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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The conscious lab “CL” concept was 
used to model an industrial 
hydrocyclone. 

• SHAP and CatBoost, as novel explain-
able artificial intelligence, were used for 
constructing the CL. 

• Based on SHAP value, overflow solidity 
had the highest effectiveness on O80. 

• CatBoost could predict overflow out-
comes better than conventional AIs.  
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A B S T R A C T   

Undoubtedly hydrocyclones play a critical role in powder technology, which can considerably affect the plants' 
process efficiency. However, hydrocyclones were rarely modeled on an industrial scale, where a model can be 
used to train operators and minimize potential scale-up errors and lab costs. The novel approach for filling such a 
gap would be using conscious lab “CL” as a new concept that builds based on an industrial dataset and 
explainable artificial intelligence (XAI). As a novel approach, this study developed a CL and explored the in-
teractions between hydrocyclone variables by the most recent XAI method called “SHapley Additive exPlanations 
(SHAP)”, and a novel machine-learning model, “CatBoost”. The hydrocyclone output and the particle size of the 
plant magnetic separator were modeled by SHAP-CatBoost. SHAP could successfully model all the relationships, 
and CatBoost could predict the O80 and K80, where outcomes had a higher accuracy (R2 ~ 0.90) than other 
conventional AIs.  
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1. Introduction 

In mineral processing plants, hydrocyclones are the most typical 
tools for controlling and classifying particle size distribution (PSD) of 
powders (fine particles mostly in -500 μm) generated by mills [1]. Since 
fine grinding of low-grade ore is essential to meet the minerals' libera-
tion degree (vital for the efficient downstream separation processes), the 
hydrocyclone performance can directly affect the efficiency of upgrad-
ing units and the final products' quality. In other words, the PSD of 
ground ores, besides minerals' properties, would dictate the selection of 
the upgrading method (such as gravity, magnetic, and froth flotation). 
Therefore, understanding relationships among hydrocyclone opera-
tional variables and their effects on the products' particle size would be 
crucial for any plant [2–4]. 

Modeling is a key to better controlling and determining these re-
lationships. Thus, several theoretical models have been developed to 
explore correlations between operational parameters and model 
hydrocyclone performances [5,6]. Yet, the generated empirical- 
numerical models were mostly based on the laboratory scale experi-
ment results [7], and they were limited to specific operating scenarios, 
could not show the level of variables' effectiveness on the hydrocyclone 
performance, and assessed each parameter unconnectedly [8–11]. 
Recently some investigations using artificial intelligence (AI) models 
have been conducted to model hydrocyclone performance (Table 1). 
Since ANN are mostly black box models, they still hold some funda-
mental challenges of empirical models. They cannot provide multi- 
correlation assessments within the operational hydrocyclone variables 
nor indicate the magnitude of relationships. Moreover, they were mostly 
based on small laboratory datasets, which would not generate inade-
quate confidence levels for industrial-scale processes. In some cases, no 
validation step was considered through those investigations that can 
develop overfitted models (Table 1). 

Considering the “conscious lab (CL)” concept could potentially fill all 

these gaps. Exploring relationships in a simultaneous single and multi-
variable assessment using machine learning systems (which would 
reduce ANN limitations) based on industrial datasets called CL [17]. A 
CL can develop a comprehensive insight into the sensitivity of process 
performance to all monitored operational factors. In detail, CL is a new 
theory that suggests using explainable AI (XAI) to assess relationships 
within observed variables from industrial units and model their in-
teractions [17,18]. XAI can consider linear and nonlinear relationships 
through a single-multivariable assessment and rank variables based on 
their effectiveness on the model outputs. That assessment will also 
determine the magnitude of relationships. Recently, CL has been suc-
cessfully constructed based on different machine learning models with 
random forest (RF), support vector regression (SVR), and eXtreme 
Gradient Boosting (XGBoost)) for various industrial units. This work, as 
a unique approach, is going to develop a CL for an industrial hydro-
cyclone by using Shapley Additive exPlanations (SHAP) as a novel XAI 
structure. 

Each generated model needs to be understandable for operators 
[19,20]. As a recently developed XAI, SHAP can unbox any black box 
model and translate relationships, bringing them to a human basis. 
Based on each record's local interpretability, SHAP can thoroughly 
explain the global average and model output and consider single and 
multi-correlations for linear and nonlinear interactions. Such an illus-
tration facilitates the training of operators by breaking down AI 
complexity to the general level. In this study, SHAP was coupled with 
the CatBoost model to enhance its functionality. CatBoost is a newly 
established AI model for gradient boosting on decision trees. It has 
several advantages over other traditional machine learning methods, 
such as being faster in training, keeping the original structure of the data 
frame, and being sparse. Catboost uses the “Ordered target statistics” 
principle, which solves the prediction shift and target leakage problem 
[21,22]. The core objective of this work is to emphasize the essential 
need to understand inter-correlations among hydrocyclone operational 

Table 1 
AI models and their conditions applied for modeling various hydrocyclone performances.  

Model Input Variables Output Data Type Number of 
Records 

Model Results 
(Testing Step) 

Ref. 

Feed-forward neural network 
Pressure drop at the inlet, Solid percent 
vortex Apex diameter 

Cut size Overflow 
Underflow Laboratory 

19 train 
6 validation 
5 test 

R-square: 0.98 [11] 

Feed-forward neural network 

Inlet flow rate 
Overflow flow rate 
Underflow flow rate 
Pressure 
Volumetric solid concentration 
Solid density 
Overflow density 
Angle of discharge 

Cut size Laboratory 
25 train 
8 validation 
8 test 

R-square ~ 0.81 [5] 

Combination of Self-Organizing Map and 
Neuro-Fuzzy Inference System 

Pressure drop 
Solid percent 
Size fraction 
Overflow densities 
Underflow densities 

Cut size Laboratory 150 train 
19 test 

Not reported [12] 

Back propagated neural network 

Water-solid ratios 
Overflow densities Underflow densities 
Apex 
Spigot flowrates 

Cut size Laboratory 100 train 
100 test 

R-square ~ 0.97 [13] 

Conventional neural network ImageNet data (300 images) 
Underflow 
particle size Laboratory 

210 train 
90 test R-square ~ 0.85 [14] 

Feed-forward neural network 
Vortex finder diameter 
Spigot diameter 
Inlet pressure 

Solid recovery Laboratory 
100 train 
50 validation 
50 test 

Not reported [15] 

Feed-forward neural network 

Inlet flowrate 
Inlet density 
Spigot opening 
Vortex height 
Temperature of slurry 

Cut size Laboratory ~100 train 
~100 test 

R-square ~ 0.94 [16]  
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valuables and their effectiveness on the process performance by accurate 
and human basis methods (XAI) on an industrial scale. This approach 
can be implemented in various processes dealing with powder tech-
nology. This study is going to construct a CL for a hydrocyclone in the 
Fakoor Sanat iron ore processing plant using the SHAP-CatBoost model 
as a narrative approach and assess hydrocyclone's performance on the 
magnetic separator response (Fig. 1). For comparison principles, 
random forest (RF), support vector regression (SVR), extreme gradient 
boosting (XGBoost), and Artificial Neural Network (ANN) as conven-
tional statistical AI models, were also examined to assess the SHAP- 
CatBoost capability for modeling hydrocyclone performance. 

2. Materials and methods 

2.1. Dataset 

A dataset from the Fakoor Sanat iron ore processing plant (Kerman, 
Iran) based on daily monitoring of a hydrocyclone for over 6 months (22 
December 2019 to 20 June 2020) was gathered to explore the in-
teractions between its operational variables and their effects on the final 
magnetic concentrators' particle size (magnetite separate from silicates 
and phosphates) (Fig. 2). The dataset consisted of 185 samples. In the 
plant, the ball mill's product is subjected to a hydrocyclone, and then, 
the overflow of the hydrocyclone feeds to medium-intensity magnetic 
separators (MIMS). The hydrocyclone's cluster consists of four hydro-
cyclones, and in each case, the main body, apex, and vortex diameter are 
660, 220, and 110 mm, respectively. The maximum operating pressure 
is around 1 bar. Daily measurements were taken, and their mean 
numbers (for each day) were considered. The parameters (Table 2) of 
particle size and solid wt% are the mean value of different recorded 
parameters of representative samples during each shift. The laboratory 
determined them by sampling and physical tests (wet and dry sieving 
and filtration, respectively). The working pressure and density of 
hydrocyclone's feed were monitored from the plant's central control 
room. SHAP and Pearson's correlation assessed the relationships within 
the hydrocyclone variables, and its outcome “O80” and MIMS particle 
size “K80” were modeled with different machine learning methods. 

2.2. Pearson correlation coefficient 

The Pearson correlation coefficient measures the strength of the 
linear dependence between two random variables [23]. In other words, 
the Pearson correlation coefficient measures the closely related two 
variables and how well they can be described using a linear equation. It 
is a widely used measure in statistics and is defined as the covariance of 
the two variables divided by the product of their standard deviations. 
Pearson correlation coefficient can be computed as follows: 

rxy =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (1)  

where n represents the sample size, xi and yi are sample points, and x and 
y denote the sample mean. 

2.3. Artificial intelligence models 

2.3.1. Shapley additive explanations 
The Shapley Additive exPlanations (SHAP) is a game theory 

approach for quantifying the marginal effects of individual features and 
the interaction/joint effects of two features [24]. It has been demon-
strated that SHAP is useful in explaining different machine-learning 
models [25]. SHAP can explain any machine learning model's output 
by computing each variable's contribution to the output. This is done by 
SHAP assigning a score to each variable, which indicates how important 
it was in making the output. This score is called the SHAP value [26,27]. 
SHAP satisfies the following properties: local accuracy, missingness, and 
consistency [28]. Local accuracy means the explanation model should 
match the original model. The missingness property enforces that 
missing variables in the dataset are attributed no importance. Consis-
tency indicates that the attribution given to a variable will never 
decrease, even if we modify a model to increase the impact of a variable 
on the model. SHAP defines the output of a model as follows: 

Fig. 1. The methodology used for constructing the CL for a hydrocyclone using the SHAP-CatBoost model.  
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f (x) = g(z′

) = ϕ0 +
∑M

i=1
ϕiz

′

i (2)  

where g(z′) denotes the SHAP explanation model, ϕi represents the SHAP 
value, and ziϵ{0,1} is a binary variable. In other words, SHAP de-
composes the prediction into a linear function that is comprised of bi-
nary variables [29]. Two methods can be used to approximate SHAP 
values, i.e., Kernel SHAP and Tree SHAP. In this study, Tree SHAP was 
used to approximate SHAP values as it is much faster than Kernel SHAP 
and can be used with tree-based methods like CatBoost. 

2.3.2. CatBoost 
CatBoost is a novel variant of the gradient-boosting decision tree 

method developed by Prokhorenkova et al. in 2018 [21]. Its main idea is 
that a strong regressor can be created by iteratively combining weak 
regressors [30]. CatBoost has strong learning capabilities to deal with 
highly nonlinear data [31,69]. It can be trained by minimizing the ex-
pected loss function (L(.)) through gradient descent: 

ht = arg min
hϵH

E
{

L
(
y,Ft− 1(x)+ h(x)

) }
(3)  

where y denotes the output and h is a gradient step function selected 
from H, i.e., a family of functions. The step function can be calculated as 
follows: 

h(x) =
∑J

j=1
bjI{xϵRj} (4)  

where Rj denotes the disjoint regions that correspond to the tree's leaves. 
bj is the predictive value of the region, and I is an indicator function 

[32]. 
The expectation in Eq. (3) is approximated by the same dataset, 

which leads to prediction shift and gradient bias. These issues result in 
overfitting. CatBoost resolves them by employing the ordered boosting 
method, which causes improving the robustness and generalization 
ability of the model [31,32]. 

2.3.3. Extreme gradient boosting 
Extreme gradient boosting (XGBoost) is a tree-based ensemble 

method. It integrates several weak regression trees and sequentially 
combines their prediction to increase the overall accuracy [33,34]. 
XGBoost supports parallel and distributed computing and can use the 
CPU's multithreading feature, which speeds up the computational pro-
cess [34,35]. Researchers widely use it due to its high robustness and 
sufficient flexibility [36]. XGBoost adds regularization term to the loss 
function that smoothens the learned weights and avoids overfitting [37]. 

XGBoost output can be computed as follows: 

ŷ =
∑K

k=1
fk(x), fk ϵ Γ (5)  

where ŷ denotes the predicted output, x is the input vector, fk represents 
the output of the kth tree, and Γ denotes the function space containing 
every potential regression tree [29]. Eq. (6) shows XGBoost's objective 
function: 

Obj(θ) = L(θ) +Ω(θ) (6)  

where L(⋅) is the loss function that computes the error between the 
predicted value and target value, and Ω(⋅) represents the regularization 
function that controls the complexity of the model and prevents over-
fitting [29]. 

2.3.4. Random forest 
Random Forest (RF) is a nonparametric, ensemble regression method 

developed by Breiman in 2001 [38]. RF is a modification of bagging that 
creates a collection of K-randomized regression trees and averages them. 
It combines the random subspace method with bagging [39]. The least 
relevant features can be reduced using RF based on their importance 
[40]. 

Solving regression problems by RF has several advantages: low bias, 
having very few hyperparameters, and minimized risk of overfitting 
[41]. RF builds an ensemble of K decision trees (DT) as base learners. 
Each DT predicts the output independently, and then the predictions are 

Fig. 2. Schematic of the Fakoor Sanat iron ore processing plant.  

Table 2 
Descriptive analyses of the considered hydrocyclone operating parameters.  

Variables Symbol Min Max Mean STD 

Feed density (g/cm3) ρ 1.35 1.74 1.59 0.08 
Feed Solid (wt%) Xf 23.87 76.11 59.86 7.63 
Working Pressure (kpa) WP 85.00 99.00 91.42 2.73 
Mill Feed (μm) F80 198.15 763.72 467.98 125.50 
Underflow (μm) U80 203.87 684.36 357.99 98.68 
Overflow (μm) O80 56.52 230.98 108.54 25.35 
Underflow Solid (wt%) Xu 37.19 80.09 74.24 4.21 
Overflow Solid (wt%) Xo 11.99 42.18 26.48 5.67 
MIMS products (μm) K80 53.05 154.40 111.44 22.07  

S. Chehreh Chelgani et al.                                                                                                                                                                                                                     



Powder Technology 420 (2023) 118416

5

averaged to generate the final result (Eq. 7): 

T̂ (x) = 1
K

∑K

k=1
T̂ k(x) (7)  

where x denotes input and T̂k(x) is the estimation produced by the kth 
tree [36]. 

2.3.5. Support vector regression 
Support vector regression (SVR), proposed by Drucker [42], is a 

supervised learning method based on statistical learning theory [43]. 
SVR is widely used in data-driven problems due to its powerful capa-
bility of nonlinear predictions [44]. The advantages of modeling by SVR 
are: a) It is robust to outliers, b) It has lower computational cost 
compared to other methods, and c) It is effective when dealing with 
high-dimensional problems with a small number of samples [45]. 

The main fundamental concept behind SVR is to map input vectors 
into an N-dimensional feature space using a mapping function (ϕ(x)) so 
that in this space, a linear function can model the relationship between 
input (x) and output (y) as follows: 

f (x) = wϕ(x)+b (8)  

where w and b represent weights vector and bias, respectively. Eq. (9) 
shows SVR's objective function: 

ϕ(w, ξ) =
1
2
‖w‖2 +C

∑n

i=1

(
ξ−i + ξ+i

)
(9)  

where C represents the regularization constant, and ξi
− and ξi

+ are slack 
variables, i.e., margin constraints allowed to be violated [46,47]. 

2.3.6. Artificial neural networks 
Artificial Neural Networks (ANN) are mathematical modeling ap-

proaches comprised of artificial neurons inspired by research on the 
human brain system [48,49]. The first computational model of a neuron 
was proposed by McCulloch and Pitts in 1943 [50]. Due to their good 
nonlinear mapping capability, ANNs have achieved tremendous success 
in various domains [51,70]. Formally, a neuron output signal can be 
computed as follows: 

O = f (net) = f

(
∑n

j=1
wjxj + b

)

(10)  

where w and b denote weight and bias, respectively, n represents the 
number of inputs and f(⋅) is the activation function. Rectified linear unit 
(ReLU) and Sigmoid are two activation functions that are widely used in 
ANNs [52,53]. 

3. Results and discussions 

3.1. Intercorrelations 

Pearson correlation “r” was used for the initial single linear inter- 
correlation assessments within hydrocyclone operational variables 
throughout the entire dataset (Fig. 3). F80 indicated a low positive cor-
relation with O80 (r: 0.20), which showed hydrocyclone performance 
was slightly dependent on the ball mill feed size (F80) and mostly relied 
on the ball mill product size. Pearson assessments also indicated that the 
working pressure (WP) decreased marginally when bigger particles were 
fed to the line (F80). F80 and Xf also showed a positive correlation (r: 
0.59). Overflow solid wt% (Xo) demonstrated a substantial positive 
correlation with O80 (r: 0.78). 

Pearson correlation (a linear assessment) results showed the poten-
tial of several multivariable relationships among the hydrocyclone’ 
variables. The potential of multi-interactions between hydrocyclone 
operational variables was reported in various investigations [5,12]. 

SHAP assessments can determine these multi-correlations, illustrate 
them (Fig. 4), rank them based on their importance (Fig. 5), and 
represent the mean magnitude of their impacts. The SHAP variable 
importance ranking evaluation revealed a similar pattern to the Pearson 
correlation assessment (Figs. 3 and 5). SHAP analyses (Fig. 5) demon-
strated that Xo has the highest effectiveness on O80 modeling. The mean 
magnitude of this correlation is positive (increasing overflow solid wt% 
increased the percentage of coarser particles in the overflow “O80”). In 
general, lower solid wt% (lower Xo means higher water content) would 
transport the fine particles of the slurry to the hydrocyclone center and 
direct them to the overflow [54]. 

SHAP also showed the interaction between Xo and WP (Fig. 4). It was 
reported that increasing WP would be enhanced Xo [55–57]; however, 
after a certain point, higher WP can partially discharge more water 
through the overflow and decrease Xo [57]. Farghaly et al. (2020) 
claimed that by increasing WP, the Xo would decrease, and the cut size 
could be reduced [58]. SHAP analyses demonstrated only in a specific 
range (WP: 90–94 kpa and Xo ≥ 28%), their interactions had a positive 
correlation with O80 (Fig. 4). Their increase in that range would increase 
the overflow PSD. Out of these ranges, the SHAP value was negative (O80 
was finer). It was documented that high WP would increase the turbu-
lence in the hydrocyclone, which can reduce the sharpness of classifi-
cation by increasing the entrainment of fine particles through coarse 
particles during their settlement [56,57,59–62]. 

U80 showed the second highest positive effectiveness on O80 (Fig. 5). 
This effectiveness could be explained by its interaction with Xo (Fig. 4). 
SHAP analyses indicated that for U80 below 300 μm and Xo below 
~24%, the SHAP value was negative. In contrast, the SHAP value 
showed a positive effect for their higher values. This relationship can be 
due to the fact that when the mill product size was generally increased, 
coarser particles were processed by the hydrocyclone, and subsequently, 
both U80 and O80 were raised [63]. It was stated that a fraction of fine 
particles is regularly subjected to underflow, which supports the nega-
tive SHAP value of U80 for − 300 μm. SHAP mean value assessment also 
indicated that by increasing ρ, the O80 increases (Fig. 5). Although ρ did 
not show any significant linear correlation (Fig. 3), SHAP indicated its 
high interactions with other operational variables (Fig. 4) and positive 
contribution on O80 modeling (Fig. 5). Although ρ and Xo has a negative 
relationship, by increasing ρ and Xo their negative correlations 
decreased. For ρ and Xo higher than 1.54 (g/cm3) and 26% (respec-
tively), their interactive effectiveness is positive for O80 modeling 
(Fig. 4). It is well understood that unsteady feeding and feed slurry 
density would be detrimental to the hydrocyclone performances [64]. 
Increasing density generally causes settling to be hindered, and particle 

Fig. 3. Pearson correlation among hydrocyclone variables.  
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Fig. 4. SHAP values for multi-interactions among hydrocyclone operational variables.  

Fig. 5. Ranking variables based on their mean SHAP value and their relationship magnitude for O80 prediction.  
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interactions lead to fine particle entrainment [54]. These results indi-
cated that although variables monitored online in the plant's controlling 
room (WP and ρ) have several interactions with other essential vari-
ables, they are not the most effective on hydrocyclone performance. 
Thus, process operators showed train based on the correlations (linearly 
and nonlinear) [1] among operational variables and understand in-
teractions (multivariable), something that CL has been provided and can 
have a direct effect on the product properties. 

The MIMS operating condition was mostly constant when the process 
(Fig. 1) was steady in the plant. Thus, its performance could be linked to 
the hydrocyclone operation and its overflow properties. A meaningful 
positive relationship (r: 0.67) was observed between O80 with K80 
(Fig. 3). In other words, by increasing the particle size of overflow (O80) 
of the hydrocyclone, the particle size of (K80) recovered particles would 
be increased. Such an interaction would be evident since it meant that 
coarser particles fed into the MIMS (O80) caused an increase in the 
product particle size (K80). Xo had the highest positive linear correlation 
with K80 (r: 0.79). Single and multiple assessments showed a nonlinear 
multivariable correlation between O80 and Xo with K80 (Fig. 6). These 
interactions highlighted the potential of K80 prediction based on the 
hydrocyclone operating parameters, while SHAP ranked the potential 
effectiveness of all the variables (Fig. 7). 

3.2. O80 and K80 prediction 

The entire dataset was randomly split into 80, 10, 10% for training, 
validating, and testing the AI models used to predict the O80 and K80. 
Different CatBoost features were examined to find the values of the 
optimum hyperparameters, adjusted, and tunned the CatBoost model for 
the training stage. The three main CatBoost hyperparameters are the 
learning rate, maximum number of trees, and maximum depth of trees. 
The optimum model parameters were adapted and used for training 

after the tuning procedure (a try-and-error system) (Table 3). The Cat-
Boost outcomes in the testing stage (Table 4) indicated that this model 
could accurately estimate the O80 and K80 based on the plant's opera-
tional variables. SHAP could assess all individual records and illustrate 
each variable contribution level through the prediction (Fig. 8). 

Other traditional machine learning models (RF and SVR) and 
XGBoost were examined to O80 and K80 with the same training and 
testing records for comparison purposes. Results (Table 4) released that 
the CatBoost model can produce the highest accuracy for the O80 and 
K80. RF, XGBoost, and CatBoost are ensemble methods. RF is a bagging 
model, while XGBoost and CatBoost are boosting approaches and 
require less feature engineering. ANNs can learn complex nonlinear 
relationships but must adjust several parameters and find an optimal 
architecture [31]. The kernel function limits SVR. XGBoost suffers from 
prediction shift and gradient boosting bias, while CatBoost solves pre-
diction shift by employing the ordered boosting method. It also over-
comes gradient-boosting biases by using oblivious DTs and applying the 
same splitting criterion at each tree level. The results obtained by other 
studies [65–68] also indicated that CatBoost outperformed other ML 
methods (i.e., SVR, DT, RF, and XGBoost) in the regression task. These 
results would highlight that SHAP-CatBoost can productively construct a 
CL for a hydrocyclone performance modeling as a commanding XAI 
system. The robust structure of the generated CL hypothetically por-
trayed that this approach could be used for modeling, monitoring, and 
maintaining different grinding circuits on the industrial scale. 

4. Conclusion 

Constructing models that can show interactions between operational 
variables on the industrial scale and transforming generated data from 
complicated knowledge-based systems to human-basis insight would 
assist plant operators in optimizing production and enhancing process 

Fig. 6. Relationships between overflow variables with MIMS product size.  
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efficiency. The outcomes of this investigation indicated that industries 
that deal with power technology and use hydrocyclones could imple-
ment a conscious lab for modeling their processes and translate the 
monitored and recorded dataset to educative information for their op-
erators in the controlling rooms. The generated conscious lab in this 
study indicated several linear and nonlinear multivariable interactions 
within a hydrocyclone’ variables, which affects its performance. Over-
flow solid wt% has high importance on the overflow product size (O80) 
within all the monitored variables. The magnitude of this effectiveness 
was positive. It was also indicated that for a steady-state plant, the 
overflow variables (particle size and solid wt%) of a hydrocyclone can 
markedly affect the production properties of the downstream magnetic 
separator (K80). Overflow solid wt% and O80 showed a significant pos-
itive correlation with the magnetic separator product size (K80). They 
demonstrated that their increase would raise the K80. The CatBoost 
model could accurately predict the O80 and K80 in the testing step (R2: 
0.89 and 0.93, respectively). The capability of CatBoost has been argued 
with typical machine learning methods (random forest and support 
vector regression) and advanced (XGBoost) AI models. The models' 
outcomes cleared that CatBoost can accurately model the O80 and K80 
(root mean square errors of the models for O80 prediction were CatBoost 
6.55, XGBoost 6.75, random forest 8.31 and SVR 9.31, and ANN 8.46, 
and for K80 were CatBoost 6.61, XGBoost 7.99, random forest 8.59 and 
SVR 11.39, and ANN 13.57). In general, these results highlighted that 
the developed CL could be considered for any similar approaches. 

Fig. 7. Ranking variables based on their mean SHAP value and their relationship magnitude for K80 prediction.  

Table 3 
The parameter settings for the predictive models.  

Parameter Value (K80) Value (O80) 

CatBoost 
Learning rate 0.897 0.394 
Maximum number of trees 105 64 
Maximum depth of trees 6 6  

XGBoost 
Learning rate 0.285 0.279 
Maximum number of trees 26 20 
Maximum depth of trees 6 6 
γ 1.97 0.94  

Random Forest 
Maximum number of trees 183 8  

Support Vector Regression 
Kernel RBF RBF  

Artificial Neural Network 
Activation Funtion ReLU ReLU 
Training Epochs 1000 500 
Batch Size 10 10 

* Radial basis function (RBF) ** Rectified linear unit (ReLU). 

Table 4 
Outcomes of different machine learning methods in various modeling stages for the O80 and K80 prediction.  

O80 Train Validation Test 

Method R2 RMSE MSE R2 RMSE MSE R2 RMSE MSE 

CatBoost 0.99 0.86 0.74 0.89 7.34 53.89 0.89 6.55 42.94 
XGBoost 0.98 3.51 12.35 0.89 7.73 59.74 0.88 6.75 45.51 
Random Forest 0.91 7.79 60.69 0.89 7.71 59.42 0.82 8.31 68.98 
Support Vector Regression 0.74 13.40 179.58 0.81 9.86 97.24 0.77 9.31 86.61 
Artificial Neural Network 0.59 16.72 279.43 0.86 8.46 71.59 0.78 8.46 71.59   

K80 Train Validation Test 

Method R2 RMSE MSE R2 RMSE MSE R2 RMSE MSE 

CatBoost 0.99 0.0003 7.62 0.94 5.18 26.83 0.93 6.61 43.72 
XGBoost 0.99 1.0 1.09 0.92 6.35 40.33 0.90 7.99 63.97 
Random Forest 0.96 4.1 16.58 0.92 6.10 37.28 0.89 8.59 73.94 
Support Vector Regression 0.89 6.74 45.41 0.71 11.78 138.80 0.81 11.39 129.73 
Artificial Neural Network 0.59 13.31 177.14 0.61 13.57 184.11 0.69 13.57 184.10 

*Mean Square Error (MSE) **Root Mean Square Error (RMSE). 
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