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ABSTRACT Multi-access Edge Computing (MEC) is a standard network architecture for edge computing,
which is proposed to handle enormous computation demands from emerging resource-intensive and latency-
sensitive applications and services as well as accommodate Quality of Service (QoS) requirements for
ever-growing users through computation offloading. Since the demand of end-users is unknown in a rapidly
changing dynamic environment, processing offloaded tasks in a non-optimal server can deteriorate QoS due
to high latency and increasing task failures. In order to deal with such a challenge inMEC, a two-stage Belief
Rule-Based (BRB) workload orchestrator is proposed to distribute the workload of end-users to optimum
computing units, support strict QoS requirements, ensure efficient utilization of computational resources,
minimize task failures, and reduce the overall service time. The proposed BRB workload orchestrator
decides the optimal execution location for each offloaded task from User Equipment (UE) within the
overall MEC architecture based on network conditions, computational resources, and task requirements.
EdgeCloudSim simulator is used to conduct comprehensive simulation experiments for evaluating the
performance of the proposed BRB orchestrator in contrast to four workload orchestration approaches
from the literature with different types of applications. Based on the simulation experiments, the proposed
workload orchestrator outperforms state-of-the-art workload orchestration approaches and ensures efficient
utilization of computational resources while minimizing task failures and reducing the overall service time.

INDEX TERMS Multi-access edge computing (MEC), task offloading, workload orchestrator, belief rule
base (BRB), performance evaluation.

I. INTRODUCTION
In recent years, there has been a stupendous proliferation
of smart User Equipment (UE), such as smartphones,
smartwatches, and smart glasses. Besides, diverse and
immensely demanding applications and services, such as
smart surveillance, augmented reality, virtual reality, voice
recognition, automated transportation, smart farming, smart
supply chain management, smart healthcare, and autonomous
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driving, are getting extremely popular. Hence, data traffic is
growing exponentially as more and more latency-sensitive
and computation-intensive tasks have been generated from
these sophisticated applications and services [1]. However,
the processing power, storage capacity, and battery life of
UE are limited to locally process computation-intensive tasks,
which require high computational resources and energy [2].
Hence, Cloud Computing has been proposed to process
computation-intensive tasks generated from UE by utilizing
the powerful computing and storage capabilities of cloud
servers over a Wide Area Network (WAN) [3]. It can fulfill
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service demands of resource-intensive applications and tackle
the problem of inadequate processing capability and limited
battery of UE [4]. However, Cloud Computing cannot meet
service demands for latency-sensitive and context-aware
applications and services because the latency of WAN is high
[5], congestion occurs if the amount of data generated by UE
increases that eventually resulting in packet losses [6], and it
works centralized and remotely as cloud servers are generally
far away from UE [7].
In order to handle a massive amount of diverse data

traffic, enhance computation capabilities, and reduce com-
munication latency, Multi-access Edge Computing (MEC)
has emerged that brings computational resources at the edge
of the network in close vicinity to UE to support real-time
applications and services [8]. By deploying edge servers
closer to UE at the network edge, applications and services
can be served with low latency while ensuring a good
Quality of Service (QoS) to end-users. MEC can reduce
long communication latency while relieving core network
congestion that occurs in Cloud Computing. A multi-tier
MEC architecture is usually composed of three tiers and
different sorts of networks [9], as shown in Fig. 1.

FIGURE 1. A multi-tier MEC architecture.

As depicted in Fig. 1, the first tier is UE Tier, which
contains different types of UE that communicate with
the nearest (local) edge server over Wireless Local Area
Network (WLAN). The second tier is Edge Tier, which com-
prises several edge servers that are interconnected through
Metropolitan Area Network (MAN) and an orchestrator that
knows the computational resources of edge and cloud servers
and network resources and is responsible for managing
workload by optimally distributing each offloaded task from
UE to an edge or cloud server. The third tier is Cloud Tier,
which consists of global cloud server(s) that provide services
through WAN.

A salient trait of MEC is computation offloading, which
allows UE to perform a task that is not possible for UE to
process locally due to resource constraints. It facilitates UE to
consume less battery and improve computation performance.
A task can be offloaded from UE to the nearest (local) edge
server (in this case, UE accesses the server with one hop

FIGURE 2. Task offloading from user equipment to edge or cloud servers.

over WLAN), a neighboring (remote) edge server (in this
case, UE accesses the server with two hops over WLAN and
MAN), and the global cloud server (in this case, UE accesses
the server with three hops overWLAN,MAN, andWAN) [9],
as shown in Fig. 2.

However, deciding whether to offload a task from UE to
the nearest (local) edge server, a neighboring (remote) edge
server, or the global cloud server is challenging becauseMEC
faces a rapidly changing dynamic environment at the network
edge due to uncertainty [10]. For instance, end-users moving
from one location to another while connecting to different
WLANs result in high mobility, whereas a variety of tasks
generated by latency-sensitive and computation-intensive
applications result in intermittent traffic. As a consequence,
the state of the network condition keeps changing, and the
computational capacities of edge and cloud servers keep
fluctuating [11], [12]. Besides, if offloaded tasks fromUE are
distributed unevenly and randomly within the overall MEC
infrastructure, it will lead to imbalance workloads between
edge and cloud servers, increase task latency due to improper
task offloading, and impair the performance of MEC [13].
For instance, when a large number of tasks are offloaded to
an edge server concurrently, it gets overloaded and causes
network congestion though this overloaded problem can be
alleviated if those tasks are optimally distributed among
edge servers. Therefore, in this heterogeneous dynamic
environment, the overall efficiency and scalability of MEC
depend on correctly determining the optimal target server for
each offloaded task from UE. Ensuring efficient processing
of dynamic flow of requests and scalable management of
computational resources while satisfying end-user demands
and providing a good QoS is challenging in MEC.

The primary factors that should be considered for an
effective workload orchestration in MEC are CPU utilization
of edge servers and network conditions along the route
to these servers, which can be exceptionally dynamic
under unforeseen variations of workloads [9]. For example,
bandwidth fluctuation occurs in a shared network due to an
increase in the number of users, while CPU utilization of
a Virtual Machine (VM) changes frequently based on the
type of task assigned to it [14]. Besides, MEC consists of
various parameters from the MEC infrastructure as well as
from the UE and the application running on it, which further
convolute the workload orchestration problem [9]. Due to
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the rapidly changing dynamic environment in MEC, its
associated uncertainty, and numerous parameters, it is hard to
build a mathematical model for multi-constraint optimization
and decide the execution location for an offloaded task
from UE [14]. Besides, the time complexity of solving a
multi-constraint optimization problem grows exponentially
when the frequency of end-users mobility is high, which,
in turn, leads to a rise in latency and inefficient resource
utilization [15], [16]. Since the number of offloading requests
from different types of UE is unknown in advance and
the state of network conditions and computational resources
change rapidly, the traditional offline optimization techniques
are not suitable for the workload orchestration problem
[9]. In this regard, the Belief Rule-Based (BRB) approach
can be a suitable candidate to deal with the dynamic and
uncertain environment inMEC since it canmake decisions by
processing multiple parameters comprising both qualitative
and quantitative data and handling the uncertainty in dynamic
environments without a detailed mathematical model [17].
Besides, computational complexity, which is one of the
important requirements for real-time problems, is low for
this approach in comparison with other decision-making
algorithms [18]. Moreover, complex operational details can
be stated in a high-level human understandable format
using belief rules [17], [18]. Therefore, a BRB workload
orchestrator is proposed in this study to solve the workload
orchestration problem in MEC.

The key contributions of this study are as follows.
1) While the BRB approach has been applied to address

various problems in several areas, it has not been utilized
for the workload orchestration problem in MEC so far.
Hence, in this study, the first BRBworkload orchestrator
is proposed for a multi-tier MEC infrastructure to
efficiently handle the workload orchestration problem
and meet the diverse needs of end-users.

2) In this study, a two-stage BRB workload orchestrator
is considered. Since a BRB can be either conjunctive
or disjunctive, both types of BRBs are established in
the first and second stages of the BRB orchestrator to
determine the most appropriate BRBs in both stages.
However, determining whether to use a conjunctive or
disjunctive BRB in the first and second stages of the
BRB orchestrator is tricky since the BRB orchestrator
might perform well for one application when it uses a
conjunctive BRB in the first stage and a disjunctive BRB
in the second stage, but it might not perform well for
another application when it uses the same combination
of BRBs. To address this issue, all possible combinations
of conjunctive and disjunctive BRBs in the first and
second stages of the BRB orchestrator are categorized
based on the delay sensitivity of applications so that the
best combination of BRBs for all sorts of applications
can be identified and the proposed BRB orchestrator
can perform equally well for all types of applications.
The performances of the two-stage BRB orchestrator

TABLE 1. List of abbreviations.

for all possible combinations of BRBs are evaluated
through a detailed simulation experiment under high
workloads in terms of three performance metrics. Based
on the performance evaluation, the best combination
of BRBs for the two-stage BRB workload orchestrator
is determined.

3) After determining the best combination of conjunctive
and disjunctive BRBs for the two-stage BRB workload
orchestrator, another detailed simulation experiment is
conducted to assess the performance of the BRB work-
load orchestrator with the best combination of BRBs in
comparison to four workload orchestration approaches
from the literature based on three performance metrics.
Simulation results demonstrate the potency of the
proposed workload orchestrator in contrast to other
approaches and affirm that the BRB orchestrator reduces
average service time, minimizes the average number of
task failures, and provides lower average VM utilization
by efficiently utilizing all VMs on edge servers and
balancing the workload among edge servers.

The remainder of this article is structured as follows.
Section II presents a comprehensive review of related
work on workload orchestration, while a short overview
of the BRB approach and the proposed two-stage BRB
workload orchestrator is presented in Section III. Section IV
presents the simulated environment that is considered to
demonstrate how MEC fits into real-world implementation,
while the performance assessment of the two-stage BRB
workload orchestrator is presented in Section V. Finally,
Section VI concludes the paper and indicates future work.
The abbreviations used throughout the paper are listed in
Table 1 for better readability.

II. RELATED WORK
Several workload orchestration approaches have been pro-
posed in edge computing from various perspectives. Wang
et al. [19] developed an online approximation algorithm in
edge computing that took into account communication and
computational resources to balance the load and minimize
resource utilization for enhancing application performance.
However, this study did not take into account the service
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delay. Rodrigues et al. [20] proposed a hybrid method to
reduce service delay in edge computing, where the impact
of computational and communication demands of tasks was
investigated, and the proposed approach was evaluated under
realistic conditions by mathematical modeling. However,
this study did not take into account delay constraints of
applications and task offloading to a cloud server for work-
load balancing. Fan and Ansari [21] designed an allocation
strategy considering both computation and communication
delays to reduce service delay in edge computing, where
the impact of overloaded VMs on processing time was
investigated, and the proposed approach was evaluated with
various applications. However, this study did not consider
latency-sensitive applications and demonstrate the efficacy
of the heterogeneity of VMs in regard to service time. Nan
et al. [22] used the Lyapunov technique to develop an online
optimization algorithm for task offloading by leveraging
resources at the edge, which ensured the processing of
a task within a specified time. However, this study did
not take into account the impact of computational and
communication demands for delay-sensitive applications.
Xu et al. [23] developed a model for resource allocation
in edge computing to maximize resource utilization and
minimize task execution latency. However, this study did
not consider upload/download data for applications that
are crucial to overall service time. Scoca et al. [24]
developed a scour-based algorithm for scheduling offloaded
tasks in edge computing by considering both computation
and communication parameters and heterogeneous VMs,
where the most powerful VMs were used to process heavy
computational tasks. However, this study did not take into
account server utilization as a key parameter, which could
deteriorate the overall service time. Taneja and Davy [25]
proposed a resource-aware placement to improve the service
time in edge computing, where computational resources
at the edge were ranked according to their capabilities,
and tasks were assigned to an appropriate server on the
basis of task requirements, such as CPU and bandwidth.
However, this study did not consider the latency sensitivity
of applications. Bittencourt et al. [26] developed an edge-
ward placement algorithm for workload orchestration in edge
computing, where application requests are processed either in
an edge or cloud server according to CPU capacity and delay
requirements. However, this study did not consider network
congestion since a steady network delay for WLAN, MAN,
and WAN communication was used in this study.

From the above discussion, it can be observed that the
majority of past studies had some research gaps. For instance,
some studies did not consider network congestion, some
studies did not consider crucial application characteristics
such as delay/latency sensitivity, upload/download data, task
interarrival, as well as CPU utilization on edge servers, some
studies did not address imbalance workload on edge servers
when a vast number of UE run a variety of applications
simultaneously, and some studies ignored task offloading

either to a neighboring (remote) edge server or global
cloud server, which could hamper the optimal distribution
of the workload in edge computing since spare computing
resources of neighboring (remote) edge servers and adequate
computing resources of the global cloud server are not
utilized in an efficient way. To address all these issues,
Sonmez et al. [9] proposed a Fuzzy Logic-Based (FLB)
workload orchestration in edge computing, where a two-
stage FLB workload orchestrator was utilized to determine
the location of an offloaded task among the local edge,
neighboring/remote edge, and global cloud server based on
network conditions, computational resources, and application
characteristics and four types of applications were considered
to evaluate the proposed orchestrator. Almutairi et al. [14]
also proposed an FLB orchestrator for task offloading similar
to [9], where the only difference is the authors considered
resource heterogeneity in addition to application character-
istics and network conditions. However, in both studies,
the FLB workload orchestrator uses the same fuzzy rule
bases for both delay-sensitive and delay-tolerant applications.
Since task requirements for both types of applications are
different, it is not feasible to use the same fuzzy rule bases
to distinguish tasks generated by delay-sensitive and delay-
tolerant applications and determine the optimal target server
for processing those tasks. Zheng et al. [27] proposed a Deep
Reinforcement Learning (DRL) based workload scheduling
for MEC, where the authors adopted the Deep-Q-Network
(DQN) algorithm to solve the complexity and high dimension
of the workload scheduling problem. Yamansavascilar et al.
[28] also proposed a DRL-based task orchestrator for
MEC, where the authors applied the Double DQN (DDQN)
algorithm to meet the dynamic needs of different application
types. However, the DRL-based approach often suffers from
the delayed action effect due to the stochastic nature of
the MEC environment, distinct application types, and user
mobility, which hampers the overall efficiency of MEC.

In recent years, the BRB approach [17] has been success-
fully applied to address different problems in networking
such as network security situation prediction [29], network
intrusion detection [30], health prediction for a sensor
network [31], fault prediction for a Wireless Sensor Network
(WSN) [32], and fault diagnosis of a WSN [33]. Besides,
it has been found more promising than the FLB approach
for uncertain nonlinear systems [34], [35], [36]. Moreover,
it does not suffer from the delayed action effect like the DRL-
based approach. However, the BRB approach has not been
studied yet to address workload orchestration issues in MEC.

Hence, inspired by the study in [9], a two-stage BRB
workload orchestrator is proposed in this study to deal with
a highly dynamic environment in MEC and alleviate the
overloaded problem caused by the imbalanced distribution of
computational resources by balancing the workload between
edge and cloud servers, as well as minimize task failures and
reduce overall service time. The proposed BRB workload
orchestrator uses belief rules to specify the required workload

VOLUME 11, 2023 118005



M. N. Jamil et al.: Workload Orchestration in Multi-Access Edge Computing

orchestration operations with regard to network conditions,
computational resources, and properties of offloaded tasks
from UE and decide the execution location for offloaded
tasks among the local edge, neighboring/remote edge, and
global cloud server, which refrain system administrators
from distinguishing operational states and assigning policies
to those states. Besides, the best combination of BRBs
(between conjunctive and disjunctive) for the two-stage
BRB workload orchestrator is determined based on the
performance comparison of all possible combinations of
BRBs, which facilitates the BRB orchestrator to perform
equally well for all sorts of applications.

III. METHODOLOGY
This section presents a short overview of the BRB approach
and the proposed two-stage BRB workload orchestrator.

A. BELIEF RULE-BASED APPROACH
The BRB approach is composed of a conjunctive or
disjunctive BRB that represents the initial knowledge base
and Evidential Reasoning (ER) that functions as an inference
engine by processing diverse and uncertain data [37].
A belief rule can represent a non-linear causal association
between the antecedent and consequent attributes [38].
The logical connective of the antecedent attributes in a
belief rule can be either AND (∧) or OR (∨), which
characterizes the conjunctive or disjunctive assumption of
the belief rule. Under the conjunctive assumption, each
antecedent attribute can have different number of referential
values [18]. However, the prerequisite of the disjunctive
assumption is all antecedent attributes must contain the
same number of referential values [39]. In a conjunctive
BRB, the number of belief rules will grow exponentially if
the number of antecedent attributes and/or the number of
referential values of antecedent attributes increases since the
conjunctive assumption considers all possible combinations
of referential values of antecedent attributes, which results
in the combinatorial explosion problem [40]. However,
disjunctive BRB does not go through this problem since all
antecedent attributes contain the same number of referential
values and the total number of belief rules is equal to the
number of referential values of the antecedent attributes.
A large conjunctive BRB needs more computational time,
while a disjunctive BRB needs less computational time
due to less number of disjunctive rules. A conjunctive or
disjunctive BRB can be constructed in four ways such
as by acquiring conventional or belief rules from expert
knowledge, deriving rules by inspecting historical data,
using random belief rules if there is no prior knowledge,
and using previous conventional rule base or BRB if
available [41].

Input transformation, rule activation weight calculation,
belief degree update, and rule aggregation are the four steps
involved in the ER that functions as an inference engine [37].
During input transformation, a given input for an antecedent
attribute is transformed into a distribution on the referential

values of the antecedent attribute [18]. The matching degrees
between an input and the referential values of all antecedents
in a rule are determined by input transformation. Then they
are processed to calculate an activation weight for the rule.
The activation weight of a rule is generated by aggregating
the matching degrees to which all antecedents in that rule
are activated [17]. Under the conjunctive assumption, the
total degree is calculated using a weighted multiplicative
aggregation function. All matching degrees are multiplied
under the conjunctive assumption since the consequent of a
conjunctive belief rule is believed to be true if all antecedent
attributes of the rule are activated [17]. On the contrary,
the total degree is calculated using an additive aggregation
function under the disjunctive assumption. All matching
degrees are summed under the disjunctive assumption since
the consequent of a disjunctive belief rule is believed to
be true if only one antecedent attribute of the rule is
activated [42]. When a conjunctive or disjunctive BRB is
established, the degree of belief for each referential value of
the consequent attribute in all rules is specified. If the input
for an antecedent attribute is not available or partially known
due to a lack of data, it can cause an incomplete output in
each of the rules where the antecedent attribute is used [17].
In such a situation, the original degree of belief embedded
with each referential value of the consequent attribute in a
rule is updated to address the incompleteness of the rule
or address the ignorance of an antecedent attribute while
defining the rule. Afterward, the recursive [17] or analytical
[43] ER algorithm can be used to aggregate rules and generate
the overall combined degree of belief for each referential
value of the consequent attribute. Usually, the analytical ER
is preferred over the recursive ER due to its computational
efficiency [43].

The uncertainty caused by incomplete or missing input of
an attribute and ignorance of an attribute when defining a
belief rule is addressed during the process of belief degree
update, while the uncertainty caused by ambiguous and vague
linguistic information and imprecise numeric information
are addressed during the rule aggregation procedure, which
facilitates the BRB approach to address various types of
uncertainty while processing both quantitative and qualitative
data in the same framework [44]. The overall procedure of the
BRB approach is shown in Fig. 3.

FIGURE 3. Belief rule-based approach.
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B. BELIEF RULE-BASED WORKLOAD ORCHESTRATOR
The proposed BRB workload orchestrator is designed based
on the Fuzzy Logic-Based (FLB) workload orchestrator [9].
However, there are some similarities and differences between
the proposed BRB and FLB workload orchestrators. The
similarities are as follows.

(i) The FLB workload orchestrator determines the target
server among the nearest (local) edge, neighboring
(remote) edge, or global cloud servers. The proposed
BRBworkload orchestrator also determines the optimal
computation unit among those servers for processing
each offloaded task from UE.

(ii) The FLB workload orchestrator considers CPU utiliza-
tion of the nearest (local) edge server, CPU utilization
of the least loaded neighboring (remote) edge server,
MAN delay, task length, WAN bandwidth, and delay
sensitivity of a task as the input parameters. These
parameters are also considered as the input parameters
for the BRB workload orchestrator since they signif-
icantly influence the overall performance of a MEC
infrastructure.

(iii) Handling a vast amount of fuzzy rules by considering all
the above parameters in a single Fuzzy Logic System
(FLS) is a complex operation. Therefore, the FLB
workload orchestrator uses two-stage FLS to decrease
this complexity. Similarly, handling a large number of
belief rules by considering all the above parameters
within a single BRB module is a time-consuming
and complex operation. Therefore, to decrease the
complexity, a two-stage BRB workload orchestrator is
considered by employing two BRB modules.

On the contrary, the differences are as follows.

(i) The FLB workload orchestrator uses the same fuzzy
rule bases for both delay-sensitive and delay-tolerant
applications in the first and second stages. However,
since task requirements for both types of applications
are different, it is not feasible to use the same fuzzy
rule bases to determine the optimal target server
for processing tasks generated by delay-sensitive and
delay-tolerant applications. This issue is addressed in
the BRB workload orchestrator. Since a BRB can be
either conjunctive or disjunctive, at first, both types of
BRBs are established in the first and second stages of
the BRB orchestrator. However, determining whether
to use a conjunctive or disjunctive BRB in the first
and second stages of the BRB orchestrator is tricky
since the BRB orchestrator might perform well for one
application when it uses a conjunctive BRB in the first
stage and a disjunctive BRB in the second stage, but
it might not perform well for another application when
it uses the same combination of BRBs. To solve this
problem, all possible combinations of conjunctive and
disjunctive BRBs in the first and second stages of the
BRB orchestrator are categorized based on the delay

sensitivity of applications. Then the best combination
of BRBs (between conjunctive and disjunctive) for the
two-stage BRB workload orchestrator is determined
based on the performance comparison of all possible
combinations of BRBs, which facilitates the BRB
orchestrator to perform equally well for all sorts of
applications.

(ii) The Fuzzy Inference System (FIS) in the FLBworkload
orchestrator can handle uncertainties due to vagueness,
imprecision, and ambiguity, but it cannot deal with
uncertainties due to ignorance and incompleteness [35].
However, the ER that acts as an inference engine in
the BRB workload orchestrator can deal with all sorts
of uncertainties while processing both quantitative and
qualitative data.

To reiterate, one of the main contributions of this
study is determining the best combination of conjunctive
and disjunctive BRBs for the two-stage BRB workload
orchestrator, which has been done by categorizing all possible
combinations of BRBs (between conjunctive and disjunctive)
based on the delay sensitivity of applications and conducting
a performance comparison among them. Identifying the best
combination of BRBs (between conjunctive and disjunctive)
for the two-stage BRB workload orchestrator is critical since
it facilitates the BRB orchestrator to handle the diverse
needs of delay-sensitive and delay-tolerant applications by
correctly offloading their tasks into the optimal target server
for processing.

C. TWO-STAGE BRB WORKLOAD ORCHESTRATOR
In this study, a two-stage BRB workload orchestrator is
designed by utilizing two BRB modules, where the first
BRB module (BRBM1) in the first stage determines the
candidate edge server between the local edge server and
neighboring/remote edge servers in the edge tier based on
CPU utilization of the local edge server, CPU utilization
of the least loaded remote edge server, and MAN delay,
while the second BRB module (BRBM2) in the second stage
determines the optimal target server between the candidate
edge server and the global cloud server based on CPU
utilization of the candidate edge server, task length, WAN
bandwidth, and delay sensitivity of a task, as shown in Fig. 4.

FIGURE 4. Two-stage belief rule-based workload orchestrator.
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1) FIRST STAGE
Following [9], three input variables, namely CPU Utilization
of the Local Edge Server, CPU Utilization of the Least
Loaded Remote Edge Server, MAN Delay, and one output
variable named Candidate Edge Server, are considered in the
first stage.

(i) Local Edge CPUUtilization: Offloading a task fromUE
to the nearest (local) edge server is generally advan-
tageous to refrain from consuming MAN resources.
However, if end-users at distinct locations are not
evenly distributed, offloading a task to the nearest
(local) edge server is not rational. Since the computation
capacity of an edge server is modest in comparison
to a cloud server, constantly offloading tasks to the
nearest (local) edge server results in a lot of task failures
due to insufficient computational resources, especially
in hotspot locations. Hence, distributing offloaded
tasks among the neighboring/remote edge servers can
improve the performance of a MEC infrastructure if
MAN is not congested. The state of computational
resources in a local edge server is determined by the
CPU utilization of that edge server. It is assumed that
a local edge server runs multiple VMs. Hence, Local
Edge CPU Utilization stands for the average utilization
of all VMs running on that local edge server [9].

(ii) Least Loaded Remote Edge CPU Utilization: Similar to
a nearest (local) edge server, the state of computational
resources in a remote edge server is determined by
the CPU utilization of that edge server. It is assumed
that offloading a task to any neighboring/remote edge
server has the same MAN usage cost [9]. Hence, CPU
utilization of the least loaded remote edge server is
considered. Offloading a task to a neighboring/remote
edge server is desirable if the CPU utilization of the
least loaded neighboring/remote edge server is low in
comparison to the nearest (local) edge server and the
MAN delay is minimal. Analogous to a local edge
server, a neighboring/remote edge server runs multiple
VMs. Therefore, the CPU utilization of a remote edge
server stands for the average utilization of all VMs
running on that remote edge server [9].

(iii) MAN Delay: MAN delay becomes a significant bottle-
neck in a MEC infrastructure when a lot of end-users
useMAN concurrently. Hence,MANdelay is taken into
account when selecting the best edge server. MAN is
likely to be congested if the MAN delay is longer than
desired. In that case, a task should be offloaded to a local
edge server.

Fig. 5 shows the membership functions for each input and
output variable considered in the first stage of the Fuzzy
Logic-Based (FLB) workload orchestrator in [9], which
were determined empirically by testing various membership
functions.

Each input and output variable, their linguistic terms, and
degree of membership values for each linguistic term used in

FIGURE 5. Membership functions used in the first stage of the FLB
workload orchestrator [9].

the first stage of the FLB workload orchestrator is mapped
for the first BRB module (BRBM1) used in the first stage of
the proposed BRB workload orchestrator. For BRBM1, the
three input variables are the three antecedent attributes, the
output variable is the consequent attribute, linguistic terms
for each input and output variable are referential values for
the antecedent and consequent attributes. The utility value
for each referential value of the antecedent and consequent
attributes is determined by taking the middle value from
the degree of membership of each linguistic term that was
used in the first stage of the FLB workload orchestrator.
For example, the range of the degree of membership of the
first linguistic term (‘Low’) associated with the first input
variable (‘Local Edge CPU Utilization’) in the first stage of
the FLB orchestrator was [0 − 40]. Hence, for BRBM1, the
utility value for the third referential value (‘Low’) of the first
antecedent attribute (‘Local Edge CPU Utilization’) in the
first stage of the BRB orchestrator is 20. In a similar way,
the utility value for each referential value of the antecedent
and consequent attributes is determined, as shown in Table 2.

TABLE 2. Details of antecedent and consequent attributes for BRBM1.

Since the first stage of the FLB workload orchestrator
had three input variables and each input variable had three
linguistic terms, the number of fuzzy rules in the fuzzy rule
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base for the first stage was 27 (3 × 3 × 3), where each rule
was determined empirically by testing various combinations
of fuzzy rules [9]. For simplicity, only the first three and last
three rules from the fuzzy rule base is shown in Table 3,
where X1 (Local Edge CPU Utilization), X2 (Least Loaded
Remote Edge CPU Utilization), X3 (MAN Delay) are the
three input variables and Y1 (Candidate Edge Server) is the
output variable.

TABLE 3. Fuzzy rule base used in the first stage of the FLB workload
orchestrator [9].

Now for BRBM1, a conjunctive BRB is established by
transforming the fuzzy rule base used in the first stage of
the FLB workload orchestrator [9]. As discussed above,
BRBM1 has three antecedent attributes and each of them
has three referential values. So by considering all possible
combinations of referential values of antecedent attributes
under the conjunctive assumption, the total number of belief
rules in the conjunctive BRB is 27 (3 × 3 × 3). The only
difference between fuzzy rule base and BRB lies in the fact
that belief degree is embedded with each referential value of
the consequent attribute in a BRB. For simplicity, only the
first three and last three rules from the conjunctive BRB are
shown in Table 4, where X1 (Local Edge CPU Utilization),
X2 (Least Loaded Remote Edge CPUUtilization), X3 (MAN
Delay) are the three antecedent attributes and Y1 (Candidate
Edge Server) is the consequent attribute.

TABLE 4. Conjunctive belief rule base for BRBM1.

The first belief rule taken from Table 4 can be expressed as
follows.

R1 :


IF Local Edge CPU Utilization is High
AND Least Loaded Remote Edge CPU Utilization is
High AND MAN Delay is High THEN Candidate
Edge Server is {(Remote Edge, 0), (Local Edge, 1)}

In the above belief rule, ‘‘Local Edge CPU Utilization’’,
‘‘Least Loaded Remote Edge CPU Utilization’’, and ‘‘MAN
Delay’’ are the antecedent attributes, while ‘High’, ‘High’,
and ‘High’ are their corresponding referential values. ‘‘Can-
didate Edge Server’’ is the consequent attribute and its
referential values are ‘Remote Edge’ and ‘Local Edge’. The
belief distribution of this consequent attribute is (Remote
Edge, 0) and (Local Edge, 1). Here, 0 and 1 are the degree
of belief to which the consequent referential value ‘Remote
Edge’ and ‘Local Edge’ are believed to be true. This rule is
considered complete because the summation of belief degrees
associated with each referential value of the consequent
attribute is 1 (0 + 1 = 1). In the first stage, full computation
offloading is considered, which means a whole task from
UE is offloaded to a Local Edge or Remote Edge server
for processing without any split of the task. Hence, belief
degrees embedded with referential values (‘Remote Edge’
and ‘Local Edge’) of the consequent attribute (‘‘Candidate
Edge Server’’) in all conjunctive belief rules are considered
binary values (either 0 or 1).

In this study, a disjunctive BRB is also considered to
determine whether a conjunctive or disjunctive BRB will be
most appropriate for BRBM1 in the first stage. Since there
was no disjunctive fuzzy rule base for the FLB workload
orchestrator in the first stage, the disjunctive BRB for
BRBM1 are constructed based on empirical analysis by
testing various combinations of disjunctive belief rules and
choosing the best combination among them. As discussed
in subsection III-A, the prerequisite of the disjunctive
assumption is all antecedent attributes must contain the
same number of referential values. For BRBM1, it has three
antecedent attributes and all antecedent attributes contain the
same number of referential values, which is 3. Hence, the total
number of belief rules in the disjunctive BRB for BRBM1 is
3. The disjunctive BRB is shown in Table 5, where X1 (Local
Edge CPU Utilization), X2 (Least Loaded Remote Edge
CPU Utilization), X3 (MAN Delay) are the three antecedent
attributes and Y1 (Candidate Edge Server) is the consequent
attribute.

TABLE 5. Disjunctive belief rule base for BRBM1.

The first stage of the FLB workload orchestrator consisted
of three main steps, namely fuzzification, fuzzy inference,
and defuzzification. After defuzzification, the output of the
first stage became a crisp value between 0 and 100. If the
output was less than or equal to 50, the Local Edge Server
was chosen as the Candidate Edge Server. Otherwise, the
least loadedRemote Edge Server was chosen as the Candidate
Edge Server [9].
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For BRBM1, ER acts as an inference engine that comprises
four steps, as discussed in subsection III-A. The fourth step
determines the final outcome for the consequent attribute in
the first stage. If the outcome is less than or equal to 50,
the Local Edge Server will be chosen as the Candidate Edge
Server. Otherwise, the least loaded Remote Edge Server will
be chosen as the Candidate Edge Server after the first stage
of the BRB workload orchestrator.

2) SECOND STAGE
Following [9], four input variables, namely CPU Utilization
of the Candidate Edge Server, Task Length,WANBandwidth,
Delay Sensitivity and one output variable named Optimal
Target Server, are considered in the second stage.

(i) Candidate Edge CPU Utilization: The CPU utilization
of the candidate edge server supplies information on the
residual processing capacity. If the CPU utilization of
the candidate edge server exceeds a certain threshold,
it can be considered congested. In this instance,
offloading to a global cloud server could be viable
based on the WAN circumstances and the task’s delay
sensitivity. As mentioned before, it is assumed that
each edge server runs multiple VMs. Hence, the CPU
utilization of the candidate edge server stands for the
average utilization of all VMs running on that edge
server [9].

(ii) Task Length: In this study, the number of instructions
indicates the length of a task [9]. The length of a
task determines the execution time of that task on
an edge/cloud server in relation to the processing
power of the Virtual Machine (VM) running on that
edge/cloud server. Hence, the length of a task is taken
into account to decide the optimal target server for the
corresponding task. A complicated task with a large
number of instructions should be offloaded to a cloud
server, while an uncomplicated task can be offloaded to
an edge server.

(iii) WAN Bandwidth: Before offloading a task to the cloud
server, WAN Bandwidth is a crucial criterion that needs
to be taken into account. Offloading a task to the cloud
server is not beneficial if WAN latency is higher than an
application’s latency requirement or ifWAN congestion
is severe enough to trigger packet losses.

(iv) Delay Sensitivity: The delay sensitivity of a task
indicates the task’s tolerance for taking a long time to
complete due to network conditions or CPU utilization
of a server. It is an important criterion to consider
for providing a good QoS by a MEC infrastructure.
It is assumed that an application profile defines the
delay sensitivity. In real-life scenarios, a network
administrator can define the delay sensitivity of an
application, or an application developer can incorporate
the delay sensitivity into a particular application [9].

Fig. 6 shows the membership functions for each input
and output variable considered in the second stage of the

FLB workload orchestrator in [9], which were determined
empirically by testing various membership functions.

FIGURE 6. Membership functions used in the second stage of the FLB
workload orchestrator [9].

Each input and output variable, their linguistic terms, and
degree of membership values for each linguistic term used
in the second stage of the FLB workload orchestrator is
mapped for the second BRB module (BRBM2) used in the
second stage of the proposed BRB workload orchestrator.
For BRBM2, the four input variables are the four antecedent
attributes, the output variable is the consequent attribute, lin-
guistic terms for each input and output variable are referential
values for the antecedent and consequent attributes. Similar
to BRBM1, the utility value for each referential value of the
antecedent and consequent attributes is determined by taking
the middle value from the degree of membership of each
linguistic term that was used in the second stage of the FLB
workload orchestrator. For example, the range of the degree
of membership of the first linguistic term (‘Low’) associated
with the first input variable (‘WANBandwidth’) in the second
stage of the FLB orchestrator was [0−4]. Hence, for BRBM2,
the utility value for the third referential value (‘Low’) of the
third antecedent attribute (‘WAN Bandwidth’) in the second
stage of the BRB orchestrator is 2. In a similar way, the
utility value for each referential value of the antecedent and
consequent attributes is determined, as shown in Table 6.
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TABLE 6. Details of antecedent and consequent attributes for BRBM2.

TABLE 7. Fuzzy rule base used in the second stage of the FLB workload
orchestrator [9].

Since the second stage of the FLB workload orchestrator
had four input variables and each input variable had three
linguistic terms, the number of fuzzy rules in the fuzzy rule
base for the second stage was 81 (3 × 3 × 3 × 3), where
each rule was determined empirically by testing various
combinations of fuzzy rules [9]. For simplicity, only the first
three and last three rules from the fuzzy rule base is shown
in Table 7, where X4 (Candidate Edge CPU Utilization), X5
(Task Length), X6 (WANBandwidth), X7 (Delay Sensitivity)
are the four input variables and Y2 (Optimal Target Server)
is the output variable.

Now for BRBM2, a conjunctive BRB is established by
transforming the fuzzy rule base used in the second stage
of the FLB workload orchestrator [9]. As discussed above,
BRBM2 has four antecedent attributes and each of them
has three referential values. So by considering all possible
combinations of referential values of antecedent attributes
under the conjunctive assumption, the total number of belief
rules in the conjunctive BRB is 81 (3 × 3 × 3 × 3).
As mentioned previously, the only difference between fuzzy
rule base and BRB lies in the fact that belief degree is
embedded with each referential value of the consequent
attribute in a BRB. For simplicity, only the first three and last
three rules from the conjunctive BRB is shown in Table 8,
where X4 (Candidate Edge CPU Utilization), X5 (Task
Length), X6 (WAN Bandwidth), X7 (Delay Sensitivity) are
the four antecedent attributes and Y2 (Optimal Target Server)
is the consequent attribute.

TABLE 8. Conjunctive belief rule base for BRBM2.

The first belief rule taken from Table 8 can be expressed as
follows.

R1 :


IF Candidate Edge CPU Utilization is High AND
Task Length is High AND WAN Bandwidth is High
AND Delay Sensitivity is High THEN Optimal
Target Server is {(Cloud, 1), (Candidate Edge, 0)}

In the above belief rule, ‘‘Candidate Edge CPU Utiliza-
tion’’, ‘‘Task Length’’, ‘‘WAN Bandwidth’’, and ‘‘Delay
Sensitivity’’ are the antecedent attributes, while ‘High’,
‘High’, ‘High’, and ‘High’ are their corresponding referential
values. ‘‘Optimal Target Server’’ is the consequent attribute
and its referential values are ‘Cloud’ and ‘Candidate Edge’.
The belief distribution of this consequent attribute is (Cloud,
1) and (Candidate Edge, 0). Here, 1 and 0 are the degree
of belief to which the consequent referential value ‘Cloud’
and ‘Candidate Edge’ are believed to be true. This rule is
considered complete because the summation of belief degrees
associated with each referential values of the consequent
attribute is 1 (1 + 0 = 1). Similar to the first stage, full
computation offloading is considered in the second stage,
which means a whole task from UE is offloaded to a
Candidate Edge or Cloud server for processing without
any split of the task. Hence, belief degrees embedded
with referential values (‘Cloud’ and ‘Candidate Edge’) of
the consequent attribute (‘‘Optimal Target Server’’) in all
conjunctive belief rules are considered binary values (either
0 or 1).

TABLE 9. Disjunctive belief rule base for BRBM2 (H: High, M: Medium,
L: Low).

Similar to BRBM1, a disjunctive BRB is also considered
to determine whether a conjunctive or disjunctive BRB will
be most appropriate for BRBM2 in the second stage. Since
there was no disjunctive fuzzy rule base for the FLBworkload
orchestrator in the second stage, the disjunctive BRB for
BRBM2 are constructed based on empirical analysis by
testing various combinations of disjunctive belief rules and
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choosing the best combination among them. As discussed
in subsection III-A, the prerequisite of the disjunctive
assumption is all antecedent attributes must contain the
same number of referential values. For BRBM2, it has four
antecedent attributes and all antecedent attributes contain
the same number of referential values, which is 3. Hence,
the total number of belief rules in the disjunctive BRB for
BRBM2 is 3. The disjunctive BRB is shown in Table 9, where
X4 (Candidate Edge CPU Utilization), X5 (Task Length),
X6 (WAN Bandwidth), X7 (Delay Sensitivity) are the four
antecedent attributes and Y2 (Optimal Target Server) is the
consequent attribute.

Similar to the first stage, the second stage of the FLB
workload orchestrator consisted of three main steps, namely
fuzzification, fuzzy inference, and defuzzification. After
defuzzification, the output of the second stage became a crisp
value between 0 and 100. If the output was less than or equal
to 50, the Candidate Edge Server was chosen as the Optimal
Target Server. Otherwise, the Cloud Server was chosen as the
Optimal Target Server [9].

Similar to BRBM1, ER acts as an inference engine for
BRBM2 and the fourth step of ER determines the final
outcome for the consequent attribute in the second stage.
If the outcome is less than or equal to 50, the Candidate
Edge Server will be chosen as the Optimal Target Server.
Otherwise, the Cloud Server will be chosen as the Optimal
Target Server after the second stage of the BRB workload
orchestrator.

Algorithm 1 presents the proposed two-stage BRB work-
load orchestrator algorithm.

IV. SIMULATED ENVIRONMENT
A university campus scenario presented in [9] is simulated
in this study. In this scenario, students and other end-users
request services while moving to different locations within
the campus, such as classroom premises, libraries, cafeterias,
student hostels, and administrative offices. End-users carry
different types of UE, such as smartphones, smartwatches,
and smart glasses, which run different types of applications
and offload tasks generated by these applications that result
in diverse data traffic. Several edge servers interconnected
through MAN are located on the campus to provide services.
It is assumed that MAN is a Gigabit Ethernet of campus LAN
[9]. A dedicated Wi-Fi access point covers each location.
When end-users move to the coverage area of the access
point, they join the related WLAN [45]. End-users offload
tasks from UE to the nearest (local) edge server via WLAN.
The MAN connection is used if a task is offloaded to a
neighboring (remote) edge server, while theWAN connection
(broadband connection), provided by the Wi-Fi access point,
is used if a task is offloaded to the cloud server [9], [45].

To summarize, a task can be offloaded from UE to the
nearest (local) edge server (in this case, UE accesses the
server with one hop over WLAN), a neighboring (remote)
edge server (in this case, UE accesses the server with
two hops over WLAN and MAN), and the global cloud

server (in this case, UE accesses the server with three hops
over WLAN, MAN, and WAN) [9]. This task offloading
decision is handled by the proposed two-stage BRBworkload
orchestrator.

In order to imitate the mobility of end-users realistically,
different locations on the campus are presumed to have a
distinct level of attractiveness, which affect the dwell time
that an end-user spends in a related location. For instance,
students usually stay more on classroom premises in the
morning, while they gather in libraries and cafeterias in the
afternoon and evening and spend more time in student hostels
at night. The end-user density, hence task offloading requests
(data traffic) at each location, differs based on the level of
attractiveness of that location. In this scenario, three location
categories have been considered with distinct attractiveness
levels, which are depicted in Fig. 7.

FIGURE 7. A university campus scenario with three location categories [9].

In Fig. 7, a Type 1 location, shown with a red ellipse, has
the highest attractiveness level and a Type 2 location, shown
using an orange ellipse, has the medium attractiveness level,
while two Type 3 locations, shown with two blue ellipses,
have the lowest attractiveness level. The end-user density
affects the overall performance of a MEC infrastructure
because of its direct relation with task offloading requests
(data traffic). For instance, due to high end-user density
in a Type 1 location, both network and computational
resources can be congested in that location. The proposed
BRBworkload orchestrator deals with this issue by optimally
distributing offloaded tasks from UE among local edge,
neighboring/remote edge, and global cloud servers.

A. SIMULATION SETUP
In this study, EdgeCloudSim is chosen as the simulator
because it enables to modeling of a realistic MEC envi-
ronment and supports the simulation of the multi-tier MEC
infrastructure where several edge servers run in cooperation
with global cloud servers [45]. It supports a range of crucial
functions such as network modeling specific to WLAN,
MAN, and WAN, UE mobility model, realistic and tunable
load generator, computational resource modeling such as
VM creation with a specified capacity, and orchestration
actions modeling inMEC scenarios with an edge orchestrator
module [46].
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Algorithm 1 Two-Stage Belief Rule-Based Workload Orchestrator Algorithm

Input: Offloaded Task, T
Output: Optimal Target Server, Oserver

1 Read Local Edge CPU Utilization: ULocalEdge
2 Read Least Loaded Remote Edge CPU Utilization: URemoteEdge
3 Read MAN Delay: DMAN
4 C1 = BRBM1(ULocalEdge,URemoteEdge,DMAN )
5 if C1 ≤ 50 then
6 Candidate Edge = Local Edge
7 UCandidateEdge = ULocalEdge // Candidate Edge CPU Utilization

8 else
9 Candidate Edge = Remote Edge

10 UCandidateEdge = URemoteEdge // Candidate Edge CPU Utilization

11 Read Length of the offloaded task: TLength
12 Read WAN Bandwidth: BWAN
13 Read Delay Sensitivity of the offloaded task: TDelaySensitivity
14 C2 = BRBM2(UCandidateEdge,TLength,BWAN ,TDelaySensitivity)
15 if C2 ≤ 50 then
16 Oserver = Candidate Edge

17 else
18 Oserver = Cloud

19 return Oserver

TABLE 10. Types of applications used in simulation experiments [9].

InMEC, UE can run several applications or services whose
characteristics may vary according to different requirements.
A task offloading request to an edge or cloud server
can generate separate CPU and network loads on a MEC
infrastructure. For example, a compute-intensive task may
require vast CPU resources, but that task might not use
excessive network capacity. On the contrary, a data backup
application may require a small number of CPU resources,
but the data backup process might need a significant
amount of data transmission. In order to simulate real-life
scenarios, four types of applications found in the literature
are considered in this study. The first one is an Augmented
Reality (AR) application on Google Glass presented in [47],
the second one is a health application presented in [48], the
third one is an infotainment application discussed in [49], and
the fourth one is a compute-intensive application discussed in
[50]. In simulation experiments, it is assumed that end-users
use these four different applications with various types of UE
that offload tasks belonging to these application categories,

and an edge or cloud server provides corresponding services.
For instance, an end-user uses the AR application by wearing
smart glass and it offloads captured pictures to an edge server
that provides face recognition service. Similarly, a user uses
the health application by carrying a foot-mounted inertial
sensor and it offloads sensor data to an edge/cloud server that
provides a fall risk detection service. In the same way, end-
users use infotainment and compute-intensive applications
with various UE, which offload tasks to either cloud or edge
servers that provide corresponding services. The properties of
the four types of applications used in simulation experiments
are shown in Table 10.
In Table 10, the usage percentage of an application

represents the portion of UE running this application. For
instance, 30% of UE runs the AR application, while 20%
of UE runs the health application. Task interarrival time
specifies how often UE sends a related task of an application
to the workload orchestrator. For instance, every 7 seconds,
UE sends a related task of the infotainment application
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to the workload orchestrator. For each application, task
interarrival time is exponentially distributed. The delay
sensitivity specifies whether an application is delay-sensitive
or not. If this value is high (≥0.5), an application is delay-
sensitive, otherwise, it is delay-tolerant. For instance, the
delay sensitivity of the AR application is 0.9, so it is a delay-
sensitive application. On the contrary, the delay sensitivity of
the infotainment application is 0.3, so it is a delay-tolerant
application. In real-life scenarios, UE does not generate
service requests continuously since an application depicts
an intermittent behavior where it actively generates tasks
for a period and remains idle between active periods. For
instance, an application may log data for a period of time
from a sensor before sending that data to an edge/cloud server
for additional processing. This pattern is modeled using the
active/idle period for an application such that the application
creates tasks during the active period and does nothing in the
idle period. For instance, the AR application generates tasks
for 40 seconds and stays idle for 20 seconds.

An application generates tasks, which contain random
lengths with regard to the number of instructions and random
input/output file sizes to upload/download [45]. For instance,
an AR application may need high CPU computation, a large
input file to upload, and a small output file to download, while
an infotainment application may need low CPU power in
comparison to the AR application due to the fact that it sends
requests with a small input to a server and the server returns a
large output as a response [45]. Hence, upload/download data
for an application depicts the corresponding amount of data
sent to/received from a server. For example, upload/download
data for the AR application is considered ⟨1500 KB, 25 KB
⟩ to indicate the fact that a typical image is uploaded to a
server and the server returns text metadata of a recognized
person as a response. Task length deduces the needed CPU
resource for a task in the GI (billion instructions) unit.
For instance, it is assumed that an average of 9 billion
instructions (GI) is required for the AR application. The
length of a task determines the execution time of that task
on an edge/cloud server in relation to the processing power
of the Virtual Machine (VM) running on that edge/cloud
server. The unit of the processing speed of a VM on an
edge/cloud server is GIPS (Giga Instructions Per Second)
[9]. In simulation experiments, it is assumed for all scenarios
that the cloud server has adequate computational resources
while edge servers have limited computational resources.
Therefore, the cloud server executes each offloaded task
on the cloud VMs without blocking, while congestion may
take place in edge servers due to limited computational
resources. For each application, task length is exponentially
distributed. VM utilization on Edge and VM utilization on
Cloud parameters are used to limit the number of concurrent
tasks that can run on an edge VM or cloud VM. In simulation
experiments, all VMs are empowered in terms of CPU
resources. Hence, a task offloaded to an edge server will
fail if there is no sufficient CPU resource on that edge VM
to process that task. For example, VM Utilization on Edge

for the infotainment application is 10%, which means up to
10 tasks can be executed simultaneously on an Edge VM for
the infotainment application.

TABLE 11. Simulation parameters [9].

Other important simulation parameters are stated in
Table 11. In this study, all simulation experiments are
repeated 30 times. 1 cloud server with 4 VMs and 14 edge
servers with 8 VMs on each edge server are considered in
all simulations. Each edge server has an equal capacity and
all 14 edge servers operate in 14 locations. Each VM in an
edge server has 2 core CPU with 10 GIPS capacity, 2 GB
RAM, and 50 GB storage, while each VM in the cloud
server has 4 core CPU with 100 GIPS capacity, 32 GB RAM,
and 1000 GB storage for processing each offloaded task from
UE.

The performance of a system should be analyzed under
different load. The load can be increased in various ways. For
example, by using a fixed amount of devices, a system can be
overloaded by increasing requests generated by those devices.
Another approach for making a system overloaded is to
increase the number of devices while maintaining the service
requests constant. The latter approach is followed in this
study. In order to simulate various workloads, the minimum
and maximum number of UE is considered 200 and 2400,
respectively [9]. Each simulation starts with the minimum
number of UE and the number of UE is increased by 200 until
it reaches the maximum number of UE.

For network delay modeling, the study conducted by [9] is
followed. The authors used the result of an empirical study
for WLAN and WAN delays. They used an 802.11 family
access point for WLAN delay observation and utilized a
fiber internet connection in Istanbul to observe WAN delays
[45]. They used the average bandwidth of ten consecutive
experiments for WLAN bandwidth and determined WAN
bandwidth by taking the average values of measurements
at different times of the day for a week. They observed
MAN delay via an MMPP/M/1 queueing model (a single
server queue model with Markov-modulated Poisson process
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TABLE 12. Possible combinations of BRBs for the Two-stage BRB workload orchestrator.

arrivals), which updates the mean arrival rate of tasks when
the system congestion level changes. They also considered
LAN propagation delay of 5 ms and WAN propagation delay
of 100 ms. The details of network delay modeling can be
found in [9] and [45].

It is assumed that students and other end-users move from
one location to another location within the campus following
a nomadic mobility model [51], which dictates when a user
moves to a location, the user waits/stays there for a random
amount of time (dwell time) and then moves from that
location to another location. So the location of a user changes
after a specified amount of time. As discussed in Section IV,
the university campus scenario has three location categories
with distinct levels of attractiveness. Students and other end-
users stay in those locations for a random dwell time, which
is proportional to the attractiveness level. An end-user will
spend more time in a location if the level of attractiveness
of that location is high. The likelihood of moving to any
location is considered equal for all locations. It is presumed
that there are eight locations of Type 1 with the highest
attractiveness level, four locations of Type 2 with medium
attractiveness level, and two locations of Type 3 with the
lowest attractiveness level, while the waiting duration (mean
dwell time) in locations of Type 1, 2, and 3 are 8, 5, and
2 minutes, respectively.

B. COMBINATIONS OF BRBS FOR THE TWO-STAGE BRB
ORCHESTRATOR
As discussed in section III-B, both conjunctive and disjunc-
tive BRBs are established in the first and second stages
of the proposed BRB orchestrator to determine the most
appropriate BRBs for BRBM1 (in the first stage) andBRBM2
(in the second stage). However, determining whether to use

a conjunctive or disjunctive BRB in the first and second
stages of the BRB orchestrator is tricky since the BRB
orchestrator might perform well for one application when it
uses a conjunctive BRB in the first stage and a disjunctive
BRB in the second stage, but it might not perform well for
another application when it uses the same combination of
BRBs. To address this issue, all possible combinations of
conjunctive and disjunctive BRBs in the first and second
stages of the BRB orchestrator are categorized based on the
delay sensitivity of applications so that the best combination
of BRBs for all sorts of applications can be identified and the
proposed BRB orchestrator can perform equally well for all
types of applications. As discussed in subsection IV-A, four
types of applications are considered in this study. Two of them
are delay-sensitive applications (AR and Health), while the
other two are delay-tolerant applications (Infotainment and
Compute-Intensive). At first, four possible combinations of
BRBs are obtained for all types of applications. After that,
the applications are divided into delay-sensitive and delay-
tolerant applications, from which twelve more combinations
of BRBs are found, as presented in Table 12.
As shown in Table 12, the BRB workload orchestrator

uses a Conjunctive BRB for BRBM1 in the first stage and a
disjunctive BRB for BRBM2 in the second stage for all types
of applications (including both delay-sensitive and delay-
tolerant applications) when BRB-comb-2 is used. However,
if BRB-comb-12 is used, the BRB workload orchestrator
uses a disjunctive BRB for BRBM1 in the first stage and
a conjunctive BRB for BRBM2 in the second stage for
delay-sensitive applications (AR and Health), while it uses
a Conjunctive BRB for BRBM1 in the first stage and a
disjunctive BRB for BRBM2 in the second stage for delay-
tolerant applications (Infotainment and Compute-Intensive).
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V. RESULTS AND DISCUSSION
This section presents the performance evaluation of the
two-stage BRB workload orchestrator for all possible combi-
nations of BRBs in terms of three performancemetrics. Based
on the performance evaluation, the best combination of BRBs
for the two-stage BRB workload orchestrator is determined.
After that, the performance of the BRBworkload orchestrator
with the best combination of BRBs is compared with
four workload orchestration approaches from the literature
regarding three performance metrics.

A. PERFORMANCE EVALUATION OF THE TWO-STAGE BRB
WORKLOAD ORCHESTRATOR
An extensive number of simulation experiments are con-
ducted using the EdgeCloudSim simulator [45] to assess the
performance of the two-stage BRB workload orchestrator
for each combination of BRBs in the first and second
stages. As discussed in subsection IV-A, the simulation
experiment is repeated 30 times with 200 to 2400 User
Equipment (UE) and four types of applications are used.
Following [9], three performancemetrics, namely the average
failed task (%), average service time (sec), and average
VM utilization on edge servers (%), are considered for
performance evaluation. In order to conduct a performance
comparison under high workloads, the average failed task,
the average service time, and the average VM utilization for
each combination of BRBs in the two-stage BRB workload
orchestrator regarding 2400 UE are considered, as depicted
in Fig. 8, Fig. 9, and Fig. 10, respectively.

FIGURE 8. Average failed task for each combination of BRBs in the BRB
workload orchestrator.

When the number of UE is 2400, it can be noticed
from Fig. 8 that the average failed task (%) for BRB-
comb-9 is the lowest among all combinations. However,
it can be observed from Fig. 9 and Fig. 10 that the average
service time (sec) and the average VM utilization (%)
for BRB-comb-14 are the lowest among all combinations,
while BRB-comb-9 has the third-lowest average service
time and the fourth-lowest average VM utilization. Since
BRB-comb-14 performs best in aspects of two performance
metrics, BRB-comb-14 is considered the best combination
of BRBs for the two-stage BRB workload orchestrator.
It means the proposed two-stage BRB workload orchestrator
performs best when disjunctive BRBs are used for both

FIGURE 9. Average service time for each combination of BRBs in the BRB
workload orchestrator.

FIGURE 10. Average VM utilization for each combination of BRBs in the
BRB workload orchestrator.

BRBM1 (in the first stage) and BRBM2 (in the second
stage) for delay-sensitive applications (AR and Health), and
Conjunctive BRBs are used for both BRBM1 (in the first
stage) and BRBM2 (in the second stage) for delay-tolerant
applications (Infotainment and Compute-Intensive). In the
next subsection, the performance of the two-stage BRB
workload orchestrator with the best combination of BRBs is
compared with four workload orchestration approaches from
the literature.

B. PERFORMANCE COMPARISON WITH OTHER
WORKLOAD ORCHESTRATION APPROACHES
The performance of the proposed BRB workload orches-
tration approach is comparatively evaluated under various
loads with four workload orchestration approaches from
the literature, namely Fuzzy Logic-Based (FLB) workload
orchestration [9], Bandwidth-based workload orchestration
(which uses WAN bandwidth for task offloading decision)
[9], Utilization-based workload orchestration (which uses
CPU utilization of Edge VMs for task offloading decision)
[9], and Hybrid workload orchestration (which uses both
WAN bandwidth and CPU utilization of Edge VMs for
task offloading decision) [9]. The details of these workload
orchestration approaches can be found in [9]. As discussed in
section IV-A, the simulation experiment is repeated 30 times
with 200 to 2400 User Equipment (UE) and four types
of applications are used. Following [9], three performance
metrics, namely the average failed task (%), average service
time (sec), and average VM utilization on Edge servers
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(%), are considered to perform comparisons among these
workload orchestration approaches.

1) AVERAGE FAILED TASK
For all applications, the average failed task (%) of all
workload orchestration approaches regarding the number of
UE is depicted in Fig. 11.

FIGURE 11. Average failed task for different workload orchestration
approaches.

From Fig. 11, it can be observed that when the number
of UE is between 200 and 1400, the average failed task for
all workload orchestration approaches are similar. It means
all workload orchestration approaches perform well when
workloads are not too high. However, when the number of
UE is between 1600 and 2400, the average failed task for
all workload orchestration approaches starts increasing due
to high workloads. In that case, the average failed task for the
proposed BRB workload orchestrator is the lowest compared
to other approaches. It means the BRB workload orchestrator
can handle high workloads better than other approaches while
maintaining a minimal failed task ratio.

After this performance comparison, the performance of all
approaches is investigated with regard to the average failed
task for each application. For each application, the average
failed task (%) of all workload orchestration approaches
regarding the number of UE is depicted in Fig. 12.

As discussed in section IV-A, the AR and Health
applications mostly generate medium-sized and small tasks
(task length of the AR and Health application is an average
of 9 GI and 3 GI, which leads to 6% and 2% CPU
utilization on an Edge VM) and they are delay-sensitive
applications, while the Infotainment and Compute-Intensive
applications generate moderate and big tasks (task length
of the Infotainment and Compute-Intensive application is
an average of 15 GI and 45 GI, which leads to 10%
and 30% CPU utilization on an edge VM) and they are
delay-tolerant applications. As discussed in subsection V-A,
the proposed BRB workload orchestrator uses disjunctive
BRBs for delay-sensitive applications and Conjunctive BRBs

FIGURE 12. Average failed task for different applications.

for delay-tolerant applications. Both disjunctive BRBs and
conjunctive BRBs are established in such a way that they can
properly distinguish delay-sensitive or delay-tolerant tasks
with different lengths and determine the optimal target server
for processing each task accordingly. For this reason, when
the BRB workload orchestrator is used, the average failed
task for each application is the lowest compared to other
approaches, as shown in Fig. 12.
After this investigation, the reasons for task failures for all

workload orchestration approaches are analyzed. During the
simulation, task failures occur for all workload orchestration
approaches because of the following four reasons.

(i) Lack of VMCapacity on Edge Servers: A task offloaded
to an edge server fails if the average CPU utilization
of that edge server is extravagant and it does not have
adequate VM capacity to process it.

(ii) Mobility of End-users: If an end-user changes his
location before receiving a response for an offloaded
task, it fails since the end-user is out of his previous
WLAN coverage and connected to a new WLAN after
changing the previous location. Task failures due to the
mobility of end-users are inevitable for all workload
orchestration approaches since task level handoff is not
taken into account.

(iii) Lack of MAN capacity: If MAN is utilized for
numerous end-users simultaneously, it causes MAN
congestion due to insufficient MAN bandwidth result-
ing in task failures.

(iv) Lack of WAN capacity: Similar to MAN, if WAN is
used for numerous end-users simultaneously, it causes
WAN congestion due to insufficient WAN bandwidth
resulting in task failures. Lack of WLAN capacity is
also a reason for task failures, but only a small number
of task losses because of insufficient WLAN capacity
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in the simulation for all approaches. Hence, this reason
is neglected.

The task failure ratiowith 2400UE is considered to analyze
task failure reasons for all workload orchestration approaches
under high workloads, as illustrated in Fig. 13.

FIGURE 13. Reasons of task failures for different workload orchestration
approaches.

From Fig. 13, it can be observed that when utilization-
based, bandwidth-based, and hybrid workload orchestration
approaches are used under high workloads, most tasks fail
due to lack of WAN capacity, while few tasks fail due to
mobility of end-users, lack of VM capacity on Edge servers,
and lack of MAN capacity. These three approaches only
consider WAN bandwidth and/or CPU utilization of Edge
VMs for task offloading decisions, but they do not consider
MAN delay, task length, and delay sensitivity of a task. As a
result, they fail to optimally distribute tasks between edge and
cloud servers and send a vast amount of tasks to the cloud
server simultaneously, which causes WAN congestion due to
insufficient WAN bandwidth resulting in task failures.

When it comes to the FLB and BRB workload orchestra-
tion approaches, both approaches consider CPU utilization
of Local Edge VMs and Remote Edge VMs, MAN delay,
WAN bandwidth, task length, and delay-sensitivity of a
task to determine the optimal target server (among Local
Edge, Remote Edge, and Cloud) for each offloaded task
generated by delay-sensitive and delay-tolerant applications.
Since computation capacities of edge servers are modest
in comparison to cloud servers, Local and Remote Edge
servers are usually preferred to process delay-sensitive and
moderate tasks, while the cloud server is preferred to
process delay-tolerant and resource-intensive tasks so that a
balance of workloads between edge and cloud servers can
be ensured. The BRB workload orchestrator uses disjunctive
BRBs for delay-sensitive applications and conjunctive BRBs
for delay-tolerant applications. Both disjunctive BRBs and
conjunctive BRBs are established in such a way that they
can properly distinguish delay-sensitive or delay-tolerant
tasks with different lengths and determine the optimal target
server for processing each task accordingly. As discussed
in section IV-A, the AR and Health applications are delay-
sensitive applications, and the interarrival time of tasks of

these two applications is 2 and 3 seconds, which means a
related task of the AR and Health application is sent from
UE to the workload orchestrator every 2 and 3 seconds.
When the number of UE is high, a considerable amount
of tasks generated by these delay-sensitive applications are
sent to the workload orchestrator. To meet end-user demands
as well as low-latency requirements, the BRB workload
orchestrator mostly distributes these delay-sensitive tasks
between Local Edge and Remote Edge servers. However,
when a vast amount of tasks are sent to Remote Edge servers
via MAN, it causes MAN congestion due to insufficient
MAN bandwidth. As a result, when the BRB workload
orchestration approach is used, most tasks fail due to lack of
MAN capacity, while few tasks fail due to mobility of end-
users, lack of VM capacity on Edge servers, and lack ofWAN
capacity.

However, the FLB workload orchestrator uses the same
fuzzy rule bases for both delay-sensitive and delay-tolerant
applications. Since task requirements for both types of
applications are different, it is not feasible to use the same
fuzzy rule bases to distinguish tasks generated by delay-
sensitive and delay-tolerant applications and determine the
optimal target server for processing those tasks. Therefore,
under high workloads, when the FLB workload orchestrator
sends some delay-tolerant resource-intensive tasks to an edge
server for processing rather than the cloud server due to
incorrectly distinguishing those tasks, the CPU utilization of
that edge server rises extremely, and it fails to process other
incoming delay-sensitive tasks due to lack of VM capacity.
Similarly, when it sends many delay-sensitive medium-sized
tasks to the cloud server for processing due to incorrectly
distinguishing those tasks, WAN congestion occurs due to
insufficient WAN bandwidth. As a result, when the FLB
workload orchestration approach is used, most tasks fail due
to a lack of VM capacity on edge servers and lack of WAN
capacity, while few tasks fail due to mobility of end-users and
lack of MAN capacity.

The analysis of task failures will help service providers
to identify the main reasons for task failures and allocate
computational resources (VM capacity on Edge servers) and
network resources (MAN and WAN bandwidth) for a MEC
infrastructure accordingly.

2) AVERAGE SERVICE TIME
For all applications, the average service time (sec) of all
workload orchestration approaches regarding the number of
UE is shown in Fig. 14.

From Fig. 14, it can be noticed that as the number of UE
increases, the average service time for all workload orches-
tration approaches rises due to an increase in workloads.
For different types of workloads, the average service time
for the proposed BRB workload orchestrator is consistently
the lowest compared to other approaches. It means the BRB
workload orchestrator performs better compared to other
approaches by efficiently distributing each offloaded task
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FIGURE 14. Average service time for different workload orchestration
approaches.

to the optimal target server under various workloads while
maintaining a minimal average service time.

After this performance comparison, the performance of all
approaches is investigated with regard to the average service
time for each application. For each application, the average
service time (sec) of all workload orchestration approaches
regarding the number of UE is depicted in Fig. 15.

As discussed in section IV-A, the AR and Health
applications are delay-sensitive applications, which mostly
generate medium-sized and small tasks and require a faster
response, while The Infotainment and Compute-Intensive
applications are delay-tolerant applications, which mostly
generate moderate and big tasks and have no strict response
requirement.

The BRB workload orchestrator uses disjunctive BRBs for
delay-sensitive applications, which mostly distributes these
delay-sensitive small and medium-sized tasks between Local
Edge and Remote Edge servers to provide faster response.
In some situations, it also distributes delay-sensitive tasks
to the cloud server according to disjunctive belief rules to
fulfill end-user demands. For this reason, when the BRB
workload orchestrator is used, the average service time for
both delay-sensitive applications is the lowest compared to
other approaches.

The BRB workload orchestrator uses conjunctive BRBs
for delay-tolerant applications, which considers different
possible network conditions, computation resources, and task
properties in terms of conjunctive belief rules and then
determines the optimal target server among Local Edge,
Remote Edge, and Cloud servers to fulfill end-user demands
as much as possible. When the BRB workload orchestrator
is used under low workloads, the average service time for
both delay-tolerant applications is a bit high compared to the
FLBworkload orchestration approach since it sends resource-
intensive tasks to the cloud server rather than an edge server
to maintain a balance of workloads between edge and cloud

FIGURE 15. Average service time for different applications.

servers, which causes a relative high WAN delay. However,
when the BRB workload orchestrator is used under high
workloads, the average service time for both delay-tolerant
applications is the lowest compared to all approaches since
it maintains a balance of workloads by optimally distributing
delay-tolerant tasks between edge and cloud servers.

After this investigation, the average service time for all
workload orchestration approaches is analyzed. The service
time comprises both processing time on edge/cloud servers
and network delay (WLAN/MAN/WAN). If a task is executed
on a Local Edge/Remote Edge server, the total service time
includes WLAN/MAN delay and the processing time on a
Local/Remote Edge VM.On the contrary, if a task is executed
on the cloud server, the total service time comprises WAN
delay and the processing time on a cloud VM. The service
time on edge and cloud servers comprising both processing
time and network delay for all workload orchestration
approaches regarding the number of UE is shown in Fig. 16.

Since Local/Remote edge servers are located closer to UE
at the network edge, WLAN/MAN delay is usually shorter,
while the processing time on Local/Remote edge Servers is
longer compared to WLAN/MAN delay due to their modest
computation capacities. If the number of UE increases,
both processing time and communication delay rise on edge
servers due to an increase in workloads, but the growth rate
of processing time is larger compared to WLAN/MAN delay
on edge servers since it takes a substantial amount of time to
execute a vast amount of tasks offloaded to edge servers due
to their modest computation capacities. On the contrary, since
the cloud server is located far from UE,WAN delay is longer,
while the processing time on the cloud server is shorter
compared to WAN delay due to its powerful computation
capacities. If the number of UE increases, both processing
time and WAN delay rise on the cloud server due to an
increase in workloads, but the growth rate of processing time
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FIGURE 16. Average service time analysis for different workload
orchestration approaches.

is lower compared to WAN delay since the cloud server
can execute a lot of resource-intensive tasks at high speed
due to its powerful computation capacities. For all workload
orchestration approaches, these characteristics of service time
on edge/cloud servers can be seen in Fig. 16.

Bandwidth-based workload orchestration approach prefers
offloading tasks to the cloud server as long as WAN is not

congested. If the current WAN bandwidth is greater than the
minimum WAN bandwidth (threshold), it offloads tasks to
the cloud server, otherwise, it offloads tasks to edge servers.
From Fig. 16a, it can be seen that when the workload is low,
this approach first offloads most tasks to the cloud server,
and when WAN is congested, it offloads the rest of the tasks
to edge servers. Hence, the service time on the cloud server
is much larger due to a high WAN delay. As the workload
increases, the service time on edge servers keeps rising since
it pushes most tasks to edge servers after WAN is congested.
Though the cloud server has a huge computation capacity,
it can not process any more tasks since WAN is congested.
As a result, the service time on edge servers is quite high and
there is no workload balance between cloud and edge servers.

Utilization-based workload orchestration approach prefers
offloading tasks to edge servers until Edge VMs are not
congested. If the current CPU utilization of VMs running
on edge servers is lower than the maximum CPU utilization
(threshold), it offloads tasks to edge servers, otherwise,
it offloads tasks to the cloud server. From Fig. 16b, it can
be seen that when the workload is low, this approach offloads
all tasks to edge servers, and the service time remains low on
edge servers. As the workload increases, it first offloads most
tasks to edge servers, and when Edge VMs are congested,
it offloads the remaining tasks to the cloud server. Since it first
pushes most tasks to edge servers, the service time on edge
servers keeps increasing since it takes a substantial amount
of time to execute a vast amount of tasks offloaded to edge
servers due to their modest computation capacities. Besides,
when a huge amount of tasks are offloaded to the cloud server
after the congestion of Edge VMs, the service time on the
cloud server keeps increasing due to a high WAN delay. As a
result, under high workloads, the service time on both edge
and cloud servers is quite high and there is no workload
balance between cloud and edge servers.

The Hybrid workload orchestration approach offloads
tasks to the cloud server if the current WAN bandwidth is
greater than the minimum WAN bandwidth (threshold) and
the current CPU utilization of VMs running on edge servers
is higher than the maximum CPU utilization (threshold).
Otherwise, it offloads tasks to edge servers. From Fig. 16c,
it can be seen that when the workload is low, this approach
offloads all tasks to edge servers since the current CPU
utilization of VMs running on edge servers is lower than the
CPU utilization threshold. Under low workloads, the service
time remains low on edge servers. As the workload increases,
it first offloads most tasks to edge servers. When the current
CPU utilization of VMs running on edge servers is higher
than the CPU utilization threshold and the current WAN
bandwidth is greater than the WAN bandwidth threshold,
it offloads the remaining tasks to the cloud server. Since
it first pushes most tasks to edge servers, the service time
on edge servers keeps increasing since it takes a substantial
amount of time to execute a vast amount of tasks offloaded to
edge servers because of their modest computation capacities.
Besides, when a huge amount of tasks are offloaded to the
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cloud server after the current CPU utilization of VMs running
on edge servers reaches the threshold, the service time on
the cloud server keeps increasing due to a high WAN delay.
As a result, under high workloads, the service time on both
edge and cloud servers is quite high and there is no workload
balance between cloud and edge servers.

When it comes to the FLB and BRB workload orchestra-
tion approaches, both approaches consider CPU utilization
of Local Edge VMs and Remote Edge VMs, MAN delay,
WAN bandwidth, task length, and delay-sensitivity of a
task to determine the optimal target server (among Local
Edge, Remote Edge, and Cloud) for each offloaded task
generated by delay-sensitive and delay-tolerant applications.
Since computation capacities of edge servers are modest
in comparison to cloud servers, Local and Remote Edge
servers are usually preferred to process delay-sensitive and
moderate tasks, while the cloud server is preferred to
process delay-tolerant and resource-intensive tasks so that a
balance of workloads between edge and cloud servers and
a minimal service time on both edge and cloud servers can
be ensured. The BRB workload orchestrator uses disjunctive
BRBs for delay-sensitive applications and conjunctive BRBs
for delay-tolerant applications. Both disjunctive BRBs and
conjunctive BRBs are established in such a way that they
can properly distinguish delay-sensitive or delay-tolerant
tasks with different lengths and determine the optimal
target server for processing each task accordingly. The
BRBworkload orchestratormostly distributes delay-sensitive
tasks between Local Edge and Remote Edge servers to
meet low-latency requirements. In some situations, it also
distributes delay-sensitive tasks to the cloud server according
to disjunctive belief rules to fulfill end-user demands. The
BRBworkload orchestrator uses conjunctive BRBs for delay-
tolerant tasks, which considers different possible network
conditions, computation resources, and task properties in
terms of conjunctive belief rules and then determines the
optimal target server among Local Edge, Remote Edge,
and Cloud servers to fulfill end-user demands as much as
possible. As a result, under various workloads, there is a
balance of workload between cloud and edge servers and the
service time on both edge and cloud servers is quite minimal,
as depicted in Fig. 16e.

However, the FLB workload orchestrator uses the same
fuzzy rule bases for both delay-sensitive and delay-tolerant
applications. Since task requirements for both types of
applications are different, it is not feasible to use the same
fuzzy rule bases to distinguish tasks generated by delay-
sensitive and delay-tolerant applications and determine the
optimal target server for processing those tasks. Under low
and medium workloads, the service time on both edge
and cloud servers is quite minimal. However, under high
workloads, the service time on edge servers is quite high since
the FLBworkload orchestrator sends delay-tolerant resource-
intensive tasks to edge servers for processing rather than the
cloud server due to incorrectly distinguishing those tasks,
as depicted in Fig. 16d.

3) AVERAGE VM UTILIZATION ON EDGE SERVERS
The average Virtual Machine (VM) utilization on edge
servers (%) for all workload orchestration approaches
regarding the number of UE is depicted in Fig. 17.

FIGURE 17. Average VM utilization on edge servers for different workload
orchestration approaches.

As discussed in section IV-A, 14 edge servers are
considered in the simulation experiment, where each edge
server has 8 VMs. From Fig. 17, it can be observed that
as the number of UE increases, the average VM utilization
on edge servers for all workload orchestration approaches
rises due to an increase in workloads. For different types
of workloads, the average VM utilization on edge servers
for the proposed BRB workload orchestrator is consistently
the lowest compared to other approaches. It means the BRB
workload orchestrator performs better compared to other
approaches by efficiently distributing each offloaded task to
the optimal edge server under various workloads and there is
no waste of computation resources when the BRB workload
orchestrator is used since all VMs are utilized efficiently on
edge servers.

VI. CONCLUSION
Multi-access Edge Computing (MEC) is a standard network
architecture of edge computing that has emerged to handle a
massive amount of diverse data traffic, enhance computation
capabilities, and reduce communication latency. However,
there exist several critical challenges during workload
orchestration in MEC. Firstly, a task generated by delay-
sensitive or delay-tolerant applications should appropriately
be distinguished when determining the optimal edge/cloud
server for processing that task since task requirements for
delay-sensitive and delay-tolerant applications are different.
Secondly, due to the high mobility of end-users, unknown
numbers of offloading requests from different types of
UE, and intermittent data traffic, the state of the network
condition keeps changing, and computational capacities of
edge and cloud servers keep fluctuating, which arises a
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rapidly changing dynamic environment at the network edge
due to uncertainty. Finally, if offloaded tasks from UE are
distributed unevenly and randomly within the overall MEC
infrastructure, it will lead to imbalance workloads between
edge and cloud servers, increase task latency due to improper
task offloading, and impair the overall performance and
efficiency ofMEC. In order to address theseworkload orches-
tration challenges in MEC, a BRB workload orchestrator
is proposed in this study. The proposed BRB workload
orchestrator uses belief rules to specify the required workload
orchestration operations with regard to network conditions,
computational resources, and properties of offloaded tasks
from UE and decide the optimal execution location for each
offloaded task within the overall MEC infrastructure. The
performance of the proposed BRB workload orchestrator
is compared with four workload orchestration approaches
from the literature under various workloads in regard to
three performance metrics. According to the result of
simulation experiments, the proposed workload orchestrator
outperforms other approaches in aspects of task failure rate,
average service time, and average VM utilization on edge
servers. Under various workloads, it reduces overall service
time,minimizes task failures, and provides lower averageVM
utilization by efficiently utilizing all VMs on edge servers and
balancing the workload among edge servers.

In this study, tasks generated by the four types of
applications are considered independent tasks or stateless
jobs. Besides, full computation offloading is considered,
which means a whole task from UE is offloaded to an
edge or cloud server for processing without any split of
the task. In future studies, the dependency between tasks
and partial computation offloading can be considered, where
after splitting a task into sub-tasks with an optimal task-
splitting strategy, some sub-tasks can be executed locally
by UE if it has enough processing capacity, while the
remaining sub-tasks can be offloaded to an edge and/or
cloud servers for further processing. The proposed BRB
workload orchestrator can be enhanced by considering partial
computation offloading, which can further minimize task
failures and reduce overall service time for delay-sensitive
and resource-intensive applications through a collaboration
among UE, Local Edge, Remote Edge, and Cloud servers and
improve the overall performance and efficiency of MEC.
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