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Abstract 

Background: Aging is associated with a decline in postural control and an increased 
risk of falls. The Center of Pressure (CoP) trajectory analysis is a commonly used method 
to assess balance. In this study, we proposed a new method to identify balance impair-
ments in older adults by analyzing their CoP trajectory frequency components, sensory 
inputs, reaction time, motor functions, and Fall-related Concerns (FrC).

Methods: The study includes 45 older adults aged 75.2(±4.5) years who were 
assessed for sensory and motor functions. FrC and postural control in a quiet stance 
with open and closed eyes on stable and unstable surfaces. A Discrete Wavelet Trans-
form (DWT) was used to detect features in frequency scales, followed by the K-means 
algorithm to detect different clusters. The multinomial logistic model was used to iden-
tify and predict the association of each group with the sensorimotor tests and FrC.

Results: The study results showed that by DWT, three distinct groups of subjects 
could be revealed. Group 2 exhibited the broadest use of frequency scales, less decline 
in sensorimotor functions, and lowest FrC. The study also found that a decline in senso-
rimotor functions and fall-related concern may cause individuals to rely on either very 
low-frequency scales (group 1) or higher-frequency scales (group 3) and that those 
who use lower-frequency scales (group 1) can manage their balance more successfully 
than group 3.

Conclusions: Our study provides a new, cost-effective method for detecting bal-
ance impairments in older adults. This method can be used to identify people 
at risk and develop interventions and rehabilitation strategies to prevent falls in this 
population.

Keywords: Balance, Wavelet analysis, Clustering, Classification, Sensorimotor, Ageing

Background
The postural control system plays a crucial role in maintaining the inherently unstable 
human body’s balance. This complex process integrates sensory input, primarily from 
vision, vestibular, and somatosensory systems, processes it within the Central Nervous 
System (CNS) and coordinates muscle activation to preserve stability and prevent falls 
[1]. The aging process is associated with the decline of these mechanisms and increases 

*Correspondence:   
hedjaf@ltu.se

1 Department of Computer 
Science, Electrical and Space 
Engineering, Luleå University 
of Technology, Luleå, Sweden
2 Department of Health, 
Education and Technology, Luleå 
University of Technology, Luleå, 
Sweden

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

A1
A2

A3
A4
A5
A6
A7
A8
A9

A10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-023-01146-3&domain=pdf


Page 2 of 18Jafari et al. BioMedical Engineering OnLine           (2023) 22:83 

the risk of falls [2, 3]. In fact, falls present a substantial public health issue worldwide, 
impacting individuals across all age groups but particularly impacting older adults [4]. 
Therefore, understanding the aging effects on the postural sway mechanism and identi-
fying and predicting balance impairments is an important issue that needs considerable 
attention.

To address this issue, it is crucial to understand the relationship between the sway gen-
erated by the CNS and the sensory information provided to the CNS in a closed-loop 
feedback system [5]. To study this relationship, posturography has been employed in 
numerous studies [6–10], which measure the trajectory of the individuals CoP by the 
force plate (statokinesigram). During a quiet stance, the CoP trajectories indicate the 
postural sway that occurs throughout the task, providing insights into an individual’s 
balance and postural stability [11]. In many research work, the CoP features, such as 
CoP ellipse area [12], path length [13], amplitude [14], the average CoP speed [15], the 
standard deviation, and Root Mean Square Error (RMSE) [16], are utilized in the time 
domain. Although the simplicity and the ease of interpretation in the time domain, it 
lacks to identify all oscillatory components of the sway and is less sensitive to subtle 
changes in postural sway [17].

As a result, some researchers have explored the frequency domain of the CoP in pos-
tural sway studies [18]. Various methods, such as fractional Brownian-motion analy-
sis [19], slow (rambling) and fast (trembling) components [20], have been proposed to 
decompose the CoP signal into different components. These methods can reveal differ-
ent aspects of postural control, and it has been argued that the slow component is in 
the sensory feedback loop while the fast component represents mechanical stiffness and 
motor commands [20, 21]. However, the literature has some variations and uncertainties 
regarding their interpretations and underlying mechanisms [22]. The Fourier transform 
is another technique used to analyze the CoP signal in the frequency domain [23, 24]. 
Although this method offers valuable insights into estimating power distribution within 
the frequency spectrum, it needs to provide information about various timescale cor-
rections that can occur at different time instances. Since the CoP signal exhibits nonsta-
tionary characteristics and its frequency content changes over time, using this method 
should be approached with caution [25]. On the other hand, wavelet analysis is a method 
that transforms the time series signal into various time scales and frequency bands, mak-
ing it suitable for intermittent, time-localized dynamics occurring in nonlinear systems 
with time delays [17].

Related work

Analyzing the CoP signal and the relationship between frequency components and the 
decline in sensory systems was first studied in [17]. The authors utilized discrete wave-
let analysis and discovered that older individuals exhibited reduced energy in longer 
timescales and increased energy in shorter timescales when vision was lost. This sup-
ports the idea that vision is used to control low frequency. However, the study had a 
small sample size. Moreover, it did not investigate the relationship with other sensory 
inputs, such as vestibular and proprioception, or fall risk factors like FrC. In ref. [26], 
authors used DWT for feature extraction of the CoP signal and discovered that the most 
critical information about postural sway was contained primarily in the lower frequency 
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levels. However, there are variations concerning the cutoff frequency values and the 
exact mechanisms underlying the different frequencies [27]. Consecutive research has 
suggested a more detailed analysis of the frequency bands. While it must be ampli-
fied that there are significant variations and overlaps between studies, it has been sug-
gested that approximately visual feedback is represented in (< 0.1) Hz , vestibular in 
(0.1− 0.5) Hz , cerebellum (0.5− 1) Hz and somatosensory refluxes, motor commands 
and stiffing strategies in ( > 1 Hz ) [25, 27–29]. This inconsistency highlights the need for 
further research and standardization in the field to understand better and interpret the 
frequency components of postural sway and their implications for balance and stability.

Recently, there has been a growing interest in using machine learning algorithms to 
predict balance impairments and falls [30]. By utilizing wavelet analysis and machine 
learning, the authors in [31] showed that somatosensory input changes have a vital 
role in postural control. In ref. [32, 33], they have used CoP signal and a classification 
algorithm to predict the risk of falls based on the history of falls. While fall history is 
essential to consider in balance impairment, other physical and psychological factors, 
such as FrC, also play a significant role in the postural sway of older adults [34]. Consid-
ering these factors when evaluating and addressing balance issues in this population is 
essential.

The impact of sensorimotor functions on CoP has been a primary focus of our lab [24]. 
Our research examined the CoP signal using the Power Spectral Density (PSD) of fre-
quency domains in both eyes-open and eyes-closed trials. Our findings revealed a strong 
correlation between sensorimotor decline and higher FrC among individuals who could 
not adapt their balance strategies when vision was unavailable.

Contributions

The primary objective of this article is to significantly advance our comprehension of the 
postural sway measures in older adults by investigating the CoP signal in a quiet stance. 
Furthermore, we aim to develop a prediction model that leverages sensorimotor decline 
and FrC to facilitate the early detection of balance impairment in older individuals. As a 
result, this work makes three notable contributions.

First, we carefully examine the CoP signal of older adults in challenging trials char-
acterized by the absence of visual feedback and the presence of unstable surfaces. We 
employ wavelet analysis to achieve this, allowing us to explore the detailed changes of 
the CoP signal during these various conditions. By conducting such an in-depth investi-
gation, we offer novel insights into the postural control mechanisms employed by older 
individuals, particularly when faced with situations that place higher demands on their 
balance abilities.

Second, we employ feature extraction techniques, specifically the discrete wavelet 
transform (DWT) and the k-means algorithm, to comprehensively cluster the CoP time 
series signal. This clustering approach allows us to identify distinct patterns and behav-
iors within the CoP data, helping us understand the underlying factors contributing to 
balance impairment in older adults. By outlining these patterns, we provide a framework 
for categorizing individuals based on their postural sway characteristics, which can have 
significant implications for personalized interventions and targeted treatment strategies.
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Finally, we employ multinomial logistic regression to establish a predictive model elu-
cidating the relationship between sensorimotor decline and FrC within the identified 
clusters. This modeling approach enables the identification of key predictors that can aid 
in the early identification of balance impairment in older individuals.

Overall, these contributions provide a comprehensive framework for investigating 
postural sway in older adults, offering novel insights into the underlying mechanisms 
and paving the way for the development of targeted interventions for the early detection 
and management of balance impairment.

Results
As the CoP signal in quiet stance contains significant components at low frequencies, we 
discovered that a 16-level decomposition allows for the differentiation of low-frequency 
scale components based on their relative energy disturbance. Decomposing the signal 
to fewer than 16 levels only indicates that most of the signal’s energy is in the low-fre-
quency range without providing specific information on how the energy is distributed 
across different low-frequency levels. Table 1 summarizes the frequency levels as well 
as the relative energy of each component. Figure 1 shows the relative energy of each fre-
quency component for all subjects in Stable Eyes Open (SEO) trials. It can be seen that 
the majority of energy is concentrated in frequency levels (D10) to (D16) [frequencies 
( 0.033− 3.19 Hz)], while other levels hold less significance.

In order to cluster the data, we employed three groups to determine if the method 
could identify three categories of frequency levels: low, medium, and high. Figure  2 
shows the result of clustering the relative energy distribution of each frequency com-
ponent of SEO trial into three groups. It can be seen from the figure that three dis-
tinct groups can be detected successfully based on the distribution of relative energy 

Table 1 Levels and relative energy of each component by discrete wavelet transform for all subjects’ 
center of pressure, in quite standing trial on a stable platform with eyes closed

Levels Frequency (Hz) Relative energy 
(mean± sd)%

D1 [750–1500] 0.025 ± 0.03

D2 [338–832] 0.013 ± 0.01

D3 [168–409] 0.009 ± 0.01

D4 [84.1–204] 0.008 ± 0.01

D5 [42.1–102] 0.013 ± 0.01

D6 [21–51] 0.027 ± 0.03

D7 [10.5–25.5] 0.089 ± 0.10

D8 [5.26–12.7] 0.397 ± 0.45

D9 [2.63–6.37] 1.571 ± 1.37

D10 [1.31–3.19] 5.469 ± 3.49

D11 [0.657–1.59] 15.184 ± 8.23

D12 [0.329–0.797] 17.119 ± 7.10

D13 [0.165–0.398] 14.047 ± 6.4

D14 [0.086–0.199] 14.544 ± 6.22

D15 [0.0488–0.099] 16.763 ± 10.46

D16 [0.033–0.041] 13.347 ± 12.40

Approx [0–0.00813] 1.367 ± 1.04
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across frequency scales. Group one (depicted in black–gray color) exhibits higher 
energy ( mean > 20% ) in very low-frequency scales [ D15 − D16 = (0.033− 0.1)Hz ]. 
Group two (illustrated with blue color) demonstrates a normal distribution of energy 
across frequency scales, with relative energy between ( 10% < mean < 20% ) in the fre-
quency range of [ D11 − D16 = (0.033− 1.6)Hz ]. Group three (depicted in red color), 
in contrast, displays dominant energy ( mean > 20% ) in higher frequency scales 
[ D11 − D12 = (0.32− 1.6)Hz].

Table 2 summarizes the statistical analysis of the contribution of FrC, sensory inputs, 
reaction time, and muscle strength across different groups. The table demonstrates 
that the second group exhibits lower FrC, quicker reaction times, increased pressure 

Fig. 1 Relative energy of each decomposed frequency level of the center of pressure in stable surface with 
open eyes trial for all the subjects in the data set

Fig. 2 Three clustered groups illustrating relative energy distribution across frequency scales for the center of 
pressure signal during static standing on a stable surface with open eyes. Solid lines represent mean values; 
dashed lines indicate individual subjects’ energy values within each group, and shaded regions depict the 
energy range for each cluster

147

148

149

150

151

152

153

154

155

156



Page 6 of 18Jafari et al. BioMedical Engineering OnLine           (2023) 22:83 

sensitivity (particularly in the right foot), superior proprioception in all assessed joints, 
and greater muscle strength compared to the overall average of all participants. In con-
trast, group 3, displays higher FrC, slower reaction times, and diminished pressure 
sensitivity in the right foot. Moreover, a higher number of individuals in this group expe-
rienced falls in the past six months. Conversely, Group 1 is characterized by a signifi-
cantly reduced sense of proprioception in the neck relative to the other groups.

Table 2 Descriptive value of each group’s fall-related concerns, sensory inputs, and muscle strength

Variables Name Group 1 ( n1 = 18) Group 2 ( n2 = 20) Group 3 ( n3 = 7) All(n = 45)

x1 FES-I ( mean± sd) 21 ± 4 19 ± 3 24 ± 7 21 ± 4.5

x2 Reaction time(ms) 
mean± sd

387 ± 59 361 ± 76 416 ± 141 397 ± 106

x3 Eyesight ( mean± sd) 0.78 ± 0.13 0.72 ± 0.22 0.74 ± 0.17 0.75 ± 0.18

x4 Touch sensation left 
foot (g)

3 ± 3.4 3.4 ± 3 3.25 ± 3.31 3.24 ± 3.14

x5 Touch sensation right 
foot (g)

3.73 ± 3.57 3.4 ± 3.05 4.6 ± 3.8 3.75 ± 3.34

x6 Neck proprioception 
left (degree)

4.6 ± 3.6 3.15 ± 3.6 3.75 ± 2.4 4 ± 3.15

x7 Neck proprioception 
right (degree)

4.54 ± 3.79 3.28 ± 2.57 3.7 ± 2.27 3.97 ± 2.99

x8 Knee proprioception 
left (degree)

7.25 ± 6.28 5.42 ± 5.91 6.48 ± 3.0 6.32 ± 5.68

x9 Knee proprioception 
right (degree)

6.47 ± 5.12 5.08 ± 3.84 6.9 ± 3.43 5.6 ± 3.76

x10 Ankle proprioception 
left (degree)

4.73 ± 3.9 4.05 ± 2.17 4.67 ± 2.12 4.61 ± 2.93

x11 Ankle proprioception 
right (degree)

5.79 ± 5.05 4.39 ± 2.44 5.81 ± 3.9 5.13 ± 3.9

x12 Hip extension left 
(N.m)

45.33 ± 18.46 49.43 ± 16.96 48.88 ± 20.11 47.29 ± 19.89

x13 Hip extension right 
(N.m)

50.62 ± 22.84 53.14 ± 20.84 51.10 ± 21.52 51.68 ± 22.86

x14 Hip abduction left 
(N.m)

48.22 ± 21.07 54.36 ± 22.4 51.36 ± 25.63 51.19 ± 23.73

x15 Hip abduction 
right(N.m)

54.38 ± 22.93 58.06 ± 19.93 52.79 ± 31.16 55.53 ± 24.87

x16 Knee extension left 
(N.m)

86.18 ± 26.15 89.5 ± 19.01 87.05 ± 29.71 86.61 ± 29.04

x17 Knee extension right 
(N.m)

79.94 ± 26.51 87.88 ± 28.94 87.38 ± 25.87 84.25 ± 29.83

x18 Knee flexion left 
(N.m)

66.08 ± 19.31 73.37 ± 27.54 67.86 ± 22.67 67.79 ± 24.51

x19 Knee flexion right 
(N.m)

69.45 ± 22.51 76.46 ± 29.85 69.58 ± 24.28 70.45 ± 26.87

x20 Ankle dorsal flexion 
left (N.m)

21.66 ± 5.39 26.15 ± 6.23 20.74 ± 9.1 21.79 ± 7.91

x21 Ankle dorsal flexion 
right (N.m)

23.59 ± 6.8 24.24 ± 13.73 22.43 ± 7.8 23.01 ± 3.01

x22 Ankle plantar flexion 
left (N.m)

83.89 ± 34.46 88.41 ± 32.71 83.34 ± 29.48 85.48 ± 35.23

x23 Ankle plantar flexion 
right (N.m)

82.20 ± 26.27 86.75 ± 34.9 77.86 ± 26.60 81.79 ± 35.53

x24 Falls history 33.3 % 20% 43% 29%
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Tables 3 and 4 offer a more detailed understanding of the relationship between sen-
sorimotor function, as shown by the multinomial logistic regression results. Table 3 
presents the coefficients, parameters of the model, and the error of prediction accord-
ing to (4) where the probability of being in group 1 versus group 3 is calculated, where 
Table  4 presents the model’s coefficient, parameters of the probability of being in 
group 2 versus 3, and the relative error of prediction. The small p value ( < 0.05 ) of 
Falls Efficacy Scale-International (FES-I) FES-I ( x1 ), reaction time ( x2 ), touch sensa-
tion of both left and right foot ( x4, x5 ), neck proprioception ( x6 ), knee proprioception 
( x8, x9 ), ankle proprioception of left foot ( x10 ) and hip muscle strength ( x13 ) indicates 
their significant contribution to the clustering of all groups. Eyesight ( x3 ) and knee 
muscle strength ( x16 ) also play crucial roles in distinguishing between group 2 and 
group 3. Furthermore, hip and ankle muscle strength x14, x15, x22 are significant fac-
tors in determining the probability of an individual belonging to group 1 as opposed 
to group 3.

The results of this study reveal that individuals with better sensory input functionality, 
more efficient motor systems, faster reaction time, and fewer concerns about falls (group 
2) tend to utilize a wide range of frequency scales of CoP during quiet standing (group 

Table 3 Model parameters for the probability of the center of pressure data being in group 1 versus 
group 3 based on the sensorimotor functions and fall-related concerns variables

∗ Significantly different (p value < 0.05)

Variables p value β coefficients Standard error of 
coefficient estimates

95% lower bound 95% upper bound

36.86 34.46 − 30.7 104.4

x1 0.0006∗ − 2.27 0.66 − 3.6 − 1

x2 0.003∗ 95.087 32.05 32.3 157.9

x3 0.14 − 26.52 18.3 − 62.4 9.3

x4 0.03∗ 2.97 1.4 0.2 5.7

x5 0.005∗ − 3.36 1.2 − 5.7 − 1

x6 0.000003∗ 4.9 1.06 2.8 7

x7 0.04∗ 1.26 0.67 − 0.1 2.6

x8 0.002∗ 1.73 0.56 0.6 2.8

x9 0.0001∗ − 3.3 0.8 − 5 − 1.8

x10 0.0001∗ − 3.98 1.07 − 6.1 − 1.9

x11 0.27 − 0.84 0.77 − 2.4 0.7

x12 0.61 − 23.21 46.25 − 113.9 67.4

x13 0.03∗ − 151.64 71.1 − 291 − 12.3

x14 0.0001∗ 229.53 60.6 110.8 348.3

x15 0.0004∗ − 199.43 56.4 − 310.1 − 88.8

x16 0.12 67.11 44.1 − 19.4 153.6

x17 0.06 − 87.52 46.6 − 178.9 3.9

x18 0.727 − 13.88 39.78 − 91.9 64.1

x19 0.998 0.06 42.4 − 83 83.2

x20 0.4847 44.53 63.72 − 80.4 169.4

x21 0.1565 82.89 58.5 − 31.8 197.5

x22 0.04∗ − 118.48 57.7 − 231.6 − 5.4

x23 0.39 39.84 46.5 − 51.3 131

x24 0.12 8.33 5.36 − 2.1 18.9

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179



Page 8 of 18Jafari et al. BioMedical Engineering OnLine           (2023) 22:83 

2). In contrast, subjects experiencing sensorimotor function decline and increased fall 
concerns either rely on very low-frequency scales (group 1) or higher-frequency scales 
(group 3) in their CoP usage.

Discussion
The study’s findings suggest that while both group 1 and group 3 exhibit declines in sen-
sorimotor functions and increased fall concerns, group 1 demonstrates less sensorimo-
tor function decline and fewer fall concerns than group 3. Notably, subjects unable to 
complete all trials belong to group 3, as discussed further below. This finding can help 
address the ambiguities in the literature regarding whether balance impairment occurs 
in higher [17, 35] or lower frequency scales [24]. Our results indicate that both scales 
can be linked to balance impairment, although individuals who utilize lower frequency 
strategies seem to maintain balance more successfully than those who rely on higher fre-
quency scales. The most effective balance strategy (group 2) also utilizes a normally dis-
tributed range of high to low-frequency scales.

Figure 3 shows the response of each group in relative energy of wavelet decomposition 
to the more challenging trials of Stable Eyes closed (SEC),Unstable Eyes Open (UEO), 

Table 4 Model parameters for the probability of the center of pressure data being in group 2 versus 
group 3 based on the sensorimotor functions and fall-related concerns variables

∗ Significantly different (p value < 0.05)

Variables p value β coefficients Standard error of 
coefficient estimates

95% lower bound 95% upper bound

114.3 41.3 33.5 195.1

x1 0.00005∗ − 3.6 0.8 − 5.2 − 2.1

x2 0.004∗ 89.2 31.1 28.2 150.1

x3 0.007∗ − 46.64 17.4 − 80.7 − 12.6

x4 0.008 ∗ 3.8 1.43 1 6.6

x5 0.005∗ − 3.8 1.34 − 6.4 − 1.2

x6 0.001∗ 3.3 0.9 1.3 5.2

x7 0.83 − 0.16 0.8 − 1.7 1.4

x8 0.004∗ 1.3 0.45 0.4 2.2

x9 0.00002∗ − 2.9 0.7 − 4.3 − 1.6

x10 0.015∗ − 1.8 0.7 − 3.4 − 0.4

x11 0.08 − 1.3 0.8 − 2.9 0.2

x12 0.08 86.3 41.03 5.9 166.8

x13 0.03∗ − 85.6 61 − 204.5 33.2

x14 0.15 80.43 44.5 − 6.7 167.6

x15 0.07 − 127.88 52.2 − 230.2 − 25.5

x16 0.01∗ 44.46 43.7 − 41.3 130.3

x17 0.30 − 25.97 50.11 − 124.2 72.2

x18 0.60 − 62.54 42.7 − 146.2 21.1

x19 0.14 − 7.10 47.2 − 99.7 85.5

x20 0.88 67.14 63 − 56.3 190.5

x21 0.11 91.6 58.15 − 22.4 205.6

x22 0.2 − 71.3 54.6 − 178.3 35.7

x23 0.37 − 41.5 46.16 − 132 48.9

x24 0.6 3.06 6.1 − 8.9 15
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and Unstable Eyes Closed (UEC). Groups 1 and 2 changed to a more high-frequency 
strategy in case of challenging trials, while smaller adaptations were seen for group 3. 
Interestingly, all subjects in the data set use the same balance strategy of frequency usage 
in the most challenging trials of UEC with the dominant frequency level D12 [0.329−
0.797] Hz. This suggests a common approach to maintaining balance in the face of 
extreme difficulty. Groups 1 and 2, on average, decreased the energy usage in lower fre-
quencies level and increased the usage of the higher frequency levels from losing vision 
and standing on an unstable surface. This is in line with previous research showing 
increased usage of higher frequencies due to more challenging tasks [36]. As in many 
literature, lower frequencies of CoP are related to visual feedback [27]; this means this 
group of subjects rely more on vision, and in case of vision loss, they search for other 
feedback sensorimotor functions.

Fig. 3 Mean value of relative energy of different frequency scales of CoP trajectory for three different groups 
in the trials of SEO (solid line), SEC (dashed line), UEO (dotted line) and UEC (solid-circle line)
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Group 2, on the other hand, decreases its usage of lower frequency levels when closing 
its eyes on a stable surface and decreases it even more on an unstable surface. In con-
trast, group 3 seems to exhibit a different strategy altogether, with a slight change in fre-
quency usage towards lower frequency levels, and mainly usages higher frequency levels 
with the dominant frequency levels D11,D12 [0.329−1.6] Hz for all trials. Considering 
that these frequency bands are argued to mainly to vestibular and cerebellar functions 
[27], subjects in group 3 may rely more on these systems rather than visual feedback. 
Another interpretation could be that change toward higher frequencies is related to a 
stiffening strategy that increases muscle co-contractions [37], however, stiffing is argued 
to be in the even higher frequencies ( > 1 Hz ). While the current study observed bal-
ance impairments and their relationship to the decline in sensorimotor function and fall 
concerns in different groups, the investigation of the relationship between frequency 
scales and specific neural systems was not within the scope of this study. Therefore, any 
hypotheses regarding the neural mechanisms underlying the observed balance impair-
ments in different groups should be considered preliminary, and further research would 
be necessary to confirm these hypotheses.

To validate our findings, we compared the CoP trajectory of two healthy young sub-
jects (29 years old) in SEO trials with the subjects who were unable to complete the more 
challenging trials of UEO and UEC. Figure  4 presents the relative energy of each fre-
quency level for these individuals. As depicted in the figure, the healthy young subjects 
belong to group 2, while those who were unable to continue the challenging trials belong 
to group 3. This indicates that group 2 seems to have the strategy of usage of frequencies 
similar to younger adults. On the other hand, aging appears to lead to a shift towards 
using higher frequencies (as observed in group 3) or lower frequencies (as observed in 
group 1) during balance control. Group 3 showed a higher incidence of falls in the past 
six months and difficulty completing postural control trials compared to group 1. This 
suggests that group 1 may have a more successful strategy for reweighing sensorimotor 
information and maintaining balance compared to group 3. 

Fig. 4 Relative energy of different frequency scales of CoP trajectory in SEO trial for healthy young subjects 
(black solid-star lines) and older adults who could not continue challenging trials (red solid-triangle line)
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Limitation and future direction

Although our proposed methodology provides valuable results in distinguishing the bal-
ance impairment in older adults, several limitations should be considered. First, a larger 
population of data is needed to guarantee the relationship between sensorimotor and 
CoP and generate our predictive model. Furthermore, it is essential to have a sensitive 
test for the vestibular input. Third, with a larger sample size, other prediction methods 
can be used to find a more accurate model. Finally, a more comprehensive follow-up 
study is needed to investigate the effect of intervention and rehabilitation studies on 
the sensorimotor functions that are significantly different in the groups to see if the fre-
quency strategy will change among groups.

Conclusions
This study aimed to enhance our understanding of the CoP signal in the postural sway 
of older adults and develop a prediction model based on sensorimotor functions decline 
and FrC that can be used for the early detection of balance impairment in older indi-
viduals. Our results revealed that wavelet decomposition’s relative energy could provide 
valuable insights into balance behavior. We identified three distinct cluster groups with 
differing balance behaviors. Our findings suggest that individuals with better sensori-
motor functions and fewer concerns regarding falls utilized a wider range of frequency 
scales. Conversely, those with sensorimotor decline and fall-related concerns may use 
either very low-frequency scales or higher-frequency scales, and those using lower-fre-
quency scales can manage their balance more successfully. Overall, our study presents a 
cost-effective approach to detecting balance impairments in older adults, and the pre-
dictive model can be used to develop interventions and rehabilitation strategies to pre-
vent falls.

Methods
Informed written consent was secured from every participant involved in the research. 
The study’s design received approval from the Umeå Regional Ethical Review Board in 
Sweden (reference number 2015-182-31), and it adhered to the principles outlined in the 
1964 Helsinki Declaration.

Sample

This study is part of the BAHRT (Balancing Human and Robot) project, in which partici-
pants were recruited from a community in Northern Sweden. Exclusion criteria for this 
study included having an MMSE (Mini-Mental State Examination) score of 23 or below, 
which indicates a level of cognitive decline that makes it difficult to follow instructions, 

Table 5 Characteristics of the participants

 Characteristics (mean ± sd) All (n =45) Women (n = 27) Men (n = 18)

Age 75.2 ± 4.5 76.0 ± 5.0 73.9 ± 3.3

Height (cm) 167.33 ±9.9 161.78 ± 9.6 176.47 ± 8.9

BMI 26.07 ± 3.76 26.05 ± 3.1 26.10 ± 2.8
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being unable to complete the walking task in the Short Physical Performance Battery, 
and being unable to read large print (80pts block letters) in the MMSE. The analysis 
included 45 participants, comprising 27 women and 18 men, with an average age of 
75.2 (±4.5) years. Table 5 summarizes the characteristics of the participants.

Data collection

Postural behavior was assessed during quiet stance by a force plate (Kistler, Switzerland) 
sampling at 3000 Hz across four distinct 30-s test scenarios: (1) stable (rigid) surface with 
open eyes: SEO, (2) stable surface with eyes closed: SEC, (3) unstable (soft) surface with eyes 
open: UEO, and (4) unstable surface with closed eyes: UEC. To standardize foot placement, 
each test was conducted with feet side by side and the first metatarsal heads at a distance 
equal to 75% of the width between the anterior superior iliac spines, with a self-chosen rota-
tional angle of the foot placement. Participants were instructed to stand up straight, focus 
on a dot on the wall, and remain as still as possible throughout the test. For the eyes-closed 
trials, participants first looked at the dot on the wall before closing their eyes. A trigger but-
ton was used to set a marker in the measurement to indicate the test’s initiation when the 
eyes were closed, and the posture was stable.

Sensorimotor such as eyesight, touch sensation, reaction time, proprioception of the 
neck, knee, and ankle joints, as well as strength of lower limb muscles of each participant 
was measured in our laboratory in a comprehensive protocol described by details in [38].

FrC was measured by FES-I instrument. The FES-I assesses an individual’s level of con-
cern about falling while performing various tasks and has been proven to be a valid and reli-
able tool for this purpose. Scores range from 16 to 64, with higher scores indicating greater 
concern about falling [39].

Structural design

Figure 5 illustrates the diagram of the proposed method. First, raw data of CoP of the sub-
jects are preprocessed. The data are detrended and filtered with Butterworth low pass filter 
with a 10 HZ cutoff. Second, in the feature extraction phase, the DWT separates each time-
series signal into multiple frequency components with their own relative energy. Third, the 
k-means clustering algorithm is used to identify distinct groups within the data. After ana-
lyzing these groups, they are labeled accordingly. Finally, a multinomial logistic model is 
utilized to determine the contribution of each group to sensorimotor functions and FrC, as 
well as to predict the future signal. Algorithm 1 presents the overall algorithm of the pre-
sented method.

In this study, as the movements in the sagittal plane are predominant during a quiet 
stance, only the anterior–posterior direction of the CoP signal is utilized. All participants 
(45 individuals) were able to complete the SEO trial, whereas in the more balance chal-
lenging trials of (SEC, UEO and UEC) three subjects could not perform the trial success-
fully. We have discussed their balance behavior in the discussion section. It is important 
to note that we exclusively used SEO data for clustering and developing a model to predict 
balance. Our aim is to demonstrate that, in the future, an affordable and straightforward 
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posturography test could be employed to predict balance impairments. Nonetheless, we 
utilized other challenging trials SEC, UEO, and UEC to analyze and validate our findings.

Features extraction by DWT

By maximal overlap DWT the preprocessed signal is decomposed into different signal 
components at different timescale resolutions or equivalently into different frequency 

Sensorimotor inputs

Fall-related concerns

Muscle Strengths

Reaction time

Group 1

Group 2

Group 3
f

(c)  Feature extraction by

Discrete Wavelet Transform

(d) Clustering(e) Classification model

(a) Person standing on
the force plate

 (b) CoP data measured

Fig. 5 Diagram of the proposed structure to detect different groups of subjects based on the CoP trajectory 
and identified sensory contributions. a A subject will stand as still as possible on the force plate. b the CoP 
trajectory is measured in different trials of standing on stable and unstable surfaces with eyes open and 
closed c the data is filtered, and by DWT, features of the signal are extracted. By the k-means algorithm, the 
data of all participants are clustered into three groups. d based on the sensorimotor functions, FrC and their 
balance performance, and with utilizing the multinomial logistic classification method, the relationship 
between each group of subjects and their decline in sensorimotor functions and balance performance is 
detected
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bands. Each component has relative energy, representing that frequency band’s impor-
tance in the original signal [40].

The wavelet decomposition process includes two digital filters: low-pass or high-pass 
filters. The first level of the DWT can be described as follows:

where x[n] represent the origin signal, h[n] denotes the low pass filter coefficient and 
g[n] signifies the high pass filter coefficient. The first equation, which calculates the 
approximation coefficients, is associated with the low-frequency components of the sig-
nal. On the other hand, the second equation computes the detail coefficients, capturing 
the high-frequency components [41]. Later, the relative energy of each component at 
each frequency level ( i = 1, . . . , k ) can be calculated as

(1)A[n] =(x ∗ h)[n] =
∑

k

x[k] · h[n− 2k]

(2)D[n] =(x ∗ g)[n] =
∑

k

x[k] · g[n− 2k]

Fig. 6 A 16-level discrete wavelet transform decomposition of a random subject’s center of pressure signal in 
the sagittal plane in standing on a stable surface with open eyes
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where c notes all decomposed frequency components including details and approxima-
tion, j represents discrete CoP location. Figure 6 shows the DWT decomposition of a 
random subject’s CoP signal and Algorithm 2 describes the implementation process.

Clustering

The relative energy of each frequencies components is then used for clustering the 
subjects into different groups. Here, we used a k-means clustering algorithm for its 
simplicity and scalability of clustering matrices. K-means is a widely used unsuper-
vised learning algorithm designed for partitioning a data set into distinct groups or 
clusters based on the similarity between data points [42]. The algorithm operates on 
a matrix of data, where in our case, the rows represent the observation of 45 subjects, 
and each column corresponds to the relative energy of each component as the fea-
tures. K-means aims to minimize the within-cluster sum of squares (WCSS), which is 
the sum of squared distances between each data point and the centroid of the cluster 
it belongs. To achieve this, the algorithm initializes K centroids randomly or through 
a predetermined method, then iteratively refines these centroids by assigning each 
data point to the nearest centroid and updating the centroid as the mean of all points 
in the cluster. This process continues until the centroids converge, partitioning the 
data matrix into K homogeneous clusters [43]. The implementation algorithm is pre-
sented in the following.

(3)Ei% =

∑
j(cij)

2

∑
k

∑
j(cij)

2
100%
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Multinomial logistic model

To analyze the obtained cluster, it is essential to understand the relationship between 
these groups and the sensorimotor and FrC. To achieve this, we employed the mul-
tinomial logistic model to find the interaction of sensorimotor and FrC with the dif-
ferent clusters, providing valuable insights into the underlying neural processes. 
Moreover, the resulting model was a robust prediction tool for future posturography 
signals.

Multinomial logistic regression is an extension of binary logistic regression used for 
predicting outcomes of categorical dependent variables with more than two classes [44]. 
It estimates the probabilities of each class by modeling the relationship between a set 
of predictor variables and a categorical outcome. The algorithm uses a series of binary 
logistic regression models, one for each class, with a common reference category.

The basic equation for multinomial logistic regression can be expressed as

where P(Yi = k) denotes the probability of the i-th observation belonging to class k, Xij 
represents the value of predictor j for observation i, βkj are the coefficients correspond-
ing to predictor j for class k, and K is the total number of classes. Multinomial logistic 
regression offers robust implementation due to its lack of requirements for normality 
or linearity in the data. This flexibility enables the model to handle various types of rela-
tionships and data distributions effectively, making it a versatile choice for many classifi-
cation tasks [45]. The implementation algorithm is presented in the following:

Feature selection is performed using MATLAB’s “modwt” function. Meanwhile, the 
“kmedoids” function in MATLAB is employed for clustering, and the “mnrfit” function 
is utilized for logistic regression analysis.

Abbreviations
CNS  Central nervous system
CoP  Center of pressure
RMSE  Root mean square error
PSD  Power spectral density
FrC  Fall-related concerns
DWT  Discrete wavelet transform
SEO  Stable eyes open
SEC  Stable eyes closed
UEO  Unstable eyes open
UEC  Unstable eyes closed

(4)P(Yi = k) =
eβk0+βk1Xi1+···+βkpXip

∑K
j=1 e

βj0+βj1Xi1+···+βjpXip
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FES-I  Falls efficacy scale-international
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