Voltage Dips Impact in Data Center
The typical IPSS in data center consists of power 
conditioning devices, protective devices, and cable sections. 

The power condition devices i.e., uninterrupted power 
supply unit (UPS), power distribution units (PDUs), and 
power supply units (PSUs) are used in data centers to assure 
the required power quality of the supply for the servers. The 
sizing of the cable sections and sensitivity of the protective 
devices like circuit breakers (CB) of the IPSS depends the 
current ratings, hence, on the server loads and related losses 
of the power conditioning devices. This study consider the 
IPSS structure of a real data center, proposed in [7]. The 
IPSS has three branches that are connected with an 
800 kVA UPS, as depicted in Figure 1. The UPS are 
typically remain connected with the utility supply through 
automatic transfer switches that is not shown in Figure 1, 
since this study is focused on the critical fault locations 
inside the data center’s power supply system. It is assumed 
that each PDU is connected with 10 racks, where each of 
the racks hosts 10 servers per rack. The rated power of the 
PDUs is 8 kW that will supply ten servers through PSUs 
with 230 V AC in racks, as used in [24]. Due to fault in any 
cable section of the branches the associated CBs will act and 
the racks will be isolated from the rest of the system. The 
PSU normally comes with switch-mode power supply 
(SMPS) like typical power supplies of electronic equipment 
[8]. The SMPS contains a diode bridge rectifier that 
converts AC to DC and supplies the DC power to a large 
filter capacitor. If the AC voltage drops, the voltage on the 
DC side of the rectifier also drops. If the non-regulated DC 
voltage becomes too low the regulated DC voltage will also 
start to drop and finally the PSU connected server will 
restart or trip [9]–[12]. The voltage-tolerance of the PSUs to 
supply the servers in data centers are not studied yet. Thus 
the Information Technology Industry Council (ITIC) 
proposed voltage-tolerance curve for the power supply is 
used in this study [13]. The server outage probability due to 
the voltage dips that violate the voltage-tolerance 
requirements by the ITIC is presented in this paper.
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3 State of The Art
The power conditioning devices are deployed in the IPSS to 
ensure the reliable operation and to maintain the power 
quality of the supply for the IT loads, since the IT loads i.e.,
servers, cooling fans, and network switches are sensitive to 
power disturbances [14], [15]. The power quality issues 
may occur either by external causes from upstream 
distribution network or internal causes [1]. The voltage and 
current harmonics in the IPSS of the data center caused by 
the control system of the cooling loads is addressed in [1], 
as an internal cause. The similar harmonics issues in the 
IPSS are reported due to use electronically commutated fans 
in the air handling systems in the data center [16]. Besides 
the voltage and current harmonics, the voltage dips are 
analyzed for a 380 V DC data center in [3], where the 
restarting problem of the servers are reported due to voltage 
dips. Voltage dips caused by the faults in the power supply 
system of data center are not studied yet. However, the 
voltage dips from the source side that caused tripping the 
sensitive loads in a hospital is presented in [17]. 

The typical power supply unit with SMPS for PCs are 
used in this study to analyze the server outages caused by 
the dips in voltage since the voltage – tolerance curve 
specifically for the server PSU is not proposed yet. The first 
voltage-tolerance curve for such power supply unit was 
introduced for the mainframe computers [18]. This curve 
became popular when the Computer Business Equipment 
Manufacturers Association (CBEMA) recommended the 
curve for its members [5] and later it also placed in IEEE 
standard as the reference for equipment voltage tolerance 
[19]. Later the CBEMA curve has been further modified by 
the ITIC, known as the ITIC curve that is used in this paper 
to assess the voltage – tolerance of the PSUs  [13]. The 
CBEMA and ITIC voltage – tolerance curve is given in 
Figure 2. The ITIC curve gives comparatively stronger 
requirements than the CBEMA curve since power quality 

monitoring had shown that there is a significant number of 
sags just below the CBEMA curve [5], [20]. The sensitivity 
of the power supply units of the PCs to voltage dips are 
analyzed in terms of the magnitude and duration of the dips 
in [5], [10]–[12]. The experimental results discussed in 
[10]–[12] showed that most of the power supplies with PCs 
satisfy the ITIC standard voltage- tolerance curve. Due to 
the voltage dips of 50-70% of the 230 V/50 Hz in 30-170 ms 
the PCs turned off (restarting or rebooting) [10]–[12]. The 
same voltage tolerance level of the typical PC power supply 
units is consider for the PSUs in the data center.

4 Methodology
The MATLAB Simulink is used to simulate the system, 
shown in Figure 1. The studied system has three identical 
sections, as depicted in Figure 1. The simplified model of 
the left section that is connected with single phase 10 m 
cable (red color) to the UPS is shown in Figure 3 (a). It is 
assumed that each of the branch of this section will have 
similar number of racks with servers and related power 
conditioning devices like the PDUs and PSUs. The circuitry 
arrangement of the PDUs and PSUs is shown in Figure 3
(b). The power consumption of these devices are added with 
the power consumption of the servers in racks to get the 

Figure 1: The studied IPSS structure of the data center

Figure 2: The CBEMA and ITIC voltage – tolerance curve [5]
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equivalent load impedance and the total amount of power 
flow through the cables (Z4-s) in Figure 3 (a). The power 
consumption model of the PDU and PSU is presented in [8]. 
The equivalent load impedance is given in (1).

= + +
(1)

where, , , and represents the load demand 
of the servers of the racks, power consumption of the PSUs, 
and the PDUs. V is the supplied voltage (230 V) and PF is 
the power factor. is the equivalent load impedance.

It is assumed that all the servers in racks are consuming 
rated power, which is 800 W. Each of the racks has ten 
servers with ten PSUs because each server is connected with 
a PSU. A rack is supplied by a PDU so that a PDU can 
supply ten PSUs, as depicted in Figure 3 (b). The cable 
impedances are also considered in this study, as specified 
by different colors in Figure 1. The rated voltage of the 
system is 230 V AC with 50 Hz. 

The cables are used typically in industry for distributing 
the power [7], where line to ground (L-G) fault is common. 
Depending on fault location the 10 m single phase cable 
(black color) with an impedance of 1.7 × 10 /m is the 
most sensitive cable section in the IPSS shown in Figure 1. 
The Row and Rack CB will isolate the fault in the 10 m 
cable section that will cause voltage dip in the PCC. Any 
fault in the upper cable sections will be isolated by the Area 
CB, which might causes voltage dip in the input side of the 
UPS. The studied IPSS of this paper is only considered the 
internal power supply system after UPS, as shown Figure 1. 
Therefore, voltage dips are analyzed that are caused by 
faults at different location of the 10 m cable section.

5 Results and Analysis
5.1 Fault location:
The Row and Rack CBs have identical time settings as they 
have same fault current limit. The fault clearing time of the 
CBs is chosen 100 ms for the simulation, which is typical 
response time of industrial CBs [21], [22]. The dips in 
voltage of the PCC are analyzed for two extreme location of 
fault (with zero fault impedance) represented by Case 1 and 
Case 2 respectively in Figure 3 (a). The fault in the load bus 
at the last end of the 10 m cable pointed as Case 1 in Figure 
3 (a) will isolated by the CBs, which will also cause a 
voltage dips as shown in Figure 4. The magnitude and the 
duration of the voltage dip is around 92% and 123 ms, 
which does not violate the ITIC voltage – tolerance curve. 
The other fault location is consider 9.9 m away from the 
load bus as Case 2, shown in Figure 3 (a). The fault is 
simulated immediately downstream of the Row CB, shown 
in Figure 3 (a). The voltage dip at the PCC for Case 2 is 
shown in Figure 5. The dip in the voltage is around 30% for 
127.51 ms, which violates the ITIC guideline as shown in 
Figure 2. The voltage dip at the PCC also propagates to the 
neighboring branches. Due to the voltage dip at the PCC the 
voltage at the neighboring load buses also drops to 29.75% 
for 127.51 ms. The DC supplied voltage of the PSUs that 
are connected with the load buses in Figure 3 (b) will drop 

due to these voltage dips. Therefore, the servers will restart 
or stop working considering the same behavior as PCs, 
explained in [10]–[12].

Figure 4: The voltage dip at PCC for Case 1

Besides the two extreme fault locations that are 
explained above, the magnitude of the voltage dips at the 
PCC caused by the faults at different locations in the 10 m 
cable is shown in Figure 6. The fault location closer to the
PCC results larger voltage dip, as depicted in Figure 6. The 
voltage dips at the load buses for different fault locations in 
the 10 m cable are shown in Figure 7. The cable length of 
the branches from the PCC to the load buses is almost 
similar. Therefore, the magnitude of voltage dips in the load 
buses of the neighboring branches are almost similar to the 
voltage dip magnitude at the PCC, as depicted in Figure 7. 
The fault location 8 m away from the load bus creates a dip 
with around 70% residual voltage, as shown in Figure 7.

Figure 3: (a) Simplified model of the left section (b) details 
structure of the Load block

Authorized licensed use limited to: Lulea University of Technology. Downloaded on October 28,2022 at 12:21:21 UTC from IEEE Xplore.  Restrictions apply.



CIRED 2021 Conference Geneva, 20 – 23 September 2021

Paper 0090

4

Figure 5: The voltage dip at PCC for Case 2

Figure 6: voltage dips vs fault location for 10 m cable

Figure 7: Voltage dips magnitude at the load buses

The voltage dips are also analyzed for the other two 
sections of the IPSS, which are connected with 30 m and 
60 m feeder cable (red color), as shown in Figure 1. The 
branches of the IPSS connected with the 30 m feeder cable 
are considered with the same number of racks and other 
components. The voltage dip at the PCC for faults at 
different locations of the 10 m cable is shown in Figure 8. 
The fault location 5 m away from the load bus creates a dip 
with around 70% residual voltage, as shown in Figure 8. In
this case, the critical distance of the fault reduced to 5 m 
from the load bus because of the increased feeder cable 
length.

The voltage dips at the PCC caused by faults at 
different locations of the 10 m cable that is connected with 

the 60 m feeder cable is shown in Figure 9. In this case, a 
fault 1 m away from the load bus creates a dip with less than 
70% residual voltage, as depicted in Figure 9. The critical 
distance of the branches with 60 m feeder cable is the lowest 
compared to the other feeder cables.  Therefore, the voltage 
dip at the PCC also depends on the relative distance from 
UPS to the PCC. Additionally, there will be voltage drop 
across the 10 m cable of the healthy neighboring branches. 
Thus, the residual voltage at the health load buses will be 
lower than the voltage at PCC that are shown in Figure 8
and Figure 9, since the voltage dip can propagate from PCC 
to load buses.

Figure 8: voltage dips vs fault location for 30 m cable

Figure 9: voltage dips vs fault location for 60 m cable

5.2 Risk Assessment of Server Outage:
The cable failure rate with a specific length is given in [15], 
where the statistical failure data is taken from [23]. The 
failure rate per unit length of the cable is given in (2)

= . =
.

. failure/(m-yr) (2)

where, is the failure rate of cable per 1000 ft or 
304.8 m.

The ten servers in the faulted branches will be isolated 
by the Row and Rack CB for faults in the 10 m cable. The 
number of failures leading to server outages in this case is 
× 10 = 1.05 × 10 failure/yr.

The critical distance of the system shown in Figure 3 is 
8 m that can cause a voltage dip in the neighboring load 
buses less than 70% of the residual voltage. Therefore, it is 
likely to have 1. 7 × 10 failures per year leading to server
outages caused by voltage dips less than 70% of the residual 
voltage as given in (3)
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Server = × × = 1.7 × 10 failure/yr (3)

where, is the critical distance of fault from the load bus 
of the neighboring branch and represents the two cables 
that are connected with neighboring load buses.

The critical distance of faults in the branches that are 
connected with the 30 m and 60 m feeder cable is 5 m and 
1 m away from the load bus, respectively. The server outage 
probability considering the critical distance for these two 
section of the IPSS is given in (4) and (5)
Server = × × 5 = 1.05 × 10 failure/yr (4)

Server = × × 1 = 2.1 × 10 failure/yr (5)

6 Conclusion and Discussion
The paper studied the voltage dips caused by faults in the 
internal power supply system of the data center. The 
magnitude of the voltage dip at the point of common 
coupling varies depending on the relative distance of the 
UPS and the PCC. Meanwhile, the voltage dip propagates 
to the load buses of the healthy neighboring branches that 
also violate the voltage-tolerance guideline by the ITIC. It 
is found that depending on the relative distance at most 
33.33% of the servers could turned off/failed in the studied 
system, due to the fault at any branch with longer cable. 
However, the outage probability of severs caused by voltage 
dips is calculated considering the critical distance of the 
fault in the 10 m cable that is placed between Row and Rack 
CB. Faults in 30 m or 60 m feeder cable will cause higher 
number of server outage since the Area CB will remove the 
associated section. In this case, it will not create any voltage 
dip issue at the output side of the UPS because the UPS is 
consider as a three phase source  and the three sections of 
the IPSS are connected individually with each of the phases. 
The voltage dips at the upstream network could be analyzed 
for meshed IPSS as future work.
Acknowledgments
This study is supported by the Swedish Energy Agency 
under Grant 43090-2.

References
[1] A. Mousavi, A. Yavarian, V. Vyatkin, and X. Zhang, “Power 

quality assessment of energy efficient cooling systems in data 
centers,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. 
Electron. Soc., Jan 2017, pp. 7191–7196

[2] M. Kaga, M. Noritake, K. Hirose, and M. Mino, “Verification 
of container data center using 380 V dc power distribution 
system,” 2012 Int. Conf. on Renewable Energy Research and 
Applications (ICRERA), 2012, pp. 1-5

[3] S. Rajagopalan, B. Fortenbery, and D. Symanski, “Power 
quality disturbances within DC data centers,” Intelec 2010, 
Orlando, FL, 2010, pp. 1-7

[4] V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, 
“Hybrid power filter to enhance power quality in a medium-
voltage distribution network,” IEEE Trans. Ind. Electron., vol. 
56, no. 8, pp. 2885–2893, 2009

[5] M. H. J. Bollen, “Understanding power quality problems: 
Voltage sags and interruptions,” IEEE press, 2000

[6] IEEE Std 1159-2019, IEEE Recommended Practice for 

Monitoring Electric Power Quality, vol. 2019. 2019.
[7] G. Wawrzola, “Challenges of DC data center power 

distribution protection,” in 13th Int. Conf. on Development in 
Power System Protection (DPSP), Edinburgh, 2016, pp. 1-6. 

[8] K. M. U. Ahmed, J. Sutaria, M. H. J. Bollen, and S. K. 
Rönnberg, “Electrical Energy Consumption Model of 
Internal Components in Data Centers,” Proc. 2019 IEEE PES 
Innov. Smart Grid Technol. Europe 2019, 2019, pp 1-5

[9] K. M. Uddin Ahmed, M. Alvarez, and M. H. J. Bollen, 
“Characterizing failure and repair time of servers in a hyper-
scale data center,” in IEEE PES Innovative Smart Grid 
Technologies Conference Europe, Oct. 2020, pp. 660–664

[10] S. Hardi and I. Daut, “Sensitivity of low voltage consumer 
equipment to voltage sags,” in PEOCO 2010 - 4th 
International Power Engineering and Optimization 
Conference, Program and Abstracts, 2010, pp. 396–401

[11] J. Bok, J. Drápela, and P. Toman, “Personal computers 
immunity to short voltage dips and interruptions,” 13th Int.
Conf. on Harmonics and Quality of Power, Wollongong, 
NSW, Australia, 2008, pp. 1-6,

[12]
and K. Stockman, “Sensitivity of personal computers to 
voltage sags and short interruptions,” IEEE Trans. Power 
Deliv., vol. 20, no. 1, pp. 375–383, Jan. 2005

[13] I.T.I.C (ITI), “ITI (CBEMA) Curve Application Note,” 1997.
[14] W. Lintner, B. Tschudi, and O. VanGeet, “Best Practices 

Guide for Energy-Efficient Data Center Design,” U.S Dep. 
Energy, no. March, pp. i–24, 2011

[15] K. M. U. Ahmed, M. Alvarez, and M. H. J. Bollen, 
“Reliability Analysis of Internal Power Supply Architecture 
of Data Centers in Terms of Power Losses,” Electr. Power 
Syst. Res., vol. 193, p. 107025, Apr. 2021

[16] A. Hoevenaars and P. Hoevenaars, “Data Center Cooling 
Harmonics-How to Get the ‘Good’ without the ‘Bad,’” in 
Conference Record - Industrial and Commercial Power 
Systems Technical Conference, Jun. 2020

[17] P. W. Hall, B. B. Bailey, and E. H. Camm, “Power quality 
evaluation at medical center,” Proc. IEEE Power Eng. Soc. 
Transm. Distrib. Conf., vol. 2, pp. 560–565, 1999

[18] T. S. Key, “Diagnosing Power Quality-Related Computer 
Problems,” IEEE Trans. Ind. Appl., vol. IA-15, no. 4, pp. 
381–393, 1979

[19] IEEE, IEEE Recommended Practice for Industrial and 
Commercial Power Systems Analysis (Brown Book), vol. 
1995, no. Lcc. 1998.

[20] D. S. Dorr, T. M. Gruzs, M. B. Hughes, R. E. Jurewicz, G. 
Dang, and J. L. McClaine, “Interpreting recent power quality 
surveys to define the electrical environment,” in Conference 
Record - IAS Annual Meeting (IEEE Industry Applications 
Society), 1996, vol. 4, pp. 2251–2258

[21] K. C. Agrawal, “Industrial power engineering and 
applications handbook,” Newnes power Eng. Ser., pp. xvi, 
973 p., 2001, 

[22] A. Rahman, K. M. U. Ahmed, and R. Sakib, “Modeling of a 
Novel Fuzzy Based Overcurrent Relay Using Simulink,” Int. 
J. Sci. Technol. Res., vol. 1, no. 4, pp. 24–29, 2012.

[23] Heising, C. "IEEE recommended practice for the design of 
reliable industrial and commercial power systems." IEEE 
Inc., New York (2007).

[24] K. M. U. Ahmed, M. Alvarez and M. H. J. Bollen, "A Novel 
Reliability Index to Assess the Computational Resource 
Adequacy in Data Centers," in IEEE Access, vol. 9, 2021.

Authorized licensed use limited to: Lulea University of Technology. Downloaded on October 28,2022 at 12:21:21 UTC from IEEE Xplore.  Restrictions apply.



176



Paper G

The Impacts of Voltage Disturbances Due to Faults In
the Power Supply System of A Data Center

Kazi Main Uddin Ahmed, Math H. J. Bollen, Manuel Alvarez,
and Shimi Sudha Letha

Published in 20th International Conference on Harmonics & Quality of Power
(ICHQP), 2022, pp. 1-6

177



178

c© 2022, IEEE



978-1-6654-1639-9/22/$31.00 ©2022 IEEE 

The Impacts of Voltage Disturbances Due to Faults 
In the Power Supply System of A Data Center

Kazi Main Uddin Ahmed1, Math H. J. Bollen2,  Manuel Alvarez3, Shimi Sudha Letha4 
1,2,3Electric Power Engineering, Luleå Technical University, Skellefteå, Sweden. 

4Electrical Engineering, National Institute of Technical Teachers, Chandigarh, India. 
kazi.main.uddin.ahmed@ltu.se1, math.bollen@ltu.se2, manuel.alverez@ltu.se3

shimi.reji@gmail.com4

Abstract—The internal power condition system (IPCS) in 
data centers is prone to have cable faults that cause voltage dips 
and swells. The voltage dips and swells impact the power supply 
units (PSUs) with the servers. The servers connected with the 
PUSs restart or turn-off when the input voltage comes out of the 
voltage-tolerance range. This paper analyses the impact of such 
voltage disturbances on server outages due to a single-phase 
fault in the IPCS. The voltage-tolerance range of the PSUs is 
considered according to the guideline of the Information 
Technology Industry Council (ITIC). The voltage dip 
propagates to the healthy load sections from the fault location, 
while voltage swells are also observed due to sudden load 
reduction. Moreover, the current limitation mode of the inverter 
in the uninterrupted power supply (UPS) is identified as a cause 
of voltage dip to almost zero experienced by the PSUs. The 
reliability of the data center considering the outage probability 
of the servers are finally quantified to show the impacts of the 
voltage dips and swells in the IPCS. 

Keywords—data center reliability, power supply unit, server 
outages, UPS current limitation, voltage dips 

I. INTRODUCTION 
In the era of modern information and communication 

technology (ICT) data centers have become the essential 
driving force to ensure the growth in business of the ICT 
companies. The power quality issues in the internal power 
conditioning systems (IPCS) with low-power electronic 
equipment in industries like data centers has drawn the 
attention of researchers [1]–[3]. The power supplies of the 
low-power electronic equipment e.g., computers, process 
control equipment, and adjustable-speed drives in industrial 
applications are sensitive to supply voltage dips and voltage 
swells [4]. The voltage dip typically is caused by faults, 
starting equipment with a large starting current, and 
energizing of transformers, while the swell in voltage is 
caused by the switching of large loads and lines, by energizing 
capacitor banks, or by earth faults [5]. 

 The voltage dip as a power quality issue in the IPCS is 
analyzed due to having less control over the cooling fans in 
the data center [2]. The harmonics, voltage, and current 
fluctuations in the IPCS of data center are analyzed for four 
different fans’ speed control methods, which shows in the 
uncontrolled method the voltage dips is found in the IPCS 
since the global fan needs higher speed than the local fans 
close to the server [2]. The global fan connects in the input 
side of the uninterrupted power supply (UPS) through a power 
distribution unit (PDU) in [2], where the presented model of 
the UPS and the PDU has power electronic converters without 
any control coordination. Thus, when the global fan drags high 
power for high speed the power electronic converters in the 
UPS fail to maintain the adequate power quality for the servers. 
The same issue of the lack of control system coordination of 
the nonlinear power electronic converters at different level of 
data center is analyzed in [3]. The impacts of the voltage dips 
caused by single-line-to-ground (L-G) faults at different 

locations in the IPCS of a data center are analyzed with a 
voltage source model of the UPS in [6]. The UPS is one of the 
devices in the IPCS that ensures power supply to the servers 
during shorter interruptions and any voltage disturbances 
come from the upstream of the UPS [7]. The double 
conversion online type UPS with integrated battery units are 
commonly used in the data centers, which is not equivalent to 
the voltage source model proposed in [6] because the actual 
UPS contains different types of power electronic converters. 
Therefore, the UPS cannot protect the information 
communication (IT) loads from voltage dips and swells 
caused by faults downstream of the UPS. Moreover, the 
voltage swells due to the L-G fault and the load reduction after 
fault clearing are yet to be analyzed for data centers. In this 
paper, voltage dips and swells caused by the L - G fault in the 
IPCS of a data center are analyzed with a detailed model of 
the online type UPS. The analysis shows that the dip in the 
voltage can drop to almost zero due to the current limitation 
of the inverter in the UPS, while voltage swells appear at the 
heathy load buses. It is assumed that the PSUs are operated 
according to the voltage-tolerance guideline recommended by 
the Information Technology Industry Council (ITIC) [8]. The 
IPCS structure with the cable specification for this use-case is 
taken from a real data center, explained in [9]. 

The impacts of voltage dips and swells in the studied IPCS 
of the data center are presented in Section II. The state-of-the-
art of the voltage disturbances analysis in the data centers are 
described in Section III, followed by the methodology of the 
voltage dip and swell analysis in Section IV. The dip and swell 
in voltage caused by the L-G fault at different locations in the 
IPSS, and the server outage probability because of the voltage 
disturbances are explained in Section V. Section VI contains 
the discussions and conclusions. 

II. THE ARCHITERTURE OF THE IPCS AND THE 
IMPACTS OF VOLTAGE DIPS AND SWELLS 

The power condition devices i.e., uninterrupted power 
supply unit (UPS), power distribution unit (PDU), and power 
supply unit (PSU) including protective devices and cables are 
the main components in the IPCS of the data center [7], as 
shown in Figure 1. The studied IPCS in this paper has three 
identical load sections; each section is connected with one 
phase of the load-side of a three phase online UPS, as depicted 
in Figure 1. The design architecture of the data center typically 
contains an automatic transfer switch (ATS) to transfer the 
loads from the utility power supply to the backup generators. 
In this paper, the utility power supply is considered only with 
the online UPS since the aim is to investigate the impacts of 
the voltage disturbances caused by the L-G faults downstream 
of the UPS. The bypass switch with the UPS is used to 
energize the IT loads directly from the utility power supply. 
The transients in the UPS output voltage during switching are 
analyzed along with the voltage disturbances in Section V.B.  

 The load sections has three branches where the servers 
with the PDUs and the PSUs are distributed equally, as shown 
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in Figure 1. The PDU feeds ten racks with ten servers in each 
rack. The rated power of the server and the PDU are 800 W 
and 8 kW, respectively, as explained in [7], [10]. The PSU 
with each server contains the rectifier to convert the 230 V AC 
supply to DC for the servers. 
 The internal system configuration of the UPS is shown in 
Figure 2; it consists of a utility-side diode based rectifier and 
a load-side inverter sharing a double capacitor DC bus to 
integrate the batteries. The utility-side filter, placed after the 
rectifier, contains an inductor (0.47 μH) whereas the load-side 
filter uses an LC combination (10 mH and 200 μF). The PSUs 
are the rectifier that ensure the correct DC supply to the 
servers, as mentioned before. The PSU normally uses switch-
mode power supply (SMPS) as is typical for electronic 
equipment [7]. The SMPS contains a diode bridge rectifier 
that converts AC to DC and supplies the DC power to a large 
filter capacitor.  

 
Figure. 1. The internal power conditioning system architecture. 

 
Due to fault anywhere in a cable section the associated 

circuit breakers (CBs) will act and the racks in the faulted 
branch will be isolated from the rest of the system. If the AC 
voltage drops due to faults, the voltage on the DC side of the 
rectifier also drops. If the non-regulated DC voltage becomes 
too low the regulated DC voltage will also start to drop and 
when this voltage gets too low the PSU connected server will 
restart or trip [11]–[14]. Additionally, voltage swells are 
disruptive to power electronic converters with sensitive loads 
i.e., servers, control devices, sensors, etc. The converters 
might be damaged or trip, which could impact the entire 
industrial process [15]. The voltage-tolerance curve for 
voltage disturbances recommended by the ITIC for the power 
supply of sensitive devices like computers is used in this study 
as a voltage-tolerance curve for the PSUs. 

III. STATE OF THE ART 
 The IT loads i.e., servers, cooling fans, network switches, 

etc. are sensitive to withstand with power disturbances. The 
voltage dips are analyzed for a 380 V DC data center in [3], 
where the restarting problem of the servers are reported due to 
the voltage dips. The propagation of voltage dips from the 
fault location to the elsewhere in the IPCS is reported in [6], 
where the UPS is modeled as a three phase voltage source. 
The voltage source model of the UPS does not consider the 
response of the inverter to the fault current during the fault. 
The impact of voltage swells on the PSUs has not yet been 
studied. Such swell may occur due to the sudden load 
reduction after a fault. 

 
Figure 2. UPS system representation. 

The first voltage-tolerance curve for such power supply 
unit was introduced by the Computer Business Equipment 
Manufacturers Association (CBEMA) for the mainframe 
computers [16] and later was introduced by the IEEE as the 
guideline for the power supply unit manufacturers [17]. The 
CBEMA curve has been further modified by the ITIC since 
power quality monitoring has shown a large number of 
voltage sags under the CBEMA curve [4], [18]. The CBEMA 
and ITIC voltage – tolerance curves are given in Figure 3. The 
sensitivity of the power supplies to the voltage dip are 
assessed in term of the voltage dip magnitude and duration for 
both cases [12]–[14], therefore, the ITIC curve gives 
comparatively stronger requirements than the CBEMA curve, 
as depicted in Figure 3. The experimental results discussed in 
[12]–[14] showed that voltage dips with residual voltage 50-
70% of the 230 V during 30-170 ms results PCs restarting or 
rebooting. The same voltage tolerance level of the typical PC 
power supply units is consider for the PSUs in the data center. 

The ITIC guideline for overvoltage is summarized in 
Table I. Voltage above 120% of the nominal for less than one 
half cycle are also causes interruptions for the power supplies 
of the sensitive devices [13]. 
TABLE I.  ITIC GUIDELINE FOR POWER SUPPLIES UNDER OVER VOLTAGE 

 
Figure 3. The CBEMA and ITIC voltage – tolerance curves. 

Percentage in nominal RMS 
voltage 500 200 140 120 110 

Duration in (60 Hz) cycles 0.01 0.40 0.60 1-80 80-
10000 
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IV. METHODOLOGY 
A. Load Modeling 

The L-G faults at different location of the IPCS are 
simulated in MATLAB® Simulink. The load model of the load 
section connected with the 10 m feeder cable is shown in 
Figure 4(a), where the “Load” block contains the PDU, PSUs 
and the servers in the rack, as shown in Figure 4(b). A server 
consumes the rated power of 800 W while fully utilized. The 
actual power consumption of the PDU and the PSU depends 
on the servers’ power consumption [10], [19]. The load 
impedance model is used considering the power consumption 
of the servers, PSUs, and PDUs in the IPCS for each load 
section, as given in (1). The power consumption of the PDU 
and PSU with the IT loads are modeled as resistance in (1). 
The PSUs work as rectifier and PDUs distribute the supplied 
power between the PSUs in reality [20]. Therefore, the 
response of these devices with voltage disturbances are 
analyzed with the simple resistance model. The power factor 
𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓  at the load bus is assumed to be unity since low-power 
devices like PDU and PSU use power factor correction circuit 
(PFC). 

𝑍𝑍𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑉𝑉𝑉𝑉2

𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
(1) 

where, 𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟,  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  represents the power 
consumption of the servers, PSUs, and PDU, respectively. The 
supplied voltage of 230 V is denoted by V. 𝑍𝑍𝑍𝑍𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the 
equivalent load impedance. 

B. Voltage Disturbances And Faults in the IPCS: 
The 10 m single phase cable (black color) with a resistance 

of 1.7 × 10−3 Ω/m and inductance 190 × 10−9 H/m is the 
most sensitive location to experience the L-G faults in the 
studied IPCS, because the other two sections will experience 
voltage disturbances after isolating the faulted section by the 
Row and Rack CBs. The voltage disturbances are analyzed in 
the load buses caused by the L-G fault in two extreme 
locations at both end of the 10 m cable, represented by Case 1 
and Case 2 respectively with the online UPS, as shown in 
Figure 4a. Regarding the fault clearing time of the CBs it is 
chosen 100 ms for the Row and Rack CBs, which is typical 
response time of industrial CBs [21], [22]. 

 
Figure 4. Model of the load section connected with 10 m feeder cable 

(b) details structure of the Load block. 

V. RESULTS AND ANALYSIS 

A. Faults And Voltage Disturbances in the IPCS 
1) Voltage at Point of Common Coupling (PCC): The 

time domain voltage waveform and the root mean square 

(RMS) voltage at the PCC for Case 1 and Case 2 are shown 
in Figure 5 and Figure 6, respectively. The faults are initiated 
at 0.058 sec and cleared after 100 ms by the associated CBs. 
The servers connected to the faulted branch experience an 
interruption upon fault clearing in both cases. The residual 
voltage at the PCC during an L-G fault at the load bus in Case 
1 is 1.3% of the nominal voltage, while the voltage rises to 
125% of the nominal after fault clearing, as shown in Figure 
5 (b). The overvoltage in Figure 5 (a) and the voltage swell in 
Figure 5 (b) are caused by the reduction of IT load in the 
faulted branch. The same has observed for an L-G fault 
located 10 m away from the load bus in Case 2, with results 
shown in Figure 6. The magnitude of the voltage dip at the 
PCC does not vary much depending on the fault location due 
to the current limitation of the inverter in the UPS, as given 
in (2). The output currents of the UPS in Case 1 and Case 2 
are shown in Figure 7. The fault currents from the UPS in 
both cases are noticeably lower than the typical fault current 
that is tens of kilo ampere. The MOSFET-based inverter in 
the UPS limits the fault current in these cases, which results 
voltage dip at the PCC. Therefore, the voltages at the PCC 
are 1.3% of the nominal voltage in both cases, as shown in 
Figure 5 (b) and Figure 6 (b). 

𝑉𝑉𝑉𝑉 = 𝐼𝐼𝐼𝐼 × 𝑍𝑍𝑍𝑍 (2) 
where, V is the voltage at the PCC. Z and I is the impedance 
between the UPS and the fault location, and the rated current 
of the UPS or the current limit of the UPS, respectively. 

 
Figure 5. (a) The time domain voltage waveform at PCC. (b) The 

RMS voltage at PCC (Case 1). 

 
Figure 6. (a) The time domain voltage waveform at PCC. (b) The RMS 

voltage at PCC (Case 2).

 
Figure 7. Time domain waveform of the inverter currents (a) fault location 

at the PCC (Case 1) (b) fault location at load bus (Case 2). 
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2) Propagation of Voltage Disturbances from the 
PCC: The voltage and the current of the load buses at the 
neighboring heathy branches connected with 2 m and 8 m 
cables are depicted in Figure 8 and Figure 9. The voltage dips 
propagate to the load buses at the health branches for the fault 
in Case 1 and Case 2, as shown in Figure 8 (a,c) and  Figure 9 
(a,c). The load currents in these braches drop to zero because 
of the current limitation according to (2), as shown in Figure 
8 (b,d) and  Figure 9 (b,d). The magnitude of the voltage dips 
at the neighboring load buses are similar to the magnitude at 
the PCC; because the cable between the load buses and the 
PCC are relatively shorter than other cable section in the IPCS. 
According to the ITIC voltage tolerance guideline shown in 
Figure 4, the PSUs connected with the neighboring load 
branches will be interrupted, hence the associated servers will 
lose power supply. 

 
Figure 8. Voltage and current at the neighboring load buses for fault at load 
bus (Case 1) (a) RMS load voltage with 2 m cable (b) load current with 2 m 
cable (c) RMS load voltage with 8 m cable (d) load current with 8 m cable.

 
Figure 9. Voltage and current at neighboring load buses for fault at the PCC 
(Case 2) (a) RMS load voltage with 2 m cable (b) load current with 2 m cable 
(c) RMS load voltage with 8 m cable (d) load current with 8 m cable. 

3) Impact of the Fault on the Adjacent Load Sections: 
The servers connected to the 30 m and 60 m feeder cables in 

Figure 1 also experience voltage disturbances. The load buses 
supplied with 30 m cable section experience voltage dips and 
swells, as shown in Figure 10 and Figure 11. The voltages 
drop upon fault initiation to around 85% of the nominal 
voltage, and recover fast already during the fault. The voltage 
jumps to 120% of the nominal upon fault clearance due to load 
reduction from the adjacent load section, even this recovers 
quickly. The fault current limitation of the UPS confines the 
initial voltage dips at the load buses, however, the voltage 
swells of 1.2 pu in the load buses and the total duration of the 
voltage disturbances of more than 200 ms will result in a 
violation of the ITIC guideline. 

The voltage disturbances at the load with the 60 m feeder 
cable are summarized in Table II. The voltage swells at the 
load buses are reduced in this load section because of the long 
cable, hence the increasing distance between the PCC and the 
load sections. However, the voltage at the load buses 
decreases with the increasing feeder cable length. The voltage 
dips in the load voltages are more than 73% of the nominal 
voltage, as given in Table II. The voltage at the load buses 
with 60 m feeder cable does not violate the ITIC voltage-
tolerance guidelines.   

 
Figure 10. RMS voltage at the load buses with the 30 m feeder cable 

(fault location – load bus with 10 m feeder cable ). 

 
Figure 11. RMS voltage at the load buses with the 30 m feeder cable 

(fault location – PCC with 10 m feeder cable). 
 

TABLE II.  VOLTAGE DISTURBANCES IN PHASE C CONNEDTED WITH 60 M 
FEEDER CABLE DUE TO FAULTS IN PHASE A  

Phase C with 60 m 
cable 

Voltage Disturbance in the Load Buses 
Load bus 
with 2 m 

cable 

Load bus 
with 4 m 

cable 

Load bus 
with 10 m 

cable 

Fa
ul

t a
t 

Lo
ad

 b
us

s 
(C

as
e 

1)
 

 

Voltage dip 
(during fault) 73.88% 73.31% 73.31% 

Voltage swell 
(pre-fault) 105.39% 105.32% 105.33% 

Fa
ul

t a
t 

PC
C

 
(C

as
e 

2)
 

  

Voltage dip 
(during fault) 73.88% 73.30% 72.91% 

Voltage swell 
(pre-fault) 105.40% 105.44% 105.44% 

4) Faults in 30 m and 60 m Feeder Cable: The load 
sections connected by 30 m and 60 m feeder cable are 
identical to the load section connected with 10 m cable, as 
shown in Figure 1. Therefore, the dip in the voltage at the PCC 

Authorized licensed use limited to: Lulea University of Technology. Downloaded on October 28,2022 at 12:23:56 UTC from IEEE Xplore.  Restrictions apply.



and the propagation of the voltage disturbances to the 
neighboring load buses are similar like that in the load section 
with 10 m feeder cable, as explained in Section V.A.1 and 
Section V.A.2. However, the impact of the voltage 
disturbances on the other load section are worth to investigate 
since the distance between the fault and the load sections is 
different. The voltages on other load sections, due to an L-G 
fault in the load sections connected with the 30 m and 60 m 
cable sections are summarized in Table III. 

The voltage dips in the load buses connected with 10 m 
and 60 m feeder cable for having an L-G fault in the load 
section of the 30 m feeder cable do not violate the ITIC 
guideline, as given in Table III. Additionally, the magnitude 
of the voltage in the load buses with 60 m feeder cable are less 
than the load voltages with 10 m cable. The similar level of 
voltage dips in the load buses are observed in the load sections  
with 10 m and 30 m feeder cable for the L-G fault in the load 
section with 60 m feeder cable. 

Moreover, the magnitude of the swell in the load bus 
voltages with 10 m feeder cable are more than 123% for the 
faults at 30 m and 60 m feeder cable, which are highlighted in 
Table III. The highlighted load voltages with 10 m cable 
violate the ITIC voltage-tolerance guideline. Therefore, it 
seems that the load section close to the fault location, hence 
connected with shorter feeder cable (10 m in these cases) have 
experienced higher voltage swells in the load buses. 
Meanwhile, the voltage dips at the load buses do not violate 
the ITIC guideline for these use-cases. 

5) Risk Assessment of Server Outage: The cables are 
assumed to have uniform failure rate, as mentioned in [6]. The 
failure rate of the 10 m cable connected between the Row and 
Rack CBs is given in (3). The failure rate of a 1000 ft cable is 
0.03204 failure/yr [23] 
𝜆𝜆𝜆𝜆10𝑚𝑚𝑚𝑚 = 𝜆𝜆𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×10

304.8
= 0.03204×10

304.8
 = 1.05 × 10−3failure/(yr) (3) 

where, 𝜆𝜆𝜆𝜆𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑙𝑙𝑙𝑙 is the failure rate of cable per 1000 ft or 304.8 m, 
and 𝜆𝜆𝜆𝜆10𝑚𝑚𝑚𝑚 denotes the failure rate of the 10 m cable. 

The servers connected with the faulted and the 
neighboring load branches interrupt because of the fault and 
the voltage dips, while servers with the load section closest to 
the fault location interrupt due to voltage swells. Therefore, 
the voltage dips and swells caused by phase fault in any of the 
six 10 m cable between the Row and Rack CB violate the ITIC 

voltage-tolerance guideline for PSUs, hence interrupts the 
servers. The associated risk of server outages due to the fault 
is quantified as given in (4). It can be explained further as the 
data center has a risk to lose 2/3 (60 out of 90 servers) of the 
installed servers for 6.3 × 10−3 failures per year. 

𝑅𝑅𝑅𝑅out = 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 × 𝜆𝜆𝜆𝜆10𝑚𝑚𝑚𝑚 = 6.3 × 10−3 failure/yr (4) 
where, 𝑁𝑁𝑁𝑁𝑙𝑙𝑙𝑙 represents the number of fault critical cables that 
are connected with the load buses. 𝑅𝑅𝑅𝑅out is the risk of server 
outages due to fault in the cable with failure rate of 𝜆𝜆𝜆𝜆10𝑚𝑚𝑚𝑚. 

The total server downtime of the data center is 90.72 min 
or 3.78 hr, considering 240 min of a server downtime [24]. 
The availability of the data center is three 9’s according to 
(5), which is less than the minimum required availability of a 
Tier I data center according to the Tier classification [25]. 

𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑇𝑇𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
=

8756.22
8756.72 + 90.72

= 0.9995 (5) 

B. Transient Response During the Switching of the UPS 
The IT loads connected with the IPCS are typically 

energized initially with the utility supply without the UPS 
using the bypass switch, as mentioned in Section II. The 
voltage transients are observed in the output voltage of the 
UPS during the switching of the bypass switch, as shown in 
Figure 12. Voltage spikes in the output of the UPS are 
observed when the UPS connects with the IPCS (𝑡𝑡𝑡𝑡 = 0.3 s). 
Moreover, the output voltages of the UPS are heavily distorted 
during the online mode, as shown in Figure 12a. The output 
impedance of the UPS is much higher than of the grid, as 
modelled here. In reality, suitable harmonic filters will be 
present. These have not been modelled here, as the paper 
concentrates on voltage dips and swells. The capacitors in the 
UPS are initially considered to be fully charged in simulation 
that creates the spike in the phase voltages. 

VI. DISCUSSION AND CONCLUSION 
 The paper studied the risk of the server outages due to 

voltage disturbances i.e., voltage dips and swells originated 
from a phase fault in the internal power supply system (IPCS) 
of a data center. The magnitude of the voltage dip at the point 
of common coupling (PCC) drops to almost zero, and also 
propagates to the neighboring load buses, due to the fault 
current limitation of the uninterruptable power supply (UPS). 

TABLE III.  VOLTAGE PERTERBATIONS IN LOAD SECTIONS FOR HAVING FAULTS IN PHASE B AND PHASE C 
Fault at 30 m Cable 

10
 m

 fe
ed

er
 c

ab
le

 

Location of Load Bus Voltage dip Voltage swell 

60
 m

 fe
ed

er
 c

ab
le

 

Location of Load Bus Voltage dip Voltage swell 

Fault: PCC 
2m 89.99% 123.33% 

Fault: PCC 
2m 73.08% 105.05% 

4m 90.18% 124.24% 4m 73.52% 105.44% 
10m 90.30% 123.32% 10m 72.91% 105.21% 

Fault: load 
bus 

2m 90.25% 123.97% 
Fault: load 

bus 

2m 73.48% 105.20% 
4m 90.25% 123.11% 4m 73.91% 105.27% 

10m 90.05% 123.10% 10m 73.92% 105.19% 
Fault at 60 m Cable 

10
 m

 fe
ed

er
 c

ab
le

 

Location of Load Bus Voltage dip Voltage swell 

30
 m

 fe
ed

er
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ab
le

 

Location of Load Bus Voltage dip Voltage swell 

Fault: PCC 
2m 90.24% 123.31% 

Fault: PCC 
2m 73.06% 105.54% 

4m 90.16% 123.99% 4m 73.50% 105.51% 
10m 90.38% 124.19% 10m 73.19% 105.53% 

Fault: load 
bus 

2m 90.13% 123.11% 
Fault: load 

bus 

2m 73.52% 105.46% 

4m 90.16% 123.99% 4m 73.50% 105.51% 

10m 90.31% 123.10% 10m 73.47% 105.55% 
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Figure 12. The time response of the UPS output bus voltages. 

Additionally, the IT load reduction from the faulted load 
branch causes voltage swells at the load section nearest to the 
fault location. This paper contributes to identify the impacts 
of the voltage dips and swells in the data center since the 
voltage dips and swells in the load buses beyond the voltage 
tolerance guideline may cause tripping/restarting the power 
supply units (PSUs) and associated servers. Therefore, the 
associated risk of the server outages due to voltage dips and 
swells is considered to the reliability assessment of the data 
center. 

A UPS model with voltage and current control is needed 
to be analyzed since the uncontrolled UPS model shows 
voltage transients in the output voltage during switching  
could complement further this analysis. Similarly, the voltage 
control model of the PSU is also needed to be analyzed further. 
The paper considers a redial IPCS and analyses the impacts of 
the phase faults to analyze the voltage disturbances, however, 
meshed IPCS with complexing cabling system is essentially 
needed to be analyzed. This paper recommends the data center 
operators to monitor and record the voltage and current at 
different points in the IPCS and systematic testing of 
sensitivity of servers, which could be used further for the 
“post-mortem analysis” to find the root cause of server 
tripping.  

In its essence, this paper quantifies the risk of server 
outages due to voltage disturbances in the IPCS originated by 
a phase fault inside the data center, which could be further 
utilize to design the IPCS and to assess the reliability of the 
data center considering the risk of server outages. 
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6 Abstract—The increasing demand of the data center’s computational capacity in recent years has introduced newdata center operational

7 challenges among others tomaintain the service level agreements (SLA) and quality of services (QoS), while at the same time limiting

8 energy consumption. In this paper, a stochastic operational risk assessment approach is presented that estimates the required number of

9 spare servers in a data center considering the risk of servers’ failure in operation since servers define the computational capability of a data

10 center. A reliability index called “riskof computational resource commitment (RCRC)” is introduced that quantifies the probability of having

11 insufficient spare servers due to failures during the operational lead time, and the complement of the RCRC shows the ability of the

12 resources tomaintain SLA of a data center. The failure rates of the servers are obtained using aMonteCarlo Simulation with the failure

13 data, published byGoogle in 2019. The analysis shows that theRCRC reduceswith the increasing number of spare servers, while it also

14 stresses the energy efficiency of the data center. TheRCRC index could be used in data center operation to avoid overprovisioning of the

15 servers and to limit the number of spare servers in the data center, while creating a suitable balance betweenQoSand energy consumption

16 of the data centers.

17 Index Terms—Data center operation, Monte Carlo simulation, risk assessment, stochastic modeling, server failure

Ç

18 1 INTRODUCTION

19 DATA centers are the backbone of modern information
20 and communication technology. With the growing
21 applications of cloud-based services and the Internet of
22 Things, the cloud service providers like Google, Amazon,
23 Azure, Facebook, etc. have expanded the computational
24 capabilities of their data centers in the last two decades [1].
25 The computational capability of a data center is defined by
26 the installed number of servers. Meanwhile, the information
27 technology (IT) loads including the servers represent around
28 45% of the total data center’s energy consumption [2]. The
29 power consumption of a server depends on the server’s utili-
30 zation that varies with time depending on the computational
31 workload. The servers also fail frequently during opera-
32 tion [3], [4]. Therefore, the data center operators design the

33clusters with spare servers, considering the uncertainty of
34the workloads and the failure of the servers, to maintain the
35quality of service (QoS). The spare servers always remain
36connectedwith the power supplies as idle, and an idle server
37consumes at most 50% of the server’s rated power [5], [6].
38The increasing number of idle servers in the system increases
39the power consumption of the IT load and the operational
40costs [7]. Meanwhile, different energy management techni-
41ques are applied in data center operation to reduce the power
42consumption of the IT loads by distributing the workload
43among the available servers, hence reducing the number of
44idle servers in the system [8], [9], [10]. The energy manage-
45ment techniques could impact the service availability of the
46data center and the QoS for targeting solely on maximizing
47the servers’ resource utilization because the servers often fail
48during operation [11]. The server outage probabilities due to
49voltage disturbances [12], and power supply capacity short-
50age of the internal power conditioning system (IPCS) are
51addressed in [3]. The proposed methodologies in [3], [12],
52[13] have addressed the server outage probabilities without
53considering the uncertainties of the computational work-
54loads, while the uncertainty of the servers’ workload is taken
55into consideration in the proposed methodology to quantify
56the QoS of the data center. However, the failure probability
57of the servers and the allowable delay to repair or replace the
58failedQ1 servers in the data centers are ignored in [3], [12], [13].
59The uncertainty of the server operation is one of the reasons
60for practicing “power overprovisioning” in data center oper-
61ation, where servers are deployed beyond the power supply
62limit of the IPCS [7], [9]. Therefore, it is a data center opera-
63tional challenge to consider the uncertainties of the server

� Kazi Main Uddin Ahmed is with the Electric Power Engineering Research
Group in Department of Engineering Sciences and Mathematics, Lulea

�

University of Technology, 93187 Lulea
�
, Sweden.

E-mail: kazi.main.uddin.ahmed@ltu.se.
� Math H. J. Bollen and Manuel Alvarez are with the Department of Engi-

neering Sciences and Mathematics, Lulea
�
University of Technology, 93187

Lulea
�
, Sweden. E-mail: {math.bollen, manuel.alvarez}@ltu.se.

Manuscript received 12 May 2022; revised 6 October 2022; accepted 18 October
2022. Date of publication 0 2022; date of current version 0 2022.
This work was supported in part by Swedish Energy Agency under Grant
43090-2, in part by Cloudberry Datacenters project, in part by Region Norr-
botten, and in part by an industrial group.
(Corresponding author: Kazi Main Uddin Ahmed.)
Recommended for acceptance by Y. Jiang.
This article has supplementary downloadable material available at https://doi.
org/10.1109/TSUSC.2022.3216350, provided by the authors.
Digital Object Identifier no. 10.1109/TSUSC.2022.3216350

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



64 failures in the data center. Different state-space based mod-
65 els like Markov chain and Petri nets has been used in data
66 center operational research to quantify the stochastic failures
67 of data center equipment [14], [15], [16], however, the appli-
68 cation of state-space models are limited because of the
69 complicated modeling approaches [17]. Meanwhile, the sto-
70 chastic modeling approach in Monte Carlo Simulation
71 (MCS) is simple and able to generate time dependent failure
72 and repair events of a component based on statistical data.
73 Moreover, the MCS approach has the best suitable applica-
74 tion in data center operational research that demands a very
75 high level of availability of its components; often mentioned
76 in terms of nines [3]. The MCS approach is able to generate a
77 few failures among thousands of random events based on
78 statistics.
79 In this paper, a reliability index called risk of computa-
80 tional resource commitment (RCRC) is introduced that
81 quantifies the risk of having insufficient servers available in
82 the system to handle the computational workloads consid-
83 ering the failure rate of the servers and the operational lead
84 time (OLT). The QoS of the IT services mostly depends on
85 the availability of the servers that is called the “readiness”
86 of the IT infrastructure of the data center [18]. The comple-
87 ment of the risk obtained by the RCRC index shows the
88 availability of the servers during the OLT considering the
89 failure rate, which depicts the readiness of the servers to
90 maintain the QoS. It is assumed that the number of allocated
91 servers is fixed, and that servers in operation are not
92 repaired or replaced during the OLT. The risk in data center
93 operation is always there to lose some servers and experi-
94 ence degraded QoS. The operator could lower the risk by
95 allowing spare servers depending on the failure rate and
96 OLT; however, the operational costs will be higher in this
97 case. A sensitivity analysis is included in this paper to show
98 the impacts of the servers’ failure rate and OLT on the num-
99 ber of spare servers, QoS, and energy consumption of the

100 spare servers. The proposed methodology provides a trade-
101 off between the energy consumed by the spare servers and
102 the service availability to maintain the QoS.
103 The contributions of this paper are as follows:

104 � A probabilistic reliability index called RCRC is intro-
105 duced to address the data center operational risk of
106 having insufficient servers considering the failure
107 rate of the servers and the OLT.
108 � The readiness of the servers during the OLT to
109 assure the QoS and maintain the SLA is assessed by
110 the complement of the RCRC in the number of nines.
111 � A sensitivity analysis of the OLT and the failure rate
112 considering the introduced RCRC index contributes to
113 identify the secure operative region, and the required
114 number of spare servers, which helps the data center
115 operator tomake a trade-off between energy efficiency
116 and reliable operation of the data center.
117 � The introduced stochastic modeling approach of the
118 servers’ failure rate explains the methodology to
119 obtain the failure rate of the servers using the failure
120 times, where few servers failed more frequently in
121 the data center following the Pareto principle [4].
122 The remainder of this paper is organized as follows: Sec-
123 tion 2 describes the state of the art of data center reliability

124studies considering the QoS of data center. Section 3 shows
125the mathematical formulation of the proposed operational
126risk index RCRC including the explanation of the Monte
127Carlo simulation to obtain the servers’ failure rates. The
128impact of the varying failure rate and OLT on the RCRC is
129analyzed and the trade-off between the number of spare
130servers and power consumption is explained in Section 4.
131Finally, the discussion, conclusions, and recommendations
132are presented in Section 6.

1332 STATE OF THE ART

1342.1 Data Center Performance Quantifying Indices

135The QoS is a set of indices and indicators to quantify the per-
136formance of the IT loads and the data center services. Key
137quality indicator (KQI) and key performance indicator (KPI)
138are considered for monitoring the QoS of the data center serv-
139ices. Indicators like accessibility and retainability are assessed
140using defects per million operations (DPM) index [19]. There
141are other indicators e.g., service latency, load-dependent
142machine availability, average performance that have been
143considered to monitor the QoS of data centers [2], [20]. Mean-
144while, the service level agreement (SLA) dependent indices
145e.g., performance degradation due to migration (PDM), ser-
146vice level agreement violation (SLAV) are used to maintain
147the SLA with the client or user of the data center, which indi-
148cates the readiness of a data center system todeliver the prom-
149ised IT service to a user [18].

1502.2 Methodology to Quantify SLA Focused Indices

151These SLA focused indices mainly address the adequacy of
152the computational resources, which is quantified by the
153number of servers in operation in data centers. The adaptive
154allocation of the computational capacity in the data centers
155has been addresses adequately in research to satisfy the per-
156formance criteria like SLA in [21], [22], [23], [24], [25], [26],
157[27], [28]. The computational workload based task schedul-
158ing approach is taking into consideration in [21], [22], [23],
159[24]. Different machine learning (ML) based computational
160resource exploration policy is designed to maximize the
161capacity usage and satisfy the SLA of the data centers [21],
162[23]. The computational workload dependent task schedul-
163ing and resource allocation methods are also proposed
164based on energy consumption reduction objective [25], and
165risk management [26], [27], [28]. The proposed indices and
166methodologies for computational resource allocation and
167scheduling in the data center in [21], [22], [23], [24], [25],
168[26], [27], [28] do take the failure probabilities of the servers
169in to consideration, which pushes the data center operators
170for practicing over provisioning the computational capacity.
171Apart from the performance-based indices, other indices
172like mean time to failure (MTTF), mean time to repair
173(MTTR), failure rate, service availability etc. are used to
174assess the reliability of the individual components in the IT
175loads of data centers, which depends on the inherent failure
176characteristics of the data center’s component [29], [30],
177[31], [32]. The indices to assess the QoS and monitor the
178SLA of the data center either consider the output of the IT
179loads or the failure probabilities of the data center compo-
180nents. However, the service availability of the IT loads also
181depends on the availability of the IPCS since the equipment
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182 in the IPCS ensures the uninterrupted power supply. The
183 power supply to the IT loads could be impacted because of
184 voltage fluctuations [33], power supply capacity shortage of
185 the IPCS devices [3], and failures in the IPCS [13]. Any of
186 these incidents interrupts the service availability of the IT
187 loads and causes outages in data center operation. The
188 probability of outages caused by failures in the IPCS is
189 addressed in [3], [13], [33]. However, neither of these pro-
190 vides solutions to find the optimal number of servers for
191 data center operation considering server failure during
192 OLT, which is important to be considered to schedule the
193 servers in operation for ensuring energy efficient operation
194 of the data center.

195 2.3 Modeling of Server Failures Using Monte Carlo

196 The system failures with high performance computers
197 (HPCs) are extensively studied for large-scale systems in
198 recent years. which has focused on the failure types, proper-
199 ties of failures, the statistical properties of the time to failure
200 (TTF) and time to repair (TTR) of the components [34], [35],
201 [36], [37], [38]. However, it has been argued that the compo-
202 nent failure characteristics of the HPCs are different in the
203 data centers due to the heterogeneity in the hardware setups
204 and intermittency in the computational workloads in data
205 centers [38]. The failures of the servers in the data center are
206 analyzed in [38], [39], [40], [41], [42]. The failures of the serv-
207 ers and major server components e.g., hard disk drives,
208 memory, motherboards, flash cards, fans, power supplies,
209 etc are extensively analyzed using dataset containing all
210 hardware failure operation tickets (FOTs) collected for four
211 years from data centers that provides Internet services with
212 hundreds of thousands of servers in [38]. Similar study has
213 been conducted to analyze the availability and the corre-
214 lated failure properties of Goolge storage clusters with tens
215 of thousands of servers during a year in [40]. Regarding the
216 TTF and TTR of the servers, Google has published two data-
217 sets [43], [44], which are used to model the failure inci-
218 dents [41] and identifying the probability distribution
219 functions (PDFs) for TTFs and TTRs of the servers in data
220 center [4], [45]. The presented analytical approaches in [4],
221 [34], [35], [36], [37], [38], [39], [40], [41], [42], [45] can not sto-
222 chastically model the time based reliability index like MTTF
223 of the servers that is needed to analyze the impacts of the
224 random server outages in data center operation.
225 State-space models including different Markov chain
226 models and stochastic Petri nets are used to assess the reli-
227 ability of the large systems [14], [15], [16]. The application of
228 Markov chain models for data center component’s reliability
229 assessment is limited. The Markov model is proposed for a
230 single server in [46], which is developed based on the failure
231 probability of a specific type of blade-server. The application
232 of the Markov chain models for modeling the TTF and the
233 failure rate of servers is limited since it considers the constant
234 failure rate of the component, hence avoid the aging effects to
235 avoid non-linear state-space model or time-variant state-
236 space model [17]. The MCS approach is comparatively sim-
237 pler thanMarkovmodels tomodel, and able to generate time
238 dependent failure and repair events of a component based
239 on statistics to analyze the reliability of the system. The data
240 center demands a very high availability of the servers that is
241 addressed in terms of nines [3]. Thus, a few failures of the

242servers in thousands of events are important to be consid-
243ered tomodel the TTFs and the server failure rates [17].How-
244ever, it is very rare to obtain such a dataset with failure
245events of the servers in the data center measured for a long
246time period. The Google trace [44] is one of the few dataset
247with the data if TTFs of the servers that is measured over a
248period of 29 days. Therefore, the MCS approach is proposed
249for modeling the stochastic failure rate of the servers operat-
250ing in the data center.

2512.4 Trade-Off Between Energy Efficiency and
252Reliability of Data Center

253Reliability centered energy management solutions for data
254center operation are proposed using different failure man-
255agement methods e.g., virtual machine (VM) migration [47],
256checkpointing [48], and replication [49]. However, these pro-
257posed methodologies require additional redundant compu-
258tational resources and storage resources to store logs and
259checkpoints to restore the system to the last state in the case
260of failures or interruptions, hence additional energy for the
261extra resources. To regulate the reliability considering the
262QoS of the services in terms of service deadline and the
263energy consumption of a cloud computing system is pro-
264posed in [50]. The authors in [50] have evaluated the pro-
265posed methodology with a specific cloud interface with 20
266hosts and 8 services, and concluded that improved reliability
267of the services needs higher energy consumption that is
268aligned with the findings of this paper. However, the pro-
269posed methodology in [50] is evaluated for a specific cloud
270interface rather come up with a general methodology for
271data center operation. A generic energy efficient fault toler-
272ant model is proposed for HPC applications that demands
273redundant resources in [51]. The model has been developed
274based on a rule based predictive failure mechanism, where
275the effectiveness of the methodology largely depends on the
276accuracy of failure predictionmechanism [52]. The stochastic
277failures of the servers are considered in very few articles
278related to the data center operational research and [53], [54]
279are among them. The expected time between failures are con-
280sidered in [53] to ensure the completion of the tasks on time
281and avoiding penalties according to SLA. Meanwhile, the
282energy wastage due to failures is quantified in [54] based on
283the task failures that are reported in [43]. However, the pro-
284posed methods in [53], [54] have the shortcomings to con-
285sider the OLT that is related to the repair or replacement
286facilities, and to lead the operator towards a secure operative
287zone for the data center.

2883 METHODOLOGY

289In data center operation, the servers are scheduled for a spe-
290cific time according to the expected workloads, while the
291data center operator allots spare servers considering the
292intermittency of the computational workloads and potential
293failures [7]. In the proposed methodology, the OLT (T) and
294the servers’ failure rate � are taken into consideration to
295quantify the risk of having insufficient servers during oper-
296ation. The stochastic failure rate (�) of the servers operating
297in the clusters is obtained through a MCS. Further, the
298RCRC index is obtained from the failure model of the group
299of the servers in operation using failure rate from the MCS
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300 and the OLT. The methodological framework of the pro-
301 posed solution to obtain the RCRC index is shown in Fig. 1.

302 3.1 Operational Lead Time

303 The spare servers as the reserve computational capacity
304 are kept connected with the system to handle the computa-
305 tional workloads for unplanned failures/interruptions.
306 The operators must consider the repair time for the failed
307 servers or the restart time for the interrupted servers [7].
308 Therefore, the data center operators schedule the servers
309 including the spare servers in operation for a certain
310 period of time that is defined as the operational lead time
311 (T ). It is assumed that the scheduled servers that are com-
312 mitted by the operator would not be replaced/repaired
313 during the time T .

314 3.2 Modeling of the MTTF and Failure Rate of
315 Servers

316 The useful lifetime of the servers is considered in this meth-
317 odology. Therefore, the failure rate (�) is assumed constant
318 during the evaluation time. The relation of the failure rate
319 and the MTTF is given in (1).

tMTTF ¼ 1

�
; (1)

321321

322 where tMTTF and � are the mean time to failure and the fail-
323 ure rate of a server, respectively.
324 The failures of the servers are modeled stochastically in
325 a MCS using the TTFs of the servers given in the Google
326 dataset [43]. The TTFs of the servers are measured from
327 eight clusters of one of Google’s data centers. The servers
328 are identified with a unique machine ID to measure the up
329 times, downtimes, and upgradation times of each individ-
330 ual server. In this paper, only the uptime or TTFs are taken
331 into consideration since the failed servers’ repair/replace-
332 ment action is ignored during the time T . The servers are
333 arranged in clusters and the MTTF is obtained for each
334 cluster using the given dataset in [43]. The number of
335 failed servers, total reported failure incidents, and total
336 number of reported events are given in Table 1. The server
337 failures in the cluster are not sequential events, and the
338 root cause of the failures is not given in the dataset. It has
339 been observed that a small number of servers fail more fre-
340 quently when operated in a cluster, which means the serv-
341 ers in clusters follow the Pareto principle [4]. The server
342 failure rate (�) modeling methodology aims to consider
343 the random server failure events, without being biased with
344 a specific group of servers’ failure events. In the MCS,
345 100; 000 samples of the TTF are randomly chosen for the
346 servers in clusters so that failure events of all reported serv-
347 ers in the cluster get an equal probability to be considered.

348Further, the MTTF of the servers in each cluster is obtained
349as given in (2).

tMTTF ðcÞ ¼
PM

j¼1 tðj; cÞ
M

;j8c; (2)

351351

352where M is the number of samples taken in the MCS, tðj; cÞ
353is the time to failure of jth server in the cth cluster, and
354tMTTF ðcÞ is the MTTF of the servers in cth cluster that is
355obtained from the MCS.

3563.3 Risk of Computational Resource Commitment
357(RCRC) Modeling

358In this paper, the proposed method calculates the probabil-
359ity to have insufficient servers to solve the computational
360workloads during the OLT T , which is represented by the
361operational risk index RCRC. Assuming a cluster with N
362servers in total, and the data center operator has committed
363ns; ðns < N;ns 2 NÞ servers as spare for the time T to han-
364dle the computation workloads and server failure uncer-
365tainties. All the servers in each cluster are assumed to be
366identical with a failure rate �, and each of the servers is rep-
367resented by a two-state model (i.e., operating and failed),
368where the availability and unavailability of the server are p
369and q, respectively. The repair or replacement of a server
370during T is neglected that gives the repair rate m ¼ 0. The
371availability p and the unavailability q of the server at the
372end of the operation lead time T are given in (3). The time
373domain equations of the availability and the unavailability
374of a server in operation are derived from the two-state tran-
375sition model that is explained in Appendix A, available
376online.
377The OLT is considered to be short as the repair/replace-
378ment possibility of the failed servers is ignored during T .
379Therefore, p and q in (3) are approximated considering
380�T � 1 as given in (4).

q ¼ �
�þm

� �
�þm

e�ð�þmÞT

) q ¼ 1� eð��T Þ

p ¼ 1� q ¼ eð��TÞ

9
>=

>;
(3)

q � 1� �T

p � �T

�
: (4)

382382

383

384The failures of servers in cluster with N servers can be
385expressed by the binomial equation, as given in (5)

Fig. 1. The methodological framework to obtain the RCRC index.

TABLE 1
Summary of Cluster-Wise Server Failure Events

Cluster Total number of
failed servers

Total number
of failures

Total number
of events

A 10001 27777 46219
B 10047 25208 40547
C 13246 31458 50655
D 12577 31077 50042
E 14123 39572 65627
F 12202 30380 49603
G 12796 33770 56828
H 11593 28415 46374
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ðpþ qÞN ¼ pN þ N

1

� �
pðN�1Þq þ N

2

� �
pðN�2Þq2 þ � � � þ

N

K

� �
pðN�kÞqk þ � � � þ qN ¼ 1; ðk � N; k 6¼ 0Þ; (5)

387387

388 where, k is the number of available servers after the failure
389 of ðN � kÞ servers amongN at the end of the OLT T .
390 The probability Prfkg of having k servers available
391 among N is obtained from (5), as given in (6)

Prfkg ¼ N

k

� �
pkqN�k ¼ N!

k!ðN � kÞ! p
kqN�k: (6)

393393

394

395 In this case, if the number of available servers k varies
396 between ðN � nsÞ and N , the computational workload will
397 be successfully solved by the servers, hence the QoS of the
398 data center will be maintained. Therefore, the probability to
399 have insufficient servers available in the data center, which
400 depicts the operational risk of committing ns spare servers,
401 is given in (7)

PRCRC ¼
XN�ns�1

k¼1

Prfkg ¼ 1�
XN

k¼N�ns

Prfkg; (7)

403403

404 where, PRCRC is the RCRC that is the cumulative probability
405 of Pr with k number of available servers at the end of the
406 OLT T . ns is the number of committed spare servers among
407 N servers.

408 4 RESULTS AND ANALYSIS

409 4.1 Details of the Dataset and Data Processing

410 The dataset contains the time of servers’ failures, repairs, and
411 update operations from eight different clusters in the
412 “machine events table,” where the servers are identified with
413 a unique identifier in each cluster [44]. It is assumed that these
414 clusters are independent in their structure since no servers are
415 shared between any two clusters. The server’s events are iden-
416 tified by 1, 2, and 3 in the dataset, which means add (or the
417 “available”state), remove (or the “unavailable” state), and
418 update respectively, as shown in Fig. 2. The TTF is defined by
419 the time a server stays at “add” state before moving to
420 “remove” state, and the reverse transition is the TTR, as
421 depicted in Fig. 2. The time a server takes beforemoving from
422 the “add” to the “update” state is the time to update (TTU),
423 while the reverse transition from the “update” to the “add”
424 state always passes through the “remove” state. The root

425cause of the failures and the upgradations are not given in the
426dataset. This study requires theMTTF of the servers in cluster
427to obtain the failure rate (�), thus the TTFs of the servers are
428only taken into consideration. The servers are observed and
429measurements are taken for 30 days [44].
430A cluster-wise analysis of the failure events and number
431of failed servers in the dataset is provided in Table 1. The
432analysis shows that the highest number of servers failed in
433Cluster E, where the total number of failures is 39; 572
434among 65; 627 server events. The PDFs of the TTFs of the
435servers in the clusters are shown in Fig. 3.

4364.2 Analysis of the Data Obtained in the MCS

437In the MCS, 100; 000 samples of TTFs are randomly taken
438from the original dataset for every cluster. The servers follow
439the Pareto principle since a few servers failed frequently dur-
440ing the measurement time. Therefore, the samples are taken
441randomly in the MCS to have equal probability for every
442reported failure incident in [55]. The difference between the
443coefficient of variances of the generated data in the MCS and
444the original data of the TTFs of the servers is set to be below
44510% to assess the accuracy of the generated failure TTFs in
446theMCS, as given in Table 2. The PDFs of the TTFs generated
447in the MCS are shown in Fig. 4. The MTTF of the servers in

Fig. 2. The state diagram of the server events. Add, remove, and update
are the states and failure, repair, and server components upgradation
are the events [44].

Fig. 3. The PDFs of the TTFs of the servers in the clusters.
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448 each cluster is obtained using the generated TTFs in theMCS,
449 as given in (2). The cluster-wise MTTF and the failure rate (�)
450 of the servers are given in Table 2. It is assumed that the TTFs
451 of the servers are exponentially distributed [55], thus the fail-
452 ure rates of the servers are the reciprocal of the MTTFs, as
453 given in (1).

454 4.3 Risk of Computational Resource Commitment

455 The RCRC index considering the server failure rates (�) of
456 all the servers in each cluster for an OLT of 24 hr is shown

457in Fig. 5. The RCRC index for each cluster is quantified as
458the probabilistic risk of having insufficient servers due to
459failures in the cluster, as shown in Fig. 5a. The complement
460of the RCRC is representing the availability of the servers at
461the end of the OLT, expressed as the number of nines
462is shown in Fig. 5b. The use-case considers 1000 servers
463(N = 1000) in a group for each cluster with varying number
464of spare servers ns, (ns < N) using (6) to quantify the
465RCRC index, as shown in Fig. 5. The trend of the RCRC
466index depicting the risk in operation and the complement of
467the RCRC indices in number of nines to show the readiness
468of the servers in each cluster are magnified in Fig. 6.
469The servers in cluster B have lower failure rates among
470other clusters, as given in Table 2. In cluster B, the risk of
471having insufficient servers to handle the computational
472workload is less than 10% for a group of 1000 servers if the
473operator assigns 93 spare servers, as shown in Figs. 5a and
4746a. The servers in cluster D have the highest failure rate
475among other clusters, where 109 spare serves are needed for
476each 1; 000 servers to lower the RCRC index below 10%, as
477depicted in Figs. 5a and 6a. Depending on the failure rate of
478the servers in each cluster, the data center operator needs to
479commit around 10% of each 1000 servers as spare to lower
480the risk of operation below 10%.
481The complement of RCRC, which quantifies the availabil-
482ity of the servers depending on the � and T in terms of num-
483ber of nines is shown in Figs. 5b and 6b. It requires 109 spare
484servers out of 1; 000 in cluster B, and 127 spare serves in
485cluster D to have 99:999% availability of the servers (five
486nines), which is equivalent to a Tier IV data center [3].

TABLE 2
Cluster-Wise Servers Mean Time to Failures and Failure Rates

Cluster Difference of coefficient of variance jCg � Coj(%) Mean time to failure, TMTTF (day) Failure rate, �(failure/day)

A 1.882 11.41 0.0876
B 8.639 12.26 0.0815
C 3.728 11.57 0.0863
D 1.349 10.34 0.0967
E 4.876 11.43 0.0874
F 7.815 11.37 0.0879
G 5.149 10.96 0.0912
H 6.539 11.56 0.0865

Cg is the coefficient of variance of the generated data in MCS and Co is the coefficient of variance of the original data.

Fig. 4. The PDFs of the TTFs of the servers in the clusters.
Fig. 5. The cluster-wise RCRC analysis with 24 hr of operational lead
time.
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487 4.4 Impact of Changing the Operation Lead Time

488 The impact of changing operation lead time (T ) on the
489 RCRC index is shown in Fig. 7, where the OLT is varied
490 from 2 days to 10 days. The MTTF of the servers varies
491 between 10:34 days in cluster D and 12:26 days in cluster B,
492 as given in Table 2. If the OLT becomes higher than the
493 MTTF of the servers the product of � and T will be higher
494 than 1 since MTTF ¼ 1=�. As a consequence, it will never
495 be possible to have sufficient servers in clusters to handle
496 the computational workload with �T > 1, according to (4).
497 The analysis shows that the required number of spare
498 servers to lower the RCRC below 10% increases with
499 increasing T , as depicted in Fig. 7a. The servers in cluster B
500 have the highest MTTF, hence the lowest � among other
501 clusters. Cluster B needs to have 178 spare servers among
502 1000 (17:8%) to keep the RCRC below 10% for T ¼ 2 days,
503 while with the same OLT it needs 210 spare servers among
504 1000 (21%) in cluster D that has the lowest MTTF. The clus-
505 ters demand more spare servers to be committed/sched-
506 uled with increasing OLT considering the RCRC, as shown
507 in Fig. 5a.
508 The required number and the percentage of spare servers
509 in 1,000 to hold the RCRC below 10% considering the
510 increasing OLT for cluster B and cluster D is given in
511 Table 3. The number of spare servers increases from 93 to
512 832, which is 9:3% to 83:2% among 1; 000 servers in cluster B
513 when the OLT is increased from 1 day to 10 days. The num-
514 ber of spare servers also increases from 109 to 974 in cluster
515 D with increasing OLT from 1 day to 10 days, as given in
516 Table 3. So, comparatively shorter OLT demands less spare
517 servers to be scheduled in the cluster, which is an important

518fact for a data center operator to decide. The operators can
519allot more spare servers or choose a shorter OLT to limit the
520operational risk, as shown in Fig. 7a and Table 3.
521The same trend of increasing number of spare servers is
522observed with increasing OLT, when the complement of the
523RCRC is analyzed as the availability of the servers in terms
524of the number of nines for each cluster. The target is to have
525servers’ availability with five nines (99:999%) to achieve the
526same availability as a Tier IV data center. In cluster B the
527operator needs to assign 109 spare servers among 1; 000
528(10:9%) to achieve this for an OLT of 1 day, which increases
529to 97:4% of spares among 1; 000 servers when the OLT is
530increased to 10 days, as given in Table 3. The number of
531required spare servers also increases from 127 to 947 among
5321; 000 in cluster D, as given in Table 3. The complement of
533the RCRC shows the readiness of the servers to maintain
534the SLA with adequate QoS, as mentioned in Section 1. The
535data center operator needs to allot more spare servers with
536increasing OLT, to ensure the targeted availability of the
537servers, hence ensure the readiness of the servers, as shown
538in Table 3.

5394.5 Impacts of the Changing Failure Rates of the
540Servers

541The required number of spare servers increases with
542increasing failure rate of the servers in each cluster to limit
543the RCRC, as shown in Fig. 8. In cluster B, the required
544number of spare servers increases from 94 to 830 among
5451; 000 when the failure rate increases from � to 10�with T ¼
5461 day, while the number of spare servers increases from
547127 to 974 in cluster D, as given in Table 4. The servers in

Fig. 7. The impacts of changing operational lead time on the RCRC.

TABLE 3
Summary of the Operational Lead Time Sensitivity Analysis (Fixed Server Failure Rates in Cluster)

RCRC (below 10%) RCRC (5 nines)

OLT Spare servers
(Cluster B)

Spare servers
(Cluster D)

Spare servers
(Cluster B)

Spare servers
(Cluster D)

T days Nr. % Nr. % Nr. % Nr. %

1 93 9.3 109 10.9 109 10.9 127 12.7
2 178 17.8 210 21.0 200 20.0 233 23.3
4 345 34.5 407 40.7 373 37.3 435 43.5
7 591 59.1 696 69.6 619 61.9 722 72.2
10 832 83.2 974 97.4 860 86.0 947 94.7

Fig. 6. The zoomed version of Fig. 5.
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548 other clusters also show the same increasing trend of the
549 required number of spare servers with increasing failure
550 rate, as shown in Fig. 8.
551 The number of spare servers also increases with the fail-
552 ure rate of the servers to ensure the availability of the serv-
553 ers with five nines, as shown in Fig. 8b. The results are
554 summarized in Table 4, which shows that when the failure
555 rate of the servers in scaled up to 10�, the required number
556 of spare servers increases to 86% of 1;000 servers in cluster
557 B and 94:7% of 1;000 servers in cluster D to ensure the serv-
558 ers’ availability with five nines.

559 4.6 Sensitivity Analysis to Trade-Off Between
560 Failure Rate and Operational Lead Time to
561 Select the Operational Zone

562 The analysis of Section and Section 4.5 shows that the num-
563 ber of spare servers increases with increasing OLT and
564 increasing failure rate of servers to bound the RCRC below
565 10% and to ensure the availability of the servers in clusters
566 with five nines. The impact of increasing OLT on the spare
567 servers is discussed in Section 4.5 by keeping the failure
568 rate fixed, while the impact of increasing failure rate with
569 fixed OLT of 1 day is analyzed in Section 4.5. The product of
570 � and T , hence the unavailability q of the servers, deter-
571 mines the state probabilities of the binomial equation, and
572 the RCRC with different combination of spare servers and
573 total servers in cluster, as given in (6) and (7).
574 Additionally, the energy efficient operation of the data
575 center would be impacted because of the increasing number
576 of spare servers since a server consumes at most 50% of the
577 rated power in the idle mode. Therefore, it is important to

578analyze the data center operational boundary (OB) consid-
579ering the RCRC to identify the optimal number of the spare
580servers. The operational boundary (OB) shows the accept-
581able operative zones for the data center operator with vary-
582ing OLT and failure rate of the servers in the cluster.
583The OBs for a server in cluster B and cluster D are shown
584in Fig. 9 with different combinations of OLT and failure rate
585of the server. The white cells depict the corresponding com-
586bination of the OLT and failure rate of a server returns �T >
5871, which means the operator should avoid the white opera-
588tive zones for that server. Moreover, yellow cells are a more
589secure operative zone to operate compared to the red cells,
590while the black cells show the OB for the server in Fig. 9. As
591an example, if the data center operator decides an OLT of
5926 days with failure rate of 2�, the availability of the server in
593cluster B will be around 10%, while the server in cluster D
594with the same conditions will be unavailable.
595The number of required spare servers in cluster B is
596shown in Fig. 10, with different combination of OLT and
597server failure rates to limit the RCRC below 10% and the
598complement of the RCRC as availability of the servers with
599five nines. The required number of spare servers in cluster
600D satisfying the same conditions of RCRC and complement
601of RCRC is shown in Fig. 11. Additionally, it shows the OB
602for cluster B and cluster D with 1; 000 servers in a group in
603Figs. 10 and 11, respectively. The color mapping is used to
604make the OB easily visible for the operator, where the bluish
605cells show less risky and highly available operation zone
606with the combination of OLT and failure rate in Figs. 10 and
60711. With the increasing OLT and failure rate the color of the
608cells is moving towards yellowish cells, which are more

TABLE 4
Summary of the Failure Rate Sensitivity Analysis (T ¼ 1 day)

RCRC (below 10%) RCRC (5 nines)

Failure rate Spare servers
(Cluster B)

Spare servers
(Cluster D)

Spare servers
(Cluster B)

Spare servers
(Cluster D)

Nr. % Nr. % Nr. % Nr. %

� 94 9.4 127 12.7 109 10.9 127 12.7
2� 178 17.8 210 21.0 200 20.0 233 23.3
4� 345 34.5 407 40.7 386 38.6 435 43.5
6� 510 51.0 600 60.0 619 61.9 722 72.2
10� 830 83.0 974 97.4 860 86.0 947 94.7

Fig. 9. The availability of a server with varying OLTand failure rate.Fig. 8. The impacts of changing failure rate on the RCRC.
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609 risky operative zones compared to the bluish zone to lower
610 the risk below 10% or to have availability of the server with
611 five nines in cluster B and cluster D, as shown in Figs. 10
612 and 11, respectively. Additionally, the yellow cells in
613 Figs. 10 and 11 indicate a higher number of spare servers
614 than the other cells with the threshold of the RCRC.

615 4.7 Power Consumption of the Spare Servers

616 It is also important to be aware about the energy consump-
617 tion of these spare servers to ensure energy efficient opera-
618 tion of the data center. The power consumption of the
619 required spare servers in percentage of the total power sup-
620 ply for 1; 000 servers is obtained for cluster B and cluster D,
621 as shown in Fig. 12 and The servers are considered to have
622 800 W of rated power, while each unit consumes 400 W in
623 idle mode. The energy efficient operative zones are the blue-
624 ish ones, considering the RCRC below 10% and the comple-
625 ment of the RCRC with five nines for these two clusters.
626 These energy-efficient (blueish) zones need fewer spare
627 servers to be scheduled compared to the energy-inefficient
628 (red) zones. It is important to realize that the power con-
629 sumed by the spare servers are not actually utilized for the
630 computational workloads only used to keep them online.
631 This degrades the data center’s energy efficiency with more

632number of required spare servers to have the desired
633threshold of the RCRC with higher failure rate and longer
634OLT, which is depicted by the red zones in Figs. 12 and 13.
635As an example, cluster B needs 985 spare servers are needed
636to be scheduled among 1; 000 with a combination of 4 days
637OLT and 3� (ref to Fig. 10a) to keep the RCRC below 10%
638that consumes at most 45% of the total power, as shown in
639Fig. 12a. The same amount of power is needed to allot 975
640spare servers in cluster D with OLT of 6 days and 2�, as
641shown in Figs. 11a and 12a.
642The sensitivity analysis in Section 4.6 and the power con-
643sumption analysis of the spare servers in Section 4.7 consid-
644ering the OLT and failure rate of the servers help the data
645center operator to keep balance between the energy effi-
646ciency and the number of spare servers to keep the RCRC
647below a desired level with different operating conditions.

6485 DISCUSSION

649This paper introduces a probabilistic risk index called
650RCRC to assess the data center’s operational risk consider-
651ing the OLT and the failure rate of the servers. The comple-
652ment of the RCRC index reflects the availability of the
653servers, hence the readiness of the servers to maintain the
654QoS that is quantified by the number of nines as in the Tier
655classifications. The use-cases are explained to keep the
656RCRC below 10% and complement of the RCRC with five
657nines with required number of spare servers and the associ-
658ated power usage of the spare servers. The operational risk
659(RCRC index) reduces with increasing spare servers. The

Fig. 11. Number of spare servers needed in cluster D with different com-
bination of OLT and failure rate to ensure (a) the RCRC below 10% (b)
the complement of the RCRC with five nines.

Fig. 12. The percentage of total power consumed by the required spare
servers in Cluster B to ensure (a) the RCRC below 10% (b) the availabil-
ity with 5 nines.

Fig. 13. The percentage of total power consumed by the required spare
servers in Cluster D to ensure (a) the RCRC below 10% (b) the availabil-
ity with 5 nines.

Fig. 10. Number of spare servers needed in cluster B with different com-
bination of OLT and failure rate to ensure (a) the RCRC below 10% (b)
the complement of the RCRC with five nines.
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660 readiness of the servers as the availability at the end of OLT
661 (complement of the RCRC index) increases with increasing
662 spare servers. However, increasing number of spare servers
663 degrades the energy efficiency of the data center, since the
664 spare server consumes at most 50% of its rated power as
665 idle. The availability with 5 nines is equivalent to a Tier IV
666 classified data center; however, there is no such require-
667 ment to have the operational risk to be less than 10%. It will
668 solely depend on the data center operator to select the
669 RCRC according to the proposed methodology. Selecting a
670 low value of the RCRC impacts the energy efficient opera-
671 tion since more spare servers need to be assigned. The num-
672 ber of required spare servers is impacted by the variation of
673 the OLT and the failure rate of the servers, which is ana-
674 lyzed for a group of 1; 000 servers.
675 The TTFs of the servers are taken from a real dataset
676 published by Google to obtain the MTTF of the servers in a
677 cluster. The dataset does not explain the sequence of the
678 server failures and the root cause of the failures, while a
679 smaller number of servers failed more frequently. There-
680 fore, MCS is used to obtain 100; 000 samples of the TTFs
681 from each cluster, so that every failure incident and server
682 get equal probability to be chosen. However, it is impor-
683 tant to have knowledge about the root cause of failure and
684 the sequence of the servers’ failures to mimic the failure
685 incidents similar to the real failures, where sequential
686 MCS could be used.
687 Common mode failures associated with the failure root
688 cause, e.g., fatal hardware failure, software error, task/job
689 processing error, human error, local cooling fault, etc. are
690 not considered in the proposed MCS, due to lack of infor-
691 mation about them. The common mode failures are needed
692 to be tracked and published by the data centers, such infor-
693 mation helps to improve the stochastic failure model.

694 6 CONCLUSION

695 In this article, the operational risk of the data center opera-
696 tion is quantified with a probabilistic risk index considering
697 the operational lead time (OLT) and the server failure rate,
698 since the servers provide the main computational capability
699 to maintain the QoS of the data center. The index called the
700 risk of computational resource commitment (RCRC) shows
701 the probability to have insufficient servers at the end of the
702 OLT to handle the workloads. Meanwhile, the complement
703 of the RCRC is the availability of the servers during the
704 OLT, which also shows the readiness of the computational
705 infrastructure of the data center to ensure the QoS. The pro-
706 posed RCRC index could be applied in data center opera-
707 tion to identify the energy efficient and comparatively less
708 risky operating zones with different combination of OLT
709 and failure rate of servers. The data center operators could
710 apply this methodology to assign a certain number of spare
711 servers to lower the operational risk by ensuring adequate
712 power usage effectiveness and QoS.
713 The analysis shows that the required number of spare
714 servers increases with increasing OLT and server failure
715 rate to lower the RCRC, while it also increases the energy
716 demand since a spare server consumes at most 50% of the
717 rated power. The increasing number of spare servers
718 ensures higher availability of the IT services, but it also

719affects the energy efficient operation of the data center.
720Therefore, it is important to make a trade-off between the
721operational risk and energy efficiency in data center opera-
722tion. The sensitivity analysis considering different combina-
723tions of OLT and server failure rate in Section 4.6 shows the
724appropriate operating zone of the data center and the
725required number of spare servers considering the opera-
726tional risk (below 10%), availability of the servers (with 5
727nines), and power consumption.
728With the essence of the presented analysis of this paper,
729it is concluded that the proposed risk index, RCRC is a use-
730ful tool for the data center operators to allot a certain num-
731ber of spare servers with an acceptable level of operational
732risk, which will improve the reliability and the energy-effi-
733ciency of the data center.
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