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Abstract. Achieving energy and cooling efficiency in data center convective air flow and heat transfer

can be a challenging task. Among different numerical methods to work with such issues is the Fi-
nite Volume Method in Computational Fluid Dynamics. This work evaluates the performance of two

such solvers provided by OpenFOAM®in solving this type of convective heat-transfer problem, namely

BuoyantBoussinesqPimpleFOAM and BuoyantPimpleFOAM. This is done for two different flow config-
urations of significantly different Richardson number. To sufficiently resolve the flow, grid sizing effects

are elucidated by way of the kernel density estimate. It determines the volume distribution of the tem-
perature in the data center configuration. For the k-epsilon turbulence model used here, it was found

that the compressible solver performs faster and requires less grid resolution for both flow configura-

tions. This is attributed to the nature of the boundary conditions which are set such that the mass
flow conservation per server rack and cooling unit is achieved. Transient solutions are found to provide

better iterative convergence for cases that involves buoyancy, compressibility and flow separation. This

is, in comparison to steady-state solutions where artificial numerical pressure drop is found, to depend
on the momentum relaxation factors for the convective case with a higher Richardson number.

1. Introduction

The data center industry faces numerous challenges when it comes to cooling the equipment and
distributing IT power and workload efficiently. An industry challenge today is to recover heat of the
highest grade possible to enable process ecosystems that work in unison with the data centers. District
heating and greenhouses are examples of this [1]. Different numerical tools and methods are therefore
used to study heat transfer within data centers, ranging from Computational Fluid Dynamics (CFD)
for the complexities of fluid flow to statistical and experimental models. The use of CFD in simulating
feasible server load scenarios and its air convective effects beforehand yield information that in turn
relates to the cooling performance [2]. This includes the processing of various metrics on whether the
cold air in the data center is effectively delivered and also how the hot air is extracted [3].

Simulating the involved physics of airflow in a data center using the Finite Volume Method (FVM)
is fairly complex and involves significant computational effort by today’s standards. Faster methods for
solving this type of problems have recently been developed based on the use of GPU’s, though further
work is deemed necessary to properly resolve the buoyancy, compressibility and wall effects along with
turbulence modelling implementations [4].

When performing simulations of data centers a number of approximations are introduced on the
geometry and boundary conditions. Such approximations often concern the simplification of geometry and
how the racks are modelled. In this study focus is on the feasibility of which the Boussinesq approximation
of buoyancy can be used when simulating this sort of convective heat transfer. The approximation is
based on a linear expansion of the density in terms of temperature and has the potential to reduce the
computational load for scenarios where there are limited temperature differences in the hot air. The
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approximation enables the use of an incompressible fluid solver along with a simplified energy equation
in the FVM that disregards compressibility effects on the flow. The approximation has been shown to
produce results within an error margin of 1% when temperature differences are below 15◦ C for air [5].
Expected temperature increase for air supplied to servers in data centers today are in an approximate
range of 6-19◦ C [6], with an extended range if local temperatures inside the server racks near the power
dissipation are considered.

The approximation itself requires some fluid quantities to be constant, namely µ, κ, α and cp (viscos-
ity, thermal conductivity, thermal diffusivity and specific heat). For numerical simulations of heating,
ventilation and air conditioning, it is commonly assumed that one of these is constant. Thorough criteria
along with an extensive analysis of the applicability of the Boussinesq approximation can be found in
Tritton [7]. In this a brief summary is presented, focused on the question of whether forced or natural
convection is dominating according to the Richardson number

Ri =
Gr

Re2
=

g∇z(ρ)

ρ(∇z(u))2
≈ gβ(T − Tref)Lvertical

u2
(1)

where g denotes the gravitational constant, β is the thermal expansion coefficient and u is a typical
velocity scale. For varying velocity scales in a complex flow, the Richardson number is more suitable
than the Rayleigh number (Ra = GrPr) to characterize the type of convection [7]. The limits: Ri → 0
and Ri → ∞ represent pure forced and pure natural convection, respectively. Transition between the flow
regimes occurs at Ri ≈ 0.3 (from forced to mixed convection) and Ri ≈ 16 (from mixed to pure natural
convection) [8].

For large Ri, turbulence is thought to take on characteristics other than what can be expected for
small Ri. The length at which Ri = 1 is called the Monin-Obukhov Length, which can here be seen as a
reference height in determining stratification which in itself has a damping effect on turbulence [7].

The height at which cooling units supply air into data centers is often not more than a meter or so
below where the hot air is returned. With previously mentioned temperatures and theorized limits for
flow regimes the mixed flow regime can be predicted to reside in the velocity span u ∈ (0.14, 1.83) m/s for
a vertical length Lvertical = 1 m, gravitational constant g = 9.82 m/s2 and thermal expansion coefficient
β = 3.41× 10−3 K−1 based on Eqn. 1. Hence lowering the velocities in these areas can in theory enable
significant stratification and in turn reduce wasteful mixing of hot and cold air.

In OpenFOAM terms, the solvers compared are BuoyantBoussinesqPimpleFoam and BuoyantPimple-
Foam. The latter uses a compressible formulation for the pressure and implements a different form of the
energy equation based on enthalpy. This difference in the energy equation includes a potential energy
term on the right hand side, which at a higher Ri can be expected to significantly affect the solution. The
Boussinesq and Compressible solvers mentioned here have both been previously validated toward indoor
airflow applications [9].

1.1. Research Aims. This work builds upon previously demonstrated capability of OpenFOAM to
simulate data center convection heat transfer by Summers et al. [10]. It is also to be a sound base
for numerical studies of turbulence in data center open airflow situations connected to previous work
by Wibron et al. [11]. In the earlier work by Wibron, a few different turbulence models were validated
against measured flow data by the use of a hot wire anemometer. The limitations of the standard k-epsilon
turbulence model was elucidated such that the near-wall flow and buoyant effects are not generally seen
as well solved, though the results are still in general agreement for the statistically stationary flow [12].

To resolve data center airflow properly, the choice of turbulence model in conjunction with proper
grid size and numerics is important. A study by Zhang et. al. found that results are not entirely grid
independent, even for a grid resolution as fine as 1 inch per cell for data centers [13]. It is also found
that results do not change significantly below a certain bulk cell size. To determine these requirements
multiple grids are here used and compared.

Steady and transient solutions are also briefly compared, due to the transient nature of buoyancy,
flow separation and compressibility. These are effects that can potentially put the RANS approach into
jeopardy.

As for the modelling approach, the standard k-epsilon model has the advantage of being efficient, robust
and frequently utilized for data center CFD modelling. Considering the caveats already mentioned, this
model is chosen as it is known to generate solutions that exhibit statistically stationary flow. Unlike other
Reynolds Averaged Navier Stokes (RANS) turbulence models, it exhibits a higher degree of stability and
periodicity in the output temperatures on cooling units. It is therefore a model that is suited for this
type of grid study. Meaning grid studies where long transient averages can otherwise be computationally
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expensive to resolve. With the k-epsilon model, the flow can be averaged over a shorter period of time
and then compared for the two solvers and cases.

This work also briefly concerns the procedure of verification, as there is no readily available data to
validate the solution. With the main interest being the different results of the two solvers, a robust
way of verification is desired. Richardson extrapolation is usually the preferred method for quantifying
numerical errors [14]. Extrapolating a mean of a sampled variable during a set amount of time can
however imply added errors, though it is not an uncommon thing to perform despite of said issue. Here a
new qualitative approach is implemented to indicate the grid requirement necessary to obtain a solution
in the asymptotic region of numerically resolved flow.

2. Method

The solvers are run and numerically verified for two different flow configurations. One where the
Richardson number corresponds to a typical data center configutation and one where buoyant forces play
a more prominent role in the flow. These numbers are calculated based on the resulting volume-averaged
momentum for the two cases and presented as part of the results section. For the second(reduced)
scenario, forced convection is reduced by lowering the mass flow rate through the modelled server racks
and cooling units while retaining the heat generation. The Computer Room Air Handler (CRAH) flow
rates are reduced to 1/5th of the typical mass along with all racks set to a uniform mass flowrate of 0.1
kg/s for the reduced case. These flow rates are presented in Tabs. 2 and 3. This is done to effectively test
out the different solvers. This way it is possile to observe the effects of buoyancy by the heat distribution
on the return side of different cooling units as well as the volume distribution of temperature.

The data center modelled here is part of the large scale data center research facility in Lule̊a, Sweden.
Here a test module is used where various rack and cooling unit arrangements can be put together to find
suitable configurations in terms of cooling performance and energy usage. This includes options of the
hard floor and the more commonly used raised floor design. The hard floor configuration is chosen here
to limit the added complexity of including floor tiles in the model.

Figure 1 shows the modelled data center, with dimensions being 6.50 x 7.00 x 3.15 m3. The flow of
air is such that a hot aisle in between the two rows of 5 racks each is formed. The hot air rises to the
roof as a consequence of contributions from both forced and buoyant convection before returning to the
cooling units.

Figure 1. Model of the data center. Return areas of hot air to the CRAH are marked
in red, near the roof. Supplied cool air enters the room through the gray areas and
then flows through the servers, marked in blue and orange on the cold and hot side

respectively

2.1. Boundary Conditions & Numerics. The solvers are both set up to use the same material prop-
erties (Tab. 1) and boundary conditions, with exception to the server enthalpy increase being dependent
on the density of the incoming fluid for the compressible case.

The flow and heat generated from the servers is applied using the so called black-box model,
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Table 1. Material properties

Property Value Unit
Laminar viscosity ν 1.516e-5 m2 · s−1

Reference density ρ0 1.205 kg ·m−3

Specific heat cp 1006 J ·K−1

Thermal expansion coefficient β 3.43e-3 K−1

Turbulent Prandtl number Prt 0.85
Laminar Prandtl number Pr 0.707

Table 2. Rack boundary conditions

Rack Mass flow rate ṁ (kg/s) Heat load, Pserver (W)
1 1.190 6208
2 0.605 3263
3 0.826 5458
4 0.438 3983
5 0.310 3463
6 0.353 4036
7 0.453 3982
8 0.240 2014
9 0.223 2057
10 0.243 2178

Table 3. Cooling unit boundary conditions

CRAH Mass flow rate (kg/s) Supply temperature, (◦C)
1 2.475 18.3
2 2.323 18.3
3 2.325 18.3
4 2.426 18.3

Tin = Treturn +
Prack

ṁcp
(2)

for server enthalpy increase [15]. Here the temperature increase is modelled as a function of rack power
(Prack) and mass flow (ṁ).

Supply temperatures, server loads and mass flow rates presented in Tabs. 2 and 3 depict the reference
values used for the typical case, covering a realistic scenario for data center workloads and cold air
supply [11]. Walls are set to be adiabatic along with the standard OpenFOAM®wall functions for k, ε
and νt as kLowReWallFunction, epsilonWallFunction and nutLowReWallFunction respectively.

Various literature indicate static pressure openings for the CRAH-return boundaries should be used
instead of specified mass flow outlet boundary conditions (possibly to improve numerical solution conver-
gence) [11,16]. However, a specified static pressure affects the flow solution adversely such that consistent
mass conservation per cooling unit is not imposed. An opening is therefore made in the geometry to act
as a pressure reference to alleviate this, enabling the use of a specified flow rate for the CRAH-return
areas.

For the transient simulations, the backward time iteration scheme is used along with second order
discretization for velocity and temperature/energy. First order upwind discretization is used for the
turbulence divergence terms, aiding significantly in convergence in comparison to second order schemes.
No relaxation is used in the PISO-SIMPLE (PIMPLE) loop while 0.5 is set as default for velocity, energy
and turbulence in the steady (SIMPLE) simulations. The SIMPLEC method is enabled for all cases to
improve iterative convergence [17]. A maximum of 50 outer iterations are set, with two inner pressure
corrections and one non-orthogonal correction deemed necessary for the snappyHexMesh generated grids.

The transient residual criteria are set to 1e-4 for all variables except for pressure with 1e-5 for each
time step in the PISO-SIMPLE loop. The time step is set to be constant for all cases to dt=5e-3, resulting
in Courant numbers of up to 3.3 for the finest grid for the typical case. In previous work by Wibron
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et al. a larger time step of 5e-2 is possible due to the implicit equation coupling used in the element-
based finite volume method [12]. An inherent assumption in using the RANS approach requires that a
clear separation between turbulent and mean flow timescales are present, and that the time step used is
greater than the turbulent time scales. The standard k-epsilon turbulence model for incompressible and
compressible flows is used in this work, as included in OpenFOAM®v2012 excluding any added buoyant
source terms.

Table 4. Definitions of the various numerical grids used for this study

Grid Cells Reference cell size, mm Average edge length, mm
c 61.9k 140 123
n 88.8k 120 110
m 147k 100 92.9
f 282k 80 74.7
f2 652k 60 56.5
f3 1.12M 50 47.2
f4 2.17M 40 37.8

Figure 2. Slice cut of coarsest grid as generated by SnappyHexMesh (61.9k cells).
The plane chosen intersects Racks 2 & 8 along with CRAH units 1 & 2 as viewed head

on in Fig. 1

Seven different grids are used with sizes ranging from 40-140 mm for the Boussinesq case as seen
in Tab. 4. Out of these grids, the finest solution is used to compare the solvers and cases. The grid
generated by snappyHexMesh applies one refinement level beyond the initial uniform grid size near all
flow boundaries as seen in Fig. 2. Refinement is applied near the racks to locally resolve temperature
gradients and thus inhibit that numerical diffusion affects the downstream solution. With increased
turbulence near the outlet boundaries the refinement region adds to solution accuracy here for the very
same reason.

All cell temperature data is loaded and weighted by volume for an averaged transient solution span of 5
minutes to generate the histogram density plots. The method known as Kernel Density Estimation (KDE)
for the temperature distribution in the volume is employed with a covariance factor that is optimized
for the coarser grid [18]. The reason for using the covariance factor suited to the coarsest grid, when
making the distribution plots, is that the temperature distributions under the same statistical frame can
be compared.

2.2. Governing Equations. Here, the differential equations governing the fluid flow for the transient
solvers are presented. These equations model the momentum, mass and energy conservation together
with the turbulent viscosity νt based on the closure model selected. Compressibility is also an aspect of
the turbulence model, which uses a convective formulation that includes density that may also affect the
results.

2.2.1. BuoyantBouissinesqPimpleFoam. The Boussinesq solver employs a fully incompressible formula-
tion where buoyancy is modelled as dependent on temperature, which in turn simplifies the energy
equation to its constituents of pure convection and effective diffusion of temperature. The buoyant
contribution to dynamic pressure is formulated such that the force added is linearly dependent on the
temperature. The core equations for the Boussinesq solver includes continuity,
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ϕ = u (3)

∇ · ϕ = 0 (4)

and momentum,

D (u) =∇u+ (∇u)T (5)

∂u

∂t
+∇ · (ϕu)−∇ · (νeffD (u)) =− 1

ρ0
(∇ps − ρg) (6)

=−∇prgh − (g · r)∇ρk (7)

that is of the incompressible form where the dynamic pressure prgh includes the buoyant contribution. The
kinematic pressure is specified for the incompressible solver based on the static pressure as pk = ps/ρ0,

prgh = (pk − ρkg · r) (8)

ρk =
ρ

ρ0
= 1− β (T − Tref) (9)

(10)

with β as the coefficient of thermal expansion. The energy equation,

∂T

∂t
+∇ · (ϕT)− αeff∇2T = 0 (11)

αeff =
ν

Pr
+

νt
Prt

(12)

is modelled on the form of temperature as a transported scalar with diffusion by the turbulence.

2.2.2. BuoyantPimpleFoam. The compressible pressure based solver is defined such that continuity,

ϕ = ρu (13)

∂ρ

∂t
+∇ · ϕ = 0 (14)

and momentum,

D (u) =∇u+ (∇u)T − 2

3
(∇ · u) I (15)

∂(ρu)

∂t
+∇ · (ϕu)−∇ · (ρνeffD (u)) =−∇ps + ρg (16)

=−∇prgh − (g · r)∇ρ (17)

computation is dependent on the ideal gas equation of state for the density.

ρ =
ps
RT

(18)

prgh = (ps − ρg · r) (19)

which adds complexity to the energy equation,

∂

∂t
(ρh) +∇ · [ϕh]−

�
�
��
off

∂p

∂t
−∇ · (αeff∇h) = ρ(g · u) (20)

αeff =
ρνt
Prt

+
µ

Pr
(21)

in the form on a potential energy term, ρ(g · u). Specific enthalpy h = û+ p/ρ is used with its internal
energy û and constant specific heat cp, such that essentially the temperature is evaluated by h = cpT
and used to correct ρ before solving the energy for the next iteration. Also the pressure work term in
Eqn. 20 is disabled for improved convergence in the simulations, since statistically stationary turbulent
flow is considered.

The effective viscosity is again the superposition of turbulent and laminar viscosities(νeff = ν+νt) and
with corresponding, constant Prandtl numbers (Pr,Prt) for the heat diffusivity.
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3. Results & Discussion

An overview of the different simulations run in this work are displayed in Tab. 5 together with resulting
normalized wall distance y+. The results are presented in four sections, starting with the influence of
the grid on the two flow rates chosen for the Boussinesq solver. The next two sections covers the solver
influence for each scenario along with the steady and transient solution methods. Finally the scenarios
are compared using the compressible solution for the finest grid. This includes a brief analysis of how
the flow features exhibit significant differences when the Richardson number is changed.

With y+ values lower than 30 for the natural convection case, the applied hybrid low reynolds wall
model solution is considered applicable for the purpose of comparing the two solvers. Though in general,
cell wall distances in ranges of the log-layer are desirable. It is also seen in Tab. 5 that the Boussinesq
and Compressible cases are consistent to at least two digits in terms of the resulting wall distances.

Table 5. Simulation matrix

Case Grids Average wall y+

Boussinesq Ritypical Steady f4 27.3
Transient c, n, m, f, f2, f3, f4 48.4 → 37.1 → 27.3

Rireduced Steady f4 15.7
Transient c, n, m, f, f2, f3, f4 27.9 → 21.9 → 15.7

Compressible Ritypical Steady f4 27.3
Transient f, f2, f3, f4 37.1 → 27.3
Startup f2 33.7

Rireduced Steady f4 15.7
Transient f4 15.5
Startup f2 19.3

3.1. Grid comparisons. The distribution of temperature in the entire data center volume in Fig. 3
shows the grid influence on the solution. Numerical diffusion is seen to occur for grids ”c”, ”n” & ”m”
where volume is shifted to the intermediate temperature range inside the data center. It can also be seen
that the three finest grids overlap their volume distribution to a high degree such that the solutions can
be considered identical. This is further emphasized by the trends for the mean return temperatures and
pressures presented in Figs. 4 and 5. With a cold side CRAH-temperature at 291.45 K, the 5-minutes
sampled mean for the return sides seen in Fig. 4 differ by a maximum of .5 K for all grids. The pressure
drop per cooling unit cold and hot side is seen in Fig. 5 to have differences of up to 1.5 Pa. These
intervals are reduced for the three finest grids to .18 K and .3 Pa for the temperatures and pressure drops
respectively. Pressure can thus be considered a more sensitive variable in regards to the quality of the
solution as it closer relates to the the diffusion of temperature when comparing Figs. 5 and 3.
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Figure 3. Volume distributions of temperature for the typical Boussinesq case with
covariance factor of 0.1
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Case Thot CRAH 1 Thot CRAH 2 Thot CRAH 3 Thot CRAH 4
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Figure 4. Return temperatures in K for the typical transient Boussinesq case with
varied grid size
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Figure 5. CRAH-unit pressure drops in Pa for the typical transient Boussinesq case
with varied grid size

As for grid convergence, no extrapolation is performed in this work as we are looking for tendencial
differences of the solutions between the solvers. Here focus is directed toward what type of grid densities
to employ. Although five minutes sampled time is considered enough for obtaining a statistically steady
solution for the k-epsilon model, extrapolation based on mean variables would need to deal with accom-
panying variances to determine that the solution is spatially resolved. Securing that the solution is in
the asymptotic range of convergence is usually done with Richardson extrapolation. For transient cases
the sampling has to be carried out for a significant time to have consistent extrapolated values as the
extrapolation can be a very sensitive measure.

The convergence between grids for the compressible case is shown in Fig. 6, where there is no shift of
the peak of highest temperature such as is seen for the ”f” grid in Fig. 3. The Boussinesq solver thus
likely has a finer grid requirement than the compressible solver for the typical scenario. The distributions
in Figs. 3, 6 and 7 are generated as Kernel Density Estimations by use of constant covariance factors
based on the coarsest grid presented in each figure. The estimation for the reduced flow rate case is seen
in Fig. 7 where just slight distribution differences can be distinguished on the higher end of temperatures
and again the three finest grids overlap. Errors introduced by varied cell wall distance may also contribute
to the small differences. These results indicate that a reduced flow rate also implies a reduction in the
grid requirement.

3.2. Evaluation of solvers and a steady steate assumption for the Typical operation case.
Quantifying the mean temperature differences between the solvers (Boussinesq and compressible) for
the three finest grids results in CRAH-return variations of up to 0.1 K. The compressible solver has
a consistently larger pressure drop for all three fine grids in the range of 0.2 Pa for the cooling units.
Pressure transients vary in the order of 0.1 Pa.

The steady-state solutions are measured to have similar mean return temperatures as the unsteady
solutions to within 0.1 K for the cases presented in Fig. 8. Some minimal differences are found in the KDE
distributions of turbulent kinetic energy for these solutions, indicating that the steady solutions have more
kinetic energy. The increased pressure is attributed to artificial pressure arising in the numerics when
relaxation is introduced. Added relaxation in a steady solution reduces the residuals and enables added
steadiness. The two solvers are seen to respond similarly to the different cases with the compressible case
resolving slightly more pressure drop.
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Figure 6. Settling of temperature diffusion with grid refinement for the typical
compressible case with a covariance factor of 0.1
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Figure 7. Temperature distribution due to grid differences for the reduced Boussinesq
case

Case ∆prgh CRAH 1 ∆prgh CRAH 2 ∆prgh CRAH 3 ∆prgh CRAH 4

Boussinesq, Transient, f4

Compressible, Transient, f4
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Figure 8. Mean pressure drop in Pa per cooling unit for two steady solutions using
different under relaxation factors (0.1 and 0.5) for the velocity and one transient case

Evaluation of solvers and a steady steate assumption for the Reduced flow rate case.
Higher Ri (increased buoyant convection) results in return temperatures on the CRAH-units matching

within 0.1 K for the finest grid for both the steady and transient solutions. For this case, Fig. 9 shows
how the pressure drops match between the solution types and is consistent across the solvers.

The increased pressure drop resolved for the forced compressible case in comparison to the incom-
pressible case is not here seen for the reduced case. It is rather the opposite, meaning a marginally lower
pressure drop is observed when compressibility is introduced. This is possibly an effect introduced by
natural convection, where the pressure drops are less attributed to flow separation and resolved natural
convection aids the rising of hot air. The effect of solver on the pressure drop is seen to be in the range
of 0.1 Pa, which for this case is significant. The numerical artifacts by introducing a steady solution here
give a negligible added pressure drop shown as the dashed line in Fig. 9.
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Case ∆prgh CRAH 1 ∆prgh CRAH 2 ∆prgh CRAH 3 ∆prgh CRAH 4

Boussinesq, Transient, f4

Compressible, Transient, f4
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Figure 9. CRAH-unit pressure drops in Pa, steady and transient results

3.3. Comparison between the typical and reduced case. Figures 10, 11 and 12 show a cross section
(same as in Fig. 2) of the compressible ”f4” solutions, with mean values of velocity magnitude, turbulent
kinetic energy, and temperatures sampled for 5 minutes modelled flow time. The turbulent kinetic energy
is seen to be more prominent in the typical case, along with the velocity magnitudes. These quantities
take on their largest values near the jet-like flow coming from rack 2 and near the outlets.

(a) Typical case (b) Reduced case

Figure 10. Time averaged velocity magnitude, |U | in m/s for the cross section

(a) Typical case (b) Reduced case

Figure 11. Time averaged turbulent kinetic energy for the cross section

Density differences measured in the compressible solver are approximately 4% and 25% for the typical
and reduced case respectively. The natural convection occuring in the reduced case is demonstrated by
the column of higher temperature air rising as seen in Fig. 12. Lower estimated bounds for the turbulent
eddy viscosity of 0.01 J/kg and 0.004 J/kg in the resolved turbulent flow for the two cases give eddy
viscosity ratios (νt/ν) above 660 and 260 respectively for the two cases. A typical ratio that describes
fully turbulent flow is around 100, so the k-epsilon model can in this view be considered applicable [19].

In light of a Ri based on the same β and height (1 m) as in the introduction, velocity values were
obtained to be in the span of u ∈ (0.14, 1.83) m/s. These velocities correspond well with the limits of
forced to mixed convection and from mixed to natural convection respectively as mentioned. Evaluating
the temperatures near the roof in Fig. 12 along with the volume weighted velocities, estimates of Ri in
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(a) Typical case (b) Reduced case

Figure 12. Time averaged temperature for the cross section

the domain can be made that relate to the nature of the flow and possible stratification. Expectation
values for the domain velocities are 0.60 m/s and 0.21 m/s with roof temperatures estimated as 300 K
and 310 K for the typical and reduced cases respectively(based on the compressible model). Using the
supply temperature of 291.45 K a Ri is obtained as Ritypical = 0.8 and Rireduced = 14.1 ergo both cases
are within the regime of mixed convection, Ri ∈ (0.3, 16). It is seen that an expected Ri for the two cases
become close to the reference literature values for pure forced and natural convection, respectively when
applying the above specified height.

Solver times for the finest compressible case is about 22% and 15% faster than the Boussinesq solver for
the typical and reduced cases respectively. This is explained by an increased number of pressure iterations
per inner time step loop exhibited by the Boussinesq solver, being nearly five times as many as for the
compressible solver. This is believed to be a consequence of the nature of the boundary conditions. The
incompressible solver is expected to perform better for cases where there are more boundary conditions
directly specifying a pressure, other than the single pressure reference boundary that is employed in
these simulations. The incompressible solver is therefore expected to work faster when there are multiple
pressure boundaries acting as reference areas, reducing the numerical stiffness of the model.

Transient development of the temperatures at the CRAH-return areas along with rack 1 is presented
in Fig. 13. This rack is included as it indicates a slight recirculation of heated air. The development
timescales of return temperatures are seen to be similar for both cases. It is noteworthy that the typ-
ical case shows a periodic variation in temperature for two of the CRAH-return areas, likely being a
consequence of flow separation.
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Figure 13. Settling of CRAH return temperatures for the finest grid

Fig. 14 shows a significant difference in temperature distribution by height between the different Ri,
with the scale chosen such that light blue interval represents the intermediate range of mixed tempera-
tures. This range is 293-297 K for the typical case and 294-305 K for the reduced case and the sum of
the bars equal the entire volume of the data center. The high Ri case shows significant stratification of
high temperatures of which features can also be identified in Fig. 12. The typical convection case shows
no hint of this type of stratification.

Fig. 15 shows how the finest grid solutions compared for the two solvers and cases match. No significant
difference between the temperature distributions for the solvers can be identified.
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Figure 14. Cumulative temperature histograms by height for both cases. Based on
the compressible solution at finest grid
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Figure 15. Temperature distributions for the cases solved at the finest grid

Discussion & Conclusions

The Boussinesq and compressible solvers in OpenFOAM®for convective heat transfer are both viable
options for temperature ranges that apply to data center ventilation applications. The compressible
solver provide faster convergence for the simulations done here and has indication to also be slightly
more accurate at coarser grids. This is believed to be case specific due to how the boundary conditions
impose a fixed flow rate at all inlet/outlet boundaries with the pressure reference opening as an exception.
For running parametric studies of data center fluid flow, it can be concluded that one single grid sizing
might not be enough to correctly do the wall modelling nor reduce thermal diffusion for different flow
rates.

KDE distibutions can indicate how much volume contains mixed hot and cold air, though not whether
there is active mixing or if there are local hot-spots or direct hot air recirculation to racks. Here the
distributions are useful as a tool to indicate the quality of the resolved flow with respect to numerical
diffusion. Air flow of higher velocity may mix a lot more hot and cold air than natural convection per
unit time. To enable quality CFD research on the amount of lost energy in mixing, numerical effects on
temperature diffusion needs to be at a minimum.

Both the PISO and PIMPLE methods for time iteration were tested and are viable options, depending
on the stability of PIMPLE at the chosen time step. In terms of computational economy and accuracy,
this type of simulations can benefit from a larger time step enabled by an implicit pressure-velocity
coupling. The pressure drop is shown to be dependent on relaxation factors for the steady solutions of
the typical case (lower Ri). Transient cases thus provide better value in terms of studying the statistics
on the mixing of hot and cold air where Ri is low. An issue here is that he time step needs to be small
for the OpenFOAM®solution to converge, such that it begins to match the turbulent time-scales. This
is less than ideal for any applied unsteady RANS model.

Pressure drops are consistently higher using the compressible solver for the typical case and reversed
trends are seen for the reduced case. To reduce numerical diffusion and at the same time meet requirements
for wall function y+ puts high demands on the grid to enable a solution in the asymptotic range. To
produce qualitative CFD solutions for different flow rates and Ri therefore require grids that fulfil these



158 H. A. Barestrand, A-L. Ljung, J. Summers, and T. S. Lundström

criteria. For the simulations done in this work, the f2 grid is considered sufficient, utilizing a reference
cell size of 60 mm.

Although a fraction of the typical case flowrate is used for the reduced case to obtain higher grade
heat in a semi-realistic setting, not more than a half might be applicable. The flow rates used affect
the solution time of the solver as well, such that the higher Ri case makes for significantly faster solver
times. The reduced case (higher Ri) also increases the feasability to use a steady solution at little cost of
solution accuracy.
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