
International Journal of Rock Mechanics & Mining Sciences 169 (2023) 105433

1365-1609/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Modelling the relationship between oversize fragments and nature of rock 
mass for a sublevel caving operation 

Sohail Manzoor *, Anna Gustafson, Håkan Schunnesson 
Division of Mining and Geotechnical Engineering, Luleå University of Technology, Sweden   

A R T I C L E  I N F O   

Keywords: 
Oversize fragments 
Measurement while drilling (MWD) 
Sublevel caving (SLC) 
Multiple linear regression 
Partial least square (PLS) regression 

A B S T R A C T   

Rock fragmentation is vital in a sublevel caving operation. The oversize fragments are the most undesired 
fragmentation category because of their challenges; as such, they require special attention. This study carried out 
a field test in one of the LKAB’s iron ore mines in northern Sweden to analyse the occurrence of oversize 
fragments. The analysis involved correlation and regression tests and was performed for different types of rock 
masses. The results showed that an increase in the percentage of solid rock mass caused an increase in the 
percentage of oversize fragments. The other rock types, including slightly fractured, highly fractured, and rock 
mass with minor and major cavities, tended to have a reduced percentage of oversize fragments. The results 
indicate that oversize fragments can be predicted using linear regression or partial least square regression models 
with R2 values of 0.78 and 0.73, respectively.   

1. Introduction 

The sublevel caving (SLC) mining method is typically used in steeply 
dipping orebodies with a significant vertical dimension.1 This mining 
method is very dependent on controlled fracturing of the rock mass, 
including both the orebody and the waste rock.1 The ore is drilled in a 
fan-shaped pattern and blasted to break it down into smaller frag-
ments.2,3 Once the ore loses its integrity, it flows towards the empty 
space in the drift during mucking.4 The waste rock fractures by itself and 
caves in when the blasted ore is removed from underneath it and the 
support is gone.2,3 This flow of broken material is significantly depen-
dent upon rock fragmentation.5,6 

The blasted rock consists of different fragment sizes. The size of 
fragmentation is determined by a number of factors, for example, the 
rock mass characteristics, blast design, and the drilling and blasting 
operation.7 The productivity and ore recovery in any SLC operation can 
be affected by the nature of fragmentation.8,9 For example, oversize 
fragments can obstruct the flow of material or cause dangerous 
hang-ups, leading to safety issues and reduced ore recovery if the 
hang-ups are not removed.8 Defining an optimum fragment size for 
loading operations in SLC can be difficult because of the effect of 
different factors, such as draw point dimensions or Load-Haul-Dump 
(LHD) bucket dimensions,10 but it is possible to define oversize frag-
ments. As per Singh and Narendrual,11 “any fragment produced from 

primary blasting, which cannot be adequately handled by the standard 
loading, hauling and crushing equipment used in an operation can be 
regarded as oversize fragment”. These oversize fragments are commonly 
observed at drawpoints in caving methods.12 Manzoor et al.13 docu-
mented the occurrence of oversize fragments (fragments bigger than 1 
× 1 × 1 m) in more than 20% of LHD buckets loaded from the drawpoint 
after 70% extraction ratio. Some examples of oversize fragments loaded 
in LHD buckets are shown in Fig. 1. 

The oversize fragments present challenges to the SLC operation. The 
presence of oversize fragments can significantly interfere with the pro-
duction cycle in sublevel caving because of the high level of mechani-
zation and increased automation and can create challenges in efficient 
handling of the ore in subsequent stages.14 Along with the safety and ore 
recovery issues mentioned previously, oversize fragments can increase 
the cost of the downstream processes, including loading, hauling, and 
crushing the blasted rock.14 

The productivity and effectiveness of the material loading from 
drawpoints significantly depends on rock fragmentation in SLC.7 Over-
size fragments can disrupt the loading operation, resulting in unplanned 
stops and excessive idle time for the LHD machines.15 These fragments 
can form interlocking arches and cause blockage of the orepasses.16 

They can damage the orepass walls and generate increased orepass 
maintenance costs, even if they don’t block the orepass.14 They can get 
stuck in the chute and disturb the material transportation at the haulage 
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level.7 One of the main problems at crushers is caused when oversize 
fragments form interlocking arches at the top of the crusher and disturb 
material flow and crusher throughput.7 They also affect the energy 
consumption of the crushers, as less energy is consumed if the blasts 
produce smaller fragments.17 

Kumar estimated the costs related to oversize handling at different 
stages of the SLC operation.14 Paventi et al.18 found oversize fragmen-
tation could cost 0.5 to 1 M dollars per year for an annual production of 
2 Mton from SLC at Stobie mine, Canada, excluding the cost of lost 
production. Hence it is important to understand and predict oversize 
fragment generation and find ways to reduce its impact. 

Singh and Narendrual11 listed various sources of oversize fragment 
generation, including rock mass and blast design related factors in a 
surface blast. Oversize fragments are normally produced when the blast 
is designed without accurate insight into the rock mass, and the blasting 
energy is not sufficient to break the rock.19 Ghiasi et al.20 used multiple 
regression and artificial neural networks to predict the oversize frag-
ment ratio using blast design parameters for surface blasting. Leng 

et al.21 documented a new blasting approach combining different 
diameter blastholes to reduce oversize fragments in an open pit mine. 
However, there is very little known about oversize generation in sub-
level caving as the rock mass description underground is generally not as 
thorough as it is for surface blasting. The blasting parameters are also 
different because of the confined nature of blasting,22 the design of the 
blast ring,23 and the specific charge.24 Therefore, applying similar 
knowledge or techniques for understanding and predicting oversize 
fragment generation in sublevel caving as discussed for surface blasting 
may be misleading. 

This paper analyses and models the relationship between oversize 
fragments and the nature of the rock mass in an SLC mine. 

2. Methodology 

The study’s methodology is visualized in Fig. 2. The study included a 
literature review, data collection, identification of oversize fragments in 
LHD buckets, assessment of rock mass quality based on MWD data, 
correlation tests, and model development based on multiple linear 
regression as well as partial least square (PLS) regression. 

2.1. Test site 

The LKAB’s Malmberget mine contains 20 ore bodies25 out of which 
13 are currently being mined.26 Magnetite is the main ore mineral, but 
hematite is also common in the western part of the mine. Sublevel 
caving is the mining method used in all ore bodies. Epiroc’s Simba WL6C 
drilling rigs are used to drill long upward boreholes in a fan shape (see 
Fig. 5), ranging approximately from 20 m to 50 m. After drilling and 
blasting, LHD machines are used to transport the blasted rock from the 
drawpoints to the orepasses. 

The thickness of overburden as well as the mine design and layouts 
vary depending upon the orebody and the depth of operation. Mostly, a 
longitudinal SLC layout is used up to level 780 m below surface and a 
transverse layout from level 805 m downwards.6 Production drifts are 
driven in a way to avoid weak zones as well as the major waste in-
trusions, and to minimize ore loss. The sublevel interval in the mine 
varies from 20 to 30 m depending on the size and shape of the orebody 
whereas the drift spacing is fixed at 22.5 m for all the orebodies.6 The 
test was performed in one of the bigger orebodies (Alliansen) in 
Malmberget mine. The orebody has the highest sublevel interval in the 
mine i.e. 30 m.6 The test area had a transverse SLC layout. The mine site 
used a fixed design of the blast ring in the test area with a borehole 
diameter of 115 mm and a ring-to-ring distance (burden) of 3.5 m. Data 
were collected from eight rings (level 1052, drift o4960 and o4990) from 
a total of 71 holes containing 72562 individual MWD data measurement 
points. More than 8000 buckets were filmed during the loading opera-
tions at these eight rings. 

2.2. Data collection 

To characterize and understand the nature of the rock mass, the 
study used MWD data. MWD involves measurement of a number of 
drilling parameters (depth, time, penetration rate, feed force, rotation 

Fig. 1. Oversize fragments in LHD buckets.  

Fig. 2. Research flow.  
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pressure etc.) to provide a fingerprint of the penetrated rock mass.27–29 

The technique was previously used in Malmberget mine to characterize 
rock mass quality and chargeability and was found effective.30 

The drilling operation in Malmberget is fully automated; drill plans 
and log files containing MWD data are automatically transferred to and 
from the drill rigs through a mine-wide Wi-Fi network. All data are 
stored on a cloud server for further processing. The drill monitoring data 
for the eight rings were collected from this server. 

The transport of blasted rock from the drawpoints to the orepass was 
recorded using motion detection cameras installed at the entrance of the 
drifts. A short video was recorded every time an LHD moved underneath 
the cameras. An illustration of the recording process is shown in Fig. 3. 

2.3. Data processing and analysis 

2.3.1. Identifying oversize fragments 
Malmberget mine defines oversize fragments as rock blocks bigger 

than 1 × 1 × 1 m.7,8 These oversize fragments can be the blasted ore or 
the caved waste rock. The surface dimensions of LHD buckets at 
Malmberget mine are normally 3 m × 2 m. An observational method like 
the one reported by Petropoulos,31 Wimmer et al.,32 Danielsson et al.,8 

Danielsson et al.,33 and Manzoor et al.29,34 was used to identify oversize 
fragments. More than 8000 recordings were manually explored, and the 
oversize fragments were counted. As it is not appropriate to compare the 
absolute boulder count because of its dependence on total blast volume 
in the ring,35 the percentages of total boulder count for total number of 
buckets loaded from a blasted ring were computed and compared. For 
that purpose, the total number of oversize fragments observed for a 
certain ring was divided by the total number of buckets loaded from that 
ring. 

2.3.2. Characterizing rock mass 
During the test, the drilling parameters were recorded during drilling 

at every 3 cm along the borehole. MWD data commonly include outliers, 
noise, or faulty values. Outliers are sometimes generated because of 
machine adjustments during the drilling process but may also include 
responses to extreme and rarely occurring rock mass conditions. Faulty 
data can also be recorded during the addition of a new rod to the drill 
string to drill longer boreholes. Some faulty values, such as negative 
penetration rates or pressures recoded in thousands of bars which are 
beyond the machine capacity, are easy to identify and remove. It is 
important to remove all such values before using the data for rock mass 
characterization to get a better representation of the rock mass. 

To remove noisy or faulty data samples from the MWD data, the 
study computed the time difference between consecutive recorded 
samples. For the given sampling interval of 3 cm, the time difference 

between two recorded samples was usually around 3 s. Longer time 
intervals between samples indicated irregularities in the drilling process, 
such as rod changes or other types of stoppages. For the rod addition, the 
time difference jumped to approximately 50–60 s. Therefore, using the 
time difference, the samples recorded during the rod addition process 
were identified and replaced by interpolated values before and after 
them. After such stoppages, the applied forces will only gradually regain 
their normal values, and it will take some time before drilling is stable 
again. This means that several data points surrounding stoppages are not 
reliable and should be removed from the data. After removing and 
replacing these samples with interpolated values, the filter limits used 
by Ghosh et al.30 (see Table 1) were applied to remove all other 
abnormal or unrealistic data samples. More details of this filtering 
procedure can be found in Manzoor et al.34 

After filtering, the MWD data were used to characterize the rock 
mass quality into five categories: ‘Solid (C1)’, ‘Slightly fractured (C2)’, 
‘Highly fractured (C3)’, ‘Minor cavities (C4)’, and ‘Major cavities (5)’. 
The details of how to characterize the rock mass in this way can be found 
in Ghosh et al.30 A brief description of the procedure is given below: 

Fig. 3. Monitoring oversize fragments in a production drift using surveillance camera.  

Table 1 
Filter limits for MWD data (Ghosh et al.30).  

Recorded parameters Filter limits 

Penetration rate (m/min) ≥0.1 and ≤ 4 
Percussive pressure (bar) ≥20 and ≤ 200 
Feed pressure (bar) ≥35 and ≤ 100 
Rotation pressure (bar) ≥25 and ≤ 125  

Fig. 4. Rock mass categories based on PCA (Source: Ghosh et al.30).  
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2.3.2.1. Calculating rock mass fracturing. A fracturing parameter is 
calculated using penetration rate and rotation pressure from MWD data 
as given in Equation (1). 

Fracturing=
1
5

[

0.5×

(
PRV
̅̅̅̅̅̅̅
σ2

PR

√

)

+ 0.5×

(
RPV
̅̅̅̅̅̅̅
σ2

RP

√

)]

Equ. 1  

where. 
PRV = penetration rate variability. 
RPV = rotation pressure variability, and 
σ = variance of the corresponding parameter. 

2.3.2.2. Principal component analysis (PCA). PCA is performed using 
filtered MWD parameters as well as the fracturing parameter, PRV and 
RPV. The MWD parameters used in PCA include penetration rate, 
rotation pressure, feed pressure and percussive pressure. Based on PCA, 
rock mass is characterized as shown in Fig. 4. 

The percentage occurrence of different categories (solid, slightly 
fractured, highly fractured, minor cavities, major cavities) in each 
analysed ring based on MWD data is given in Table 2. 

Fig. 5 shows the rock mass characterization in graphical user inter-
face of a newly developed charging tool for three of the eight analysed 
rings. 

The lines in the figure represent the boreholes, and the discs around 
them show the degree of rock fracturing. The sections of the boreholes 
between the discs show the solid rock mass while yellow, blue, black, 
and red discs represent the rock mass with slight fracturing, high frac-
turing, minor cavities, and major cavities respectively. As Fig. 4 shows, 
the rock mass categories do not represent the exact values but cover a 
range based on PCA, the diameter of the discs in Fig. 5 indicates where 
the calculated value for a specific rock type lie in the range. Bigger the 

size of the disc, closer to the upper end of that category range the value 
lies. 

The ring in Fig. 5a shows good quality rock with very few distur-
bances in the rock mass. The ring in Fig. 5b shows a very disturbed rock 
mass with extensive fracturing and cavities in the upper part of the ring. 
The ring in Fig. 5c represents an intermediate case with some pro-
nounced fracture zones crossing the ring. 

Finally, the percentage of each category (solid, slightly fractured, 
highly fractured, minor cavities, major cavities) in each ring was 
calculated and used in the correlation analysis below. 

2.3.3. Correlation test 
The study was interested in predicting the occurrence of oversize 

fragments using MWD data. It is important to look at the correlation 
coefficients because higher correlation coefficients can result in better 
predictions with fewer errors.36 In this study, to calculate the correlation 
coefficients, the nature of the rock mass based on MWD data was used as 
an explanatory variable (X) and the occurrence of oversize fragments 
was a response variable (Y). A correlation test was performed for the 
following null and alternate hypotheses. 

Null hypothesis: There is no correlation between the nature of the 
rock mass and oversize fragment generation, i.e., R = 0. 

Alternate hypothesis: There is a non-zero correlation between the 
nature of the rock mass and oversize fragment generation, i.e., R ∕= 0. 

It is important to remember that R only quantifies the strength of a 
correlation. It does not say anything about the statistical significance of 
the correlation. To determine whether the measured strength of rela-
tionship was statistically significant, p-values were also calculated. The 
p-value represents the probability of occurring a strength as extreme as 
the measured strength if the null hypothesis was true.37 Using a signif-
icance level of 5%, the null hypothesis was rejected if the p-value was 
less than 0.05, as this meant the measured R value was statistically 
significant. The study tested the Pearson and Spearman correlation to 
measures if the correlation between variables is strictly linear or not. 
The Pearson correlation method produced higher coefficients, indicating 
a stronger linear than non-linear relationship between the nature of rock 
mass and oversize fragment generation. Finally, the coefficients of 
determination (R2) were measured to find out the captured variance by 
the linear regression models. 

2.4. Model development 

If the relationship between the explanatory variables (nature of rock 

Table 2 
Occurrence of different rock types based on MWD data.  

Fan C1 C2 C3 C4 C5 

17 89.211 8.507 0.413 0.433 1.436 
18 98.464 1.527 0.000 0.009 0.000 
19 93.575 6.288 0.088 0.029 0.020 
20 89.398 10.051 0.250 0.175 0.125 
21 95.251 4.523 0.104 0.017 0.104 
22 84.169 13.871 1.080 0.825 0.116 
23 89.787 9.138 0.576 0.422 0.077 
31 92.608 5.916 1.003 0.452 0.022  

Fig. 5. Fractures and inhomogeneities in drilled rings based on filtered MWD data. (Courtesy of AFRY, Sweden).  
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mass) and the response variable (oversize fragments) is linear, multiple 
linear regression may be used for model development. However, if the 
explanatory variables demonstrate very high dependence and inter- 
correlation, with a high level of multicollinearity, linear regression is 
not recommended because it can cause misinformation in the model. To 
deal with this problem, the redundant variables that do not provide 
information to the model because of their dependence on other variables 
should be removed from the model, or other methods that can inherently 
deal with multicollinearity, such as partial least square (PLS) regression, 
may be used. In this case, the model was developed using both methods 
i.e., linear and PLS regression, to ensure the best possible results. 

Multiple linear regression is a statistical technique to model the 
relationship between a response variable and multiple explanatory 
variables; it is a well-established and widely used statistical tool for 
prediction and inference making.38 The general formulation of the 
multiple linear regression model used in this study is given by Equation 
(2). 

Y = β0 + β1C1 + β2C2 + β3C3 + β4C4 + β5C5 Equ. 2  

where Y is the response variable, i.e., the percentage occurrence of 
oversize fragments, 

β0, β1, β2, β3, β4, and β5 are regression coefficients, and C represents 
the rock mass category, so that. 

C1 = percentage of solid rock mass. 
C2 = percentage of slightly fractured rock mass. 
C3 = percentage of highly fractured rock mass. 
C4 = percentage of rock mass with minor cavities. 
C5 = percentage of rock mass with major cavities. 
The strength of the correlation between the explanatory variables 

was determined using the variable inflation factor (VIF) (see Table 3), a 
common statistical tool for testing multicollinearity. 

The VIF values greater than 10 show high correlation among the 
variables,39 which in this case, is true for all the explanatory variables as 
given in Table 3. One way of dealing with this issue is by dropping the 
less informative variables from the model as same information is pro-
vided by the other variables. As the percentage of solid rock mass was 
the dominant explanatory variable (ranging from 84% to 98.5% for in-
dividual rings), VIF was calculated by dropping all other variables one 
by one. VIF tests showed the multicollinearity existed until all the var-
iables were dropped except the solid rock mass. This means the solid 
rock mass alone provided enough information to the model; the other 
variables did not provide any further information. Therefore, Equation 
(2) was reduced to Equation (3). 

Y = β0 + β1C1 Equ. 3 

PLS regression generalizes and combines features from principal 
component analysis and multiple linear regression.40 In this study, PLS 
regression models were developed for different components to select the 
optimum number of components capturing most of the data variability. 
PLS components are linear combinations of the explanatory variables 
that maximize their covariance with the response variables. R2X cum 
and R2Y cum were calculated for the models with different PLS com-
ponents. The R2X cum measures the cumulative fraction of the variation 
of the X variables (rock type based on MWD) explained for any selected 
PLS components. R2Y cum (R2), also known as a coefficient of deter-
mination, describes the amount of variability in the Y variable (oversize 
fragments) captured by the given model. Dogruoz et al.41 reported R2 

values as low as 0.41 showing strong correlations between explanatory 
and response variables in a rock engineering application. 

3. Results and discussion 

Table 4 presents the R, R2, and p-values for the Pearson correlation 
test. The correlation coefficients suggest a positive correlation between 
oversize fragments and solid rock mass, and a negative correlation be-
tween oversize fragments and other rock types. Therefore, with an in-
crease in the percentage of solid rock mass, there will be a subsequent 
increase in the occurrence of oversize fragments. As the rock mass be-
comes more fractured and has cavity issues, the intact block size before 
blasting will be reduced, leading to less boulder generation. The solid 
and slightly fractured rock masses both have strong correlations with the 
occurrence of oversize fragments as per their R values. 

The p-values for solid rock, slightly fractured rock, and rock mass 
with minor cavities less than 0.05 show that the R values for these 
categories are highly unlikely if the null hypothesis were true which 
leads to the rejection of null hypothesis for these categories. Hence, 
there is a statistically significant correlation between these variables and 
the oversize fragments. Meanwhile, the correlation between oversize 
fragments and highly fractured rock and rock mass with major cavities is 
not significant, with a significance level of 0.05 as the p-values are 
greater than 0.05. The R2 values also show that the models for solid and 
slightly fractured rock mass capture higher variability (0.78 and 0.76) in 

Table 3 
VIF values for the explanatory variables.  

Variables C1 C2 C3 C4 C5 

VIFs 183318 135567 1882 591 2376  

Table 4 
Results of pearson correlation test.  

Parameters Solid 
Rock 

Slightly 
Fractured 

Highly 
Fractured 

Minor 
Cavities 

Major 
Cavities 

R 0.88 − 0.87 − 0.62 − 0.74 − 0.25 
R2 0.78 0.76 0.39 0.55 0.06 
p-value 0.004 0.005 0.100 0.036 0.554  

Fig. 6. Scatter plots and linear regression lines for oversize fragments (Y) and 
rock types (X). 
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response variables than the models for highly fractured (0.39), minor 
cavities (0.55), or major cavities (0.06). 

The oversize fragments were modelled as a function of the rock types 
which had statistically significant correlation as shown in Table 4 i.e., 
solid, slightly fractured, and minor cavities (see Fig. 6). The figure also 
shows the R2 values and linear regression equations for different re-
lationships. The percentage of rock mass obtained from MWD data is 
plotted on the x-axis, and the percentage of occurrence of oversize 
fragments is plotted on the y-axis. The colours in the figure represent 
different rings to show the behaviour based on the nature of the rock 
mass. For example, the ring with good quality rock mass is illustrated as 
green points, and the ring with broken rock is shown as red points. The 
ring with intermediate quality rock mass is blue. The nomenclature of 
good, intermediate, and poor rock quality is based on the overall 
appearance of these rings in Figs. 5 and 6. 

Fig. 6 shows that the linear regression model for the solid rock mass 
captures the maximum data variability, with an R2 of 0.78. Moreover, as 
stated in section 2.4, the linear regression model which does not have 
the problem of multicollinearity and captures maximum information 
given by Equation (3) involves only solid rock mass. The linear regres-
sion model for predicting oversize fragments using solid rock mass is 
given in Table 5. 

In the table’s equation, Y represents the percentage of oversize 
fragments from a blasted ring, and C1 represents the percentage of solid 
rock mass in that ring based on MWD data. R2 shows that the model 
captures 78% of the variability of the response variable. The p-value of 
the regression model suggests the information brought by this explan-
atory variable is statistically significant, at a significance level of 5%. 

PLS regression was performed for an increasing number of compo-
nents (up to four) to determine the percentage of variance in the 
explanatory variables explained by each component and to select the 

optimal number of components for the model. The components are 
linear combinations of the explanatory variables that that try to maxi-
mize the observed variability in the explanatory variables. It is impor-
tant to note that the model is developed using the primary variables, but 
components construct different combinations of those primary variables 
capturing different variance. With increasing number of components, 
more complex combinations are constructed that increase the captured 
variance in the data. However, an optimal number of components 
should be selected for model development to avoid any loss of infor-
mation as well as over-fitting the model. Table 6 shows the percent 
variance explained (R2X) for different components and R2 (R2Y) values 
for the corresponding variables. 

As the table indicates, the variance explained when increasing the 
number of components increased up to the third component. However, 
cross-validation showed that the first component captured the 
maximum variance and was optimal for model development. Selecting 
more components would over-model the dataset and introduce errors 
instead of increasing prediction capabilities. Therefore, a model with the 
first component was selected to predict oversize fragment occurrence 
using the five rock mass categories (see Equation (4)). 

Y = − 12.81 + 0.353C1 − 0.406C2 − 2.619C3 − 4.480C4 − 0.892C5 Equ.4  

Where Y represents the percentage of oversize fragments and C repre-
sents the rock mass categories. The PLS regression model with the first 
component had an R2 value of 0.73, as shown in Table 6. It captured a 
little less variation in the response variable, i.e., oversize fragments, 
than the linear regression model in Table 5. A visual illustration of the 
comparison of the models is given in Fig. 7. 

As shown in Fig. 7, a linear regression model considering only solid 
rock mass performed as well as a multivariate model generated using 
PLS regression and all rock types. The maximum variation captured by 
the linear regression model was 78%, and the PLS regression model 
captured 73%. The solid rock mass had a strong positive correlation; this 
means that with an increasing percentage of solid rock mass, there is an 
increase in percentage occurrence of oversize fragments. This may be 
due to the increased percentage of solid competent blocks of the rock 
mass which can produce bigger rock pieces after blasting. 

4. Conclusions 

This study explored the relationship between the nature of rock mass 
based on MWD data and oversize fragments after blasting in a sublevel 
caving operation. As shown in the results of the correlation and 
regression analysis, solid and slightly fractured rock masses tend to have 
more influence on oversize fragment generation than highly fractured 
rock mass or rock mass with minor or major cavities. The greater 

Table 5 
Linear regression model for predicting oversize fragments.  

Equation R2 Adjusted R2 P-value 

Y = -98.07 + 1.22C1 0.78 0.74 0.0038  

Table 6 
PLS regression summary for an increasing number of components.  

Components % Variance R2 

1 69.83 0.73 
2 81.56 0.77 
3 99.32 0.78 
4 100.00 0.79  

Fig. 7. Comparison of actual and predicted oversize fragment occurrence.  
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influence of solid and slightly fractured rock mass can be attributed to 
the more frequent occurrence of these rock mass types in the dataset; in 
fact, they comprise almost 99% of the total rock mass. 

The study reached the following conclusions:  

• An increasing percentage of solid rock mass leads to an increase in 
percentage occurrence of oversize fragments, while an increasing 
percentage of other rock types leads to a decrease.  

• The occurrence of oversize fragments can be predicted using a linear 
regression model involving only solid rock mass with an R2 of 0.78 or 
a PLS regression model involving all rock types with an R2 of 0.73.  

• For this study, multiple linear regression was able to predict oversize 
fragments because of the linear relationship between the variables. 
Also, the solid rock mass was in abundance that didn’t require any 
other rock type to influence the model. However, PLS regression can 
be a better choice if the relationship is not strictly linear, and the 
model is not influenced by only single rock type. 

The results look quite promising and suggest MWD data can be used 
to predict oversize fragments for a sublevel caving operation. This 
forecast can help mine planning engineers devise special handling pro-
cedures for these fragments. This is important, as they can seriously 
affect productivity and the success of any sublevel caving operation. 
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