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Abstract: In this work, a previously published model for the water up take of stormwater in
sponge-like porous bodies by the group is further developed. This is done by investigating the
highest-performing model and considering the water uptake from the surroundings of a pond and
rain-infiltrated soil. This implies that water uptake from impermeable to partially permeable surfaces
is examined. Hence, the following cases are considered: (1) impervious bottom surface and no precip-
itation, (2) impervious bottom surface with precipitation, (3) permeable soil with no precipitation,
and (4) permeable soil with precipitation. A mathematical model covering all these cases is presented,
where the governing equations are the mass conservation and Darcy’s law together with an assump-
tion of a sharp wetting front being a first-order approximation of the complete Richard’s equation.
Results for the water uptake height, pond depth, and wetting front are computed numerically and
plotted against time. Analytical solutions are also presented in certain cases, and critical values are
obtained. The parametric study includes variations in the ratio of the model- to the surrounding
ground surface area, initial pond depth, precipitation, and soil characteristics. To exemplify, the time
it takes to absorb the water from the pond after a precipitation period is presented. The results are
related to the Swedish rainfall data of 1 h duration with a return period of 10 years. When evaluating
efficiency, the focus is on the absorption time. Results vary considerably, demonstrating a general
trend that with soil infiltration, the water absorption rate is higher. For most cases, the considered
water amount is absorbed completely, although depending on the parameters and conditions. These
results serve to optimize the model for each of the cases. The main focus of the research lies in the
theoretical aspect.

Keywords: stormwater; porous media; water uptake; mathematical modelling; sharp wetting front;
infiltration; water absorption

1. Introduction

Stormwater storage in urban catchments can be created at various spatial scales [1],
starting with the lot scale measures (LSM) and moving towards larger scales in the neigh-
borhood [2,3]. While the capacity of individual lot-level measures is small, they are used
in high numbers and serve as “distributed” storage. Furthermore, LSMs are recognized
for their educational value, leading to the active participation of the public in stormwater
management.

In the search for new LSMs providing distributed storage of water in urban areas,
Lundström et al. [1] examined the feasibility of creating dynamic storage of rainwater or
stormwater in sponge-like porous bodies (SPB). They proposed two types of such storage
structures illustrated in Figure 1a: down-flow SPB storage (Figure 1a,b) and up-flow SPB
storage (Figure 1b,c) and demonstrated in numerical experiments that such bodies could
fully absorb, in real-time, Swedish design rainfalls of 1 h duration and a return period
of 10 years. Note that the SPB storage sketches presented in Figure 1 are intended just
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to elucidate the theoretical concept of such storage without any aesthetic, practical, or
placement considerations. The figure is directly copied from [1].
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assumption imposes a limit on the volume of water stored, setting it equal to the volumet-
ric capacity of the original body. In the study by Åkerstedt et al. [4], the effect of swelling 
was included, with an increased absorbed water volume by an amount of 14%. 

The form of the up-flow device in the previous paper [1] was a solid cylinder with 
two concentric porous media wrapped around the solid cylinder. The solid cylinder may 
then mimic a tree or lamp post. In the present paper, only one single region with a porous 
medium is considered since this was found to be more optimal considering the amount of 
water uptake. The same physical model of the up-flow device as in the paper by 
Lundström et al. [1] is considered, in which the governing equations are the conservation 
of mass and Darcy’s law together with an assumption of a sharp wetting front, thus being 
a first-order approximation of the complete Richard’s equation [5,6]. The study explores 
various physical scenarios. 

The purpose of the present paper is a further the theoretical development of the up-
flow SPB storage concept. In the previous paper by Lundström et al. [1] on the up-flow 
SPB storage, the surrounding area of the pond and rain-infiltrated soil was not considered. 
In the present paper, a first very simplified 1-D model of the water uptake in an up-flow 
SPB device is presented with the presence of a surrounding pond, mimicking a flood sce-
nario. This study’s significance lies in assessing the SPB model’s efficiency in absorbing 
the flood, with a primary focus on factors like absorption time, volume retention, heights 
from numerical results, and, where possible, analytical expressions. Critical values are 

Figure 1. Theoretical concepts: (a) down-flow sponge-like porous body (SPB) storage; (b) up-flow
SPB storage with the pre-installed vertical structures expanding horizontally; and (c) up-flow SPB
storage with new vertical structures growing up from the ground when absorbing water. The figure
is directly copied from [1].

For the case of down-flow storage SPB, Lundström et al. [1] assumed that during the
filling process, driven by diffusion only, SPBs would maintain the original shape. This
assumption imposes a limit on the volume of water stored, setting it equal to the volumetric
capacity of the original body. In the study by Åkerstedt et al. [4], the effect of swelling was
included, with an increased absorbed water volume by an amount of 14%.

The form of the up-flow device in the previous paper [1] was a solid cylinder with
two concentric porous media wrapped around the solid cylinder. The solid cylinder may
then mimic a tree or lamp post. In the present paper, only one single region with a porous
medium is considered since this was found to be more optimal considering the amount of
water uptake. The same physical model of the up-flow device as in the paper by Lundström
et al. [1] is considered, in which the governing equations are the conservation of mass
and Darcy’s law together with an assumption of a sharp wetting front, thus being a first-
order approximation of the complete Richard’s equation [5,6]. The study explores various
physical scenarios.

The purpose of the present paper is a further the theoretical development of the up-
flow SPB storage concept. In the previous paper by Lundström et al. [1] on the up-flow
SPB storage, the surrounding area of the pond and rain-infiltrated soil was not considered.
In the present paper, a first very simplified 1-D model of the water uptake in an up-flow
SPB device is presented with the presence of a surrounding pond, mimicking a flood
scenario. This study’s significance lies in assessing the SPB model’s efficiency in absorbing
the flood, with a primary focus on factors like absorption time, volume retention, heights
from numerical results, and, where possible, analytical expressions. Critical values are also
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computed, meaning that there exists a limit for which the model is able to absorb. The
efficiency computations in the case of permeable soil are also carried out, achieving 86%
and 88% efficiency.

For the theoretical derivation and the obtaining of the parameters and/or their expres-
sions, it is assumed that the model is (i) placed on the impermeable ground without any
precipitation, (ii) placed on the impermeable ground with a limited duration of precipita-
tion, (iii) placed on the permeable ground without any precipitation, and (iv) placed on the
permeable ground with rainfall lasting for a finite duration of one hour. This is all illus-
trated in Figure 2. The rationale behind assuming an impermeable ground in the first two
cases is to mimic the conditions of urban surfaces, such as asphalt or concrete (e.g., parking
lots) while adopting a permeable ground in the last two cases aims to simulate scenarios
where the model is positioned on natural surfaces like parks or similar environments. The
placement of the model incorporates a narrow gap at the bottom to ensure water absorption.
The pond has an initial height of h0, as shown in Figure 2. The color of the ground denotes
permeability, whereas the green color indicates that the ground surface is permeable and
grey impermeable. Variables h(t) represent the pond height (h(t = 0) = h0 being the initial
height), z(t) water uptake height within the model, H(t) the depth of the infiltrated water
within the completely saturated soil, and the parameter I is the uniform rain intensity.
Notation δ represents the gap between the ground and the model. Arrows illustrate the
general water movement at arbitrary time t after a certain amount of time has already
passed. It is to illustrate the processes studied. When there is no rain and when the soil
is impermeable, the model absorbs the pond, and the absorption time can be determined
analytically. If the soil is permeable, a portion of the water infiltrates into the ground while
the rest is absorbed by the model, and the absorption time is calculated once more. Other
parameters are also found, such as the volumes, heights, and critical values, where possible.
In the case of rainfall, the pond at first either gradually increases or decreases depending
on the intensity of the rain flux. This study examines the long-term behavior of the process,
with no special interest in the initial stages.

The paper additionally presents information on the configuration for the up-flow
device, encompassing the governing equations that form the basis of the mathematical
modeling. The mathematical modeling is explained for each case, considering the precipi-
tation and ground type on which the model is located. A parametric study is conducted
to outline the model parameters and establish the necessary values for computing results,
such as rain intensity and pond depth. These parameters are based on the referenced source
by Lundström et al. [1]. Furthermore, the results for each case are presented, focusing on
the analysis of the efficiency of the model by calculating and comparing the absorption
time of the surrounding pond. The influence of soil permeability on the efficiency of the
model is found to be significant, and this efficiency is quantified accordingly. The model
demonstrates higher performance for the absorption time of the pond on permeable soil un-
der rainy conditions as opposed to dry conditions. Finally, a concise discussion is provided,
summarizing the comprehensive analysis conducted throughout this study.

This study offers a conceptual overview of the up-flow model in diverse scenarios,
accompanied by a detailed mathematical model with specific approximations outlined in
the work and its derivations presented in the Appendices A–C. However, the real-world
application and the corresponding technical examinations require further experimental
investigations, and it is currently in the early stages of technological readiness. Future
experiments aim to assess feasibility and enhance the model’s implementation, though
practical technological application is not the primary focus of this study. The main objective
was to explore the overall physics and water-uptake behavior of the model in different
intended usage scenarios.
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Figure 2. Illustrative representations of the four scenarios showing water uptake of the up-flow 
storage device when surrounded by a pond: (a) case 1: impervious ground surface without 

Figure 2. Illustrative representations of the four scenarios showing water uptake of the up-flow
storage device when surrounded by a pond: (a) case 1: impervious ground surface without precipita-
tion; (b) case 2: impervious ground surface with precipitation; (c) case 3: permeable ground surface
without precipitation; (d) case 4: permeable ground surface with precipitation. Note that the ground
color denotes permeability: green indicates permeable ground surface, and grey is impermeable. A1

denotes the inlet surface area of the up-flow model and A2 denotes the surface area of the surrounding
ground. h(t) denotes the pond height (h(t = 0) = h0), z(t) water uptake height within the model,
H(t) the depth of the infiltrated water within the soil, and I the uniform rain intensity. δ denotes the
gap. Arrows represent the water movement.

2. Mathematical Modelling of the Water Uptake of the Surrounding Pond for
Different Conditions
2.1. The Up-Flow SPB Storage Concept

In Lundström et al. [1], the up-flow SPB storage structures absorb the water vertically
from the ground. The two variants of such structures, as described by Lundström et al. [1],
include (i) the intermediate-height structures, which expand horizontally upon water
uptake, Figure 1b and (ii) the low-height structures, which rise from the ground while
absorbing the water, Figure 1c. Hydrogel and a specific porous medium are among the
storage structure material examples utilized for this purpose [1,7,8].

Since the flow in the porous medium of the SPB is one-dimensional, only the cross-
section area matters. The porous medium consists of vertical parallel fibers, and the medium
does not deform and does not swell as the surrounding walls of the model are fixed. It is
assumed that a narrow gap of negligible height δ exists between the ground and the model,
allowing for water absorption into the model. The gap does not impact subsequent analysis,
as one can place the coordinate center at the base of the model. Furthermore, the device
considered is surrounded by a pond of a finite depth, aiming to replicate the conditions
caused by urban stormwater runoff resulting in floods. In focus, the scenarios considered on
the effectiveness of the water uptake are: (i) the model is placed on an impervious ground
with no precipitation, (ii) the model is placed on an impervious ground experiencing a
finite duration of precipitation, (iii) the model is placed on a permeable ground with no
precipitation and lastly, (iv) the model is placed on a permeable ground with precipitation



Water 2023, 15, 3209 5 of 27

of finite duration. The four cases are illustrated in Figure 2a–d, respectively. In the case
of permeable soil, various types are investigated, as the nature of the ground itself has an
impact on the flood mitigation outcomes.

2.2. Governing Equations

Referring to the modeling of the up-flow SPB water uptake as described in [1], the
governing equations are the mass conservation and Darcy’s law (theoretically valid for
Reynolds numbers Re � 1 [9]). The porous medium consists of vertical parallel fibers.
The porous medium does not deform and does not swell as the surrounding walls of the
model are fixed, ensuring that the flow is confined, meaning that there is no water flux at
the lateral boundaries of the cylindrical model. The fluid flow within the pond is assumed
to be inviscid. Further, the fluid motion within the model is assumed to be described by an
incompressible viscid, yielding:

−∇·
(
K̂∇ϕ

)
= 0 (1)

where ϕ = p+ ρgz(t) is the modified pressure, and K is the permeability tensor. The gravity
acts in the in the negative z-direction. Assuming homogeneous and isotropic porous media,
Equation (1) becomes the Laplace equation. In general, the flow within the porous medium
occurs in a 2D domain. However, the presence of a boundary condition where the radial
flux is zero, along with the application of the uniqueness theorem, leads to the solution
depending only on the z-coordinate. Consequently, any horizontal flow movements within
the model are absent. The main driving mechanism of this confined flow along the fibers is
the capillary action:

pc = −
2γcos(Θ)

R
(2)

where pc is the capillary pressure, γ is the surface tension, Θ is the contact angle, and R
is the pore radius of the porous model. This has already been described in the referenced
work by Lundström et al. [1]. It is important to emphasize that in the narrow gap below
the cylindrical model, the inviscid assumption is no longer valid, and here, energy losses
become important. In hydraulic systems, this kind of energy loss is often included as a
single head loss coefficient and can be added in a term similar to the dynamic pressure
term. However, as will be shown, the dynamical pressure term is only of significance for
the initial stages of the process. This is also detailed in Appendix B. Since the long-term
analysis is of interest, this particular energy loss may be disregarded in further analysis. The
flow within the pond occurs in a 2D domain, allowing for horizontal movements. However,
the horizontal flow movements may be diminished due to two factors: Firstly, the zero-
flux boundary condition to the storage device, and secondly, the periodic arrangement of
storage devices as depicted in Figure 3, which simulates an outer no-flux condition between
neighboring storage devices. Hence, in further analysis, horizontal movements within
the pond shall be neglected. It is important to highlight that there is a small gap between
the soil and the model, ensuring no contact or water transfer from the soil to the model.
Additionally, the flow in the gap becomes significant only during the initial phase of the
process, where the dynamical terms, energy losses, and horizontal movement within the
gap must be included. However, the analysis performed in this study primarily focuses on
long-term processes, allowing us to analyze the water movements as one-dimensional.

For the infiltration of water within the soil, i.e., the cases illustrated in Figure 2c,d,
a sharp wetting front is assumed [10], which is a first-order approximation of the more
complete Richard’s equation, Equation (3) [11,12], hence the following equation is applied:

∂θ

∂t
= ∇·[K(θ)∇(Ψ− z)] (3)

where θ is the water content, and Ψ− z is the total energy potential. Behind the wetting
front, it is assumed complete saturation of the soil [13,14]; thus, Equation (3) transforms
into the Laplace equation [15]; further details may be found in Appendix C. The waterfront
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within the soil is assumed to be planar [13]. It is further assumed that the domain extends
infinitely on the ground surface and is divided into an infinite number of regularly shaped
cells. This division ensures that due to the symmetry, there is no water exchange at the
boundaries, meaning there is zero flux, ensuring that there is no horizontal flow. This is
illustrated in Figure 3.
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In addition to Equations (1)–(3), describing the physics of the flow, the conservation of
volumes needs to be established in a more general scenario:

ItA2 = z(t)Φ1 A1 + (h(t)− h0)(A2 − A1) + H(t)Φ2 A2 (4)

where I is the rainwater inflow velocity, h(t) the pond height and h(0) = h0 initial pond
height, z(t) the height that has been reached within the up-flow model and H(t) the depth
of the water within the soil.

For each of the cases, the conservation, Equation (4), is adapted accordingly. Fur-
thermore, Φ1 is the up-flow model porosity and Φ2 the soil porosity. A1 denotes the inlet
surface area of the up-flow model and A2 denotes the surface area of the surrounding soil.
In the further analysis, r = A1

A2
, is the ratio of these areas. It is important to note that in the

given context, index 2 refers to the soil, while index 1 pertains to the up-flow model.
A comprehensive mathematical model is presented for each of the cases. The details

of the derivations are provided in Appendix A.

2.2.1. Mathematical Modelling for Case 1

In the first configuration, Figure 2a, the up-flow model is placed on top of the im-
permeable soil, and there is no rainfall, i.e., I = 0. The full cylindrical up-flow model is
encompassed by a pond. At the initial stages of the absorption process t→ 0, the initial
conditions are set to:

h(t = 0) = h0, z(t = 0) = 0 (5)

As time progresses (t > 0), the water is absorbed into the model, leading to a reduction
in the height of the surrounding pond. The associated processes are described by the
following set of equations:

z
dz
dt

=
ρgK1

µΦ1

[
pc1

ρg
+ h0 −

(
1− (1−Φ1)r

1− r

)
z− 1

2g
.
z2
(

1−
(

Φ1r
1− r

)2
)]

(6)

h(t) = h0 −
Φ1r

1− r
z(t) (7)

Hence, solving Equations (6) and (7) yields z(t) and h(t). During the initial stages,
the inclusion of the dynamical pressure term is crucial in addition to the hydrostatic
pressure. It is the last term in Equation (6). Without considering the dynamical term
and with zero initial conditions z(t = 0) = 0, a singularity arises, namely

.
z(t = 0)→ ∞

(explained in Appendix A). This paradoxical issue is solved with the dynamical term
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yielding
.
z(t = 0) = 0. Notice that the dynamical term is only relevant during the initial

moments of the process, during extremely short instances, when t→ 0 .
By integrating Equation (6) and ignoring the dynamical term, it is possible to analyt-

ically derive an expression for the time required to completely absorb the surrounding
pond, Tap, according to:

Tap =
µΦ1
ρgK1

(
1− r

1− (1−Φ1)r

)[(
1− r

1− (1−Φ1)r

)
(zc1 + h0)ln

(
Φ1r(zc1 + h0)

Φ1r(zc1 + h0)− (1− r)(1− (1−Φ1)r)h0

)
−
(

1− r
Φ1r

)
h0

]
(8)

where zc1 =
pc1
ρg . The analytical expression, considering the dynamical term, is also derived

in Appendix A; however, as explained earlier, this term is only significant when t→ 0 , and
does not affect Tap.

2.2.2. Mathematical Modelling for Case 2

In the second configuration, Figure 2b, the model is still surrounded by a pond, and
the soil is still impermeable. Unlike in the previous case, the current configuration involves
a precipitation event of a finite duration period T. Initial conditions are set to be the same
as in Equation (5). During the rainfall t ∈ [0 T], the initial change in the pond height,
either an increase or decrease, depends on various factors such as the model geometry
scale, rain intensity, etc. After the rain has stopped, i.e., t > T, the process of absorbing the
surrounding pond remains the same as in the previous scenario with a difference in the
initial conditions:

h(t = T) = h1, z(t = T) = z1 (9)

Taking all of this into consideration, a mathematical model can be developed describ-
ing the underlying process as follows:

z
dz
dt

=
ρgK1

µΦ1

[
zc1 + h0 +

It− (1− (1−Φ 1) r)z
1− r

− 1
2g

.
z2
(

1−
(

Φ1r
1− r

)2
)]

, tε[0 T] (10)

h(t) = h0 +
It−Φ1rz(t)

1− r
, tε[0 T] (11)

z
dz
dt

=
ρgK1

µΦ1

[
zc1 + h1 +

Φ1rz1 − (1− (1−Φ1)r)z
1− r

− 1
2g

.
z2
(

1−
(

Φ1r
1− r

)2
)]

, t > T (12)

h(t) = h1 −
Φ1r

1− r
(z(t)− z1), t > T (13)

It is also possible to derive the absorption time analytically, representing the duration
of the model to completely absorb the water from the moment the rain has stopped
t ∈

[
T Tap

]
in the following way:

Tap =
µΦ1

ρgK1

(
1− r

1− (1−Φ1)r

)
(

zc1 + h1 +
Φ1r
1−r z1

)
(1− r)

1− (1−Φ1)r
ln

(
zc1 + h1 − z1

zc1 − z1 − 1−r
Φ1r h1

)
− 1− r

Φ1r
h1

+ T (14)

2.2.3. Mathematical Modelling for Case 3

In the third configuration, Figure 2c, the model is placed on a permeable soil, but there
is no precipitation. The initial conditions for the third case are:

h(t = 0) = h0, z(t = 0) = 0, H(t = 0) = 0 (15)
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By incorporating the advancing wetting flow front into the soil with an approximated
Richards equation, the following mathematical model is derived:

z
dz
dt

=
ρgK1

µΦ1

zC1 + h− z− 1
2g

 .
z2 −

(
Φ1r

.
z + Φ2

.
H

1− r

)2
 (16)

H
dH
dt

=
ρgK2

µΦ2

zC2 + h + H − 1
2g

 .
H

2
−
(

Φ1r
.
z + Φ2

.
H

1− r

)2
  (17)

h(t) = h0 −
(

Φ1rz(t) + Φ2H(t)
1− r

)
(18)

The set of coupled Equations (16)–(18) are solved numerically in MATLAB.

2.2.4. Mathematical Modelling for Case 4

For the last configuration, Figure 2d, the soil is considered to be permeable, and
there is precipitation in the time duration t ∈ [0 T]. The initial conditions are set as in
Equation (15). Analogously to case 2, a set of equations to model the process during
the rainfall period are formed, and a separate model is used after it has stopped raining.
Equations (16) and (17) remain unchanged, while the conservation Equation (18) is altered
accordingly:

h(t) = h0 +
It−Φ1rz(t)−Φ2H(t)

1− r
, tε[0 T] (19)

h(t) = h1 −
Φ1r(z(t)− z1) + Φ2(H(t)− H1)

1− r
, t > T (20)

where h(t = T) = h1, z(t = T) = z1 and H(t = T) = H1.

2.3. Parametric Study

For plotting results and conducting efficiency studies, the relevant parameters and
their corresponding values for each of the configurations are briefly explained. The model
itself is based on the up-flow model described in [1], and as such, the parameter values are
directly extracted from the corresponding table of parameters for up-flow SPB provided in
the reference: the radius of the model cylinder is taken to be a = 0.1 m, the porosity being
Φ1 = 0.7 and the geometrical scale of the porous media R = 10 µm.

Table 1 provides an overview of the three types of soil considered in the current study:
sand, silty soil, and clay. The selection of soil types is based on soil content statistics specific
to Sweden, obtained from a digital soil map of Sweden [16]. To determine the porosity
and capillary pressure values, the article by Detmann [17] is used as a reference, selecting
the following soil groups: medium sand, strong clayey silt, and pure clay. The capillary
pressure under a complete saturation assumption has a uniform value of 1 kN/m2 for
all soil types [17]. As for the permeability coefficients of the selected soil types, several
literature sources are applied [18–21].

Table 1. Soil parameters.

Soil Type Permeability K(m2) Porosity Φ2 (%)

Sand 10−11 42
Silty 10−13 44
Clay 10−17 46

The information regarding rain intensity is gathered from the previous study con-
ducted by Lundström et al., as presented in Table 2 [1]. Inflow data is obtained from the
local rainfall regime, Olsson et al. [22]. To facilitate analysis, the value commonly employed
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for analysis purposes will be the rain intensity of 0.68·10−5 [m/s per unit area] with an
average duration of one hour. However, variations in rain duration, intensity, and other
factors will be explored to observe their effects on the results. Table 2 provides the precipi-
tation information, although the preceding rainfall will not be included in the analysis as
the model has been initially derived for the uniform rain conditions.

Table 2. Direct inflow of rainwater into storage (Table is copied from [1]).

Event
Direct Rainwater Inflow Velocity I m/s per Unit Area [m2]

Southwest (SW) North (N)

Uniform intensity 60 min duration, with
return period 1:10 years 0.68·10−5 0.53·10−5

60 min duration event with a
high-intensity burst of 5 min, return

period 1:10 years, Berggren [23]

3.47·10−5

Preceding rainfall (during the first
27.5 min) = 7 mm

2.73·10−5

Preceding rainfall (during the first
27.5 min) = 5.4 mm

In the next results section, the necessary graphs are generated by varying the param-
eters of primary interest, namely the initial flood height and the model porosity values.
These variations will allow an analysis of the impact of these parameters on the results.
In the previous work [1], the effect of the porosity values on the efficiency is discussed
briefly. Clearly, increasing the porosity enhances the water uptake and overall performance.
However, a more detailed analysis will be conducted to examine the effects of porosity
across different configurations and how it has an impact on the performance under different
circumstances. The values of the porosity are taken to be the same as in the previous paper
study [1].

The depth of the surrounding ponds, representing the simulated flood, is derived
from a case study conducted in Malmö, Sweden, by Haghighatafshar et al. [18]. The
study specifically examines the possibility of the reduction of stormwater floods and has
generated a flood map of the Augustenborg area (year 2014). After selecting the appropriate
values for the initial pond height, together with the corresponding porosity values, they
are placed in Table 3 below.

Table 3. Initial pond height and porosity values of the up-flow SPB device.

Initial Pond Height h0[m] Porosity Φ1 (%)

0.3 60
0.5 70
1 80

3. Results

Results for case 1 are outlined in Section 3.1, while those for case 2 are presented
in Section 3.2. For cases 3 and 4, the results are discussed in Section 3.3. The numerical
calculations are conducted in MATLAB utilizing the ode45 function with a tolerance of
1 × 10−10 (the function relies on the fourth-order Runge–Kutta method). Unless otherwise
specified, the results are primarily presented for r = A1

A2
= 0.35, φ = 0.7, h0 = 0.5 m and

I = 0.68·10−5 m/s per unit area with an average duration of T = 1 h.
It is important to emphasize that since the mathematical modeling is based on ratios

rather than explicit surface values, the surfaces involved can be chosen arbitrarily. However,
it should be noted that explicit surface values do play a role when calculating volumes.
For the analysis of uptake height, pond height, and water depth in the soil, r is the key
consideration and not the actual geometry. This aspect is intriguing as it allows for different
design choices. However, in this study, the cylindrical design is employed. The design
parameters and values are chosen to ensure the model’s compactness, as SPBs are intended
not to interfere with their environment while retaining effective absorption capacity.
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3.1. Case 1

Based on the mathematical modeling for case 1 in Section 2.2.1, it is possible to plot
the variations of the water column height and the pond height over time. Analogously,
the same applies to the computation of the corresponding volumes, namely the volume
of water uptake and the volume of the pond, which can be depicted as a function of time
according to:

Vz(t) = Φ1 A1z(t) , Vh(t) = (A 2 − A1)h(t) (21)

To examine the effectiveness of the up-flow model, the initial pond height is altered
using the values presented in Table 3, keeping the porosity constant at 0.7. Based on the
results obtained in Figure 4a,b, it can be concluded that for larger initial depths, the time
taken to absorb the surrounding pond (i.e., h

(
Tap
)
= 0) increases up to a certain value of

h0 = hcritical . Beyond this initial critical value h0 = hcritical , the flood will not be completely
absorbed, h(t) > 0, ∀t. This would mean that the model has a capacity of maximum
flood absorption equal to the critical one. This behavior aligns well with the analytical
expression for Tap in Equation (8). It is possible to graphically represent the analytical
expression for the absorption time, as demonstrated in Figure 4a. Evidently, the values will
progressively increase until they reach the critical value hcritical ≈ 0.54 m (i.e., the asymptote
of the function). An exact analytical expression for this critical value can be derived by
considering the condition in Equation (8) that the denominator in the logarithmic function
must be greater than zero:

h0 = hcritical =
Φ1r

1− r
zc (22)

Figure 4b presents the graph following the numerical computation of Equations (6) and (7),
which is exactly in line with the analytical one.

Results, when altering the porosities according to Table 3 (with constant h0 = 0.5 m)
are presented in Figure 4c,d. A general trend is observed: as the porosities increase, there is
a corresponding decrease in the time required for absorbing the surrounding pond. This
indicates that with larger contact surface areas, there is an enhanced capacity for water
uptake. Once again, there is a critical value for a complete water up-take, this time related
to the porosity. Similar to the critical initial pond height value, this value can be determined
using the same analogy and reasoning, i.e., Φcritical ≈ 0.65. Nevertheless, as the porosity
continues to decrease below the critical value, the model will no longer be capable of fully
absorbing the surrounding pond.

The same analysis applies to the ratio, with the analytical plot displayed in Figure 4c
and the numerical plot shown in Figure 4d. As the ratio increases, indicating that the model
occupies more of the surrounding space, the time required for absorbing the pond notably
decreases. However, below the critical value, the model will only absorb water up to a
certain height, leaving the remaining pond intact.

Returning to Figure 5a, an interesting observation can be made: the graphs depicting
the analytical expression with and without the inclusion of dynamical pressure remain
precisely aligned. This reaffirms the previous statement that the dynamic pressure has
minimal impact on the results, except in very brief instances. Consequently, in subsequent
studies and analyses, the dynamic pressure will be disregarded.

3.2. Case 2

In this case, the analysis incorporates uniform rain with an average finite duration of
one hour (T = 3600 s).

As before, the water column height and pond height are plotted against time, along
with their respective volumes, as depicted in Figure 6. In Figure 6a,b, the initial pond depth
is varied with the constant porosity value of 0.7. Notably, for a smaller depth of 0.3 m,
the presence of rain has a minor impact on the absorption. However, for a depth of 0.5 m,
the difference is significant compared to the one in case 1. The rain now plays a crucial
role in prolonging the absorption time (in case 1, approximately 2500 s, while in case 2, it
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exceeds 9000 s). Similarly, in case 1, when the flood height reaches 1 m, the critical value
for height is surpassed, resulting in incomplete absorption of the flood. Analogously, by
altering the porosities (with constant h0 = 0.5 m), an increase in the values leads to a delay
in the absorption time compared to the one in case 1.

Computing the absorption time analytically becomes considerably more challenging
during the precipitation period, i.e., t ε [0 T]. However, once the rainfall has ceased, the
expression for the absorption time aligns with that of case 1. In this case, the absorption
time is determined by calculating the difference between the time at which the pond is
completely absorbed and the duration of the rainfall: Tap = th=0 − T. The only distinction
when deriving the expression lies in the initial conditions h(t = T) = h1, z(t = T) = t1
(Section 2.2.2). Equation (14) presents the analytical expression, and following a similar
approach to the one in case 1, the expression for the critical height is obtained as:

h1 = hcritical =
(zc− z1)Φ1r

1− r
; (23)
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Figure 4. (a) Water column and pond heights and (b) their corresponding volumes for case 1 are 
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Figure 4. (a) Water column and pond heights and (b) their corresponding volumes for case 1 are
plotted against time for various initial height values (Table 3); (c) water column and pond heights
and (d) their corresponding volumes for case 1 are plotted against time for various porosity values
(Table 3).

The results are computed numerically and plotted in Figure 7c,d. Notably, the critical
ratio value appears to be larger in case 2 than the one observed in case 1. This discrepancy
can be attributed to the additional volume introduced by the rain, necessitating a slightly
larger surface area to facilitate the complete absorption of the pond.
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It is also noteworthy to observe the implications of modifying the rain intensity during
its one-hour duration. Figure 7a,b presents the results corresponding to these variations.
The intensity values used for analysis are sourced from Table 2, with the assumption of
uniform rainfall for all the cases to facilitate meaningful comparison. As anticipated, an
increase in the intensity of rainfall corresponds to a longer absorption time of the pond.
Once the critical threshold for the intensity value is surpassed, the model becomes incapable
of fully absorbing the surrounding water.

In addition to altering the rainfall intensity, it is also important to study variations in
the duration of the rain. While the average duration taken in this study is one hour, it is
interesting to explore how the absorption time is affected when the rainfall lasts longer or
shorter than this. Graphs depicting the absorption time in relation to the rain duration are
plotted for different rain intensities in Figure 8, providing insights into this relationship.

It is apparent that for each rain intensity, there exists a critical value of rain duration
beyond which the model cannot fully absorb the flood. Naturally, higher-intensity rain
reaches this critical rain duration value sooner compared to lower-intensity rain: after 500 s,
it becomes evident that higher rain intensities have substantially increased the flood height.
At t = 0 s, the absorption time is equivalent to that of case 1, approximately 2500 s. As a
reminder, the definition of the absorption time for case 2 is that it is calculated starting from
the moment when the rainfall has ceased until the time the pond has been fully absorbed.
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Figure 6. (a) Water column and pond heights and (b) their corresponding volumes for case 2 are
plotted against time for various initial height values (Table 3); (c) water column and pond heights
and (d) their corresponding volumes for case 2 are plotted against time for various porosity values
(Table 3).

3.3. Case 3 and Case 4

In cases 3 and 4, the process of water infiltration into the soil is incorporated as
described in Sections 2.2.3 and 2.2.4, and the specific soil parameters used can be found in
Table 1. The obtained results for the water column height, surrounding pond height, and
waterfront depth in the soil are graphically depicted in Figure 9a, while the corresponding
volumes are presented in Figure 9b. Volumes are, in these cases, calculated as:

Vz(t) = Φ1 A1z(t), Vh(t) = (A2 − A1)h(t), VH(t) = Φ2 A2H(t) (24)

In Figure 9, it can be observed that the absorption time of the pond is crucially
dependent on the type of soil. The results indicate that sand demonstrates the most efficient
absorption, with the shortest time required. On the other hand, clay exhibits the least
absorption, as the infiltrated water into the soil (waterfront depth H) appears to be nearly
non-existent. Furthermore, when comparing clay to impermeable soil, the difference in
absorption time is negligible. Given the results, sand will be selected as the main soil type
for subsequent results presentation due to its efficiency.

It is of particular interest to examine the effectiveness of the model when highly per-
meable soil is sand. The variations in the initial pond height are illustrated in Figure 10a,b,
while the impact of altering the porosity is depicted in Figure 10c,d.

The absorption time increases with the growing values of the initial pond height,
mimicking the results for cases 1–2. However, comparing case 3 (permeable soil) to case 1
(impermeable surface), it is evident that the permeability of the ground plays a significant
role in facilitating water absorption. For an initial height of 0.3 m, the absorption time
in case 1 is approximately 500 s, while in case 3, it is around 200 s, nearly half the value.
Similarly, for an initial height of 0.5 m, the absorption time in case 1 is close to 2500 s,
whereas in case 3 with soil, it is only 400 s. Furthermore, it is important to highlight that,
unlike previous cases, in case 3 with soil, the entire flood is absorbed even for an initial
height of 1 m.
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Figure 7. (a) Water column and pond heights and (b) their corresponding volumes for case 2 are
plotted against time for various rain intensity values (Table 2); (c) time taken to absorb the pond is
plotted as a function of initial pond height value after precipitation; (d) time taken to absorb the pond
is plotted as a function of area ratio.
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Analogous observations can be made when considering the variations in porosity, as
shown in Figure 10c,d. In case 1, with the highest porosity value of 0.8, the absorption
time is approximately 1500 s, whereas in case 3, with soil, the absorption time for the same
porosity value is around 400 s. In contrast to the previous two cases, when considering the
lowest porosity of 0.6, the surrounding pond will be fully absorbed. This demonstrates
the significant improvement in the overall performance of the up-flow model when soil is
incorporated.
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Figure 10. (a) Water column, pond, and depth of the water within the soil and (b) their corresponding
volumes for case 3 are plotted against time for various initial height values (Table 3); (c) water column,
pond, and depth of the waterfront within the soil and (d) their corresponding volumes for case 3 are
plotted against time for various porosity values (Table 3).

Given the significant impact of soil, it is intriguing to further examine the influence
of rain on the results. Figure 11 presents the final case 4 analysis, where the plots in
Figure 11a,b showcase the results by varying initial pond height, while the graphs in
Figure 11c,d illustrate the effects of varying porosity.
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Figure 11. (a) Water column, pond, and depth of the water within the soil and (b) their corresponding
volumes for case 4 are plotted against time for various initial height values (Table 3); (c) water column,
pond, and depth of the waterfront within the soil and (d) their corresponding volumes for case 4 are
plotted against time for various porosity values (Table 3).

Observing Figure 11a,b, it can be noted that the absorption time for the surrounding
pond has slightly increased compared to case 3. However, it remains significantly lower
than in cases 1 and 2. Similar trends are observed in the graphs of Figure 11 when varying
the porosities. The rainfall in this study case with permeable soil exhibits a small influence
on the overall performance outcomes.

The investigation of higher precipitation intensity becomes an additional point of
interest. As depicted in Figure 12a,b, even at the highest intensity, there is only a minimal
delay of 50 s. Note that the plots for the two lowest intensities are perfectly coincided.
The presence of soil diminishes the impact of rain on system performance. Conversely, in
case 2, particularly for an initial depth of 0.5 m, there is a substantial difference in absorption
time compared to case 1. Additionally, rain intensity plays a crucial role in case 2, and for
the highest intensity, the flood remains partially absorbed. In contrast, in case 4, the highest
intensity merely introduces a delay of 50 s in the absorption process.

To quantify the efficiency of the water uptake, considering that the ground is permeable
for case 3, the soil type is sand, h0 = 0.5 m and Φ1 = 0.7, one may use the following formula:

η =
Tap(r = 0)− Tap

Tap(r = 0)
≈ 2839s− 405s

2839s
≈ 0.857

where Tap(r = 0) denotes the absence of the model, indicating that the pond is absorbed
solely by the soil. The findings clearly demonstrate that the designed up-flow model plays
a substantial role in enhancing water absorption, surpassing the sole absorption capacity of
the soil.

Similarly, for case 4, when rain is included with I = 3.47·10−5 m/s per unit area of
average duration 1 h:

η =
Tap(r = 0)− Tap

Tap(r = 0)
≈ 3774s− 454s

3774s
≈ 0.88
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The impact of rain on pond absorption is apparent, leading to a gradual increase in
the volume of the pond, leading to a delay in the absorption time. Notably, the absorption
of the soil acting alone is significantly longer in this scenario compared to the previous case
(case 3). The designed model exhibits higher efficiency, particularly under rainy conditions.
This is attributed to the superior characteristics of the model as an absorber, including
higher permeability and porosity values, as well as a greater capillary pressure compared
to the soil.

3.4. Summary

The SPB model is designed with a constant ratio of r = 0.35. It is further important
to emphasize that the results plotted throughout the study are for the designated values
of φ = 0.7, h0 = 0.5 m, and I = 0.68·10−5 m/s per unit area with a duration of T = 1 h,
unless stated otherwise.

In the first case, when the soil is impermeable, and there is no rain, analytical ex-
pressions are obtained for the absorption time, enhancing the understanding of the exact
absorption time behavior. Furthermore, from the analytical expression, critical values are
derived hcritical ≈ 0.54 m and φcritical ≈ 0.65. Above hcritical and below φcritical the model
is not able to fully absorb the remaining pond. In the second case, when there is rain,
analytical derivation of the critical values is not as straightforward, as the inclusion of the
rain complicates the analysis: h1 = h0(t = T) ≈ 0.0149 m and φcritical ≈ 0.68. These critical
values are useful in the designing process of the model, knowing the conditions under
which the model will experience failure to fully absorb.

In the last two cases, the ground is permeable. The soil type chosen is sand. It is
interesting to observe how much the soil enhances the overall absorption process, that also
in cases when the values of relevant parameters surpass the critical values (found in the
previous two cases), the model can still fully absorb the surrounding pond. In the initial
two cases, the device retains significantly more water compared to the last two cases. This
is due to impermeable ground, and hence, the absorption process relies solely on the model
(the maximum capacity Vmax ≈ 0.037 m3), while in the latter cases, soil absorption leads to
a lower retained volume. This implies that the model can still absorb additional water. To
evaluate absorption efficiency, the most suitable approach is to examine absorption time
Tap = T(h = 0). The corresponding results are summarized in Table 4. In instances where
the critical values are exceeded, preventing complete water absorption by the device, the
corresponding values become indefinite as Tap → ∞ . Apart from infinite absorption, the
longest absorption time occurs in case 2, surpassing 9000 s. This is due to the ground being
impermeable and conditions of rainfall with an intensity of I = 0.68·10−5 m/s per unit
area. In case 4 (when soil is permeable), for the same rain intensity, the time is Tap = 419 s.
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The table clearly illustrates a significantly shorter overall absorption time when the soil is
permeable. Furthermore, considering higher porosity values and lower initial pond heights,
the absorption time notably decreases, particularly in the initial two cases.

Table 4. Absorption time values (Tap) extracted from the plots for different porosity, initial pond
height, and rain intensity scenarios in all four cases.

φ1 = 0.6 φ1 = 0.7 φ1 = 0.8 h0 = 0.3 m h0 = 0.5 m h0 = 1 m
I = 0.53·10−5 m

s
per Unit

Area

I = 0.68·10−5 m
s

per Unit
Area

I = 3.47·10−5 m
s

per Unit
Area

Tap[s]for
case 1 indefinite 2523 1458 407 2522 indefinite no rain no rain no rain

Tap[s]for
case 2 indefinite 9221 1649 423 9220 indefinite 4630 9221 indefinite

Tap[s]for
case 3 461 410 366 148 410 1481 no rain no rain no rain

Tap[s]for
case 4 472 420 370 153 420 1540 417 419 458

4. Discussion

The primary objective of this paper was to theoretically examine the impact of the
modified up-flow model, based on the referenced work by Lundström et al. [1], contribut-
ing to the analysis of dynamic stormwater storage under various conditions, including
permeable and impermeable soil along with external conditions. Certain idealizations were
made, such as when modeling the water flow in the narrow gap, and effects due to viscosity
were not included, causing certain energy losses to be neglected. These energy losses are
certainly important in the initial stages of the process, which, when included, should lead to
a slower process initially in a similar manner to the inclusion of the dynamic pressure term.
Another idealization (i.e., approximations in the study) is the neglect of horizontal flow
in the pond, as well as in the soil. Soil is considered to be saturated (Green–Ampt model).
The problem in this study is treated as a one-dimensional flow due to the symmetrical and
periodic arrangement of the storage devices (no-flux boundary condition), as presented
in Figure 3. It is believed that the first approximation with a one-dimensional flow in the
pond and soil should give at least a first estimate of relevant parameters.

Several parameters were varied, including the initial pond depth, rain intensity, soil
type, and the porosity of the up-flow model. The absorption time of a surrounding pond
was chosen as the key parameter to assess the efficiency of the water uptake. The findings
revealed that including highly permeable soil as sand significantly improves the overall
water removal performance. In certain events involving impermeable soil, complete ab-
sorption of the flood was not achieved, but still, the up-flow model performs well for such
a case. Another study by Zhao et al. [24], in which the stormwater management model
(SWMM) and Green-Ampt infiltration model have been used to examine how soil-saturated
hydraulic conductivity and soil capillary suction head can influence stormwater runoff, has
also concluded that improving these parameters, i.e., overall soil permeability, boosts the
infiltration significantly, specifically when varying the conductivity. The absorption time
in the present study was computed analytically, and where possible, critical values were
determined, demonstrating good agreement with the numerical results. These findings
enable the identification of optimal parameter choices and provide insights into staying
within critical values. Efficiency was evaluated specifically for permeable soil, indicating
that the presented model exhibits higher efficiency when rain is taken into account. Addi-
tionally, it is worth noting that, in mathematical modeling, the ratio of surfaces played a
crucial role rather than the surfaces alone. This suggests that the analysis can be extended
to various shapes and configurations of devices.

This study serves as a valuable starting point to evaluate the up-flow model water
uptake under different conditions. However, further investigations are required, particu-
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larly regarding aspects related to device implementation, the discharge of the water, etc., as
this study primarily focuses on physical and mathematical modeling. Additionally, future
analyses could consider the incomplete saturation of the soil, incorporating the Richards
equation with variations in saturation and possible horizontal movement, as conducted
in some recent work [25–27], as well as including the effect of rainfall on the infiltration
rate [28]. To further improve the model, evapotranspiration could also be included, sim-
ilar to the work by Timsina et al. [29]. Improving the physical model for the water flow
in the pond, including viscosity and horizontal flow, would further enhance the model.
Finally, the development of an experimental rig for the validation of the models is essential.
Progress in this direction is underway.

5. Conclusions

This study performs a further theoretical analysis of the innovative concept of dy-
namical water storage in sponge-like porous bodies proposed by Lundström et al. [1].
The assessment focuses on the up-flow model, using a full-cylindrical model to exam-
ine its performance under different conditions, such as permeable and impermeable soil
and with or without rain. In each case, a pond is employed to replicate a flood scenario.
Mathematical modeling based on first principles, including permeable soil, shows that the
model effectively captures 1 h Swedish design rainfalls with an average return period of 10
years. However, when impermeable soil is considered, critical values for geometrical and
model-characteristic parameters are derived, indicating that values exceeding the critical
ones will hinder the model’s ability to absorb the surrounding flood. The permeability of
the soil is found to be a crucial factor in water absorption, and the analysis shows that the
model can be optimized according to the maximum values reached by the model. However,
further investigation is needed to ensure the practical applicability of this dynamical water
storage up-flow model concept, such as considering the soil as unsaturated, which will
necessitate the use of the complete Richards equation to obtain more realistic results.

This work presents a conceptual overview of the up-flow model in various scenarios,
focusing solely on its water-uptake capacity. More comprehensive theoretical and experi-
mental research is necessary to fully explore further the potential and real-world feasibility
of this concept.

Author Contributions: Conceptualization, A.B. and H.O.Å.; methodology, A.B. and H.O.Å.; software,
A.B.; validation, A.B.; formal analysis, A.B., H.O.Å., I.A.S.L. and T.S.L.; investigation, A.B. and H.O.Å.;
data curation, A.B.; writing—original draft preparation, A.B.; writing—review and editing A.B.
(writing and editing), H.O.Å. (editing and review), I.A.S.L. (review) and T.S.L. (review); visualization,
A.B., H.O.Å. and I.A.S.L.; supervision, H.O.Å., I.A.S.L. and T.S.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by VINNOVA (Swedish Governmental Agency for Innovation
Systems) DRIZZLE—Centre for Stormwater Management grant number 2016-05176.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of this study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Details of the derivations for all the relevant equations and expressions used through-
out this study will be explained. First, it is referred to case 1, and further on, a comprehen-
sive derivation for the remaining cases will be provided as well.
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Appendix A.1 Case 1

Starting from the Laplace equation ∇2 ϕ = 0 (Section 2.2) one may write:

ϕ(z, t) = A(t) z + B(t) (A1)

where ϕ = p + ρgz(t) is the corresponding expression for the modified pressure and
A(t), B(t) are the unknown time-dependent coefficients. At z = 0, there exists a condition
for the inlet pressure pin and thus one may determine B(t):

B(t) = pin (A2)

To determine pin, it is referred to Reynolds transport theorem together with the defined
control volume as presented in Figure A1:∫

∂e
∂t

dV +
∮

e
(
→
v d
→
S
)
= pat(A2 − A1)v− pin A1Φ1

.
z (A3)

e =
1
2

ρv2 + ρgz → ∂e
∂t

= ρv
∂v
∂t
→

t→∞
0 (A4)

where e is the specific energy of the system. The first term on the LHS of Equation (A3)
becomes zero: coordinate z does not vary in time, and knowing that after a very long
time, i.e., t→ ∞ the velocity becomes constant (observed from the simulations), the time
derivative of e becomes zero (Equation (A4)).
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The second term on the LHS is determined as follows:∮
e
(
→
v d
→
S
)
= −

(
1
2

ρv2 + ρgh
)

v(A2 − A1) +
1
2

ρ
.
z2Φ1

.
zA1 (A5)

From the continuity equation, one may write:

A1Φ1
.
z = v(A2 − A1) → v =

A1Φ1

A2 − A1

.
z (A6)

Replacing Equations (A5) and (A6) into Equation (A3), one gets:

pin = pat + ρgh +
1
2

ρ
.
z2
((

A1Φ1

A2 − A1

) 2
− 1

)
(A7)

B(t) = pat + ρgh +
1
2

ρ
.
z2
((

A1Φ1

A2 − A1

) 2
− 1

)
(A8)

The fluid is driven upwards by the capillary rise:

ϕ(z, t) = A(t)z + B(t) = ρgz + pat − pc (A9)
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where pc =
2γcos(Θ)

R is the corresponding capillary pressure. By utilizing Darcy’s law and
the governing single-phase flow expression for the flux q one may determine the expression
for A(t):

q = Φ1
dz
dt z=z(t)

= −K1

µ

∂ϕ

∂z
= −K1

µ
A(t) → A(t) = −µΦ1

K1

dz
dt z=z(t)

(A10)

From Equations (A8) to (A10), the following expression is obtained:

z
dz
dt

=
ρgK1

µΦ1

[
pc

ρg
+ h0 −

(
1− (1−Φ1)r

1− r

)
z− 1

2g
.
z2
(

1−
(

Φ1r
1− r

)2
)]

(A11)

The initial conditions are z(0) = 0, h(0) = h0. If the dynamical term, i.e., the last term
in the previous Equation (A11), is neglected and further observing the initial phases of the
process, i.e., when t→ 0, one obtains:

z(0)
dz
dt

=
ρgK1

µΦ1

[
pc

ρg
+ h0

]
→ dz

dt
=

1
z(0)

ρgK1

µΦ1

[
pc

ρg
+ h0

]
→ ∞

The velocity at very small instances appears to be infinite, which is not physically
meaningful. When resolved, it can be shown that (z(t))t→0 ∼

√t and
(

dz
dt

)
t→0
→ ∞ .

Nevertheless, if the dynamical term were not to be neglected when t→ 0 , the velocity
would become zero during the initial stages dz

dt → 0 :

0 = ρgK1
µΦ1

[
pc
ρg + h0 − 1

2g

(
dz
dt

)2
(

1−
(

Φ1r
1−r

)2
)]

dz
dt ≈

√
2g(

1−
(

Φ1r
1−r

)2
)( pc

ρg + h0

)
·t→ 0

Figure A2 illustrates the behavior for different cases, both with and without the
inclusion of the dynamical pressure term. It has been noted in the numerical simulations
(carried out in MATLAB) that the results demonstrate no differences (observing results
plotted with and without the dynamical term) at time intervals on the order of milliseconds,
but are started to be observed at order t ∼ 10−10s as shown in figure. Based on these
findings, it can be said that the dynamical term has minimal influence on the long-term
results.
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Figure A2. Up-take height plotted at initial time stages: (a) when dynamical pressure is not included
and (b) when dynamical pressure is included.
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From the conservation of volumes (no effect of rain and impermeable soil is consid-
ered), one may express the pond height:

0 = Φ1zA1 + (h(t)− h0)(A2 − A1)

h(t) = h0 −
Φ1r

1− r
z(t) (A12)

where r = A1
A2

is the area ratio of the surfaces. Resolving Equations (A11) and (A12), z(t)
and h(t) can be found. It is further possible to obtain an analytical solution for the time
taken to absorb the surrounding pond. From the conservation of volumes at the time when
all the flood is absorbed, i.e., h

(
t = Tap

)
= 0, one can express the up-take height reached:

0 = Φ1z∗A1 +
(
h
(
t = Tap

)
− h0

)
(A2 − A1) → z∗ =

1− r
Φ1r

h0 (A13)

If the effect of dynamical pressure is neglected, i.e., the last term in Equation (A11) is
zero, one may integrate Equation (A11) with respect to z with limits from 0 to z∗ and with
respect to t from 0 to Tap. Thus, one obtains:

∫ z∗

0

zdz

zc + h0 −
(

1−(1−Φ1)r
1−r

)
z
=

ρgK1

µΦ1

∫ Tap

0
dt

Tap =
µΦ1
ρgK1

(
1− r

1− (1−Φ1)r

)[(
1− r

1− (1−Φ1)r

)
(zc1 + h0)ln

(
Φ1r(zc1 + h0)

Φ1r(zc1 + h0)− (1− r)(1− (1−Φ1)r)h0

)
−
(

1− r
Φ1r

)
h0

]
(A14)

Equation (A14) represents the time taken to absorb all of the surrounding ponds when
neglecting the dynamic pressure. However, it is also possible to obtain a more general
solution with the effect of dynamical pressure. In that case, Equation (A11) needs to be
rewritten in the following form:(

dz
dt

)2
+ 2αz

dz
dt

= −2βz + γ (A15)

where the coefficients α, β, and γ are:

α =
µΦ1

ρK1

(
1−

(
Φ1r
1−r

)2
) , β = g

1− (1−Φ1)r

(1− r)
(

1−
(

Φ1r
1−r

)2
) , γ =

2g(zc + h0)

1−
(

Φ1r
1−r

)2

Equation (A15) can be further transformed into a simpler form:(
dz
dt

+ αz
)2

= (αz)2 − 2βz + γ (A16)

The Euler substitution is introduced to solve Equation (A16):√
(αz)2 − 2βz + γ = u + αz→ z =

γ− u2

2(β + αu)
(A17)

Replacing the substitution Equation (A17) into Equation (A16) and integrating:

Tap =
∫ z∗

0

dz√
(αz)2 − 2βz + γ− αz

= −1
2

∫ u2

u1

(
(αu)2 + 2βu + αγ

)
du

(β + αu)2u
(A18)
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Tap = Aln
(

u1

u2

)
+

B
α

ln
(

β + αu1

β + αu2

)
+

C
α

(
1

β + αu2
− 1

β + αu1

)
(A19)

Equation (A19) represents the analytical solution of the absorption time without
neglecting the dynamical term. The coefficients in the equation are:

A = 1
2

(
αγ2

β2

)
, B = 1

2

(
β2−αγ2

β2

)
, C = 1

2

(
β− γα2

β

)
, u2 =

√
(αz∗)2 − 2βz∗ + γ− αz∗ and

u1 =
√

γ

Appendix A.2 Case 2

In case 2, the soil is considered impermeable, and additionally, a precipitation of
duration I ∈ [0 T] is considered. Similarly to the previous case 1, one may derive a
corresponding set of equations representing the model as well as provide an analytical
expression of the absorption time after it has stopped raining. The only difference to case 1
is in the conservation of volumes:{

ItA2 = Φ1zA1 + (h(t)− h0)(A2 − A1), tε[0 T]
0 = Φ1zA1 + (h(t)− h0)(A2 − A1), t > T

(A20)

One may express the pond height h(t) from Equation (A20) and place it into Equation
(A11):

z
dz
dt

=
ρgK1

µΦ1

[
zc1 + h0 +

It− (1− (1−Φ 1) r)z
1− r

− 1
2g

.
z2
(

1−
(

Φ1r
1− r

)2
)]

, tε[0 T]

h(t) = h0 +
It−Φ1rz(t)

1− r
, tε[0 T] (A21)

z
dz
dt

=
ρgK1

µΦ1

[
zc1 + h1 +

Φ1rz1 − (1− (1−Φ1)r)z
1− r

− 1
2g

.
z2
(

1−
(

Φ1r
1− r

)2
)]

, t > T (A22)

h(t) = h1 −
Φ1r

1− r
(z(t)− z1), t > T (A23)

where h1 and z1 are the initial conditions after precipitation t > T, i.e., h(t = T) = h1 and
z(t = T) = z1. The absorption time is calculated as Tap = th=0 − T. It is the time taken for
the model to absorb the remaining pond after it has stopped raining. In the same way, as
in case 1, the analytical solution is obtained; however, from the previous analysis, it has
been demonstrated that the dynamical pressure can be neglected; hence, the solution is
presented here for the case when disregarding the dynamical pressure:

Tap =
µΦ1

ρgK1

(
1− r

1− (1−Φ1)r

)
(

zc + h1 +
Φ1r
1−r z1

)
(1− r)

1− (1−Φ1)r
ln

(
zc + h1 − z1

zc + h1 +
Φ1r
1−r z1 − 1−(1−Φ1)r

1−r z∗

)
+ z1 − z∗

+ T (A24)

where z∗ is the height reached by the model once all of the pond is absorbed:

0 = Φ1(z∗ − z1)A1 +
(
h
(
t = Tap

)
− h1

)
(A2 − A1) → z∗ = z1 +

1− r
Φ1r

h1

Appendix A.3 Case 3

In this scenario, it is assumed that the soil is permeable and that there is no rain. As
explained in the initial Section 2.2, for the infiltration of water into the soil, an assumption of
a sharp wetting front is made as well as complete saturation, and thus the Richards equation
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along with the Darcy velocity transforms to Laplace equation for which the solution of the
modified pressure can be written in the following form:

ϕ2 = A2(t)z + B2(t) (A25)

For the uptake of the water within the model, the expression has been previously
derived (Equation (A1)):

ϕ1 = A1(t)z + B1(t) (A26)

where A1(t), A2(t), B1(t) and B2(t) are the corresponding coefficients. Analogously
to case 1, with consideration of the advancing of the wetting front in the soil, the set of
equations describing the change of the water uptake height z(t), pond height h(t) and
waterfront depth within the soil H(t) will be derived:

q1 = Φ1
dz
dt z=z(t)

= −K1

µ

∂ϕ1

∂z
= −K1

µ
A1(t) (A27)

q2 = Φ2
dz
dt z=−H(t)

= −Φ2
dH
dt

= −K2

µ

∂ϕ2

∂z
= −K2

µ
A2(t) (A28)

where q1 is the volumetric flow rate of the fluid flow going into the model and q2 is the
flow rate of the water moving into the soil. As seen previously, there is a condition at z = 0 :

(ϕ1)z=0 = B1(t) = pin1, (ϕ2)z=0 = B2(t) = pin2 (A29)

Similar to Equation (A9), one can write expressions for modified pressure at z = z(t)
and z = −H(t) from which it is possible to obtain expressions for coefficients A1(t) and
A2(t) :

(ϕ1)z=z(t) = A1z(t) + p1 = ρgz(t) + pat − pc1 → A1(t) =
pat − p1 − pc1 + ρgz

z(t)
(A30)

(ϕ2)z=−H(t) = −A2H(t) + p2 = −ρgH(t) + pat − pc1 → A2 =
p2 − pat + pc2 + ρgH(t)

H(t)
(A31)

From Equations (A27) to (A31) and with the analogy of case 1 in determining the
corresponding inlet pressures (Bernoulli’s equation and continuity), one can thus obtain
the set of equations for the modeling of case 3:

z
dz
dt

=
ρgK1

µΦ1

zC1 + h− z− 1
2g

 .
z2 −

(
Φ1r

.
z + Φ2

.
H

1− r

)2
 (A32)

H
dH
dt

=
ρgK2

µΦ2

zC2 + h + H − 1
2g

 .
H

2
−
(

Φ1r
.
z + Φ2

.
H

1− r

)2
  (A33)

h(t) = h0 −
(

Φ1rz(t) + Φ2H(t)
1− r

)
(A34)

Equation (A34) is obtained from the conservation of volumes:

0 = Φ1zA1 + (h− h0)(A2 − A1) + Φ2HA2

Appendix A.4 Case 4

As in the previous case, it is assumed that the soil is permeable and that there is a
precipitation of finite duration. The only difference in the modeling of case 4 compared to
the one in case 3 is that the conservation of volume changes due to the rain inflow:
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ItA2 = Φ1zA1 + (h− h0)(A2 − A1) + Φ2HA2, tε[0 T]
0 = Φ1zA1 + (h− h0)(A2 − A1) + Φ2HA2, t > T

Furthermore, the pond height from the previous equations is expressed as:

h(t) = h0 +
It−Φ1rz(t)−Φ2H(t)

1− r
, tε[0 T] (A35)

h(t) = h1 −
Φ1r(z(t)− z1) + Φ2(H(t)− H1)

1− r
, t > T (A36)

Equations (A32) and (A33), together with Equations (A35) and (A36), represent the
modeling of case 4. Both sets of equations for case 3 and case 4 are resolved numerically with
the ode45 function in MATLAB. The dynamical pressure during the numerical simulations
has been neglected.

Appendix B

The impact of the loss factor (or energy loss) on the modeling process is further
detailed. Incorporating the friction losses resulting from the system’s geometry, particularly
sudden narrowing, involves considering head losses that are approximately proportional
to the square of the flow rate. The exact value of the friction coefficient for the studied
flow and geometry is not known. Nevertheless, it will be demonstrated that this coefficient
does not influence the analysis or results over longer time periods. Figure A3 illustrates the
studied problem, from which we may write Bernoulli’s equation between two points as
follows: (

pin
ρg

+

.
z2

2g

)
−
(

pat

ρg
+

v2

2g
+ h
)
= ∆Hloss = ξ

.
z2

2g
(A37)
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Figure A3. Illustration for deriving the head loss coefficient.

Analogous to the derivation of Equation (A11) in Appendix A, the same procedure is
applied here, with a slight modification in the dynamical term to account for the inclusion
of the loss factor from Equation (A38):

z
dz
dt

=
ρgK1

µΦ1

[
pc

ρg
+ h0 −

(
1− (1−Φ1)r

1− r

)
z− 1

2g
.
z2
(

1 + ξ −
(

Φ1r
1− r

)2
)]

(A38)

The analysis has demonstrated that the dynamical term remains significant only for
very short time durations. Consequently, for longer time periods, the last term in Equation
(A38) can be disregarded. Numerical simulations have confirmed that the dynamical term
is observable only in timeframes on the order of milliseconds.

An alternative method to understand the diminishing relevance of the dynamical term
is to consider the asymptotic linear solution when t→ ∞ for the water uptake height:

z→ kt + n (A39)
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Replacing the asymptotic solution Equation (A39) into Equation (A38), an expression
for k can be obtained:

k = −ρgK
µΦ

(1− (1− φ1)r)
1− r

(A40)

From Equation (A40), it can be seen that the loss factor ξ does not affect the behavior
of the asymptotic coefficient k. Consequently, for longer time durations, ξ has no impact on
the final results.

Appendix C

The approximation is applied to the Richards equation, which serves as the basis for
modeling the advancement of the waterfront into the soil. Derivation of the equations will
be explained. The conservation of mass of water in an unsaturated porous media can be
expressed as:

∂θ

∂t
+∇·→q = 0 (A41)

where θ represents the soil–water content and
→
q the water flux. From Darcy’s law, the flux

can be expressed as:
→
q = − K̂

µ
∇ϕ (A42)

where ϕ = p + ρgz is the modified pressure, and K̂ is the permeability coefficient tensor.
The modified pressure can be expressed in terms of the hydraulic head H, which is the sum
of the pressure head ψ and gravity head z:

ϕ = ρgH = ρg
(

p
ρg

+ z
)
= ρg(ψ + z) (A43)

For unsaturated flow, the permeability coefficient and the pressure head vary as a
function of the water-soil content, i.e., K̂(θ) and ψ(θ). Replacing Equations (A42) and (A43)
into Equation (A41), Richard’s equation is obtained:

∂θ

∂t
=

ρg
µ
∇·[K̂ ∂ψ

∂θ
∇θ + Kzz(θ)] (A44)

In the case of a completely saturated flow approximation (s = 1), the soil-water content
attains its maximum value and remains constant, i.e., θ = θmax = φ, where φ represents the
soil porosity. In this study, it is assumed that the observed time scale is significantly longer
than the transient time required to achieve complete saturation. The Green-Ampt flow
model [10] is utilized for this purpose, where it is assumed that the completely saturated
waterfront moves like a single block or unit through the soil. As the water-soil content
remains constant, both the permeability coefficient tensor and pressure head also remain
constant. By employing this approximation and returning to the initial equation, i.e.,
Equation (A41), it can now be simplified:

∇·→q = 0 (A45)

Replacing Equation (A42) with Equation (A45), the Laplace equation is obtained:

∇·
(
K̂∇ϕ

)
= 0 (A46)
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