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A B S T R A C T   

Rotodynamic simulation of complex or/and large systems, for instance hydropower machines, may consist of 
models with many degrees of freedom and require multidisciplinary computations such as fluid-thermal- 
structure interactions or rotor-stator interactions due to electromagnetic forces. Simulating such systems is 
often computationally heavy and impractical, especially in the case of optimization or parametric study, where 
many iterations are required. This has, therefore, created a need for simplified dynamic models to improve 
computational efficiency without significantly affecting the accuracy of the simulation result. The purpose of this 
paper is to present simplified coordinate transformation matrices for journal bearings in vertical rotors, which 
require less computational effort. Matrix multiplications, which appear during coordinate transformation, were 
eliminated, and the bearing stiffness and damping matrices in the fixed reference frame were represented by local 
coefficients instead. The dynamic response of a vertical rotor with eight-shoe Tilting pad journal bearings was 
simulated using the proposed model for two operational conditions, i.e., when the rotor was spinning at constant 
and variable speeds. The results from the proposed model were compared to those from the original model and 
validated through experiments. The conclusion was that the presented simulation model is time efficient and can 
effectively be used in rotordynamic simulations and analyses.   

1. Introduction 

Fluid-film journal bearings, in general, are employed in rotating 
machines to provide radial support to the rotor. Journal bearings in 
horizontal rotors often operate under static load conditions due to the 
weight of the rotor. In vertical rotors, however, the weight acts vertically 
downward; hence radial load is relatively lower, leading to suscepti
bility to fluid-film-induced instability. Vertical rotors are used in many 
different applications, such as in hydropower units and pumps. 

In rotordynamic analyses, a reliable fluid-film bearing model is 
important for accurately estimating machine dynamics. A thin fluid-film 
lubricant under a bearing is mathematically modeled by the Reynolds 
equation or Navier-Stokes equations. The governing equations are par
tial differential equations and must be solved either analytically or 
numerically. In the former, the model must be simplified by employing 
certain approximations, like in the case of short (Ocvirk, 1952; Ruggiero 
and Senatore, 2007; Miraskari et al., 2018) and long (Myers, 1984; 
Amamou and Mnaouar, 2014) bearings. On the other hand, in advanced 
simulations, the lubrication model is solved numerically using finite 

element methods, finite difference methods, or the Pseudo-Spectral 
method. 

The fluid-film-induced forces are commonly described using eight 
linearized stiffness and damping coefficients, which are calculated using 
either infinitesimal (Lund and Thomsen, 1978; Lund, 1987) or finite 
perturbation approaches (Qiu and Tieu, 1996) at the equilibrium loca
tion. Childs (1993) and Ishida and Yamamoto (2012) described a 
method to calculate linearized bearing coefficients based on short and 
long-bearing approximations. Although the linearized coefficients are 
an adequate approximation of the bearing dynamics for many cases, 
they are not always valid. Several papers (Hattori, 1993; Muller-Karger 
et al., 1997; Machado et al., 2018; Zhao et al., 2005; Meruane and 
Pascual, 2008; Choy et al., 1991) demonstrated non-linearity in journal 
bearings that can influence the dynamics of the rotor-bearing system. 
Zhao et al. (2005) indicated the presence of non-linearity in bearing 
forces due to larger excitation amplitude. The authors proposed 
non-linear models based on Taylor series expansion and identified the 
bearing coefficients from the experiment. Using a similar approach as 
Refs. Zhao et al. (2005), Meruane and Pascual (2008) showed the 
importance of non-linear bearing models for predicting transient 
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solutions and instabilities. 
In many advanced simulations, numerical methods are employed to 

calculate the non-linear bearing forces, and the lubrication model is 
solved simultaneously with the rotor-bearing system at each time step. 
As this process can be computationally expensive, researchers have 
attempted to simplify the simulation procedure and reduce the amount 
of time required for computation. For systems with many DOFs and 
complex systems that require Multiphysics, the traditional simulation 
approach, carried out by solving the fluid film lubrication model at each 
time step, is impractical. To the authors’ best knowledge, most com
mercial software available today perform different types of simulations 
based on bearing characteristics calculated at a static location, mainly 

influenced by the dead weight of the rotor. However, vertically oriented 
rotor systems operate at no or minimal static load as the weight is car
ried axially. The radial load is often rotary, and the dynamic simulation 
requires calculation of bearing coefficients at each journal location. 
Nässelqvist et al. (2014) presented a bearing model by pre-calculating 
the bearing coefficients of a four-shoe TPJB and representing them by 
one-dimensional polynomial equations. The proposed model, however, 
ignored the cross-coupling coefficients, which were later considered by 
Synnegård et al. (2016). This approach was extended by Benti et al. 
(2022), and the bearing model was further represented by 
two-dimensional polynomial equations, which allowed transient simu
lations under variable rotor speed. Some simulations, like bifurcation 

Nomenclature 

CB bearing damping matrix in the cartesian coordinates 
Cmax

ij , Cmin
ij the local maxima/minima bearing damping coefficient in 

the local (i,j) coordinates 
Cij bearing damping coefficient in the local or cartesian 

coordinate (i,j) 
fx, fy bearing forces in the x and y directions 
FK

x , FK
y bearing stiffness forces in the x and y directions 

FC
x , FC

y bearing damping forces in the x and y directions 
Fu unbalance force vector 
G gyroscopic matrix 
Kij bearing stiffness coefficient in the local or cartesian 

coordinate (i,j) 
Kmax

ij , Kmin
ij the local maxima/minima bearing stiffness coefficient in 

the local coordinate (i,j) 

K̃
max
ij , K̃

min
ij the local maxima/minima equivalent bearing stiffness 

coefficient in the local coordinate (i,j) 
KB bearing stiffness matrix in the cartesian coordinates 
KS the stiffness of the bracket structure 
M mass matrix 
n number of pads 
r amplitude ratio of the maximum resultant force: Maximum 

force calculated using the modified K&C/ Maximum force 
calculated using the original model 

T transformation matrix 
x, y fixed coordinate 
α eccentricity angle 
ϵ eccentricity ratio 
ξ,η local coordinate 
ϕ̈ the angular acceleration 
Ω/ϕ̇ angular velocity of the shaft  

Fig. 1. (a) Test rig; (b) Schematic figure describing the rotor model.  
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analysis, require many iterations, which take several hours or days of 
computation. Such simulations can be heavy even for the simplified 
model presented in Benti et al. (2022). Improving the computational 
efficiency would significantly benefit and enable Rotordynamic simu
lations within a reasonable time. 

The simulation of the rotor-bearing dynamic system often includes 
the computation of bearing force coefficients, followed by coordinate 
transformation. This paper aims to simplify the transformation matrices 
and improve computational efficiency. The unbalance response of a 
vertical rotor with two TPJBs was simulated and analyzed for two 
operational conditions, i.e., constant and variable rotor speeds. The 
proposed model was compared with the original model and validated by 
experiments. 

2. Experimentation 

The test rig consisted of a vertically oriented mid-span rigid rotor 
supported by two identical flexible supporting structures, as shown in 
Fig. 1. The supporting structures were mounted at the top and bottom 
end of the rotor to provide radial support. A series of measurements were 
carried out, and the performances of the bearings were evaluated for 
different unbalances and operating speeds. Both constant and variable 
rotor speeds were considered. In the former, tests were carried out under 
three rotor’s operational speeds (500 rpm, 1500 rpm, and 2500 rpm), 
whereas, in the latter, the angular velocity of the rotor ramped up to 
2500 rpm by a constant angular acceleration of 2π rad/s2. Sections 2.1 
and 2.2 present technical details of the rotor and the eight-shoe TPJBs, 
respectively. 

2.1. Rotor description 

The mid-span rotor was driven by an electric motor with an angular 
velocity of up to 2500 rpm. A slender stinger integrated with two jaw 
couplings was used to connect the rotor with the electric motor, and it 
was designed so that it does not introduce a radial force to the rotor- 
support system. Each supporting structure consists of an eight-shoe 
TPJB and a bracket with a stiffness of 500 MN/m and no damping 
(Nässelqvist et al., 2012). Note that TPJBs installed in Swedish hydro
power units consist of eight pads or more (Gustavsson et al., 2019). The 
technical specification of the test rig is presented in Table 1. 

An unbalance mass was mounted on a disk at a distance of d = 0.7 m 
from the center of the rotor. The rotor trajectory of the journal center, 
and forces acting on the bearings at the two bearing locations were 
measured. Each bearing was equipped with inductive proximity sensors 
to measure the shaft displacement, whereas full Wheatstone bridge 
strain gauges were mounted on each bracket to measure the bearing 
reaction forces. Besides, an optical sensor (≈±1 rpm accuracy) was used 
to measure rotor’s angular velocity. All the sensors were calibrated on- 
site using certified calibration equipment. 

2.2. Bearing description 

The hydrodynamic TPJBs have eight identical pads with rocker 
pivots radially located 45◦ apart. Each pad was made of a white-metal 
(babbitt) lining and backed with steel-1650. The bearings were 

supplied with 0.01 MPa lubricant (Q8 Handel oil), and the lubricant 
temperature was measured during the test and ranged from 23 ◦C to 
33 ◦C. Fig. 2 and Table 2 show the schematic representation and the 
detailed specification of the eight-shoe TPJB, respectively. 

3. Numerical model 

The simulation procedure was performed in two steps, which are 
discussed in Sections 3.1 and 3.2. Section 3.1 describes how the bearing 
models are developed by pre-calculating the stiffness and damping co
efficients from the fluid film lubrication model. Besides, the simplified 
transformation matrices of the bearing force coefficients, which is the 
main objective of this paper, were briefly discussed. Section 3.2 presents 
the second step of the simulation procedure, which is the numerical 
simulation model of the rotor-support system. 

3.1. Bearing model 

The bearing was modeled as two DOFs, and the equation of motion 
consisted of damping and stiffness coefficient matrices. Eq. (1) shows the 
total bearing forces, which are the summation of the stiffness and 
damping force components. 
[

fx
fy

]

=

[
Kxx Kxy
Kyx Kyy

][
x
y

]

+

[
Cxx Cxy
Cyx Cyy

][
ẋ
ẏ

]

(1)  

where, fi is the bearing force, x and y are displacements, ẋ and ẏ are 
velocities, Cij and Kij are the damping and stiffness coefficients, 
respectively. Subscripts i and j denote the directions in the fixed coor
dinate. The bearing coefficient matrices in Eq. (1) are in the fixed frame 
of reference and are calculated by coordinate transforming the local 
coefficients matrices using Eqs. (2) and (3). 
[

Kxx Kxy
Kyx Kyy

]

= TT
[

Kξξ Kξη
Kηξ Kηη

]

T (2)  

[
Cxx Cxy
Cyx Cyy

]

= TT
[

Cξξ Cξη
Cηξ Cηη

]

T (3)  

where, 

T =

[
cos(α) sin(α)
− sin(α) cos(α)

]

The coordinate transformation requires matrix multiplications, 
which must be employed at each time step in the numerical simulation 
procedure. The process is computationally expensive, and the main aim 
of this study is to simplify the procedure by avoiding matrix multipli
cations. The first simplification modifies the stiffness matrix, and it 
comes from the fact that the displacement in the local η–axis is always 
zero. This is because, at each time step, the bearing coefficients are 
calculated at a stationary journal center location. Thus, the eccentricity 
line is always fixed to the ξ–axis and normal to the η–axis. Furthermore, 

Table 1 
Technical specification of the test rig.   

Description Value 

Ds Shaft diameter (mm) 49.84 
L Shaft length (mm) 500 
Dd Disk diameter (mm) 168 
t Disk thickness (mm) 100  

Direction of rotation Counter clockwise 
Ks The stiffness of the bracket (MN/m) 500 
Ms Rotor mass (kg) 24.74  Fig. 2. Schematic representation of the eight-shoe TPJB.  
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in the second simplification, the damping matrix was modified. The 
trajectory of the journal center is approximated to be centered circular 
for TPJBs with many pads when installed in vertical rotors, resulting in 
low velocity in the radial direction (ξ̇ ≈ 0). The bearing forces in Eq. (1) 
can be re-written as follows: 
[

fx
fy

]

= TT
[

Kξξ Kξη
Kηξ Kηη

][
ξ
η

]

+ TT
[

Cξξ Cξη
Cηξ Cηη

][
ξ̇
η̇

]

(4) 

Thus, excluding η from Eq. (4) removes the second column of the 
stiffness matrix. Besides, assuming ξ̇ = 0, the first column of the 
damping matrix vanishes. Therefore, for η = ξ̇ = 0, Eq. (4) is reduced to 
Eq. (5). 
[

fx
fy

]

= TT
[

Kξξ
Kηξ

]

ξ + TT
[

Cξη
Cηη

]

η̇ (5) 

Rearranging Eq. (5), the bearing coefficient matrices are expressed 
by the local stiffness (Kξξ and Kηξ) and damping coefficients (Cηη and Cξη) 
as shown in Eq. (7). The bearing coefficient matrices require no matrix 
multiplications, which was the case for the original matrices in Eq. (1). 
[

fx
fy

]

=

[
Kξξ − Kηξ
Kηξ Kξξ

][
ξcos(α)
ξsin(α)

]

+

[
Cηη Cξη
− Cξη Cηη

][
− η̇sin(α)
η̇cos(α)

]

(6)  

[
fx
fy

]

=

[
Kξξ − Kηξ
Kηξ Kξξ

][
x
y

]

+

[
Cηη Cξη
− Cξη Cηη

][
ẋ
ẏ

]

(7)  

3.1.1. Polynomial representation of the maxima and minima bearing 
coefficients 

A similar approach was employed as in Benti et al. (2022) to calcu
late the local stiffness and damping coefficients. As shown in Fig. 3, the 
bearing coefficients of the eight-shoe TPJB vary periodically due to the 
number of pads; hence, they can be described by harmonic functions, 
Eqs. (8) and (9). This, in other words, means once the maxima and 
minima values are known, the coefficients can be calculated for any 
given eccentricity angle (α). 

Kij(ϵ, α,Ω) =
K̃

max
ij (ϵ,Ω) + K̃

min
ij (ϵ,Ω)

2
sign

K̃
max
ij (ϵ,Ω) − K̃

min
ij (ϵ,Ω)

2
⋅γ

(8)  

Cij(ϵ, α,Ω) =
Cmax

ij (ϵ,Ω) + Cmin
ij (ϵ,Ω)

2
sign

Cmax
ij (ϵ,Ω) − Cmin

ij (ϵ,Ω)

2
⋅γ (9)  

where, 

sign =

{
+ ij = ξξ
− otherwise  

γ =

{
cos (nα) i = j
sin (nα) i ∕= j , n : number of pads,

Kij and Cij are the stiffness and damping coefficients, i and j in the 

local ξ and η directions, K̃
max
ij and K̃

min
ij are the maxima and minima 

equivalent stiffness coefficients, Cmax
ij and Cmin

ij are the maxima and 
minima damping coefficient, ϵ is the eccentricity ratio, α is the eccen
tricity angle and Ω is the rotor speed. 

A Navier-Stokes equations-based fluid film lubrication model was 
solved numerically using commercial software, RAPPID (Rotordynamic 
Seal Research, 2023). Each pad consisted of three degrees of freedom. 
However, the radial stiffness of the rocker pivot was modeled as rigid, 
and only the rotating DOF was retained, while the other two DOFs were 
eliminated. The full dynamic solution of the eight-she TPJB was 
computed and the eight Rotordynamics coefficients were calculated. 
Note that the influence of excitation frequency was not investigated in 
this paper. The bearing coefficients in the local ξ and η directions were 
calculated for certain number of angular velocities and eccentricity ra
tios. Computations were performed at six different rotor angular ve
locities (250 rpm, 500 rpm, 1000 rpm, …, 2500 rpm) and nine 
eccentricity ratios (0.01, 0.1, 0.2, …, 0.8), which gives a total of 36 
individual computations. The calculations were performed under pre
scribed eccentricity, and it is relatively faster as it is less sensitive to 
convergence issue, which was the case for the bearing simulations under 
prescribed load. For instance, for rotor speed of 2000 rpm and 0.4 

Table 2 
Technical specification of the eight-shoes TPJB.   

Descriptions Values 

Bearing 
Geometry 

Number of pads 8  

Journal diameter (mm) 49.84  
Pad length (mm) 20  
Pad angle (degree) 25.9  
Angular pivot position 
(degree) 

0◦, 45◦, 90◦, 135◦, 180◦ , 225◦, 
270◦ , 315◦

Radial bearing clearance 
(mm) 

0.13  

Radial pad clearance (mm) 0.159  
Pad pivot offset ratio (-) 0.6  
Preload ratio (-) 0.18  
Pad thickness (mm) 8 

Material Bearing surface material 
(Babbitt)   
Thickness (mm) 1  
Density (kg/m3) 7280  
Base pad material (Steel)   
Thickness (mm) 7  
Density (kg/m3) 7850 

Lubricant Q8 Handel oil   
Oil supply pressure (MPa) 0.01  
Viscosity at 40 ◦C (mPa⋅s) 27.64  
Viscosity at 100 ◦C (mPa⋅s) 6.493  
Density (kg/m3) 872  

Fig. 3. The local bearing stiffness (Kξξ) vs eccentricity angle (α) at Ω = 1500 rpm and ϵ = 0.6. The small circles (o) represent simulation results from RAPPID and the 
black solid line is the stiffness calculated according to Eq. (9) but non-linearized. 
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eccentricity ratio, it took 30 s to calculate the bearing coefficients at the 
peg. The dots in Figs. B.1–B.4 represent the results from RAPPID. For 
each calculation, the maxima and minima values of the bearing co
efficients were extracted, and the dataset was fitted with 
two-dimensional polynomial regression. A MATLAB inbuilt function 
(poly) was used to perform the regression. The choice of the order of the 
regression was based on the goodness-of-fit (Table A1), and the regres
sion coefficients of the best-fitted model (poly51) are illustrated in 
Table 3. 

3.1.2. Equivalent stiffness coefficient 
When solving the equation of motion of the rotor-support system 

(Eq. (11)), which will be discussed later in Section 3.2, linearized 
bearing stiffness coefficients are required. However, the maxima and 
minima local stiffness coefficients presented in Table 3 are nonlinear, 
and they cannot be directly used in Eq. (8). Therefore, for a given ec
centricity ratio (ϵ1), the linearized equivalent maxima and minima 
stiffness coefficients were calculated by integrating the local coefficients 
over the eccentricity ratio, as shown in Eq. (10). 

K̃
k
ij(ϵ1,Ω) =

∫ ϵ1

0
Kk

ij(ϵ,Ω)dϵ
/

ϵ1

i, j : − ξ, η, k : − max or min
(10)  

where, K̃
k
ij is the maxima or minima equivalent stiffness coefficients, and 

Kk
ij is the maxima or minima stiffness coefficients presented in Table 3 

and ϵ1 is a given eccentricity ratio. 

3.2. Rotor-support model 

The test rig was modeled as a rigid rotor with two isotropic flexible 
supports. The support system consisted of the bearing and bracket 
connected in series and was represented by springs and a damper. Eq. 
(11) is the mathematical representation of the forced response of the 
rotor-support system. The model had a total of eight DOF; four DOF for 
the rotor and four DOF for the two supports. 

Mq̈ + (ϕ̇G+CB) q̇ +
(

ϕ̈G+KB +KS

)
q = Fu (11)  

where M and G are the mass and gyroscopic matrix, KB and CB are the 
bearing stiffness and damping matrices, KS is the stiffness matrix of the 
supporting bracket, ϕ̈ is the angular acceleration, which is the rate of 
change of the angular velocity (ϕ̇). For simulations with the constant 
angular velocity of the rotor, the angular acceleration (ϕ̈) is zero. Eq. 
(11) was solved numerically using a MATLAB inbuilt function (ode15s). 
The force (Fu) is due to the unbalance mass attached to the disk at D- 
distance from the center of the rotor and acted only in the x and y DOF. 

4. Results and discussions 

The dynamic responses of the rotor-support system were simulated 
for different unbalance magnitudes and when the rotor was spinning at 
constant and variable speeds. For the constant speed case, the simula
tions were carried out for 200 shaft revolutions, and the transient part of 
the response at the beginning of the simulation was disregarded. On the 
other hand, simulations under variable rotor speeds were carried out 
when the speed ramped up linearly to 2500 rpm. 

Sections 3.1 and 3.2 compare the results from the proposed model 
with those from the original model and experiment, respectively. The 
bearing matrices of the original model were obtained by adopting co
ordinate transformation, which entails matrix multiplication, as 
demonstrated in Eqs. (1) – (3). On the other hand, the bearing matrices 
of the proposed model required no matrix multiplications for coordinate 
transformation. As shown in Eq. (7), the modified bearing model is 
described by four local coefficients, whereas the original bearing model, 
Eq. (1), is represented by the full eight coefficients in the fixed 
coordinate. 

4.1. Original vs proposed model 

As the center of the journal moved from the bearing center, the two 
TPJBs generated the fluid-film induced reaction forces, which were 
formulated by the stiffness and damping coefficients in the rotor-bearing 
simulations. Figs. 4 and 5 depict the coefficients of the upper/lower 
TPJB (the upper and lower bearings produced similar results) when the 
rotor was running at 2500 rpm and subjected to 1.7 × 10− 3 kg⋅m and 
5.9 × 10− 3 kg⋅m unbalance magnitudes, respectively. The correspond
ing elements of the matrices of the two models are plotted together for 

Table 3 
Computed coefficients of the two-dimensional polynomial equation (poly51) as a function of centered and scaled eccentricity ratio and rotor speed. The eccentric ratio 
was normalized by mean 0.4011 and std of 0.2589, whereas the rotor speed was normalized by mean 1292 rpm and std of 803.5.   

Kmax
ξξ Kmax

ξη Kmax
ηξ Kmax

ηη Cmax
ξξ Cmax

ξη Cmax
ηξ Cmax

ηη 

β00 8.9E5 1.2E4 3.3E4 4.8E5 3.9E3 4.8E1 8.4E1 2.5E3 
β10 9.7E5 4.2E4 4.7E4 1.9E5 3.5E3 1.2E2 1.3E2 8.0E2 
β01 5.2E5 9.4E3 1.9E4 2.8E5 2.7E2 − 0.4E0 − 5.4E0 3.2E2 
β20 − 4E5 − 9.4E4 − 9E4 4.7E4 − 3.2E2 − 2.2E2 − 2.1E2 2.8E2 
β11 − 1.8E5 − 5.8E4 − 5.3E4 5.2E4 − 1.7E1 4.1E0 3.8E0 − 4.4E1 
β30 − 4.2E5 − 7.5E4 − 7.2E4 1.1E4 − 7.3E2 − 1.6E2 − 1.6E2 5.3E1 
β21 − 2.8E5 − 6.1E4 − 5.9E4 2.5E4 3.8E1 7.3E0 6.9E0 1.0E1 
β40 1.1E6 1.2E5 1.2E5 1.1E5 3.2E3 3.2E2 3.2E2 3.2E2 
β31 1.0E6 1.0E5 1.0E5 1.1E5 − 1.6E2 − 1.1E1 − 1.1E1 − 6.2E0 
β50 7.4E5 8.2E4 8.1E4 6.1E4 1.9E3 2.0E2 2.1E2 1.9E2 
β41 7.4E5 7.7E4 7.6E4 6.9E4 − 1.2E2 − 9.3E0 − 9.2E0 − 2.8E1  

Kmin
ξξ Kmin

ξη Kmin
ηξ Kmin

ηη Cmin
ξξ Cmin

ξη Cmin
ηξ Cmin

ηη 

β00 8.1E5 − 1.8E4 2.7E3 4.7E5 3.7E3 − 3.2E1 3.3E0 2.4E3 
β10 8.1E5 − 1.9E4 − 1.4E4 1.7E5 3.1E3 − 4.4E1 − 3.6E1 7.4E2 
β01 4.7E5 − 1E4 − 4.2E2 2.7E5 2.9E2 1.9E0 − 2.9E0 3.2E2 
β20 1.2E5 9.4E4 9.8E4 9.6E4 9.1E2 2.5E2 2.5E2 4.1E2 
β11 1.1E5 5.9E4 6.4E4 9.2E4 − 6.1E1 − 3.7E0 − 4.1E0 − 4.4E1 
β30 3E4 6.9E4 7.2E4 3.5E4 2.7E2 1.8E2 1.8E2 1.1E2 
β21 5.9E4 5.9E4 6.2E4 5.6E4 − 3.5E1 − 4.5E0 − 4.9E0 7.9E0 
β40 6.5E5 − 1E5 − 1.0E5 2.7E4 1.9E3 − 2.8E2 − 2.8E2 7.4E1 
β31 6.6E5 − 8.5E4 − 8.7E4 3.8E4 − 1.1E2 4.9E0 4.8E0 4.2E0 
β50 3.6E5 − 7E4 − 7.1E4 1.0E4 1.0E3 − 1.9E2 − 1.9E2 4.6E1 
β41 4.0E5 − 6.6E4 − 6.7E4 1.6E4 − 7.9E1 4.3E0 4.4E0 − 1.9E1  
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illustration, meaning that the direct stiffness coefficients (Kxx and Kyy) 
and the cross-coupling coefficients (Kxy and Kyx) are plotted with the 
local direct stiffness coefficient (Kξξ), and cross-coupling stiffness co
efficients (Kηξ and − Kηξ), respectively. On the other hand, the direct and 
cross-coupling damping terms of the original bearing model are 

illustrated with the local direct (Cηη) and cross-coupling (Cξη and − Cξη) 
coefficients, respectively. The coefficients of the original and modified 
bearing models are in fact different, showing values in the fixed and 
local coordinates, and therefore the two models cannot be compared 
based on the bearing coefficients. Instead, they must be compared based 

Fig. 4. The stiffness and damping coefficients of the upper/lower TPJB as a function of eccentricity angle at Ω = 2500 rpm and m⋅d = 1.7 × 10− 3 kg⋅m.  

Fig. 5. The stiffness and damping coefficients of the upper/lower TPJB as a function of eccentricity angle at Ω = 2500 rpm and m⋅d = 5.9 × 10− 3 kg⋅m.  
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on the force they generate, which is the product of the coefficient 
matrices and the corresponding displacement or velocity vectors. 

Therefore, the stiffness (fK
x and fK

y ) and damping (fC
x and fC

y ) force 
components were calculated. Figs. 6 and 7 portray the simulation results 
obtained from the two models, and the stiffness and damping force 
components are presented as a function of the eccentricity angle. For 
lower unbalance magnitude, the two models display similar results. 
Besides, the stiffness force component was dominant and the ratio of the 
resultant stiffness and damping force components (fC /fK) ranges be
tween 0.79–0.83. When the orbit radius and velocities of the journal 
center increased due to large unbalance magnitude, the results from the 
two models deviated, particularly the damping force components. 
Although the deviations are small and insignificant in terms of force 
amplitude, it apparently affected the shape of the force profile, which 
will be discussed later in this section. Similarly, the stiffness force 
component appeared dominant, and the ratio fC/fK ranges between 
0.56–0.72, slightly less than the result from the simulation with the 
lower unbalance. 

Fig. 8 shows the simulated trajectory of the journal center and the 
force acting on the bearings at Ω = 2500 rpm, and three unbalance 
magnitudes, i.e., m⋅d = 1.7 × 10− 3 kg⋅m, 3.8 × 10− 3 kg⋅m and 5.9 ×
10− 3 kg⋅m. For the proposed model, the modified bearing stiffness ma
trix was first used individually in the simulation (Modified K & Original 
C) and then together with the modified damping matrix (Modified K&C). 
The results indicate that the proposed model with the modified bearing 
stiffness matrix was the same as the original model, regardless of the 
rotor speed or orbit amplitude. This condition is generally true since η is 
always zero in the rotating coordinate. Similarly, at a lower orbit radius, 
no significant differences were observed between the results from the 
models with the Original K&C and Modified K&C. As the orbit radius 
increased, however, discrepancies in the force predictions emerged 
mainly in terms of phase. At the orbit relative eccentricity of 0.74, the 
phase of the octagonal-shaped force profile predicted by the proposed 
model preceded those from the other two models by around 3◦. Never
theless, there was no significant difference between the two models in 
force amplitudes, and the amplitude ratio (r) of the maximum resultant 

force was 0.977. Besides, for some applications, the unbalances used in 
this paper might be too large for the deviation to occur. The most sig
nificant disagreement between the models appeared at 5.9 × 10− 3 kg⋅m, 
which was ten times larger than the permissible residual unbalance 
suggested by Iso standard requirement for rigid rotor (ISO 1940/1, and 
G6.3 grade balancing) (ISO (International Organization for Standardi
zation), 2003). 

Moreover, the unbalance responses were investigated for variable 
rotor speed. A series of simulations were conducted when the rotor 
speed increased linearly from 250 rpm to 2500 rpm by angular accel
erations of 0.5π rad/s2, 2π rad/s2, and 4π rad/s2. Fig. 9 shows the 
average orbit and force amplitudes calculate at 12 speed ranges with a 
block size of 200 rpm. It is found that both the orbit and force responses 
increased with the rotor speed and unbalance. Besides, the results from 
all three models were similar, and no significant differences were 
observed, regardless of the unbalance magnitude and angular 
acceleration. 

The computational efficiency of the proposed model was investi
gated. For simulation, MATLAB 2019a software installed on a standard 
consumer laptop (Intel Core i7–8850H and CPU at 2.60 GHz) was used, 
and the elapsed computation time was measured by an inbuilt function 
(tic-toc). For an unbalance response simulation at Ω = 2500 rpm, and for 
200 shaft revolutions, the simulation model with the modified bearing 
matrices (modified K&C) was two times faster than the model with the 
original bearing matrices. The time saving would be much more sig
nificant for long-duration simulations. For instance, bifurcation simu
lation usually performed for long duration or many shaft revolutions, 
ranging up to 106. Reducing the computation time by halve in such cases 
would make a huge difference. 

4.2. Experiment vs proposed model 

The numerical results from the proposed model were further vali
dated by experiment. Both the bearing reaction forces and the trajectory 
of the journal center at the two bearing positions were investigated, and 
the experimental and simulation results were compared for operations 
under constant and variable rotor angular velocities. All the measured 

Fig. 6. The stiffness and damping force components of the upper /lower TPJB in the x and y directions: Ω = 2500 rpm and m⋅d = 1.7 × 10− 3 kg⋅m.  
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responses were filtered by a band-pass filter with a cut-off frequency 
between 3 Hz and 500 Hz. 

Fig. 10 shows the orbit and force responses when the rotor was 
subjected to 5.9 × 10− 3 kg⋅m unbalance magnitude and operated at 
three constant rotor speeds, i.e., 500 rpm, 1500 rpm, and 2500 rpm. The 
response measurements at the two bearings show a similar trend, albeit 
some differences in their amplitudes. Considering the filtered mean 
amplitudes (Fm), the deviation of the maximum orbit amplitudes at the 
two bearing positions can range up to 15%, whereas 9% for the bearing 
reaction forces. These deviations are not unexpected since the perfor
mance of the two bearings may differ due to unavoidable differences in 
bearing parameters, like geometry. For simulation, however, the per
formance of the two bearings was assumed to be the same, resulting in 
no significant difference between the responses at the two bearing 
positions. 

The experimental and simulation results were compared and found 
to have similar trends. At 2500 rpm rotor speed, the average amplitude 
of the measured orbit and force deviated from those in the simulation up 

to 7% and 15%, respectively. Besides, both the orbits and forces were 
circular-shaped at low orbit amplitudes. As the rotor speed increased, 
the orbit amplitude increased. This resulted in an octagonal-shaped 
force with peaks and valleys, which were influenced by the number of 
pads. The maximum bearing force appeared at the pegs, where larger 
stiffness and damping coefficients are located. 

Furthermore, the results from the experiment and simulation were 
compared for operations under variable rotor speeds. In Fig. 11, the 
upper bearing forces obtained from measurement are plotted along with 
the corresponding simulation results. For both cases, the force ampli
tudes increased with the rotor speed. Unlike results from the simulation, 
the experimental result contains an amplitude peak close to 1000 rpm, 
which was due to the test rig’s structural resonance. Besides, as shown in 
Fig. 12, the profile of the simulated and measured forces at different 
rotor speed regions are similar, and the amplitudes agree with some 
discrepancies. Inaccurate bearing parameter prediction could be 
ascribed to these deviations. The fluid-film lubrication simulation was 
carried out on the eight-shoe TPJB, taking the nominal bearing 

Fig. 7. The stiffness and damping force components of the upper /lower TPJB in the x and y directions: Ω = 2500 rpm and m⋅d = 5.9 × 10− 3 kg⋅m.  

Fig. 8. The orbits and forces obtained from the three models at Ω = 2500 rpm and three unbalance magnitudes.  
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parameters. However, these parameters may vary within some tolerance 
range. For instance, the pads were assumed to be identical with uniform 
geometric characteristics, which is not true. Besides, the inevitable 
parameter difference between the upper and lower TPJBs was not 
considered in the simulation. 

5. Conclusions 

The transformation matrices of the bearing force coefficients were 
successfully simplified. Compared to the simulation model with the 
original transformation matrices, the proposed model has considerably 
increased computational efficiency while preserving high accuracy. 
Discrepancies, which emerged due to the reduced damping matrix, 
affected the shape of the bearing force, albeit there were no significant 
differences in amplitudes. For bearings with many pads, these discrep
ancies are insignificant, as the bearing coefficients became less depen
dent on the angular position of the journal center. Furthermore, the 
proposed model was validated by experiment, and the predicted re
sponses agreed with those from the measurement. The simplifications 
that were employed on bearing stiffness and damping matrices 
improved the efficiency of the simulation model. The proposed model is, 
therefore, effective for rotor-dynamic simulations and response analysis. 
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Appendix A 

Table A1 

Table A1 
Comparison of regression models. Ten different models were compared based on the percentage relative error (RMSE%) and adjusted R-square (R2

adj) (Ishida and 
Yamamoto, 2012). A Matlab inbuilt function (poly51) was chosen since it has the least order with RMSE% < 10% and R2

adj > 0.99 for all coefficients.     

Eccentricity ratio (ϵ)    
First order Second order Third order Fourth order Fifth order    
RMSE% R2

adj RMSE% R2
adj RMSE% R2

adj RMSE% R2
adj RMSE% R2

adj 

Rotor speed (RPM) First order Kmax
ξξ 66.7 0.438 42.1 0.777 22.9 0.934 11 0.985 4.8 0.997 

Kmax
ξη 77.8 0.328 54 0.677 31.9 0.887 16.2 0.971 7.1 0.994 

Kmax
ηξ 75.4 0.344 51.8 0.69 30.5 0.893 15.5 0.972 6.8 0.995 

Kmax
ηη 44.5 0.627 24.7 0.885 11.9 0.973 5.3 0.995 2.6 0.999 

Cmax
ξξ 61.4 0.496 35.8 0.829 17.7 0.958 7.8 0.992 3.4 0.998 

Cmax
ξη 79.6 0.291 57.2 0.635 34.7 0.866 17.7 0.965 7.6 0.994 

Cmax
ηξ 82.7 0.269 60 0.615 36.6 0.857 18.7 0.962 8.1 0.993 

(continued on next page) 

Fig. 11. The measured and simulated bearing reaction force in the x and y directions under 5.9 × 10− 3 kg⋅m unbalance magnitude. The angular speed of the rotor 
was accelerated by 2⋅π rad/s2. UF: unfiltered signal, F: filtered signal and S: simulation. 

Fig. 12. The measured and simulated bearing force under 5.9 × 10− 3 kg⋅m unbalance magnitude and 2⋅π rad/s2 angular acceleration. UF: unfiltered signal, F: filtered 
signal and S: simulation. 
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Table A1 (continued )    

Eccentricity ratio (ϵ)    
First order Second order Third order Fourth order Fifth order    
RMSE% R2

adj RMSE% R2
adj RMSE% R2

adj RMSE% R2
adj RMSE% R2

adj 

Cmax
ηη 30.3 0.776 13.3 0.957 4.8 0.994 2.4 0.999 2.1 0.999 

Kmin
ξξ 53.1 0.562 29.2 0.867 14.1 0.969 6 0.994 2.3 0.999 

Kmin
ξη 69.3 0.43 43.7 0.774 23.2 0.936 10.5 0.987 4.2 0.998 

Kmin
ηξ 67.8 0.436 42.5 0.778 22.6 0.938 10.2 0.987 4.1 0.998 

Kmin
ηη 28.1 0.685 13.5 0.927 5.9 0.986 3.2 0.996 2.4 0.998 

Cmin
ξξ 47.1 0.619 23.5 0.905 10.3 0.982 4.1 0.997 1.7 0.999 

Cmin
ξη 74.4 0.357 49.5 0.716 27.2 0.914 12.5 0.982 4.8 0.997 

Cmin
ηξ 76.5 0.347 51.1 0.708 28.2 0.912 13 0.981 5 0.997 

Cmin
ηη 17.5 0.8 6.5 0.972 3 0.994 2.7 0.995 2.7 0.995 

Second order Kmax
ξξ 59.6 0.551 42.5 0.772 23.4 0.931 11.3 0.984 4.7 0.997 

Kmax
ξη 72.5 0.417 54.5 0.67 32.6 0.882 16.7 0.969 7.4 0.994 

Kmax
ηξ 70 0.436 52.4 0.684 31.2 0.888 15.9 0.971 7 0.994 

Kmax
ηη 37.5 0.734 25 0.883 12.1 0.973 5.2 0.995 2 0.999 

Cmax
ξξ 53.1 0.622 36.1 0.825 18 0.957 7.8 0.992 2.9 0.999 

Cmax
ξη 74.9 0.372 57.8 0.627 35.4 0.86 18.3 0.962 8 0.993 

Cmax
ηξ 78.2 0.346 60.6 0.607 37.4 0.851 19.4 0.96 8.5 0.992 

Cmax
ηη 22.8 0.873 13.4 0.956 4.6 0.995 1.6 0.999 0.9 0.999 

Kmin
ξξ 54.2 0.545 29.6 0.864 14.4 0.968 6.2 0.994 2.3 0.999 

Kmin
ξη 70.6 0.407 44.1 0.769 23.7 0.933 10.7 0.986 4.1 0.998 

Kmin
ηξ 69.1 0.414 43 0.774 23 0.935 10.4 0.987 4 0.998 

Kmin
ηη 28.7 0.673 13.7 0.926 5.9 0.986 3.1 0.996 2.2 0.998 

Cmin
ξξ 48 0.605 23.8 0.903 10.4 0.981 4.1 0.997 1.5 0.999 

Cmin
ξη 75.9 0.331 50 0.71 27.8 0.911 12.9 0.981 5 0.997 

Cmin
ηξ 78 0.321 51.7 0.702 28.8 0.908 13.4 0.98 5.2 0.997 

Cmin
ηη 17.8 0.793 6.6 0.972 2.8 0.995 2.6 0.996 2.5 0.996  

Appendix B 

Fig. B.1. The maxima local stiffness coefficients fitted with poly51 (MATLAB). The dots represent the computational result from the fluid-film lubrication 
model, RAPPID.  
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Fig. B.2. The minima local stiffness coefficients fitted with poly51 (MATLAB). The dots represent the computational result from the fluid-film lubrication 
model, RAPPID. 

Fig. B.3. The maxima local damping coefficients fitted with poly51 (MATLAB). The dots represent the computational result from the fluid-film lubrication 
model, RAPPID. 

Fig. B.4. The minima local damping coefficients fitted with poly51 (MATLAB). The dots represent the computational result from the fluid-film lubrication 
model, RAPPID. 

G.B. Benti et al.                                                                                                                                                                                                                                 



Applications in Engineering Science 15 (2023) 100147

13

References 

Amamou, A., Mnaouar, C., 2014. Nonlinear stability analysis of long hydrodynamic 
journal bearings using numerical continuation. Mech. Mach. Theory 72, 17–24. 
https://doi.org/10.1016/j.mechmachtheory.2013.10.002. 
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