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A B S T R A C T   

Climate change impacts can escalate the deteriorating rate of infrastructures and impact the infrastructure’s 
functionality, safety, operation and maintenance (O&M). This research explores climate change’s influence on 
urban railway infrastructure. Given the geographical diversity of Sweden, the railway network is divided into 
different climate zones utilizing the K-means algorithm. Reliability analysis using the Cox Proportional Hazard 
Model is proposed to integrate meteorological parameters and operational factors to predict the degree of im-
pacts of different climatic parameters on railway infrastructure assets. The proposed methodology is validated by 
selecting a number of switches and crossings (S&Cs), which are critical components in railways for changing the 
route, located in different urban railway stations across various climate zones in Sweden. The study explores 
various databases and proposes a climatic feature to identify climate-related risks of S&C assets. Furthermore, 
different meteorological covariates are analyzed to understand better the dependency between asset health and 
meteorological parameters. Infrastructure asset managers can tailor suitable climate adaptation measures based 
on geographical location, asset age, and other life cycle parameters by identifying vulnerable assets and deter-
mining significant covariates. Sensitivity analysis of significant covariates at one of the urban railway stations 
shows precipitation increment reveal considerable variation in the asset reliability.   

1. Introduction 

To understand the behavior of the railway system, it is essential to 
consider various operational factors that influence railway network 
performance (Barabadi Abbas et al., 2011; Gao et al., 2010). Climate 
change poses multiple challenges to the O&M of railway infrastructures. 
The projected changes in climate, including alterations in precipitation 
patterns, temperature variations, severe snowfall, and sea level rise, are 
examples of these extra pressures on the functioning of railway infra-
structure assets. These climatic consequences may lead to reducing 
availability, safety, punctuality performance indices, and increased 
O&M costs (Garmabaki et al., 2022; Garmabaki et al., 2021; IPCC., 
2022; Miller & Huntsinger, 2023; Pour et al., 2020; Salimi & 
Al-Ghamdi, 2020; Thaduri et al., 2021). 

According to Forzieri et al. (2018), transport infrastructure in Europe 
faces potential climate risks, such as heatwaves, cold waves, droughts, 
wildfires, river and coastal floods, and windstorms. These risks may 
escalate from €0.5 billion to more than €10 billion by the 2080s. For 
instance, the winter temperature is expected to rise above the annual 
average temperature, with the most significant increase in northern 
Sweden. It may be noted that the extent of infrastructure damage may 
vary depending on the design, age, and operational conditions of spe-
cific infrastructure, considering local geological and ecological 
requirements. 

In addition to the extreme impacts of flooding and heatwaves, the 
frequent occurrence of flood events exacerbates disruptions in railway 
operations, resulting in speed restrictions, blockages, discomfort for 
passengers, and interruptions in the supply chain. Heatwaves could 
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triple the speed restrictions on railways in certain parts of the UK to 
minimize the risk of track buckling (Ferranti et al., 2018; Palin et al., 
2013; Vogel et al., 2019). In Eastern Europe (EEU) and northern Scan-
dinavia, the increased number of freezing-thawing cycles experienced 
by construction materials amplifies the infrastructure’s failure rate and 
associated risks (Nilsen et al., 2021; Yakubovich & Yakubovich, 2018). 

As a result of global warming Western Central Europe (WCE) and 
Northern Europe (NEU) will experience a higher frequency of extreme 
hourly precipitation events during summer. For example, projections 
indicate that beyond a Global Warming Level (GWL) of 3 ◦C, Germany 
and the UK may experience a two- or tenfold increase, respectively, for 
events exceeding the present-day 99.99th percentile (IPCC., 2022). In 
autumn and winter, these increases are expected to extend more widely 
across Europe, with Southern Europe (SEU) experiencing a higher than 
tenfold rise in 99.99th percentile events (Chan Steven et al., 2020). 
Moreover, beyond a GWL of 2 ◦C, landslide risks in WCE and SEU may 
increase, posing further threats to transport networks (Guido Rianna 
et al., 2020; Rianna et al.; Schlögl & Matulla, 2018). 

At a GWL of 1.5–3 ◦C, the existing flood risk for railways, particularly 
in WCE, is projected to increase twofold or even triple. This heightened 
flood risk carries significant financial implications, with rail transport in 
Europe requiring an additional expenditure of 1.22 billion EUR annually 
under a 3 ◦C GWL scenario without any adaptation measures in place 
(Bubeck Philip et al., 2019). Furthermore, the anticipated rise in thermal 
discomfort within urban underground railways is expected, even with 
substantial carriage cooling measures in place (Jenkins et al., 2014). 

Reliability and resilience analysis are two important performance 
measures for infrastructure asset managers while aiming to assess 
climate change impacts. There are various approaches available for 
analyzing the reliability and maintainability performance of the assets, 
including qualitative methods such as failure modes, effects, and criti-
cality analysis (FMECA), fault tree analysis (FTA), event tree analysis 
(ETA), reliability block diagrams (RBDs), reliability centered mainte-
nance (RCM), and Bayesian networks (BNs) (Kumar & Banerji, 2022; 
Rausand, 2020). On the other hand, quantitative approaches enable the 
analysis of the effects of explanatory variables/covariates on reliability, 
such as the accelerated failure time (AFT) model, the Arrhenius model, 
and the proportional hazard model (PHM) (Rausand, 2020). 

As a flexible model, PHM was successfully used to assess the impact 
of different covariates, such as operational conditions on the reliability 
and maintenance assessment. The model can also effectively account for 
the effects of various factors on the time-to-failure of components, such 
as operating conditions, maintenance actions, and design characteris-
tics. For instance, the study by Thijssens and Verhagen (2020) evaluates 
the use of an extended Cox PHM in analyzing time-on-wing data of 
aircraft components, finding that it provides a more accurate prediction 
of time-to-failure than traditional survival analysis methods. 

In another study, Barabadi Abbas et al. (2014); Ghodrati (2005) used 
the PHM to predict and optimize spare parts planning. The PHM was 
used to model the failure rate of spare parts based on covariates such as 
operating hours and usage history. Liu et al. (2020) used PHM to develop 
a maintenance strategy considering system components’ aging and cu-
mulative damage. The authors showed that this approach can effectively 
predict maintenance needs and improve system reliability through 
simulations and case studies. Chen Chong et al. (2020) have combined 
the Cox PHM with deep learning (DL) techniques called Cox propor-
tional hazards deep learning (CoxPHDL) to improve the accuracy of 
maintenance predictions. Zheng et al. (2021) proposed a PHM incor-
porating degradation trends and environmental factors to predict 
product reliability. The research suggests that considering degradation 
trends and environmental factors can improve the accuracy of reliability 
predictions and provide helpful information for product reliability 
management. 

This paper aims to integrate the impact of meteorological factors 
such as temperature, precipitation, wind speed, and relative humidity 
with railway infrastructure asset health conditions. The goal is to 

analyze how climate change affects the behavior of urban railway 
infrastructure assets. To achieve this goal, an unsupervised machine 
learning algorithm is applied to categorize the Swedish railway network 
into different climate zones, including diverse urban railway assets from 
various regions. The study assesses the influence of climatic factors on 
the reliability of urban railway assets using the Cox proportional hazards 
model (Cox PHM). Additionally, a sensitivity analysis is conducted to 
estimate the effect of variations in weather parameters on the perfor-
mance of these assets. 

The rest of the paper is as follows: Section 2 addresses meteorological 
parameters and their impacts on railway infrastructure, future climatic 
scenarios, and climate change adaptation strategies. Section 3 describes 
the proposed methodology in five phases. Section 4 presents the case 
study and obtained results. The paper is concluded by summarizing the 
key findings in Section 5. 

2. Preliminary study 

This section provides some insightful perspectives regarding the ef-
fect of weather parameters on the infrastructure’s failures. In addition, it 
describes how future climate scenarios can affect the weather conditions 
globally and in Sweden. Moreover, it provides different climate adap-
tation strategies to mitigate climate impacts. 

2.1. Relationship between climatic conditions and asset failures 

Climate impact assessment can be categorized into two general 
groups as: macroscopic and microscopic approaches. The short 
description of each category is as follows: 

2.1.1. Macroscopic climatic impact assessment 
In this approach, a certain zone/ predefined geographical area will 

be considered without taking into account the specific asset and its 
associated failure behavior. The size of geographical location can be 
defined utilizing different features, for instance, maintenance areas, 
cities, provinces, etc. Therefore, all the failure modes in this zone will be 
integrated and analyzed together. In this approach, climate parameters 
will be considered at lower resolution by integrating various weather 
stations parameters, for instance, average temperature as an indicator 
for the whole province. This approach can be effective for vulnerability 
and risk assessment of specific climate impact over the railway network, 
for instance, identification of vulnerable areas/assets to the flooding in a 
vast area. Fig. 1 shows the projected precipitation and temperature for 
the period 2071–2100 based on an average of 17 combinations of global 
and regional climate models for emissions scenario RCP8.5 (this concept 
is discussed in Section 2.2) for Sweden. These maps enable infrastruc-
ture asset managers to formulate strategic plans for O&M of the railway 
network that may be vulnerable to climatic hazards like flooding or 
track buckling. 

2.1.2. Microscopic climatic impact assessment 
Due to heterogeneity in asset types, utilizing a macroscopic approach 

may raise some modelling inconsistencies since various infrastructure 
asset types have been installed within the Swedish railway network. In 
the microscopic approach, climate parameters will be considered at a 
higher resolution, and a homogeneous group of assets will be considered 
for the assessment. Therefore, all the features, including failure causes, 
failure modes, geographical locations, local weather parameters at the 
asset level will be collected for the climatic impact assessment. 

This paper has followed the microscopic approach for climatic 
impact assessment. To assess the impact of climate parameters on asset 
health, there is a need to identify failure causes due to climatic reasons at 
the asset level. Climate_id indicator has been designed based on climate 
parameters to classify asset failures into climatic and non-climatic cau-
ses, which will be discussed in Section 3.1. 

Fig. 2 shows the number of assets’ failures classified as climatic and 
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non-climatic. The normalized number of climate failures (The dashed 
black line) illustrates fluctuations over the period of 18 years over the 
whole of Sweden, with a notable increase in the total number of failures 
observed in the year 2010. Specifically, 2010 recorded the highest 
number of failures, with 4001 climatic failure occurrences for the entire 
network. 

The Scaling of variable, number of failures in different years, are 
calculates based on the following equation: 

x′ =
x − min(x)

max(x) − min(x)
(1) 

Where: x′ is the normalized value, x is the value of the variable, 

Fig. 1. Absolute values of (a) Precipitation and (b) Temperature for the period 2071–2100 based on emissions scenario RCP8.5, adapted from (SMHI).  

Fig. 2. The annual failure count of assets in two distinct categories (Climate failure and non-climate failure) over the whole of Sweden.  
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min(x) and max(x) are the minimum and maximum values of the vari-
able respectively. In the case of this manuscript the variable for this 
Figure is the number of failures in different years. 

Moreover, various meteorological indicators have been considered 
to understand the underlying failure causes for the year 2010. For 
instance, the following metrics have been considered as given in Table 1: 

Maximum 24 h precipitation – average of the year’s or season’s 
greatest 24 h precipitation for 60 stations across Sweden 

Days with at least 40 mm – average of the number of observations per 
year with a daily perception of at least 40 mm for 60 stations across 
Sweden. 

The absolute maximum 24 h precipitation – the year’s greatest 24 h 
precipitation in Sweden (based on all stations) (SMHI, 2015) 

These metrics for 2010 received higher value compared to other 
years. In addition, our analyses showed that the whole of Sweden 
experienced extreme cold weather conditions in the same year. 

Furthermore, Fig. 3 provides insight into the distribution of failures 
throughout the months which indicates that a significant portion of the 
total failures occurs during the cold months in Sweden. 

2.2. Future climate scenarios 

Representative concentration pathways (RCPs) are utilized to gain 
insights into the potential range of climate outcomes and can devise 
strategies to mitigate the impacts of climate change (Bienvenido--
Huertas David et al., 2021). Various scenarios, including RCP2.6, 
RCP4.5, RCP6.0, and RCP8.5, describe projected radiative forcing levels 
by the year 2100 in watts per square meter. 

In RCP2.6, greenhouse gas emissions start to decline in the year 2020 
to reach zero at the end of the century; in RCP4.5, emissions continue to 
increase around 2040 and decline afterward; while in RCP8.5 emissions 
continue to increase until the end of the century. The estimated global 
warming to the end of the century compared to today is roughly 1 ◦C, 
2 ◦C, and 4 ◦C for RCP2.6, RCP4.5 and RCP8.5, respectively (IPCC, 
2014). 

2.3. Projected change in meteorological parameters in Sweden 

The information about projected climate change is based on results 
from a number of regional climate model (RCM) simulations from 

EURO-CORDEX, performed on 12.5*12.5 km horizontal grid spacing 
and subsequently bias-adjusted. The RCMs are forced with data from 
various global climate models (GCMs) at the resolutions of 50–200 km. 

SMHI (Swedish Meteorological and Hydrological Institute) projects 
climate change impacts under different RCPs and the following con-
clusions have been made for Sweden:  

1. The number of days with hot temperatures (above +25-degree) will 
increase, especially in the south,  

2. The number of days with zero-crossings will decrease in the south 
and increase in the north during winter,  

3. Precipitation is generally projected to increase but with variations 
across seasons and regions,  

4. Fewer cold days mean that a larger proportion of the precipitation 
will fall as rain instead of snow; snowfall intensity, however, may 
increase. 

Based on our research analysis performed in CliMaint research 
project (Garmabaki, 2019), Fig. 4 shows the projected changes in winter 
temperature for four cities in Sweden (Kiruna: northwest; Luleå: 
northeast; Stockholm: middle; Göteborg: southwest) according to three 
different RCP scenarios. It is evident that the warming is larger in 
northern Sweden (up to 10 ◦C) than in southern Sweden (up to 5 ◦C) 
according to RCP8.5. In Stockholm, the average winter temperature is 
projected to increase from below zero to above zero at the end of the 
century, except in RCP2.6 to the end of the century. Fig. 5 shows the 
projected changes in winter precipitation. Precipitation is projected to 
increase everywhere, somewhat more in the west than in the rest of the 
country. 

2.4. Climate change adaptation strategies 

Climate adaptation aims to reduce climate risks and vulnerabilities 
of existing systems. Adaptation strategies for railway asset in-
frastructures can be grouped in (i) protect, (ii) accommodate, (iii) 
retreat, and (iv) avoid, which are described as follows (IPCC., 2022). 
Fig. 6 presents climate adaptation strategies for railway infrastructure 
endangered by sea level rise. 

Protect is a reactive strategy employed to safeguard people, prop-
erty, and railway infrastructure from the impacts of natural phenomena. 
Protecting railway infrastructure often involves implementing structural 
mechanisms such as barriers, embankments, and protective walls. 
However, as environmental risks evolve and vulnerabilities increase, 
solely relying on this approach may become financially impractical and 
yield limited long-term effectiveness, especially in highly susceptible 
locations (IPCC., 2022; Tyler, 2015). 

Accommodate represents an adaptive strategy that enhances the 
resilience of the railway infrastructure during varying environmental 
conditions. This approach entails making suitable adjustments to the 
railway infrastructure to effectively address challenges. Accommodation 
may include retrofitting railway infrastructures to enhance resilience 
against potential consequences of changing climate conditions. In 
essence, the accommodate strategy strives to ensure railway in-
frastructure’s sustained functionality and durability while addressing a 
broader range of natural hazards and uncertainties (IPCC., 2022; Tyler, 
2015). 

Retreat involves making deliberate decisions to withdraw, relocate, 
or abandon private or public assets that face vulnerabilities. The retreat 
strategy aims to minimize dependence on structural protection for 
railway infrastructure, discourage development in areas prone to envi-
ronmental changes, and strategically plan for relocating buildings and 
railway facilities to regions with lower or no risk (IPCC., 2022; Tyler, 
2015). 

Avoid strategy focuses on preventing new developments in areas 
prone to hazards and risks. This includes locations where there is a 
current low risk but an expected increase in risk over time. Future "no 

Table 1 
Climate indicators for different years for whole of Sweden (SMHI).  

Year Yearly 
precipitation (mm) 

Average 
temperature (◦C) 

Extreme precipitation 

Max 
daily 

Days with at 
least 40 mm 

2001 714 4.49 37.5 0.43 
2002 640 5.19 33.3 0.25 
2003 614 4.98 33.7 0.25 
2004 678 4.86 34.6 0.23 
2005 640 5.22 30.4 0.08 
2006 734 5.62 36.0 0.34 
2007 701 5.4 33.3 0.28 
2008 733 5.61 34.6 0.35 
2009 686 4.79 37.3 0.29 
2010 687 2.93 40.2 0.51 
2011 735 5.69 36.1 0.33 
2012 798 4.43 33.5 0.22 
2013 587 5.04 29.5 0.11 
2014 695 6.21 35.0 0.38 
2015 724 5.91 30.5 0.13 
2016 594 5.39 31.5 0.21 
2017 710 5.15 30.6 0.13 
2018 532 5.63 28.5 0.13 
Max 

value 
798 6.21 40.2 0.51 

Min 
value 

532 2.93 28.5 0.08  
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build" areas are identified and incorporated into local government 
planning documents. Diverse planning tools are utilized to make 
informed decisions that discourage development in moderate to high 
risk regions. As part of the avoidance strategy, options such as land 
acquisition or the transfer of development potential to safer areas are 
considered. (IPCC., 2022; Tyler, 2015) 

3. Proposed methodology 

Climate impact assessment is a preliminary step to identify/select 
and implement the right climate adaptation strategies. The main 
objective of this paper is to assess how climate change impacts asset 
reliability and make an effective methodology to explore how 

Fig. 3. The monthly failure count of S&Cs in two distinct categories.  

Fig. 4. Projected winter temperature (◦C) in four Swedish cities in the historical period 1971–2000 grey boxes, and the periods 2011–2040, 2041–2070, and 
2071–2100 according to RCPs RCP2.6 (pink boxes), RCP4.5 (blue boxes) and RCP8.5 (green boxes). The boxes represent the interquartile range (IQR) of the data, the 
line within represents the median, the whiskers extend from the box by 1.5xIQR. Data points outside the whiskers are marked by circles. 
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infrastructure asset managers can adapt their maintenance strategies 
accordingly. The reliability assessment methodology is followed to 
achieve this aim, as depicted in Fig. 7. 

Cox PHM is a technique for integrating meteorological parameters 
and conducting reliability assessments. This model allows for the 
consideration of various covariates and failure history, enabling pre-
dictions of how different climate scenarios will affect the hazard rate 
and, consequently, asset reliability. This information empowers infra-
structure asset managers to plan maintenance activities more efficiently, 
minimize downtime, and optimize asset utilization (Si et al., 2011). The 
subsequent subsections will discuss different phases of the methodology. 

3.1. Phase 0: Data gathering 

Data collection and information were challenging tasks. For instance, 
Trafikverket (Swedish Transport Administration) failure reporting sys-
tem is not designed to collect information related to climate-based 
failure; thus, tracking the underlying failure cause was tedious. 
Required data have been collected from various databases, including 

S&Cs’ failure databases, asset registry data, meteorological databases, 
etc. 

3.1.1. Selecting the infrastructure asset of study 
Switch and Crossing (S&C) is one critical asset in the railway infra-

structure networks as shown in Fig. 8. When the switching mechanism is 
initiated, the switchblade moves to its opposite position in order to 
divert the train in another direction. Many failures can cause S&C 
malfunction, and black box approaches have been followed while per-
forming failure analyses. 

3.1.2. Failure data collection and pre-processing 
The main databases from Trafikverket, which are essential for model 

development, are described as follows. All these data sources contain 
information directly related to asset failures, inspection, aging and 
degradation, etc. Therefore, one of the critical tasks is to aggregate these 
disparate data sources for the selected assets to perform a comprehen-
sive analysis. 

Asset Register (BIS): contains the technical description and the 

Fig. 5. Projected winter precipitation (mm/day) in four Swedish cities in the historical period 1971–2000 grey boxes, and the periods 2011–2040, 2041–2070, and 
2071–2100 according to RCPs RCP2.6 (pink boxes), RCP4.5 (blue boxes) and RCP8.5 (green boxes). 

Fig. 6. Different climate change adaptation strategies for endangered railway infrastructures by sea level rise adapted from (German Development Coopera-
tion, 2009). 
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Fig. 7. Proposed research methodology for reliability analysis associated with climate variables.  

Fig. 8. Illustration of Switches and Crossings (Nissen, 2009).  
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localization of all the Track assets and components. This database is 
regularly updated based on the changes made to the assets. 

Work Orders (OFELIA): supports track maintenance processes and 
contains:  

• Track failures and incidents,  
• Maintenance reports provided by the subcontractors, including, e.g., 

the cause of each intervention, their date, and the actions they per-
formed in track. This database also consists of a cause code; however, 
this database is not designed to collect climate/environmental pa-
rameters at the time of failure. In several incidents, maintenance 
experts described the situation in text. 

One of the important steps in this analysis is to distinguish between 
asset failure and whether it is caused by climatic impact or not. To tackle 
the issue, the records representing climatic failure have been recognized 
through failure cause code or performing text mining. For text mining, a 
wide range of keywords have been identified by consulting with railway 
experts. 

Furthermore, there is a need to integrate different Trafikverket da-
tabases mentioned above and associated meteorological information. To 
do so, a new feature has been developed and represented by “Clima-
te_id”. In other words, Climate_id is performing failure classification task 
and integration task. It may be noted that for failure classification, we 
did not distinguish between physical/structural failures or failures due 
to loss of functionalities. 

In addition, the main climatic factors affecting the railway infra-
structure have also been identified and shown in Table 2. The snow and 
ice category has the largest portion of failures with a climatic cause, and 
about 16.5 percent of these failures have led to interruption in traffic 
flow, which can associated with significant costs. 

3.1.3. Meteorological data collection and analysis 
To gain insights into the potential impacts of climate change on the 

railway system, it is crucial to understand how the climate is evolving. 
Specifically, it is vital to identify climate indicators that are likely to 
affect the railway infrastructure functionalities. One reliable source of 
meteorological parameters, such as temperature, relative humidity, 
precipitation, wind speed, and snow depth, is the SMHI website, which 
provides open-source data. These parameters can serve as valuable in-
puts for analyzing the potential climate-related impacts on the railway 
system. To prepare the dataset for analysis (as depicted in Fig. 9), 
various weather stations may be situated in the vicinity of the selected 
railway station. To determine the most relevant weather station for the 
specific railway section of interest (S&Cs), measurements of the dis-
tances between the weather stations and the railway station are taken 
into account. By selecting the closest weather station, data that is most 
representative of the local climate conditions affecting the railway can 
be obtained. The analysis process involves synchronizing two distinct 

databases: one containing the operational features of the S&Cs sourced 
from Trafikverket and the other comprising the meteorological data 
obtained from SMHI. To effectively combine these databases, the failure 
times recorded in the first database are utilized as reference points. A 
cohesive and unified dataset is created by aligning the failure times, 
enabling comprehensive examination of the relationship between rail-
way failures and meteorological conditions. 

3.2. Phase 1: Clustering approach using K-Means 

The K-Means algorithm is an unsupervised machine learning method 
which is utilized to divide the whole of railway stations considered into 
different clusters. This approach consists of the following steps (see 
Fig. 10): 

Step 1: Select the number of clusters (K) 
Step 2: Initialize the centroids of each cluster randomly 
Step 3: Assign each data point (each of railway station) to the nearest 
centroid based on the Euclidean distance between the data point and 
the centroid 
Step 4: Recalculate the centroid of each cluster as the mean of all the 
data points assigned to that cluster. 
Step 5: Repeat steps 3 and 4 until the centroids no longer change or 
until a maximum number of iterations is reached. 

The algorithm outputs are the final clusters containing the members 
assigned to the same centroid. 

3.3. Phase 2: Trend assessment and underlying process 

The trend assessment is a method used to evaluate whether there is a 
trend or pattern in the failure times of a system or component. Garma-
baki et al. (2016); Louit et al. (2009) have described several statistical 
tests that can be used to evaluate trends in cumulative failure time, 
including the Laplace trend test, Military Handbook test, and Ander-
son–Darling test. These tests evaluate the data for a monotonic trend, 
meaning a consistent increase or decrease in the cumulative failure time 
over time. In statistical trend tests, the null hypothesis is a statement of 
no trend (H0) versus monotonic trend (H1). If the time between failures 
satisfies the assumption of being independent and identically distributed 
(IID), the homogeneous Poisson process (HPP) or renewal process can be 
implemented. To verify this assumption, the serial correlation test, a 
graphical method, can be employed. For more details of standard reli-
ability analyses of repairable systems, see (Garmabaki et al., 2016). On 
the other hand, if the null hypothesis (a statement of no trend (H0)) is 
rejected, a non-homogeneous Poisson process (NHPP) will be utilized to 
show the behavior of the system. 

3.4. Phase 3: Cox proportional hazard model development 

Three different types of Cox PHM have been proposed in the meth-
odology framework (see Fig. 7). The mathematical structure of each 
model is described as follows: 

3.4.1. Conventional Cox model 
The Cox PHM is written in terms of the hazard model formula shown 

in Eq. (2). This model expresses the hazard at time t for an asset with a 
given specification of a set of explanatory variables denoted by. The X 
represents a vector of predictor variables to predict an asset’s hazard. 
The Cox model formula says that the hazard at time t is the multipli-
cation of two quantities. The first of these h0(t), is called the baseline 
hazard function. The second quantity is the exponential expression e to 
the linear sum of βiXi, where the sum is over the p explanatory X vari-
ables (Bendell A et al., 1991; Cox, 1972; Kleinbaum & Klein, 1996). 

Table 2 
Frequency of failures and traffic interruption percentage.  

Root cause Climate_id # 
events 

# events resulted in traffic 
interruption 

Climatic Abnormal 
temperature 

4 363 461 

Buckling 15 11 
Fire 228 23 
Heavy wind / Storm 88 11 
Natural events 260 212 
Slippery track 10 0 
Snow and ice 23 501 3 876 
Storm / Snowstorm 1276 148 

Non- 
climatic 

Other failures 140 892 15 453  

Total 170 
633 

20 194  
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h(t, X) = h0(t)e
∑p

i=1
βiXi

(2) 

A hazard ratio (HR) (See Eq. (3)) is the hazard for one asset (unit) 
divided by the hazard for a different asset. The two assets being 
compared can be distinguished by their values for the set of predictors, 
X’s. The HR can be written as the estimate of h(t, X1) divided by the 
estimate of h(t, X2) where h(t, X1) denotes the set of predictors for one 
asset, and h(t, X2) for the other one. 

HR =
h(t, X1)

h(t, X2)
=

h0(t)e
∑p

i=1
βiX2i

h0(t)e
∑p

i=1
βiX1i

= e
∑p

i=1
βi(X2i − X1i)

= θ (3) 

Where X1 = (X11, X12, X13, …, X1p), X2 = (X21, X22, X23, …, X2p), 
and θ is a constant. 

The HR is independent of t, and is a constant value. To use PHM, PH 
assumption should be verified that the hazard ratio is constant. In case of 

violating PH assumption, there are two alternatives, including a strati-
fied Cox model (SCM) or an extended Cox model (ECM). 

3.4.2. Stratified Cox Model 
When the PH assumption is not satisfied for a particular covariate, a 

simple solution is to use the stratified Cox model (SCM). In this model, 
data are stratified into subgroups or strata, and the Cox model is applied 
to each subgroup or stratum (Sarkar et al., 2017). The model is presented 
by Eq. (4): 

hg(t, X) = h0g(t)e
∑p

i=1
βiXi

, g = 1, 2, 3, …, k (4) 

Z1, Z2, Z3, …, Zk, do not satisfy PH assumption and X1, X2, X3, …,

Xp, satisfy PH assumption, k is the total number of combinations (or 
strata) formed after categorizing each of the Zi. 

In SCM, covariates which do not satisfy the PH assumption are not 
considered explicitly. In addition, the baseline hazard function h0g(t) is 

Fig. 9. Position of assets in railway stations and distance between assets and weather stations (Google earth).  

Fig. 10. Flowchart for implementing the process of K-means clustering.  
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allowed to be different for each stratum. However, the coefficients β1,

β2, β3, …, βp are the same for each stratum; this property of the model 
is called no-interaction assumption. Another type of SCM allows inter-
action between the variables that do not satisfy the PH assumption and 
the other covariates. This mathematical modeling of such a SCM is 
presented by Eq. (5): 

hg(t, X) = h0g(t)e
∑p

i=1
βigXi

, g = 1, 2, 3, …, k (5)  

3.4.3. Extended Cox model 
Incorporating time-dependent variables violates the PH assumption, 

so an extended Cox model (ECM) can be utilized. In contrast with con-
ventional Cox PHM, the exponential part of ECM includes both time- 
independent variables Xi, and time-dependent variables Xj(t), where δj 

is a coefficient for time-dependent covariates, as given in Eq. (6). 

h(t, X(t)) = h0(t)e

[
∑p1

i=1
βiXi+

∑p2

j=1
δjXj(t)

]

(6)  

3.5. Phase 4: Reliability assessment 

The reliability function, also known as the survival function, is the 
probability that an item will survive beyond a given time, and it is the 
complement of the cumulative distribution function (CDF) or the 
probability of failure. The relationship between the hazard rate which 
has been described in the previous section, and the reliability function is 
as Eq. (7). 

R(t, X ) = exp

⎛

⎝ −

∫t

0

h(x, X)dx

⎞

⎠ (7) 

Mean time between failures (MTBF) as one of the important in-
dicators for assessing the effect of various scenarios can be used. Eq. (8) 
shows the relationship between the reliability and MTBF. 

MTBF(t, X ) =

∫∞

0

R(u, X )dt (8)  

4. Results and discussion 

To validate the proposed framework and assess the climate change 
impacts and its variability on Sweden railway infrastructure assets, 
S&Cs have been selected for the analyses. For this aim, 40 railway sta-
tions are chosen to explore and cover a wider range of climate variability 
based on geographical location, data availability, including metrological 
and asset O&M data. 

4.1. Clustering urban railway stations 

The temperature statistical features, including mean, standard de-
viation (std), skewness, kurtosis, as well as the geographic coordinates 
(i.e., latitude, longitude) and their height above sea level, have been 
collected for selected 40 urban railway stations. K-means has been uti-
lized as an unsupervised machine learning approach to cluster the urban 
railway stations based on the selected features. For implementing the 
clustering steps, the Elbow approach is applied to identify the optimal 
number centroid, which is an initial input of K-Means clustering 
approach. As shown in Fig. 11, the optimal number of clusters for the 
given dataset was determined to be four. 

Using this parameter (K=4), the K-Means technique was imple-
mented by Python 3.8. Fig. 12 shows the outcome of the K-mean clus-
tering process. With clustering, 40 urban railway stations are distributed 
over the identified four clusters. The clusters shown in the figure are 
divided by border, and each cluster is indicated by four different colors, 

including red (cluster 1), yellow (cluster 2), purple (cluster 3), and light 
blue (cluster 4). 

For reliability analyses, four stations, encompassing Kiruna, Boden, 
Borlänge, and Gothenburg, have been selected based on railway infra-
structure expert opinions as given in Fig. 12. 

Thereafter, failure, inspection, and asset registry data for the assets 
located in the above four stations have been collected, and climatic 
features, including Climate_id, have been extracted. We have selected a 
sample of 25 S&C from the population of assets located in four stations 

Fig. 11. Using the Elbow method to determine the optimal number of clusters 
for K-Means algorithm. 

Fig. 12. Different climate zones and related railway stations over the Swedish’s 
railway network and 4 selected railway stations (Google earth). 
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based on the number of failure records, type of S&C, etc. see Table 3. 
The failure data of S&Cs includes features such as S&Cs type and its 

characteristics, failure time, response time, maintenance duration, and 
maintenance area. These data were collected from various datasets, as 
discussed in Section 3.1, and were integrated for the selected in-
frastructures over 18 years, from 2001 to 2018. Accordingly, Bartlett’s 
test is employed as a statistical tool to examine the null hypothesis, H0, 
which assesses that the variances of all k populations are equivalent 
while considering the alternative hypothesis, H1, that at least two of 
these variances are distinct (Garmabaki et al., 2016). For the case of this 
study, since failure/repair data originate from multiple S&Cs for each 
region, Bartlett’s test are used, and the results for each region are pre-
sented in Table 4. The results show that there is not enough evidence to 
reject the null hypothesis. 

4.2. Determining baseline hazard 

According to the proposed methodology, in phase 2, the baseline for 
the Cox model can be determined by implementing the trend test 
(graphical and/or statistical trend test). As depicted in Fig. 13, the 
selected assets for two failure modes which are divided into two cate-
gories by climate_id variable, exhibit a trend. It should be mentioned 
that statistical tests such as Military handbook, Laplace, and Anderson- 
Darling also have confirmed graphical test results. Therefore, power law 
process (PLP), a specific form of the NHPP, is employed to estimate the 
baseline hazard. 

The parameters of the PLP, including shape (β) and scale (θ), are 
estimated using Minitab software 20 in accordance with the NHPP and 
these parameters for different regions in three statuses including the two 
failure modes and integrated data are presented in Table 5. 

4.3. Hazard rate associated with covariates impact 

Meteorological variables (covariates), including Air temperature 
(X1), Relative humidity (X2), Precipitation (X3), and Wind speed (X4) 
were collected from the SMHI databases for the same duration of failure 
data. We have considered several other meteorological features like 
snowfall; however, they were excluded from the analysis due to the 
quality and quantity of data. A detailed description of the selected 
meteorological parameters can be found in Table 6. 

Table 7 displays a sample of datasets designed to develop the Cox 
PHM for one of the selected S&C from the Kiruna region and its asso-
ciated covariates. Two distinct categories of failures were identified 
based on the data-gathering and pre-processing steps as Climate_id 
parameter (see Section 3.1). This table further encompasses the 
considered covariates (X1-X4) and the duration between successive 
failures (TBF). The average value of meteorological parameters has been 

calculated by collecting the last 24-hourly data prior to the failure time. 
Table 8 presents the results obtained from the regression Cox model, 

which was implemented by STATA15, displaying the coefficients (βi)

and their corresponding effects. The null hypothesis Cox PHM assumes 
that the covariates have no impact and the P-value significance level is 
set to 0.15. For Kiruna region, covariates X2 and X3 rejected the null 
hypothesis, indicating these covariates have a significant impact. Sub-
sequently, in a second step, the effects of these two covariates on the 
model were re-evaluated, confirming their selection as influential fac-
tors in the Cox model. This procedure was repeated for the remaining 
regions, and driving covariates have been identified. Notably, the rela-
tive humidity and precipitation were determined as the effective cova-
riates for the Kiruna region, while wind speed emerged as the influential 
covariate for Borlänge. The effective covariates selected for the Goth-
enburg region included temperature and relative humidity. Conversely, 
the assessment has revealed that the selected covariates had no signifi-
cant effect on the Boden region. 

After identifying appropriate Cox PH model parameters, the 
Schoenfeld test has been used to evaluate the goodness-of-fit and 
examine the model’s residuals (Abeysekera & Sooriyarachchi, 2009; 
Moreau et al., 1986; Schoenfeld, 1980). The null hypothesis of the 
Schoenfeld test declares that there is no time dependence for the 
parameter being examined. As shown in Table 9, the results for the 
significant level of 0.05 demonstrate that all covariates meet the PH 
assumption. 

According to the proposed methodology, the hazard rate formula has 
been developed, including baseline and exponential terms. Table 10 
presents hazard rate formulas for the non-climatic (h0(t, X)) and cli-
matic (h1(t, X)) failure modes. 

4.4. Interpretation of effective covariates 

Based on the analysis conducted in the previous section, the effective 
meteorological covariates for the selected S&Cs have been determined. 
For instance, in the Kiruna region, the coefficient for precipitation is 
found to be about 1.12. This implies that one-unit increase in precipi-
tation can result in a more than three-fold increase in the hazard ratio 
(HR = exp (1.12) = 3.06). In Borlänge, wind speed has been identified as 
a significant parameter influencing the hazard rate. Therefore one-unit 
increase in wind speed leads to a more than 16 percent increase in the 
hazard ratio (HR = exp (0.149) = 1.16). These findings highlight two 
important observations. Firstly, the dominant meteorological parame-
ters affecting the infrastructure can vary from place to place depending 
on the region’s meteorological and geographical features. Secondly, the 
magnitude of the effect for different covariates can differ significantly. 
These results underscore the need for region-specific consideration of 
meteorological factors in infrastructure management. 

Analyses have revealed that for the selected assets in Boden and 
Gothenburg, selected covariates did not significantly impact the hazard 
rate. A definitive conclusion that these meteorological parameters do 
not affect S&Cs is challenging. By incorporating additional covariates 
that capture the operational context and other relevant variables, such 
as traffic volume, the number of trains passing through the area, a more 
comprehensive understanding of the relationship between meteorolog-
ical parameters and infrastructure assets and physical properties can 
lead to more accurate climatic impact outcomes. Data quality and the 
number of records are two other impact factors while performing 
analysis. Hence, the failure reporting system may need to be enriched to 
capture more information regarding environmental impacts considering 
future climate change failure causes. Moreover, assessing climate im-
pacts is challenging for the assets located in rural areas due to the longer 
distance between the asset and the weather station, leading to a wider 
confidence interval for the reliability assessment. Utilizing new data- 
gathering technologies, such as IoT devices, is an approach to improve 
data quality and accurate analysis. 

Table 3 
Assets’ region, their location, type of selected S&Cs and number of associated 
failures.  

Station 
region 

Cluster 
No. 

Selected type 
of S&C 

Final No. failures 
for analysis 

Number of 
selected S&C 

Kiruna 1 DKV 314 3 
Boden 2 EV 297 8 
Borlänge 3 DKV 305 5 
Gothenburg 4 DKV 968 9  

Table 4 
Assessment of Bartlett’s test for different regions.  

Station region Cluster No. P-value Null hypothesis, at 5 % significant level 

Kiruna 1 0.060 Not rejected 
Boden 2 0.254 Not rejected 
Borlänge 3 0.237 Not rejected 
Gothenburg 4 0.663 Not rejected  
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4.5. Sensitivity analysis 

Based on the World bank group and SMHI data, the precipitation 
projects to change according to different RCPs, the following analyses 
are implemented to assess the sensitivity of selected urban railway S&Cs 

(SMHI; World bank group, 2021). Fig. 14 illustrates the influence of 
varying precipitation values on the reliability of assets within the Kiruna 
region. This graph provides a clear description of the impacts of 
increasing precipitation value on the reliability of assets. As precipita-
tion values increase, the reliability of assets decreases, resulting in a 
higher number of failures and increased O&M costs. 

Fig. 15-a specifically focuses on the effect of the precipitation co-
variate on the median time of reliability. As depicted in this figure, the 
reliability analysis reveals that the median reliability for the scenario 
(X3= 0.00 mm) is estimated to be 8754 hours. This finding indicates 
that, for selected assets, the probability of experiencing failure or 
required repair before reaching 8754 hours of operation, is 50 percent. 
Fig. 15-a shows the variation of precipitation values ranging from zero 
mm to 1.25 mm, demonstrating a profound influence on the median 
reliability time in the Kiruna region. This change corresponds to a 
considerable reduction from 8754 hours to 3506 hours, representing a 
substantial decline of approximately 60 %. 

In addition, the trendline for the data in Fig. 15-b reveals an expo-
nential equation that describes the relationship between the MTBF and 
the variation in precipitation values. The exponential equations capture 
the nonlinear nature of this relationship, indicating that even slight 
variations in precipitation value can significantly impact MTBF, conse-
quently leading to an increase in the frequency of failures. Therefore, it 
is necessary to take appropriate measures to mitigate the potential 
consequences of these changes. Moreover, the variation of precipitation 
from zero mm to 1.25 mm can change the MTBF from 9538 hours to 
3505 hours, leading to a 63 % reduction in MTBF. This means this 
variation can significantly increase the number of failures and the assets 
need to be more resilient against such effective covariates. 

Fig. 13. Failure behavior of the assets with considering two failure modes.  

Table 5 
Power law process parameters including shape and scale for various regions.  

Region Climate_id Shape parameter (β) Scale parameter (θ) 

Kiruna 0* 1.62 14,120 
1* 1.52 11,136 
Integrated data 1.56 8011 

Boden 0 1.44 16,705 
1 2.02 40,784 
Integrated data 1.61 15,820 

Borlänge 0 1.39 9558 
1 1.43 24,529 
Integrated data 1.40 8105 

Gothenburg 0 1.74 12,020 
1 1.27 11,618 
Integrated data 1.60 8078  

* 0: non-climatic, 1: climatic 

Table 6 
Description of selected meteorological covariates.  

Parameter Unit Frequency Range 

Air temperature (X1) ◦C hourly –60 to +40 
Relative humidity (X2) % hourly 0 to 100 
Precipitation (X3) mm hourly ≥ 0 
Wind speed (X4) m/s hourly ≥ 0  
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4.6. Climate adaptation actions 

Traditionally, indicators like geometric and structural deterioration 
have been the primary focus of O&M planning. However, the results 
presented here reveal the necessity of incorporating additional 

variables, particularly meteorological specifications and climate change 
factors, into the design and O&M planning process. By considering 
meteorological factors alongside traditional indicators, managers can 
enhance their planning strategies’ overall effectiveness and adaptability, 
ensuring the long-term sustainability and functionality of critical 
infrastructure assets under changing climatic conditions. 

Our results show that infrastructure managers should adapt their 
design and O&M strategies to climate change to maintain the railway 
network’s functionality, especially in sensitive parts like Kiruna railway 
station assets, which provide the majority of iron ore in Europe. Since 
S&Cs are selected as critical assets in this study, the following strategies 
can be proposed as climate adaptation planning. 

First, preventive actions such as installing sensitive heaters to vari-
ations of weather conditions and accordingly increasing the number of 
inspections, 

Second, protect the assets which are endangered by climate change, 
such as severe precipitation, can be covered by galleries or by other 
protectors, 

Third, several design and construction regulations need to be 
reviewed to fulfill climate change demands. For instance, future pre-
cipitation in Sweden is projected to increase, which may impact the 

Table 7 
A sample of failure data associated with covariates for S&C with Object ID = 1.  

ID Starta Stopa Statusb Climate_idc X1 (◦C) X2 (%) X3 (mm) X4 (m/s) TBF* 

1 0 15,891 1.00 1.00 –6.52 92 0.03 2.54 15,891 
1 15,891 19,137 1.00 1.00 –0.12 85 0.01 5.25 3246 
1 19,137 19,911 1.00 0.00 0.08 78 0.00 1.79 774           

1 97,046 97,798 1.00 1.00 –10.25 77 0.00 6.88 752 
1 97,798 98,846 1.00 0.00 –0.83 90 0.16 5.29 1048 
1 98,846 99,431 1.00 1.00 –2.13 87 0.26 4.75 585           

1 157,502 157,509 1.00 1.00 –5.00 89 0.00 5.71 7 
1 157,502 157,509 0.00 0.00 –5.00 89 0.00 5.71 7  

a Normal operation, unit is in hour, 
b variable indicates the occurrence of failure or censorship (0 = censor), 
c 1=Climate_based failure, 0= non-climatic-based failures 

Table 8 
Determining effective covariates on Cox PHM.  

Region Step Covariate Coef.(βi) Robust 
Std. Err. 

p- 
value 

95 % Conf. 
Interval 

Kiruna 1 X1 –0.001 0.002 0.58 –0.004 
0.002 

X2 –0.024 0.010 0.02 –0.043 
–0.004 

X3 1.122 0.778 0.15 –0.403 
2.646 

X4 0.000 0.013 0.96 –0.024 
0.025 

Kiruna 2 X2 –0.023 0.011 0.03 –0.045 
–0.001 

X3 1.118 0.785 0.15 –0.421 
2.657 

Boden 1 X1 –0.001 0.014 0.95 –0.028 
0.026 

X2 –0.001 0.010 0.56 –0.024 
0.013 

X3 –0.423 0.621 0.46 –1.639 
0.793 

X4 –0.021 0.052 0.69 –0.123 
0.081 

Borlänge 1 X1 –0.010 0.007 0.17 –0.024 
0.004 

X2 –0.006 0.003 0.03 –0.010 
–0.001 

X3 0.139 0.137 0.31 –0.129 
0.407 

X4 0.146 0.041 0.00 0.066 
0.225 

Borlänge 2 X2 –0.003 0.003 0.35 –0.010 
0.000 

X4 0.151 0.041 0.00 0.070 
0.231 

Borlänge 3 X4 0.149 0.042 0.00 0.066 
0.232 

Gothenburg 1 X1 –0.010 0.004 0.02 –0.019 
–0.001 

X2 0.005 0.003 0.11 –0.001 
0.011 

X3 –0.085 0.226 0.71 –0.529 
0.358 

X4 –0.018 0.026 0.50 –0.069 
0.034 

Gothenburg 2 X1 –0.010 0.004 0.01 –0.019 
–0.002 

X2 0.005 0.003 0.13 –0.001 
0.010  

Table 9 
Schoenfeld test result of assessing Cox proportional hazards assumption.  

Region Covariate Chi2 df p-value 

Kiruna X2 1.40 1 0.23 
X3 1.75 1 0.19 
Global test 2.86 2 0.24 

Borlänge X4 2.63 1 0.11 
Global test 2.63 1 0.11  

Table 10 
Hazard rate equations for different failure modes according to Cox PH model.  

Region Hazard rate formula 

Kiruna 
h0(t, X) =

1.62
14120

∗
( t

14120

)0.62
∗ exp( − 0.023∗X2 + 1.118∗X3)

h1(t, X) =
1.52

11136
∗
( t

11136

)0.52
∗ exp( − 0.023∗X2 + 1.118∗X3)

Boden 
h0(t, X) =

1.44
16705

∗
( t

16705

)0.44 

h1(t, X) =
2.02

40784
∗
( t

40784

)1.02 

Borlänge 
h0(t, X) =

1.39
9558

∗
( t

9558

)0.39
∗ exp(0.149∗X4)

h1(t, X) =
1.43

24529
∗
( t

24529

)0.43
∗ exp(0.149∗X4)

Gothenburg 
h0(t, X) =

1.74
12020

∗
( t

12020

)0.74
∗ exp( − 0.010∗X1 + 0.005∗X2)

h1(t, X) =
1.27

11618
∗
( t

11618

)0.27
∗ exp( − 0.010∗X1 + 0.005∗X2)
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number of floodings in the urban railway assets. On the other hand, the 
current drainage system was designed according to the past criteria, 
which could not manage the volume and intensity of water in railway 
infrastructure. Therefore, modification of drainage systems at railway 
stations and renovation of culverts are other strategies that can mitigate 
the adverse effects of severe precipitation in the future. 

5. Conclusion 

This study investigates the impact of climate change on urban rail-
way infrastructure, particularly focusing on switches and crossings 
(S&Cs) in the Swedish railway network. Climate-related events, such as 
extreme weather conditions, temperature variations, and severe pre-
cipitation, have been identified as significant challenges for railway 
systems, leading to reduced availability, safety concerns, decreased 
punctuality, and increased O&M costs. Since climate impact and its 
consequences are highly dependent on geographical features, it is 
required to categorize the railway network into different climate zones, 
which preserve climate homogeneity within each group. To achieve this, 
a representative sample of 40 stations chosen from various regions and 
machine learning/ K-means algorithm has been utilized to fulfill the 
aim. These stations clustered into four distinct climate zones based on 
their shared meteorological characteristics and climatic properties. 

A reliability analysis using the Cox PHM is proposed to understand 
the railway system’s behavior under changing climatic conditions. This 
model allows for integrating meteorological parameters and operational 
factors to predict the variability of climatic parameters and their impacts 
on urban railway infrastructure assets. 

The proposed methodology has been validated by selecting a number 
of S&Cs, which are located in different railway stations in various 
climate zones. The study explored various databases to identify climate- 
related risk of S&C assets by developing climate_id feature. Furthermore, 
significant meteorological covariates and their impacts have been 
assessed to understand better the dependency between asset health and 
meteorological parameters considering future extreme weather events. 

Sensitivity analysis shown that changing the precipitation value from 
zero to 1.25 mm in Kiruna region can decrease the median time of 
reliability and MTBF about 60 percent. By understanding the significant 
meteorological parameters and vulnerable assets, targeted adaptation 
measures can be developed to improve the resilience of railway 
infrastructure. 
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