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Abstract In this work, the essential work of fracture
(EWF) method is introduced for a peridynamic (PD)
material model to characterize fracture toughness of
ductile materials. First, an analytical derivation for the
path-independence of the PD J -integral is provided.
Thereafter, the classical J -integral and PD J -integral
are computed on a number of analytical crack prob-
lems, for subsequent investigation on how it performs
under large scale yielding of thin sheets. To repre-
sent a highly nonlinear elastic behavior, a new adap-
tive bond stiffness calibration and a modified bond-
damage model with gradual softening are proposed.
The model is employed for two different materials: a
lower-ductility bainitic-martensitic steel and a higher-
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ductility bainitic steel. Up to the start of the soften-
ing phase, the PD model recovers the experimentally
obtained stress–strain response of both materials. Due
to the high failure sensitivity on the presence of defects
for the lower-ductilitymaterial, the PDmodel could not
recover the experimentally obtained EWF values. For
the higher-ductility bainiticmaterial, the PDmodelwas
able to match very well the experimentally obtained
EWF values. Moreover, the J -integral value obtained
from the PDmodel, at the absolutemaximum specimen
load, matched the corresponding EWF value.

Keywords Peridynamics · J -integral · Essential work
of fracture · Softening · Thin sheet

1 Introduction

The peridynamic (PD) theory is a nonlocal formula-
tion of solid mechanics, originally introduced for han-
dling crack initiation, extension and final failure of
a body, without the need of supplementary methods
(Silling 2000; Silling and Askari 2005). PD is based
upon integro-differential equations, thereby avoiding
spatial derivatives, which are not defined at disconti-
nuities, such as crack surfaces. For brittle and small
scale yielding fracture, in which methods from linear
and nonlinear elastic fracturemechanics apply, fracture
characterization can be achieved with a single param-
eter, the J -integral value, for example. In certain cases
of large scale yielding, ductile failure may be similarly
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characterized by the essential work of fracture (EWF)
method.We next briefly review these concepts from the
classical theory and, when available, their perdynam-
ic-based versions.

1.1 The classical and the PD J -integral

The J -integral is an expression for calculating the strain
energy release rate of a cracked body, or the amount of
energy available at the tip of a crack to form new crack
surfaces as the crack extends (Rice 1968). It is a firmly
established parameter that applies both to linear and
nonlinear elastic materials. The J -integral is used as
a toughness measure and failure criterion, for ranking
of materials and for dimensioning, but it can also be
used for testing the accuracy of material models, such
as PDmodels. Furthermore, since the J -integral can be
expressed and discretized in various ways, there is also
a need for comparison of different approaches. In the
PD literature, both Rice’s classical J -integral (JR) and
the nonlocal PD formulation of Rice’s J -integral (JPD)
have been studied for testing the expressions and for
testing PD numerical implementations, in comparison
with analytical values, experimental data and the finite
element method (FEM) of the classical model.

The JPD has been derived by Silling and Lehoucq
(2010) for state-based PD, based on an energy balance
approach. Later, Hu et al. (2012) presented a bond-
based JPD, using an infinitesimal virtual crack extension
method. The bond-based JPD expression is a special
case of the more general state-based JPD expression.

The displacements are the principal unknowns in
PD, from which other quantities subsequently can be
obtained. A general expression of the contour JR as
a function of displacement derivatives was derived by
Bruck (1989) and Hart and Bruck (2021). A rectangu-
lar integration treatment of the JR has been given by
Stenström and Eriksson (2019) for use in PD.

Both the JR and JPD expressions have for separate
studies shown results in line with analytical express-
ions, experimental results and FEM calculations of the
classical model.

Hu et al. (2012) evaluated the JPD on single and
double edge notched PD models, and with refined dis-
cretization, achieved results approaching JR of FEM
solutions of the classical model. In the formulation of
Hu et al. (2012), the stress tensor is considered through
computation of a set of force interactions over inner and

outer regions associated with the contour integral. The
width of these regions depends on the degree of non-
locality of the JPD. Panchadhara and Gordon (2016)
used the method of Hu et al. (2012), but approximated
the stress tensor of JPD from force interactions at the
contour. Details were left out, but the number of inter-
actions to account for is stated by the authors to be
fewer. Nevertheless, it need to be noticed that in Hu et
al.’s expression, the force interactions is counted only
from one region to the other and not from both.

Breitenfeld et al. (2014) computed the JR by using
a material point method (particle-based) and the dis-
placement gradient of state-based PD. The displace-
ment boundary condition along a circular boundary of
a mode I PD specimen corresponded to the classical
analytical K-field solution. Using a rectangular JR, the
K-field solution and the corresponding PD model were
compared, while varying the lattice orientation.

Stenström and Eriksson (2019) also used the JR
expression by writing it as a function of displacement
derivatives and approximating the displacement deriva-
tives by using the central difference scheme on the
materialmodel’s displacement field, as usedbyHuet al.
(2012) for the JPD. The specimen was a central crack
with mode I stress boundary condition along a rect-
angular boundary, extracted from an exact analytical
stress–strain-displacement solution. The JR was then
applied on the classical exact analytical displacement
field and on the corresponding PD model and com-
pared, while studying the convergence.

The above studies were for mode I loading. Pan-
chadhara and Gordon (2016) studied the JPD for mode
I edge notch and mode II Kalthoff-Winkler PD mod-
els, with results in agreement to published experimen-
tal results. Jung and Seok (2017) studied fatigue crack
modeling formixed-mode loading and decomposed the
JPD into mode I and II, with comparison to experimen-
tal results. Furthermore on mixed mode, Imachi et al.
(2018) applied the JR to inclined cracks of rectangular
and L-shaped PD specimens, with close resemblance to
experimental results. Imachi et al. derived the displace-
ment derivatives based on the moving least-squares
approximation.

Considering the area/domain formulation of J , the
area JR has been studied within PD by Imachi et al.
(2018), Fallah et al. (2020) and Stenström and Eriksson
(2021). Imachi et al. used the area formulation in the
above previously mentioned mixed mode study. Fallah
et al. derived the bond-based PD stress tensor and used
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it for calculating the area JR and compared it to the
JPD of Hu et al. (2012). Lastly, Stenström and Eriksson
carried out a comparison of the contour JR and the area
JR. Nevertheless, the studies does not compare the JPD
and JR integrals.

The various J expressions of the above mentioned
studies show in general errors less than one percent
when applied on PD displacement fields and compared
with the analytical expressions of a classical model
or FEM approximations of the JR. With finer PD dis-
cretization, the error can bemuch less than one percent,
and vice versa for coarser discretization. When the J
expressions are applied to classical exact analytical dis-
placement solutions, the error is less than a per mille
from J0 = K 2

I /E (Breitenfeld et al. 2014; Stenström
and Eriksson 2019).

In the present study, we will use the following nota-
tion of J :

– Classical J computed on displacements of a classi-
cal continuummechanics material model is termed
JR.

– PD J computed on displacements of a PD material
model is termed JPD.

– JR and JPD values computed on a different model
than their natural one is termed J ∗

R and J ∗
PD, respec-

tively.
– Critical J are denoted by adding a ‘c’, e.g. J ∗

Rc.
– Lastly, the classical expression K 2

I /E = J0.

The reasonwhywewould like to compute J on a differ-
ent model than their natural one is that the contour JR
is less affected by PD boundary effects of narrow lig-
aments of double edge notched tension (DENT) spec-
imens typically used in the EWF method. As JPD is
computed along a strip, it comes closer to the bound-
aries of a coarsely discretized ligament. However, an
advantages of JPD is that it can average out local distur-
bances of the displacement field, similar to the classical
area JR.

1.2 The EWF method to evaluate fracture toughness

The EWF method considers the fracture energy with
two parameters; the energy required to form new crack
surfaces and the energy dissipated during plastic defor-
mation. The former one can be approximated to the crit-
ical Jc as long as a set of requirements are met. Since
J only considers crack initiation resistance, the EWF

method may be preferable over J for studying overall
fracture resistance, if there is a significant energy con-
tribution from plastic yielding (Frómeta et al. 2020).

Broberg (1968) laid the foundation for the deter-
mination of fracture toughness of thin sheet material.
The region in front of a crack tip can be separated
into an inner and outer zone. The inner zone is the
fracture process zone (FPZ). For thin ductile materi-
als, it is possible to identify the FPZ by necking. In
plane stress, the necking region is dependent on mate-
rial thickness. The energy dissipated from the FPZ can
be seen as a thickness dependent pseudo material con-
stant, while the outer much larger region is charac-
terized by plastic deformation. Cotterell and Reddel
(1977) defined the conditions for the determination of
EWF for thin sheets with regard to ligament length
and thickness. An experimental method for EWF to
be applied to thin sheet metal was proposed by Mar-
chal andDelannay (1996). The EWFmethod have been
used successfully on a wide range of materials includ-
ing polymers (Bárány et al. 2010), aluminium (Vendra
et al. 2017), and steel (Efthymiadis et al. 2017). Casel-
las et al. (2017) and Frómeta et al. (2020) showed the
possibility of fracture toughness determination using
the EWF method for several advanced high-strength
steel (AHSS) grades like, dual and complex phase,
press hardened, TRIP (transformation induced plastic-
ity) and high manganese steels.

1.3 Peridynamic material models and their calibration

In ductile failure problems in which the EWF can be
useful, the material response is nonlinear. To represent
that behavior, a PD model requires calibration of the
parameters that determine the force-strain relationship
of a PD bond. Calibration for linear-elastic material
response is simple and it is based on enforcing a match
between the strain energy density of a classical and of
a PD material. For a nonlinear material response, this
calibration can be accomplished in several ways.

PD constitutive models can be categorized into
bond-based, ordinary state-based, and non-ordinary
state-based, with the bond-based type being a special
case of the ordinary state-based type. In bond-based
PD, the pairwise force between two material points
depends only on the two material points and no other
points (Silling 2000). In state-based PD, deformation
at each bond depends on the collective deformation
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in its vicinity (Silling et al. 2007). In ordinary state-
based PD, the pairwise force acts in the direction of
the corresponding bond, a restriction that is relaxed
for non-ordinary state-based PD. Classical constitutive
models can be “directly embedded” in PD formulations
via the so-called correspondence models (initiated in
Silling et al. 2007),which tend to be of the non-ordinary
kind but suffer from zero energy modes instabilities in
regions of high strain gradients, such as around crack
tips. Various stabilization methods have been proposed
to resolve this issue, among them being the bond-
associated PD models, which provide accurate and
stable correspondence-based PD solutions (Breitzman
and Dayal 2018; Chen 2018; Gu et al. 2019; Behzadi-
nasab and Foster 2020; Behzadinasab et al. 2021).

Theoriginal constitutive law is theprototypemicroe-
lastic brittle material (Silling 2000), accompanying a
linear elastic bond law up to a sudden failure, to mimic
brittle-type failure. Subsequently, in order to better cap-
ture quasi-brittle damage and failure, models in which
bond force-strain features a softening phase before full
bond failure was developed (Macek and Silling 2007).
These models utilize, for example, a piecewise linear
representation for bond force in terms of bond relative
elongation, with ”bilinear” (linear up to max load, then
linear for the softening phase to zero force) and ”trilin-
ear” being the most popular. Multi-parameter models,
like the piecewise linear ones, are needed in order to
be able to match both the critical fracture energy and
strength of a material when using an arbitrary PD hori-
zon size.With a single-parameter bond-damagemodel,
like the prototype microelastic brittle model, one can
match, for example, the material’s fracture toughness
when using an arbitrary horizon size, but it can also
match the material’s strength only for a specific value
of the horizon size. That value, in many instances, ends
up being too small to be of practical use, since it leads
to very large-scale computational models.

Bilinear bond force-strain models have been stud-
ied previously for quasi-brittle materials, considering
crack nucleation (Silling et al. 2010) and crack prop-
agation (Zaccariotto et al. 2015; Niazi et al. 2021). In
these studies, curve fitting was used to match the bilin-
ear model to an experimental stress–strain response, at
the point where the stress–strain departs from linearity
and crack nucleation/propagation takes place. Bilinear
fitting for quasi-brittle materials have also been accom-
plished by use of material properties (Yang et al. 2018)
and by analytical formulas (Niazi et al. 2021). Bilin-

ear models have also been employed to model elasto-
plastic behavior ofmetals, considering high speed load-
ing (Macek and Silling 2007; Lee et al. 2016) and
crackmouth opening displacement (Yolum et al. 2016).
Material softening of quasi-brittle materials has as well
been studied, by using a trilinear law (Yang et al. 2018;
Niazi et al. 2021).

In state-based PD, the original constitutive model is
the linear peridynamic solid (Silling et al. 2007), later
accompanied by perfect plasticity (Mitchell 2011b),
visco-elasticity (Mitchell 2011a) and correspondence
models, reviewed in Mitchell et al. (2015).

Work on bond force-strain curves to match global
elasto-plastic behavior with hardening is sparse. One
study can be found, on state-based PD, where an
automated calibration method, together with manually
adjusted piecewise linear hardening, is employed to
model experimental tensile test of 304L stainless steel
(Littlewood et al. 2012; Littlewood 2015a). However,
since the purpose of these studies was to introduce the
reader to the PD theory, the bond calibration method
was not provided.

1.4 The objective and paper organization

The goal of this paper is to establish the use of the EWF
method with a PD model that employs nonlinear elas-
ticity for bond deformation, up tomaximumbond-load,
followed by bond-softening, to represent the deforma-
tion theory of plasticity and ductile failure. In this way,
the JPD can be used to characterize fracture for brittle
or elasto-plastic fracture problems in which small scale
yielding assumptions holds, and the EWF for elasto-
plastic fracture under large scale yielding that can be
reasonably approximated by the deformation theory of
plasticity.

The paper is organized as follows: we first introduce
the bond-based PD, JPD, JR and give a proof for the PD
J -integral path independence. In the section thereafter,
we describe the EWF and then give the algorithm (pro-
cedure) for the PD linear material model, the numer-
ical computation of the J -integrals, and their verifi-
cation for a number of linear example problems with
available analytical solutions for the classical model:
an infinite center cracked tension (CCT) specimen, a
finite CCT specimen, and a DENT specimen. We then
extend the model to include adaptive bond calibration
for nonlinear elastic behavior of AHSS grade speci-
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Fig. 1 Uniformly discretized peridynamic body Ω , showing point x’s interaction with one of its neighbors x′, within the regionHx of
radius δ. ξ = x′ − x is the relative position of the points, η = u′ − u is the relative displacement and f is the pairwise force

mens (therefore implementing the deformation theory
of plasticity). An AHSS grade is chosen because of its
Poisson’s ratio close to 1/3 fits well to a bond-based
constitutive equation. Using the so-calibrated nonlin-
ear model with brittle failure, the EWF is computed for
several ligament lengths of DENT specimens. In order
to better represent plastic dissipation, gradual soften-
ing is added. The last two sections present an in-depth
discussion and conclusions.

The major contributions are, therefore, the introduc-
tion of a new adaptive bond micromodulus calibration
method, and the extension of PD modelling to include
the evaluation of the EWF and its validation against
experiments.

2 Bond-based peridynamic theory

The peridynamic equation of motion of the material
point at position x at time t is given as (Silling 2000;
Silling and Askari 2005)

ρ(x)ü(x, t) =
∫
Hx

f
(

u
(
x′, t

) − u (x, t) , x′ − x
)
dVx′

+ b(x, t) ∀x ∈ Ω (1)

where Ω is the domain of the body, u is the displace-
ment vector field, ρ is the mass density and b is a pre-
scribed body force density. f is the pairwise force func-
tion (a vector) per unit volume squared, denoting the
force thematerial point at x′ exerts on thematerial point
at x. This interaction between pairs of material points is

called bond. The integral is defined over a regionHx of
radius δ, called the horizon, Fig. 1, which can be seen
as a sphere, disk or range, for 3D-, 2D- and 1D-models,
respectively. A suitable horizon size is chosen and the
material body discretized in accordance with problem
geometry, loading and desired accuracy of the results
(Silling 2016; Xu et al. 2018). Convergence studies
may be performed to justify the selection of horizon
and discretization. The horizon factor (Bobaru et al.
2009), m = δ/Δx , where Δx is the uniform grid spac-
ing, should in a plane square lattice arrangement have a
ratio of at least 3 (Silling andAskari 2005;Madenci and
Oterkus 2014) and in many cases 4 or higher (Ha and
Bobaru 2010; Henke and Shanbhag 2014; Dipasquale
et al. 2016), to provide grid independent crack growth
patterns. Studying the effect of increasing m is a so-
called m-convergence study (Bobaru et al. 2009).

Amaterial is calledmicroelastic if the pairwise force
between material points is derivable from a micropo-
tential ω (Silling 2000):

f(η, ξ) = ∂ω(η, ξ)

∂η
(2)

where ξ = x′ − x is the relative position of two mate-
rial points of the reference configuration, and η =
u

(
x′, t

)−u (x, t) = u′−u is the corresponding relative
displacement of the deformed configuration. A linear
microelastic material results in the micropotential

ω(η, ξ) = 1

2
c(||ξ ||)s2||ξ || (3)
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where s = ||ξ+η||−||ξ ||
||ξ || is the relative elongation of a

bond. Differentiation of Eq. (3) according to Eq. (2)
gives

f(η, ξ) = ∂ω(η, ξ)

∂η
= c(||ξ ||)s ∂||ξ + η||

∂η

= ξ + η

||ξ + η||c(||ξ ||)s
(4)

where (ξ +η)/||ξ +η|| = e, is a unit vector along a line
through the twopoints of a bond in the deformedconfig-
uration. As we assume that a material point x does not
interact with material points outside its horizon, f = 0
for ||ξ || > δ. The particular kernel of the integrand
in Eq. (1), here the ratio c(||ξ ||)/||ξ ||, is common for
peridynamic mechanical problems. Other kernels are
possible and the selection influences the nonlocality,
convergence, and thus the discretization applied (Chen
et al. 2016).

2.1 Micromodulus

The elastic stiffness of a bond is determined by the
micromodulus function c(||ξ ||), which is found by cal-
ibrating the peridynamic strain energy density against
the classical strain energy density, for a homogeneous
body under a) isotropic (dilatational) deformation and
b) pure shear (distortional) deformation. The micropo-
tential ω is the energy of a single bond with dimension
‘energy per unit volume squared’. The strain energy
density of a single point is therefore

W = 1

2

∫
Hx

ω(η, ξ) dVx′ (5)

The factor 1/2 appears as the points for a bond shares
the bond energy between them equally. For a 2D body

W = 1

2

∫

Hx

ω(η,ξ)dVx′

= c1s2t

4

2π∫

0

δ∫

0

ξξ dξ dθ = πc1s2tδ3

6
(6)

where t is the thickness of the body, and c1 comes
from assuming a constant micromodulus c(||ξ ||) = c1.
Isotropic deformation and plane stress give the classical
strain energy density W0 = 1/2 σi jεi j = Eε2/(1 − ν).
Setting W = W0 yields the corresponding micromod-
ulus:

c(||ξ ||) = c1 = 6E

π tδ3(1 − ν)
(7)

The isotropic and pure shear deformations must result
in the same c1, which for 2D plane stress restricts Pois-
son’s ratio to 1/3, and to 1/4 for 2D plane strain and
3D models (Silling 2000; Gerstle et al. 2005). This is
because the forces within a bond depends only on the
two material points of a bond (and no other points).
This restriction has been overcome for state-based PD
(Silling et al. 2007). However, an advantage of bond-
based PD is that it is computationally less expensive.

Other types of micromoduli (triangular, conical, hi-
gher degree polynominal) are derived in a similar fash-
ion as the constant one and are available for 1D (Bobaru
et al. 2009), 2D (Ha and Bobaru 2010) and 3D (Silling
and Askari 2005). Notice that these micromoduli are
calculated assuming a continuous body, i.e. an infinite
number of points inside the horizon. For a finite number
of points in this region, themicromodulus is, depending
upon the type, more or less dependent upon the number
of points there; see Eriksson and Stenström (2020a, b)
for 1D and (Stenström and Eriksson (2021), App. A)
for 2D. This dependence must usually be taken into
account.

Since we are using relatively low grid density in the
present study, approximate values of c(m = 3) and
c(m = 5) have been derived (see appendix) and are
cm=3 = 1.1507c∞ and cm=5 = 1.0697c∞. An alter-
native approach for correcting c, with a similar effect
is to apply PD surface effect correction procedures to
the bonds of the entire material body.

2.2 Peridynamic surface effect

Each material point x interacts with its neighboring
points, the family of x, within a radius δ. Therefore,
material points at a distance smaller than δ from a free
surface will experience a truncated horizon, resulting
in a smaller domain of integration. This PD surface
effect (Ha and Bobaru 2011) leads to a softer material
and larger strains near boundaries. Various correction
methods exist, and have conveniently been reviewed
and compared by Le and Bobaru (2018).

In this study, ‘the energy method’ method by
Madenci and Oterkus (2014) will be used for PD sur-
face effect correction (Le and Bobaru 2018, p. 507).
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2.3 Constraint conditions and stresses

The PD equation of motion is a nonlinear integro-
differential equation in time and space, without spatial
derivatives, and therefore does not involve any classi-
cal boundary constraints. Instead volume constraints
can be applied through a nonzero volume rather than
on a surface (Silling and Askari 2005; Du et al. 2012),
commonly introduced within a layer of thickness Δx
or δ (Hu et al. 2012).

The treatment of stresses at boundaries also differ
from that of classical continuum mechanics, for that
boundary stresses are introduced to PD as body forces
b within a layer Δx (Madenci and Oterkus 2014) or
δ (Silling and Askari 2005). In practice, to prescribe a
stress σ to a material point x, one divides σ with the
grid spacing Δx , to obtain an equivalent force per unit
volume.

2.4 Partial volume scheme

Numerical integration of a material point x over its
regionHx including the entire volume of each material
point x′ within the horizon δ (Fig. 20), results in an inte-
gration area somewhat larger than the area of the disc-
shaped (2D) integration region. A correction factor was
introduced, commonly varying linearly between 1 and
1/2 (Parks et al. 2010), for elements intersected by the
horizon:

Vx′(||ξ ||) =
{(

δ−||ξ ||
2r + 1

2

)
Vx′ i f (δ − r) < ||ξ || < δ

Vx′ i f ||ξ || < (δ − r)

(8)

where r = Δx/2, and a uniform cubic lattice is
assumed. Equation (8), which is called the LAMMPS
method, will be used in this study. Other correction
methods exist and can be found in Seleson (2014) and
Seleson and Littlewood (2018).

2.5 Evaluation of the peridynamic equation of motion

For meshfree numerical implementation (Silling and
Askari 2005), the integral for the PD equation of
motion, Eq. (1), is replaced by a summation (Niazi et al.
2021):∑
j∈Fam(i)

c(ξi j )si j Vi j + bi = 0 (9)

where Fam(i) is the family of nodes j of the horizon
region of node i . For dynamic or quasi-static simu-
lation, the common implementation in practice is by
time integration through a finite number of small time
or load steps and looping over the equilibrium equa-
tions of the material points. Detailed algorithms are
found in Littlewood (2015b) and Madenci and Oterkus
(2014), and a supportive flowchart can be found in Jav-
ili et al. (2019). For static modeling, matrix solutions
are found in Bobaru et al. (2009), Sarego et al. (2016)
and Eriksson and Stenström (2020a, b).

For further reading, reviews are offered by Javili
et al. (2019) and Diehl et al. (2019). For peridynamic
modeling of Mode I loading, which is used in the
present study, see Diehl et al. (2016) for investigation
on convergence and crack initiation. For the state-based
peridynamic theory, the reader is referred to Silling
et al. (2007).

3 The bond-based nonlocal peridynamic
J-integral (JPD)

J is a contour integral evaluated counterclockwise
along an arbitrary path ∂R, enclosing the tip of a
straight through crack along the x-axis. Thebond-based
peridynamic J , derived by Hu et al. (2012), is given as:

JPD =
∫

∂R
Wn1 ds

− 1

2

∫

R1

∫

R2

f ·
(

∂u′

∂x1
+ ∂u

∂x1

)
dVx′ dVx

(10)

where W is the strain energy density, Eq. (6), n1 is
the x-component of the outward unit normal vector of
∂R, ds is an element of arc length along ∂R,R1 is the
region inside the contour, andR2 is the region outside
the contour (see Fig. 2).

JPD was derived using the infinitesimal virtual crack
extension method. The identity of Eqs. (12) and (18) of
Hu et al. (2012) can likewise be derived from the left
and right sides of the energy balance Eq. (31) of Silling
and Lehoucq (2010).

3.1 Path independence

So far the JPD has been shown through numerical cal-
culations to be path independent within an error of a
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Fig. 2 Illustration of the JPD contour, here made rectangular,
enclosing a crack of length a. Ω is the domain of the body and
includes the regionsR0, 1, 2 and the contour ∂R.R0 +R1 = R

few percents (Hu et al. 2012; Panchadhara and Gordon
2016). However, like the original, path independence
can be derived analytically.

LetR be a subregion enclosing a crack tip of a plane
body Ω , in static equilibrium. Path independence is
proved by showing that JPD vanishes for any regular
region, i.e. a region not containing a crack.

We start from the first integral in Eq. (10), apply
the divergence theorem and substitute for the energy
density W , Eq. (6):∫

∂R
Wn1 dA =

∫

R

∂W

∂x1
dVx

=
∫

R

1

2

∂

∂x1

∫

Ω

ω dVx′ dVx

= 1

2

∫

R

∫

Ω

∂ω

∂x1
dVx′ dVx

= 1

2

∫

R

∫

Ω

∂ω

∂η

∂η

∂x1
dVx′ dVx

= 1

2

∫

R

∫

Ω

f ·
(

∂u′

∂x1
− ∂u

∂x1

)
dVx′ dVx

(11)

Here, the integral
∫
Ω

f · ∂u
∂x1

dVx′ vanishes because of
static equilibrium. Thus,∫

∂R
Wn1 dA = 1

2

∫

R

∫

Ω

f · ∂u′

∂x1
dVx′ dVx (12)

where the integration boundary of the inner integral is
different from that of the corresponding part of the JPD
expression. To adjust the integration boundary and the
integrand accordingly, Eq. (12) is expanded to

1

2

∫

R

∫

Ω

f · ∂u′

∂x1
dVx′ dVx = 1

2

∫

R

∫

R
f · ∂u′

∂x1
dVx′ dVx

+ 1

2

∫

R

∫

Ω\R
f · ∂u′

∂x1
dVx′ dVx

(13)

where Ω \ R is Ω but not R. The identity Eq. (31),
(see appendix), is invoked in the first integral, Eq. (13)
then becomes
1

2

∫

R

∫

Ω\R
f ·

(
∂u′

∂x1
+ ∂u

∂x1

)
dVx′ dVx (14)

Thus, the left side of Eq. (11) equals Eq. (14), which
implies that JPD vanishes for any regionR not contain-
ing a crack tip. This statement proves path indepen-
dence of JPD.
JR and discretization For JR formulated as a function
of displacement derivatives, and the discretization of
both the two J formulations, see appendix.

4 The EWF method

The EWF method follows the approach developed by
Cotterell andReddel (1977) andMarchal andDelannay
(1996). Performing a test series on geometrically simi-
lar specimens but of different ligament lengths, allows
the energy spent in the fracture process to be split into
two terms. The energy dissipated from the FPZ is called
essential work of fracture (We), and the energy spent
at the region outside the FPZ is called non-essential
plastic work (Wp). A DENT specimen is commonly
used for thin sheets as its symmetry prevents buckling
and ensuresmode I crack propagation during the whole
test. The total work of fracture

Wf = We + Wp = WeLt + WpβL
2t (15)

where L is the DENT ligament length, i.e. the distance
between the two edge notches, and t is the specimen
thickness. We is the specific essential work of fracture
per unit area. Following this definition We is the frac-
ture toughness, equivalent to the J -integral value. Wp

is the specific non-essential plastic work per unit vol-
ume. β is a dimensionless shape factor, depending on
the shape of the plastic zone.

Normalizing Eq. (15) by the cross-sectional area,
allows determination of the specific total work of frac-
ture Wf :

Wf/(Lt) = Wf = We + WpβL (16)
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Fig. 3 EWF plot. Each DENT test curve gives a data point in
the EWF plot. The constant line is integration to crack initiation
and the slanted line is with the non-essential plastic work

By tensile testing, with load F as a function of the
displacement s, Wf is obtained. The ligament length
L is determined using, e.g., light optical microscopy.
The value Wf is calculated by integration of the load–
displacement curve:

Wf = 1

Lt

∫ sf

0
F ds (17)

where sf is displacement at fracture.
By plotting Wf against the ligament length L , a

straight line is obtained and its intercept at the limit
L → 0 is taken as the We. A schematic representation
of the evaluation of the EWFmethod is shown in Fig. 3.
However, some restrictions must be met for the valid-
ity of the EWF method. The entire ligament must be
in a state of plane stress and completely yielded before
crack initiation. Cotterell and Reddel (1977) found that
if the shortest ligament length is three to five times
the sheet thickness and the longest ligament length not
greater than one third of the width,W , of the specimen,
or two times the radius of the plastic zone, rp, in plane
stress:

[3t, 5t] ≤ L ≤ min(W/3, 2rp) (18)

valid results are obtained, and We ≈ Jc. This relation-
ship has been studied for example by Rink et al. (2014).

5 Algorithm for the linear PD material model and
verification of JPD

The algorithm for the linear PD model and evaluation
of JPD and J ∗

R is as follows:

1. Specify input parameters:

– Material body width and height
– Material properties ν and E
– Grid spacing Δx and horizon factor m
– Remote loading σ0
– Integration contour number, e.g. contour 1 is
the contour through the four points next to the
crack tip

2. Discretize the material body into spatial coordi-
nates x and y.

3. Set-up and run the peridynamic model:

– Integrate the peridynamic equation of motion
at all nodes x and y, by rewriting Eq. (1) as a
summation, Eq. (9)

– Integrate a finite number of time or load steps
and obtain displacements u and v

4. Calculate JPD and J ∗
R :

– Approximate strains at nodes x and y at the
selected contour, Eqs. (35a–35d)

– Calculate JPD and J ∗
R of the selected contour,

Eqs. (36) and (37)

The J expressions are going around the crack tip, from
one crack face to the other. Therefore, to avoid peridy-
namic boundary effects where J crosses the x-axis, i.e.
a symmetry line, the peridynamic models include the
material body of both sides of the crack.

In the set-upof the overall PDmodel,we apply a con-
stant micromodulus c as per Eq. (7) (see appendix), PD
surface effect correction by using the energy method
(Le and Bobaru 2018, p. 507), constraints and stresses
within a layer of thickness Δx (Sect. 2.3), volume cor-
rection as per Parks et al. (2010), and adaptive dynamic
relaxation ofMadenci andOterkus (2014) for obtaining
quasi-static solutions.

A constant c gives a linearly increasing bond force
with increasing strain, and thus a linear elastic material
model. Therefore, for modeling non-linear materials
and EWF, c will be calibrated accordingly.

The numerical implementation, including EWF, is
done using Matlab software.

5.1 Verification of JPD

The JPD and JR integrals are given in Eqs. (36) and
(37). We start out the modeling with the infinite CCT
specimen.
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Fig. 4 Specimens geometry, loading and integration contours
with dotted line. a CCT specimen with boundary stresses corre-
sponding to remote loading σ0. b CCT specimen with uniform

loading. c and d DENT specimens with uniform loading. Trian-
gles are symmetry conditions and a is the crack length

5.1.1 Infinite CCT specimen

For the classical exact analytical stress–strain-displace-
ment solution of the infinite geometry problem, see
appendix. From the remote loadingσ0 of the exact solu-
tion, we can calculate the boundary stresses using Eq.
(38a), of the specimen shown in Fig. 4a. The boundary
stresses are then introduced as input to the PD model.
The J methods can now be evaluated for the exact solu-
tion using Eq. (38c) and on the modeled PD solution’
displacement field.

Problem set-up
To facilitate comparisonwith previous results of others,
e.g. Hu et al. (2012), Stenström and Eriksson (2019,
2021), we will use a Young’s modulus of 72 GPa and a
Poisson’s ratio of 1/3 (plane stress) for modeling. The
dimensions of the specimen is set to 10cm by 10cm
(W × 2h), the half crack length a = 5 cm and σ0 = 1
MPa.

Our reference value for the problem is the classi-
cal analytical J0 = K 2

I /E = (σ
√

πa)2/E = 2.1817
N/m.

Peridynamic model discretization
We will keep the horizon factor m constant at three,
i.e. δ = 3Δx , and decrease the horizon δ for δ-
convergence. The error of the PD model is expected to
decrease as the number of material points of the model
is increased and the PD surface effect diminishes.

Note that for the examples shown in Sects. 6–8
below, we use a grid factor m of 4 and 5 for the DENT

and EWF examples to achieve a better accuracy for the
energy flow. In certain problems, especially for cracks
with curving or branching paths, using a larger m-value
may be warranted (see Dipasquale et al. 2016). In the
examples shown in this work, the crack paths are sim-
ple: straight. For such problems, as long as the grid is
aligned with the propagation direction, using a large
m-value is generally not needed.

Evaluation of J
The resulting J values are shown in Fig. 5. The relative
difference is calculated as (J − J0)/J0. Using the finer
δ = 0.6mm, the difference is less than one percent for
both J methods, on both the analytical solution and the
PD solution. The difference of the coarser δ is due to
PD surface effect and treatment of corner points, and
a reason for the difference at the finer discretization is
numerical error.

5.1.2 Finite CCT specimen

The finite CCT specimen is loaded at the upper and
lower edges by a constant σy as shown in Fig. 4b.
For estimating the stress intensity factor, Isida’s (1971)
classical solution is commonly regarded as the most
accurate one (ASM 1996):

KI = σ0
√

πa f1

(
a

W
,

h

W

)
(19)

where the dimensionless geometry function f1 can be
found in standard books, e.g. (Anderson 2005), i.e. dif-
ferent from the components of PD f .

123



The essential work of fracture... 139

Fig. 5 Infinite CCT model results. The nonlocal and classical
J s calculated on the PD model (JPD and J ∗

R ) and on the classical
analytical displacement solution (J ∗

PD and JR)

Fig. 6 Finite CCT model results. The nonlocal and classical J s
calculated on the PD model (JPD and J ∗

R )

The problem set-up and discretization is the same as
for the previous infinite CCT specimen. Thus, a

W and
h
W both becomes 0.5, giving f1 = 1.967 (Isida 1971),
given σy = σ0 = 1MPa. The relative difference is then
calculated based on the reference value J0 = K 2

I /E =
8.44 N/m.

The results are presented in Fig. 6 and show differ-
ences of about one percent or less at the finer δ. We
notice that the difference at the coarser δ is less than of
the infinite model results (Fig. 5).

5.1.3 Half DENT specimen

In a similar fashion as for the finite CCT specimen, we
test the J methods on a half DENT specimen, Fig. 4c.
Our classical reference solution is that ofWu andCarls-
son (1991):

KI = σ0
√

πa f2

(
a

W
,

h

W

)
(20)

The problem set-up differs from the previous case only
in height; h = 0.2 m, leading to h/W = 2 and f2(2) =
1.169 (Wu and Carlsson 1991). With σy = σ0 = 1
MPa, the relative difference is based on the reference
value J0 = K 2

I /E = 2.981 N/m.
Since the verification on the CCT models shown

good agreementwith their classical analytical J values,
we use only one discretization here; δ = 3mm, leading
to 100×400 materials points (W × h). This δ gives
the differences eJR = 2.2% and eJPD = 2.7%. The δ

is the same as for the previous 1002 models, but we
have less PD surface effect in the y-direction due to
400 material points. Thus, the differences are similar
to the differences at the 1002 and 2502 models in Figs. 5
and 6.

6 Adaptive calibration of PD model to a given
nonlinear stress–strain hardening curve

For evaluating EWF, the PD model needs to be cal-
ibrated for non-linear materials. The EWF method is
going to be applied to a PD model calibrated to an
experimentally obtained stress–strain response. There-
fore, an adaptive calibration is carried out with data
of a standard (defect free) tensile test specimen. The
calibration is carried out on the bond force level so as
to obtain a global stress–strain behavior similar to the
experimentally measured stress–strain response. Once
calibrated, a DENT specimen and EWF is modeled.

The calibration procedure includes five constants;
ccal, cΔε , ct , êc and cE . ccal is a vector of calibration
constants of unit interval. Each constant of ccal corre-
sponds to a local bond strain segment (subinterval) of
vector cΔε . Since multiplying each bond with a calibra-
tion factor is computationally intensive, calibration of
local bonds and checking of the resulting global error
ec = σPD/σ0, are carried out at load steps evenly divis-
ible with ct . σPD is the PD global stress and σ0 is the
experimental stress. êc is the error limit when a new
calibration constant is calculated and added to ccal. The
fifth and optional constant, cE , is a global strain value
between the true elastic limit and the proportionality
limit; this is the strain where the calibration starts.
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6.1 Algorithm

The calibration of the PD model is as follows:

1. Specify input parameters:

– Material body width×height, in accordance
with ISO and ASTM standards (ISO 2019;
ASTM 2016)

– Virtual strain gauge’s x and y coordinates
within the gauge length

– Properties ν, E , m and Δx
– Experimental stress–strain response data
– Velocity boundary condition v0 at the short
edges of the body

– Calibration constants cE , cΔε , ct , êc and ccal

2. Discretize the material body into spatial coordi-
nates x and y.

3. Set-up and run the peridynamic model:

– Integrate the peridynamic equation of motion
at all nodes x and y, by rewriting Eq. (1) as a
summation

– At each load step, add v0 to the outermost mate-
rial points of the specimen’s short edges (strips
with thickness of Δx or mΔx)

– At load steps that are evenly divisible with ct:
Calculate the bond force strain of all bonds and
multiply each bond force with its correspond-
ing ccal factor. Also, calculate σPD through the
gauge coordinates (Fig. 7).

– At load steps that are evenly divisible with ct:
If the global strain is larger than cE and the
model error ec > êc, calculate the next cal-
ibration constant ci+1

cal = cical/ec that corre-
sponds to the strain subinterval cE + (i +1)cΔε

(c0cal = 1, i = 0, 1, 2, ...).

The obtained ccal vector can now be used in the general
four steps algorithm (Sect. 5) by calibrating all bonds
at given bond strains.

σPD is the stress through a point interface by sum-
ming the x-components along m points (Fig. 7):

σPD = Δx
m∑
i=1

∑
j∈Fam+(i)

f1(u
j
1 − ui1, u

j
2 − ui2)Vj (21)

where the first summation are them points along a line
along the stress direction, and Fam+(i) are the family
members of point i that are located in front of the m
points dividing line. Multiplication with the area of the

Fig. 7 Sketch of bond forces form = 3 across a vertical dividing
line. Summation of the x-components along m points yields the
stress through a point interface

point interface, (Δx)2, gives the force, and summation
along a strip gives then the cross-sectional global force.

In the above algorithm, a calibration constant is
added when ec > êc. Alternatively, the calibration con-
stant can be added at certain (evenly distributed) load
steps, bond strains or global strains. However, we have
found that using a êc limit gives a PD stress–strain curve
with less oscillations and better necking compared to
the other criteria.

6.2 Problem set-up and discretization

For model calibration and evaluation, we will use
experimental data of a bainite–martensite sheet metal
(AHSS) provided by Golling et al. (2019). The engi-
neering stress–strain from Fig. 4 of Golling et al. is
reproduced in Fig. 8a. The stress–strain data is obtained
using a standard specimen of 12.5mm in width and
2.0mm in thickness (ISO 2019; ASTM 2016), and
gives an E0 of 200 GPa. Thus, the PD model constants
E and ν are set to 200 GPa and 1/3, respectively, and
the problem geometry used for the calibration is set to
12.5mm × 62.5mm.

The geometry is discretized into 40×200 material
points, with m = 5, thus δ = 5 · 0.3125 mm. The
opposite ends of the specimen is loaded with a constant
velocity v0 = 1.6 ·10−7 m/s, and a virtual strain gauge
is set 6.4mm (20.5Δx) from the lengthwise mid. The
loading rate is chosen small enough to avoid specimen
oscillations.

The PD recovered E modulus before calibration is
0.8%below E0,measured at the strain gauge, and0.1%
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Fig. 8 a Calibrated PD global stress–strain and experimental engineering stress–strain (Golling et al. 2019). b Corresponding local PD
bond force. c ccal versus cΔε . d Displacement at a point for steady check

below when measured as a mean across the specimen
width. The approach used to find the stress, and thus
E , is presented in Fig. 7 and Eq. (21).

6.2.1 Adaptive calibration

The adaptive calibration is performed during a single
specimen loading. The calibration procedure begins at
cE = 0.003 global strain and the first calibration con-
stant is of unity. The global stress is checked against
the experimentally obtained stress–strain response for
each ct = 5 steps. As the specimen is loaded, a new cal-
ibration constant is supplied each time that the global
stress error reaches the limit êc = 2%. Calibration of
all bonds are carried out for each ct = 5 steps.

The calibrated bond force-strain model and global
PD stress–strain response are shown in Fig. 8. Themea-
surement is carried out at the virtual strain gauge point
and the bond force-strain is of one bond in the global
load direction, Fig. 8a, b. ccal and cΔε amounts to 107
calibration constants/parameters. The total number of
load steps, at the strain where the standard sheet metal
specimen fractured, is 10 540.

Since material bonds reach their respective yield
strain at different times/loads, the global stress–strain
response is “smoothed”. Not least for a bi-linear law,
this leads to an apparent hardening and/or necking
effect (Silling 2016, p. 44). The noise in Fig. 8b comes
fromoscillations due the quasi-staticmodel and numer-
ical approximation.

6.2.2 Recovered stress–strain curve

Since the calibration factors are adaptively supplied one
at a time during the calibration, based on monitoring
at one gauge point, the recovered stress–strain curve
will differ when all factors (ccal and cΔε) are supplied
initially. The recovered stress–strainwith a loading rate
of v0 = 0.2 · 10−7 m/s is shown in Fig. 9. ‘No dmg’ is
without bond break and ‘With dmg’ is with bond break
at the last calibration constant of 0.0465 bond strain.
The green cross in Fig. 9a is were it fractured. s1 in
Fig. 9b indicates the failure bond law used here and in
the next section.

To notice is that the calibration values are more or
less independent of the number of material points and
grid density m, as seen in Fig. 10.

7 EWF on full DENT specimen

We found from the literature review that bond force cal-
ibration studies are presently going on and that EWF
modeling for PD is new. Therefore, this preliminary
EWF study is limited regarding influencing parame-
ters and applications. Moreover, the EWF modeling
includes estimation of the J -integral and to avoid gen-
eration of duplicate results, we will apply the classical
JR formulation, Eq. (37), only, in particular because of
the small number of points of narrow ligaments.
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Fig. 9 a Recovered PD stress–strain, with and without bond breakage. b Recovered bond force-strain curve

Fig. 10 Calibration values ccal and cΔε with varying number of
material points and grid density m

7.1 Problem set-up and discretization

The full DENT specimen of Golling et al. (2019) is
45mm wide and 2.0mm thick. The corresponding ten-
sile test was monitored with an extensometer with a
gauge length of 50mm. In the PD model, we use a
geometry of 45mm × 225mm (2W ×2h; see Fig. 4d).
A virtual gauge for logging the displacement is set
25mm from the two notches, i.e. 50mm gauge length.
For logging the force, another gauge is set 10mm from
the two notches. This is to avoid a delay/bump of
the force-elongation response that appears if the force
is logged at 25mm. The grid density m is set to 5.
Discretization and ligament lengths (L) are given in
Table 1. The loading rate v0 is 0.4 · 10−7 m/s for δ =
2.8, 1.9 and 1.4, and 0.6 · 10−7 m/s for δ = 1.1.

We will use two different crack tip definitions that
we call sharp and fuzzy tips; see explanation in Fig. 12.

Table 1 DENT discretization, ligament lengths (L) and crack
lengths (a). L + 2a = 45 mm

δ = 5Δx (mm) Material points Ligament length (L) (Δx)

2.8 80×400 24 20 16 12

1.9 120×600 36 30 24 18

1.4 160×800 48 40 32 24

1.1 200×1000 60 50 40 30

L (mm): 13.50 11.25 9.00 6.75

a (mm): 15.75 16.88 18.00 19.13

7.2 Evaluation of EWF and J

The adaptive calibration of Fig. 8c is used for the
full DENT specimen without further adjustments. PD
bonds break at the bond strain s1 = 0.0465 and drops
suddenly to zero, Fig. 9b, and the PD model is of a
nonlinear-elastic type.

The simulation result for δ = 1.1 mm is shown in
Fig. 11a. Force is the global cross sectional force. The
dashed lines indicate the amount of damage, or frac-
tured ligament, between the two notches. 100% dam-
age means fully fractured ligament. For calculation of
We, the upper integration limit is set to 90% damage;
see the dotted vertical lines.

Integration of the force-elongation curves using
Eq. (17) gives We. See Fig. 11b. Experimental data
(crosses) of Golling et al. (2019) gives We = 78±6
kN/m while PD gives We = 182 kN/m and lack plastic
work.
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Fig. 11 DENT results of δ = 1.1mm (200 × 1000) and sud-
den failure at S1. a Global cross section force. Colored curves
are PD results. Black curves are experimental results with L =
6.7, 8.7, 11.2, 12.9 (Golling et al. 2019), dotted vertical lines

are integration limits and dashed curves are ligament damage. b
Specific total work of fracture (Wf ). The circles are of PD and the
crosses are of 15 experimental specimens inGolling et al. (2019).
c Magnified global force and J ∗

R plotted with dashed lines

Fig. 12 Sharp and fuzzy crack tips

Monitoring J , Eq. (37), critical J ∗
R = 1

4 (95 + 89 +
93+ 92) · 103 = 92 kN/m. Individual values are given
by the small circles in Fig. 11c. Here, the vertical lines
of the maximum global force have been set manually
and is therefore somewhat subjective.

For studying δ-convergence, we complement with
three more discretizations. δ-convergence is performed
keeping the grid density m constant while decreasing
the horizon radius δ, i.e. increasing the total number of
material points of the model (Bobaru et al. 2009). See
Fig. 15. By increasing the number of material points in
the model, the PD surface effect is reduced. Only Jc is
traced as We lack plastic work.

Lastly, damage maps are presented in Figs. 13 and
14.

8 Softening

PD materials with a linear bond force-strain relation-
ship contains a single parameter (critical bond strain)
to simulate both the strength and toughness. For a cer-

tain horizon size, one is then able to match both, but
the likelihood is that the particular horizon is too small
to make it practical for computations. In order to allow
matching of both strength and toughness for any hori-
zon size, one needs to introduce a two-parameter bond
force-strain model. For crack nucleation, propagation
and strongly nonlinear materials, bi- and trilinear con-
stitutive laws have been developed (see Sect. 1.3). PD
trilinear laws for brittle and quasi-brittle materials have
been studied by Yang et al. (2018) and Niazi et al.
(2021). The adaptively calibrated constitutive law of
the present study, resulted in a piecewise linear approx-
imation of the experimental stress–strain response. In
the presetmodel, for amore pronounced softening part,
we also assume a linear behavior for the bond-response,
for simplicity. See Fig. 16. Softening starts at s1 and
continues linearly to s2.

We keep s1 = 0.0465 andmanually calibrate s2 = 2
for capturing the plastic work. We decrease the hori-
zon δ to 0.28mm, and for computational efficiency set
m = 4. With the added softening, the PD model is
still able to recover the experiment tensile specimen
(Fig. 17). For the PD DENT, v0 = 0.2 · 10−7 m/s,
bond calibration every ct = 5, sample size is 45mm
× 63mm for computational efficiency, and the global
force gauge is shifted from 10mm to 5mm from the
mid for better force response. Lastly, we set the liga-
ment lengths closer to the experimental, to 6.61, 8.72,
11.25 and 12.80mm (this was not possible before with
δ = 2.8mm). The resulting DENT model is shown
in Fig. 18. Ligament damage, Fig. 18a, is the fraction
of bonds that have passed s1. The PD DENT model
shows improved plastic work but appears too strong,
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Fig. 13 Ligament damage maps of the final fractures. δ = 1.9 mm (120 × 600)

Fig. 14 Progressive ligament damage maps of L = 11.25mm. δ = 1.1 mm (200 × 1000). ‘tt’ stands for load step

i.e. the bainitic-martensitic material appears too brit-
tle. We therefore try a more ductile material of Golling
et al. (2019) called ‘Bainite’; see calibrated and recov-
ered standard tensile test in Fig. 17.

The values s1 and s2 are calibrated manually to 0.03
and 1.2, respectively. The loading speed is lowered to
v0 = 0.1 · 10−7 m/s, and for computational efficiency,
the horizon δ is increased to 1.4mm, with m = 5.
The ligament lengths are set as close as possible to the
experimental ones.

The resulting PD DENT model now better match
the maximum global force and the EWF-line (Fig. 19).
PD obtained We = 369 kN/m, experimental We = 349
kN/m ≈ Jc, and PD obtained J ∗

R = 365 kN/m.
If the force-elongation curves are integrated to the

crack initiation, an alternative toughness measure is
obtained, called fracture toughness at crack initiation
(W∗

e ), and is the average of the resulting EWF data
points, with the slope assumed zero (Frómeta et al.
2021). In Fig. 19b,W∗

e = (128+154+170+182+195)/5 ·103
= 166 kN/m.

The bainite standard tensile test response has a nar-
row bend from the elastic region to the hardening phase
(Fig. 17). This caused slightly more noise to the cal-
ibration constants compared to the constants of the
bainite-martensite material (Fig. 10). It did not affect
the recovered tensile test, but caused more oscillations

Fig. 15 J ∗
R under δ-convergence. The x-axis is linear, going

from 0 to 200 000. 78 ± 6 kN/m is the critical J obtained by
Golling et al. (2019) by assuming We equals critical J

in the adaptive dynamic relaxation solver. To remove
the noise, a curvewas fitted to the calibration constants.
Curves tested includes polynomial, two terms expo-
nential, Weibull, three terms Gaussian and two terms
power function. Several fittings gave an accurate recov-
ered tensile test, but a tenth order polynomial gave the
least amount of noise for the DENT, and where there-
fore chosen. By curve fitting, the number of calibration
constants can be chosen. 30, 100 and 180 constants
were tested.More constants produced smoother DENT
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Fig. 16 Illustration of softening. Calibration factors are applied
until the bond force reaches s1, where it enters the softening part
and continues to s2

Fig. 17 Recovered PD stress–strain with the added softening
for ‘Bainite-martensite’ and for another added material called
‘Bainite’. The blue lines are from experimental data by Golling
et al. (2019). For the s1 values used, softening occurred at the
cross symbols

test and therefore the polynomial functionwas supplied
directly to the PD code instead of calibration constants.
However, 30 constants did work as well.

9 Discussion

Themartensitic-bainitic material turned out to have too
low ductility for the PD material model. Experimental
data showed high ultimate strength (1730 MPa) and
sudden fracture ofDENT specimens, at the point where
the DENT experimental curves ends in Fig. 18a. This
is due to microscale effects discussed later.

The bainitic PD material model was able to match
both the standard tensile test specimen strength and the

DENT specimens strength. By studying the softening
part, Fig. 19a, the PD DENT curves meet at a single
point (beyond 1mm elongation) while the experimen-
tal curves ends at different elongations, e.g. 0.7, 0.8 and
0.9mm. To obtain similar EWF, we integrated the PD
DENT curves to a remaining strength of 6.1 kN. The
reason to stop at this value is the difference between the
actual last stages of the ductile failure and the defor-
mation theory (nonlinear elasticity) approximation of
it in our model. Note that if one chooses a lower force
level (on the softening side) to integrate to, the resulting
EWF line (in Fig. 18b) only slightly shifts downward.
Changing the S1 or S2 values affects both themaximum
force and ductility of the DENT.

Since we are using the deformation theory (nonlin-
ear elasticity) plasticity instead of an incremental plas-
ticity model, the part where unloading happens (mono-
tonic loading is no longer satisfied) will not be very
accurate. DENT softening is a challenge experienced
for FEM as well (Sandin et al. 2021), but due to reasons
inherent to FEM.

The disturbance of the PD DENT force elongation
responses seen in Fig. 19a) comes from bonds enter-
ing the linear softening (discontinuous function). The
linear softening can be replaced by a curved soften-
ing (bell-shaped), to better match the curvature of the
experimental softening part. Here we use linear for
computational simplicity.

The PD DENT responses makes slightly sharper
bend from the elastic-to-hardening region compared to
the experimental results (Fig. 19a). This can be due to
microscale effects.

9.1 Microscale effects

Microscale properties that can have an influence on the
result are:

Different materials The experimental DENT speci-
mens have fatigue cracks and is therefore in a different
damage phase compared to the PD DENT that does
not have any fatigued bonds. Also, there are different
failure mechanisms taking place; the standard tensile
specimen used for calibration is polished (Golling et al.
2019) and has a fracture zone with a radius approach-
ing infinity while the DENT specimen has a crack tip
approaching zero in radius.

Microstructure The PD model lacks a microstruc-
ture. In the experimental DENT specimens, following
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Fig. 18 DENT results of δ = 0.28mm (640 × 896). a Global
cross section force and ligament damage. Colored curves are PD
results. Black curves are experimental results with L = 6.7, 8.7,
11.2, 12.9, dashed curves are damage and dotted vertical lines

are integration limits. b PD and experimental specific total work
of fracture Wf = We + LWp, circles and crosses, respectively.
c Magnified global force and J ∗

R

Fig. 19 DENT results of δ = 1.4mm (160 × 224). a Global
cross section force. Colored curves are PD results. Black curves
are experimental results with L = 5.1, 7.0, 9.0, 10.7, 12.6.
Dotted vertical lines are integration limits. b PD and experi-

mental specific total work of fracture Wf = We + LWp, cir-
cles and crosses, respectively. c Magnified global force and
J ∗
Rc = (393+359+344+369+360)/5 · 103 = 365 kN/m

dislocation motions, fracture takes place along a mini-
mum energy path. Thus, the PD model may appear too
strong.

Crack tip shielding The crack tip of the experimen-
tal DENT specimens is under compression when the
loading starts due to asperities mismatch, thus, leading
to higher strain at fracture compared to the PD model.

Discretization The horizon radius δ is much larger
than an actual crack tip radius; thus, the not enough
refined horizon leads to a blunt PD crack tip.

Surface correction The PDmodel includes a surface
correction factor, which increase the surface stiffness
but leave some stiffness fluctuation.

Strain hardening The experimental DENT speci-

men may experience strain hardening, and therefore
a strengthening effect.

9.2 J -integral

Before adding softening, the J -integral of the PD
DENT model converges to the experimental J , when
J is taken at maximum global force (Fig. 15).

With added softening to the bainite-martensitemate-
rial, J takes of about where the softening starts, before
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the maximum force. J shows an increase, or elbow,
around 100–150 kN/m, Fig. 18c. This elbow becomes
more pronounced and closer to the experimental J
when δ is shrunken. At δ = 0.14 mm, the elbow
is around 100 kN/m, but was not studied further due
to computational time. An elbow may also be distin-
guished in Fig. 11 at 120–140 kN/m, which explains
the slower convergence of the model with softening.
The elbow can also be seen by plotting J versus bond
damage.

With the bainite material and softening, at the abso-
lute maximum force, the mean J ∗

Rc of 365 kN is close
to the value obtained by Golling et al. (2019)We = 349
kN/m ≈ Jc. An elbow cannot be seen.

9.3 Experimental data

The experimental DENT results are somewhat uncer-
tain. The narrow temperature-time process window of
bainite formation under quenching makes it difficult
to obtain specimens with small variation in phase vol-
ume fractions (Golling et al. 2016). Another source of
uncertainty is that the crack length of the experimental
DENT was measured using a stereomicroscope. Rec-
ommendation is, e.g. by ASTM, to heat tint the speci-
men surface and measure the crack length after a frac-
ture test, as the actual crack tip is often not visible in a
stereomicroscope and the crack tip front is convex.

10 Conclusions

A peridynamic (PD) material model calibrated for
highly nonlinear elastic behavior has been adopted
to investigate, computationally, the use of the EWF
method in characterizing fracture toughness of ductile
materials.

The JPD-integral was shown analytically to be path
independent, in analogy with its classical counterpart.

First, we compared the classical and peridynamic
forms of the J integral value on a number of exam-
ple problems. On the classical analytical displacement
solution of the infinite center cracked tension specimen,
the relative differences between the J values were less
than one percent compared to the classical analytical
J0 value (Fig. 5).

Thereafter, to match nonlinear constitutive behav-
ior, the PD model was calibrated using a novel auto-

mated procedure. Under small scale yielding assump-
tions, the classical J -integral, applied on the PD double
edge notched tension (DENT) model, converged to the
experimentally obtained J value (Fig. 15).

For capturing the energy dissipated during plas-
tic deformation, a linear bond softening model was
adopted (Fig. 16). The model was employed for two
very different materials; a lower-ductility bainitic-
martensitic steel and a higher-ductility bainitic steel.
Up to the start of the softening phase, the model recov-
ers excellently the material response, of both materials
(Fig. 17).

The lower-ductilitymaterial has an ultimate strength
of 1730 MPa, while the higher-ductility material has
a strength of 970 MPa. A similar large difference in
strength is not seen in the experimental DENT response
due to high sensitivity to defects of the lower-ductility
material. This sensitivity to defects is seen in the results,
as we could not recover the specific essential work of
fracture (We) value of the lower-ductility martensitic-
bainitic steel with the nonlinear elastic model (Fig. 18).

Whileweonlyused anonlinear elasticmodel (equiv-
alent to the deformation theory of plasticity), we were
able to match very well the experimentally obtained
We value for the higher-ductility bainitic steel (Fig. 19).
Also, the J -integral value obtained from the PDmodel,
at the absolute maximum specimen load, matched the
corresponding We value.

While being aware of the model limitations, future
work will investigate the use of incremental plasticity
models on this topic.
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Appendix

Approximation of c(m)

For a finite number of family members (Nh) within the
horizon region, Eq. (6) for a 2D body becomes:

Wm = cs2t

4

Nh∑
i=1

ξi Aivi (22)

where vi is a volume correction factor. m = 3 gives
Nh = 28 family members (see Fig. 20), thus

28∑
i=1

ξi Aivi

= 4
(
1 + 2 + 3 + √

2 + √
5 + √

5 + 2
√
2
)

ΔAvi

(23)

By using the volume correction method by Parks et al.
(2010), i.e. Eq. (8), the volume correction factor of Eq.
(22) yields

28∑
i=1

ξi Aivi = 4

[
1 + 2 + 3

2
+ √

2 + 2
√
5

+2
√
2

(
3 + 1

2
− 2

√
2

)]
ΔA (24)

Fig. 20 Family members of a quarter horizon region Hx of
radius 3Δ and 5Δ, giving Nh = 4·7 and Nh = 4·20, respectively

Setting W3 = W0 = Eε2/(1 − ν) yields the corre-
sponding micromodulus:

cm = c3 = 4[
9/2 + √

2 + 2
√
5 + 2

√
2

(
7/2 − 2

√
2
)]

E

(1 − ν)tΔ3 (25)

The ratio

c3
c∞

= 9π

9 + 2
√
2 + 4

√
5 + 2

√
2

(
7 − 4

√
2
) ≈ 1.1507

(26)

follows from Eq. (7) with ν = 1/3. Therefore, c3 ≈
1.1507c∞

Following the same procedure form = 5 and count-
ing the weight of elements intersected by the horizon
as half,

c5
c∞

= 125π

3
(
35 + 12

√
2 + 12

√
5 + 4

√
10 + 4

√
13 + 4

√
17

)

≈ 1.0697

(27)

and thus, c5 ≈ 1.0697c∞.

Identity f ′ = −f

By switching variables x → x′,
∫
R

∫
R

f · ∂u′

∂x1
dVx′ dVx =

∫
R

∫
R

f ′ · ∂u
∂x1

dVx′ dVx

(28)

From the identity f ′ = −f ,∫
R

f ′ · ∂u
∂x1

dVx′ = −
∫
R

f · ∂u
∂x1

dVx′ (29)

and since
∫
Ω

f · ∂u
∂x1

dVx = 0, and Ω = R + Ω\R,

−
∫
R

f · ∂u
∂x1

dVx′ =
∫

Ω\R
f · ∂u

∂x1
dVx′ (30)

Thus∫
R

∫
R

f · ∂u′

∂x1
dVx′ dVx =

∫
R

∫
Ω\R

f · ∂u
∂x1

dVx′ dVx

(31)
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The classical J-integral as a function of displace-
ment derivatives

For a rectangular integration path, Rice’s J -contour
integral on strain components formulation can be writ-
ten as (Stenström and Eriksson 2019):

JR =
∫

∂R

(
W dx2 − σi j n j

∂ui
∂x1

ds

)

= 2E

1 − ν2

∑
i=I,II,III

∫
i
(Wi dy − wi ds)

(32)

On the left side is the general path independent formu-
lation, whereW for a linear elastic material is 1

2 σi jεi j ,
and σi j n j is (the components of) the traction vector. On
the right side, the factor 2 accounts for the rectangular
contour to be symmetric across the straight crack. I, II
and III are the right, top and left sides, respectively, of
the contour above the symmetry line (Fig. 2). By substi-
tution of stress–displacements derivatives relationships
of W for a linear elastic material, we obtain:

W = E

2(1 − ν2)

[ (
∂u1
∂x1

)2

+
(

∂u2
∂x2

)2

+ 2ν
∂u1
∂x1

∂u2
∂x2

+ 1 − ν

2

(
∂u1
∂x2

+ ∂u2
∂x1

)2 ] (33)

wi corresponds to the second term of the general
J expression. With similar substitution of stress-
displacements derivatives, and by taking the contour
as a rectangle around the crack tip, the second term
of the general J expression develops into three parts;
right, top and left hand side contours:

wI = E

1 − ν2

{ (
∂u1
∂x1

)2

+ ν
∂u1
∂x1

∂u2
∂x2

+1 − ν

2

[
∂u1
∂x2

∂u2
∂x1

+
(

∂u2
∂x1

)2
] }

(34a)

wII = E

1 − ν2

(
1 − ν

2

∂u1
∂x1

∂u1
∂x2

+1 + ν

2

∂u1
∂x1

∂u2
∂x1

+ ∂u2
∂x1

∂u2
∂x2

)
(34b)

wIII = −wI (34c)

Thus, wI, wII and wIII are calculated on the right, top
and left sides of the contour, respectively.

Discretization of the J-integral expressions

The material domain is discretized uniformly to allow
for amid-point integration scheme (one-pointGaussian
quadrature) (Silling and Askari 2005).

The strain components of W Eqs. (10) and (32)
can be approximated by applying the central difference
scheme on the displacement field. For a material point
i , the strains are given as follows (Hu et al. 2012):

∂u1
∂x1

≈ u1(xi1 + Δx, xi2) − u1(xi1 − Δx, xi2)

2Δx
(35a)

∂u1
∂x2

≈ u1(xi1, x
i
2 + Δx) − u1(xi1, x

i
2 − Δx)

2Δx
(35b)

∂u2
∂x1

≈ u2(xi1 + Δx, xi2) − u2(xi1 − Δx, xi2)

2Δx
(35c)

∂u2
∂x2

≈ u2(xi1, x
i
2 + Δx) − u2(xi1, x

i
2 − Δx)

2Δx
(35d)

The J -integrals are approximated by using the trape-
zoidal rule. The JPD of Eq. (10) is then discretized as
follows:

JPD =
n∂R∑
n=1

Win1 Δx

− 1

2

nR1∑
i=1

nR2∑
j=1

[
f1

(
u j
1 − ui1, u

j
2 − ui2

) (
∂u j

1
∂x1

+ ∂ui1
∂x1

)

+ f2
(
u j
1 − ui1, u

j
2 − ui2

) (
∂u j

2
∂x1

+ ∂ui2
∂x1

) ]
A j Ai

(36)

n∂R, nR1 and nR2 are the number of material points
within the contour path, inner region and outer region,
respectively. The subscripts 1 and 2 refer to the x-
and y-components, t is the material thickness and A j/ i

refers to the area.
The classical J of Eq. (32) is discretized as:

JR ≈ 2EΔx

1 − ν2

∑
i=I,II,III

ni∑
j=1

(W j
i n1 − w

j
i ) (37)

where ni is the number of material points along the
three regions I–III.

Exact analytical solution of the CCT specimen

Classical exact analytical solutions of stresses and
displacements for the infinite center cracked tension
(CCT) specimen have been derived by Unger et al.
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(1983) under plane strain conditions.Wehave in an ana-
logue manner derived the stresses and displacements
under plane stress conditions (Stenström and Eriksson
2019):

σx
σy

= σ∞√
2

(
X

√
C + Y

√
D

B
−
+Y

A
√
D + 2XY

√
C

B3

)

(38a)

σxy = σ∞√
2
Y
A
√
C − 2XY

√
D

B3 (38b)

u
v

= σ∞a√
2E

(1 + ν)

[
α
√
C − (Y 2

√
C − XY

√
D)/B

β
√
D − (Y 2

√
D + XY

√
C)/B

]

(38c)

where X , Y and A–C are dimensionless variables, α

and β are constants for plane stress and plane strain,
respectively. The dimensionless variables are given as

X = x/a (39a)

Y = y/a (39b)

A = X2 − Y 2 − 1 (39c)

B =
√
A2 + 4X2Y 2 (39d)

C = A + B (39e)

D = B − A (39f)

α and β are given by:

α = κ − 1

2
(40a)

β = κ + 1

2
(40b)

κ =
{

(3 − ν)/(1 + ν) for plane stress
3 − 4ν for plane strain

(40c)

x and y in Eqs. (39a) and (39b) are the spatial coordi-
nates. With Eq. (38) the stresses and displacements can
be calculated at any point of the infinite plate.

The benefit of this exact solution is that the stresses
or displacements can be used as input to peridynamic
modeling, or more precisely, as boundary conditions
for finite models of the infinite geometry problem.
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