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Theoretical investigation of magnons in Fe-Ga alloys
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Fe–Ga alloys show an unusually large increase in magnetostriction compared to pure Fe and are one of the
most interesting Fe-based alloys for this reason. However, the origin of the large magnetostriction and its relation
to the chemical ordering on the underlying bcc phase is still under debate. To gain further understanding of the
extraordinary magnetoelastic characteristics of this system, we investigate the effect of Ga-concentration and
ordering on the spin-wave spectra and stiffness. The magnetic interactions in the Fe–Ga alloys are obtained by
ab initio electronic structure calculations and the magnon spectra are modeled using atomistic spin dynamics
modeling. Our results agree with available experimental data and show softening of the magnon modes with
increasing Ga-concentration and a strong reduction of the spin-wave stiffness due to atomic ordering.
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I. INTRODUCTION

The addition of nonmagnetic elements to body-centered
cubic (bcc) Fe can strongly alter the anisotropy and enhance
the magnetostriction [1–3]. Dilute alloys of Fe with Al, Ga,
and Be all show enhancement of the tetragonal magnetostric-
tion compared to bcc-Fe [1–6]. The largest enhancement is
found for Ga, which is a factor of 15 over that of bcc-Fe
[7], thus making these alloys very attractive to use in magne-
tostrictive actuators, sensors, and spintronic devices [8–10].

Fe1−xGax has the inclination to retain local bcc-like sym-
metry both in the disordered A2 and in the ordered B2 and
D03 phases [11] and has a phase diagram similar to other
Fe-based binary alloys such as Fe1−xSix and Fe1−xAlx [12].
It was shown that the Ga distribution, even in the disordered
phase, is not completely random [13] and the short-range
order increases with Ga content, leading to the ordered D03

phase occurring at x ∼ 0.25 [13,14]. It has further been es-
tablished that for both the ordered and disordered phases in
these alloys, the magnetic properties on different Fe sites are
strongly affected by the local atomic environment [15].

The maximum values of the tetragonal magnetostriction
at room temperature occur at two peaks located at x = 0.19
and x = 0.27 [4,11,16]. Major efforts have been dedicated
to investigating the mechanisms that lead to the large en-
hancement of magnetostriction. Both intrinsic mechanisms,
meaning changes of the electronic structure induced by the
nonmagnetic Ga atoms [17–19] and extrinsic mechanisms,
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such as the formation of precipitation or nanoparticles
[4,20–22], have been proposed. However, the origin of mag-
netostriction and its relation to chemical ordering on the
underlying bcc lattice is still under debate.

Consequently, the majority of investigations have been fo-
cused on the ground-state properties [3,4,7,11–13,15–31] and
only a few studies have considered the magnon and phonon
spectra. These studies consist of early Mössbauer experi-
ments, which estimated the exchange stiffness for different
Ga-concentrations [14] and more recent neutron scattering
experiments, which determined the phonon [32] and magnon
spectra [33].

Magnon and phonon spectra are generally difficult to
model for Fe-based alloys, and most theoretical efforts have
only considered modeling ground-state properties using den-
sity functional theory (DFT) [18,19,22,25–30] and molecular
dynamics [25,28]. Nevertheless, from a microscopic point of
view, a complete characterization of atomic and magnetic
interactions is highly desirable. There are a few theoretical
investigations of spin dynamics for closely related Fe-based
binary alloys [34–36]. The spin-wave spectra and the spin-
wave stiffness were investigated in Fe1−xAlx systems [34,35],
while for the Fe1−xSix systems even the concentration depen-
dence of the spin-wave stiffness was addressed [36]. However,
to the best of our knowledge, no calculations of the magnon
spectra in Fe1−xGax have been carried out for the ferromag-
netic disordered A2 and partially ordered D03 structures. This
is important to describe and complement recent neutron scat-
tering experiments [33].

The aim of our paper is to gain further knowledge of the
interplay between the local atomic structure and magnetism in
the dilute Fe1−xGax alloys by examining ground-state proper-
ties and the low-energy excitation spectra via the Heisenberg
exchange interactions. In particular, we investigate the con-
centration dependence of the spin-wave spectra and stiffness.
An accurate description of the spin dynamics in this sys-
tem would give insights into the magnetoelastic behavior in
Fe1−xGax alloys.
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FIG. 1. (a) The conventional cell of the disordered A2 structure
where all positions are equivalent, partially occupied by both Fe and
Ga (black). (b) The conventional cell of the (partially) ordered D03

structure where the 4a, 4b, and 8c positions are shown in black,
green, and blue, respectively.

II. METHOD

The ab initio calculations were performed using the
multiple-scattering approach of DFT as implemented in
SPR-KKR [37]. The potential was treated in the atomic sphere
approximation and the nonstoichiometric compositions were
described within the coherent potential approximation (CPA).
In the CPA approach, the alloy is replaced by an effective
medium, and thus cannot take into account the effect of
short-range order. However, modern implementations are not
restricted to only one atom and allow for sub-stoichiometric
systems [37–40]. Hence, by considering cells with more than
one sublattice, it is possible to describe partially ordered struc-
tures having a fixed local environment around the partially
occupied atom.

The structures are described in Fig. 1 and Table I, where the
A2 structure (primitive bcc cell of one atom) has all sites equal
and partially occupied by Fe and Ga. For the ordered and par-
tially ordered D03 structure (primitive fcc cell of four atoms),
we apply the following naming convention: Fe1 denotes the
Fe atoms in the 4 a position, which are partially occupied by
Ga for x < 0.25, Fe2 denotes the Fe-atoms in the 4b position,
and Fe3 denotes the Fe atoms at the 8c position.

It is well known that for 3d metals the exchange-
correlation energy is better treated in the generalized
gradient approximation (GGA) for structure optimization
while magnetic properties are better treated in the local
density approximation (LDA) [41]. Hence, the structure
optimization was performed using GGA in the Perdew-
Burke-Enzerhof parametrization [42], and all other calcula-
tions were performed using LDA in the parametrization of
Vosko-Wilk-Nusair [43].

TABLE I. The atomic distribution for off-stoichiometric
Fe1−xGax in the A2 and D03 structures.

Space group Wyckoff positions Atoms

Im3m (No. 229) 4a: 0, 0, 0 Ga, Fe
4a: 0, 0, 0 Ga, Fe1 (x � 0.25)

Fm3m (No. 225) 4b: 1/2, 1/2, 1/2 Fe2
8c: 1/4, 1/4, 1/4 Fe3

Magnon spectra modeling are now routine calculations us-
ing, either time-dependent DFT (TDDFT) via the dynamical
suceptibility [44–46] or by mapping the exchange energy to
a Heisenberg Hamiltonian [47–56]. In particular, the Green’s
function formalism of TDDFT where the CPA method can be
utilized [45,46] is very attractive for alloys. However, in this
paper we are using the less computational demanding method
of mapping the exchange coupling energy to a semiclassi-
cal Heisenberg Hamiltonian of individual pairs of localized
moments Miν and M jμ at sites i and j of type ν and μ,
respectively,

H = −
∑

iν jμ

Jiν jμMiν · M jμ. (1)

The exchange coupling constants Jiν jμ were obtained by the
magnetic force theorem using the relativistic extension [57] to
the method of Liechtenstein et al. [53–55]. This formulation
conveniently allows us to deal with disordered materials using
CPA. Moreover, the method gives access to the full exchange
tensor. However, only the symmetric part of the exchange
tensor has been used in this paper.

With the calculated exchange parameters and the
Heisenberg Hamiltonian defined in Eq. (1), the magnon spec-
tra were determined using two different methods. At finite
temperatures, we employ atomistic spin dynamics (ASD),
where the dynamics of the magnetic moments are governed by
Langevin dynamics through the coupled stochastic differential
Landau-Lifschitz-Gilbert equations. By sampling the time and
space correlation function

Cαβ (r, t ) = 1

N

∑

i, j

〈
Mα

i (t )Mβ
j (0)

〉 − 〈
Mα

i (t )
〉〈

Mβ
j (0)

〉
, (2)

where α and β denote Cartesian coordinates. Taking the
double Fourier transform, we get an estimate of the dy-
namical structure factor Sαβ (q, ω). The magnon energies are
then given by the peak values of Sαβ (q, ω) at each wave
vector q.

We also calculate the adiabatic magnon spectra valid
for close to zero temperature. We follow the approach of
Kübler [56] and consider the expression for a spin-spiral
configuration

Miν = Mν[sin θν cos(q · (Ri + τν ) + ϕν )ex

+ sin θν sin(q · (Ri + τν ) + ϕν )ey + cos θez], (3)

where Mν is the magnitude of the magnetic moment at site
τν , Ri is a translation vector, q is the wave vector character-
izing the spin-spiral, θν is the cone angle, and ϕν is a phase
difference. With the time evolution of the localized mag-
netic moments given by the Landau-Lifshitz equations and
assuming small cone angles θν , we get a linear system of
equations given by

ωθν = 4
∑

μ

[Jνμ(q)θμMμxμ − Jνμ(0)θνMνxν], (4)

where we have introduced the Fourier transform of the
exchange parameters Jνμ(q). The parameters xν and xμ cor-
respond to the chemical concentration for atom type ν and μ,
respectively.
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An alternative method was presented by Buczek et al.
[50] in which the transverse susceptibility is parameterized by
exchange parameters from CPA calculations. This is indeed
a very interesting method. However, it seems unlikely that
it can properly account for correlated disorder, in the way it
is presented, with exchange parameters from single-site CPA
calculations. The exchange parameters are strongly affected
by the local environment, as shown below, and this should
be included in the modeling. Nonetheless, for completely
disordered phases we expect similar results to our method.

There exist several techniques to extract the spin stiffness
[34,53–55,58,59]. However, in this paper the stiffness D was
estimated using least-squares fitting of the quadratic energy
dispersion relation, h̄ω = Dq2. This method is expected to
give similar results to the methods used for the Fe–Si and
Fe–Al systems [34,36].

Computational details

The KKR calculations were performed using a basis set
consisting of spdf orbitals for the expansion of the Green’s
function. The energy integration of the Green’s function was
done with 32 energy points along a semicircle contour, and the
Brillouin zone (BZ) was sampled with a 31 × 31 × 31 and
25 × 25 × 25 k-point mesh for the A2 and D03 calculations
respectively. For the calculations of the exchange constants,
a very dense set of k points was used, 81 × 81 × 81 and
69 × 69 × 69, for the A2 and D03 structure respectively. It
should be noted here that all results were checked carefully
by increasing the k-point grid and the energy points.

In the ASD simulations, the alloys were treated using large
supercells in which each site was chemically randomly occu-
pied according to the concentration (see Table I). It should
be noted that we obtain a small induced moment on the Ga
atoms from the ab initio calculations. Induced moments are
not well described within the Heisenberg model. Hence, in
the ASD simulations, we replace the Ga atoms with vacan-
cies. The ASD simulations were performed using UPPASD
software [60]. To represent most of the local environments,
we use large supercells 60 × 60 × 60 for the A2 structures
and 40 × 40 × 40 for the D03 structures.

III. RESULTS AND DISCUSSION

The exchange coupling parameters and magnetic moments
are generally dependent on the distance between the atoms.
As is well-known for bcc-Fe, the magnetic moment increases
linearly with the lattice parameter around equilibrium as the
magnetic moment becomes more localized [61,62]. The trend
is the opposite for the exchange interaction, with the exchange
energy decreasing for more separated atoms. Thus, it will
affect the calculations of the magnon spectra. To this end, we
begin this section by presenting results for lattice parameter
optimization.

A. Structure and ground state properties

In Fig. 2, the optimized lattice parameters a, as a func-
tion of Ga concentration together with experimental values
[13,14,63,64] are shown. The optimized lattice parame-
ters were found by fitting total energies to a Murnaghan
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FIG. 2. Calculated lattice parameters as a function of Ga con-
centration together with experimental values from Kawamiya et al.
[14], Luo [63], Dunlap et al. [13], Mungsantisuk et al. [64], and
the references therein. The lattice parameters for the A2 structures
are multiplied by two to compare with the lattice parameters of the
D03 structures. The black line represents interpolated values of the
experimental data and the blue and green lines are mere guidelines.

equation of states [65]. The calculated lattice parameters are
generally shifted to lower values compared to experimental
data (∼0.07 Å). This corresponds to an error of approximately
1% and is similar for both structures. More importantly are
the trends seen in the A2 and D03 structures. The simulated
values for the A2 structure show a linear trend with increasing
Ga content and thus follow Vegard’s law. The same is seen for
the D03 simulations up to x ∼ 0.15, after which it deviates
slightly. It is more difficult to distinguish a general trend
from the collective experimental data, from different sources
measured in slightly different conditions. However, the best
fitting polynomial was a second-order polynomial. All other
calculations in this paper are based on the experimental lattice
parameters and the polynomial is used to interpolate between
intermediate concentrations.

Using the experimental lattice parameters, we calculate
the magnetic moments. The results are shown in Fig. 3. The
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FIG. 3. Calculated magnetic moment as a function of Ga con-
centration together with experimental values from Aldred [66] and
Kawamiya et al. [14]. Filled symbols represent the average magnetic
moment per Fe atom, and open symbols represent the total average
magnetic moment per atom.
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FIG. 4. Calculated magnetic moment as a function of Ga concen-
tration for Fe atoms on different sublattices. Filled symbols represent
the magnetic moment for the D03 structure and crosses represent the
A2 structure (see Fig. 1 and Table I).

figure shows the total average magnetic moment per atom
(open symbols) as well as the total average magnetic mo-
ment per Fe atom (filled symbols) for both structures. The
figure also shows experimental results from Aldred [66] and
Kawamiya et al. [14]. It should be mentioned here that the cal-
culations show a small induced antiparallel magnetic moment
on the Ga atoms of around −0.1 µB. This induced moment,
however, changes very little with concentration.

In Fig. 3, it is seen that the average moment per atom
is reduced with increasing Ga content; however, not as lin-
early as expected when diluting the magnetic Fe atoms with
nonmagnetic Ga atoms. The average moment per iron atom
increases with the addition of Ga atoms with a maximum of
nearly 2.4 µB for x = 0.16. The A2 results fit experimental
data very well for lower concentrations (x < 0.15). For larger
concentrations (x > 0.15), the A2 moments start to deviate
while the D03 moments follow the experimental ones closely.
The concentration dependence can be traced back to changes
induced by solute atoms in the local electronic and magnetic
structure, as has been previously discussed for the Fe-based
systems [15,67–69]. The magnetic moments strongly depend
on the local environment of the interacting atoms in the
matrix and depends on the number of solute nearest neighbors
[67,68].

The local magnetic moments on the different sublattices
are presented in Fig. 4. While the induced antiparallel moment
on the Ga atoms remains relatively small, the effect on the Fe
atoms is substantial. The Fe2 atoms (Wyckoff position 4b),
which have Ga atoms in the second coordination sphere, are
seen to be less affected by the presence of the Ga atom and
almost constant with increasing Ga concentrations. However,
the magnetic moments on the Fe3 atoms (Wyckoff position
8c), which have Ga atoms in the first coordination sphere,
are affected to a large degree and reduced by around 20% at
x = 0.25. The magnetic moment of the Fe1 atoms (Wyckoff
position 4a) shows the opposite trend with increasing mag-
netic moment for increasing Ga concentration (12% increase
for x = 0.225). The Fe1 atoms for x < 0.25 have Ga atoms
only in the third coordination sphere. The magnetic moment
is thus very dependent on the local environment despite the
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FIG. 5. Exchange coupling parameters within four lattice param-
eters for three different concentrations of the A2 structure. The lines
are added for guiding purposes.

delocalized nature of the d electrons. This has also been noted
in the case of Fe1−xSix [70]. Similar to Fe1−xGax, the Fe1−xSix

alloys show a strong dependence of magnetic properties with
Si concentration with local magnetic moments at Fe sites that
may become higher than in pure iron depending on the dis-
tribution of Fe and Si neighbors. In particular, they show that
also the influence of the second and third coordination sphere
plays a big part in the local magnetic moment. It should be
noted that the nonmonotonic behavior of the concentration
dependence for the average magnetic moment in alloys can
also be explained in the classical consideration by exchange
interactions with different signs between alloy components
[71]. Considering the spins of atoms as classical vectors, the
magnetic moment of the alloy is determined by the average
values of the projections of atomic moments. An increase in
the concentration of a dissolved element leads to an increase
in pairs of atoms with negative interactions, which leads to a
decrease in the projection of magnetic moments [71].

B. Magnetic exchange interaction

The magnetic exchange coupling parameters for different
Ga concentrations were also calculated. The exchange pa-
rameters within a range of four lattice constants for the A2
structure are presented in Fig. 5. The largest interactions are
the ones within the first and second coordination spheres.
The interactions in the first coordination sphere are increasing
with increasing Ga concentration, while the interactions in the
second coordination sphere are decreasing. The other inter-
actions are considerably smaller but nonzero for quite large
distances. Nonetheless, this implies that the exchange interac-
tion gets more short-ranged with increasing Ga content.

The behavior of the long-range interactions is well-known
for bcc-Fe [72] and is seen to be less distinct with increasing
Ga concentration. Only Fe-Fe interactions are shown, but as
mentioned above, we get an induced moment on the non-
magnetic Ga atoms. Consequently, there are nonzero Ga-Ga
and Fe-Ga exchange interactions. However, they are small
and do not change much with Ga-content. The strongest in-
teraction (∼0.3 eV) is for Fe-Ga and is comparable to Fe-Fe
interactions in the sixth coordination sphere. It should be
noted that there have been attempts to include interactions
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FIG. 6. Exchange coupling parameters for the two
nearest-neighbor interactions with respect to Ga concentration.
Crosses correspond to interactions in the A2 structure. The filled
symbols correspond to interactions for the D03 structure, with the
colors representing interactions between Fe-atoms on different
sub-lattices. Squares and triangles represent interactions in the first
and second shells, respectively (see Fig. 1 and Table I).

involving induced moments by introducing effective exchange
interactions [73]. This, however, has not been considered in
this paper.

For the A2 structure, the interaction is only between
equivalent atoms. However, for the D03 structure, it is more
complex. This is shown in Fig. 6 for interactions in the
first and second coordination spheres. The colored symbols
correspond to the exchange interaction between different sub-
lattices for the D03 structure, and the crosses correspond to the
A2 structure. The trend of the nearest-neighbor interactions is
also seen for the partially ordered D03 structures.

The largest difference compared to the A2 structure is
found in the second coordination sphere. It is seen that the
Fe3-Fe3 interaction, more or less, follows the A2 interactions
in size. The Fe1-Fe2 interaction, on the other hand, is much
lower. However, the probability of this interaction appearing
decreases with increasing Ga concentration and becomes zero
for x = 0.25 when Ga atoms fully occupy the 4a lattice i.e.,
in an ordered phase.

C. Spin-wave spectra and stiffness

Complete measurements of the magnon dispersion relation
of iron and iron-based systems by neutron scattering are dif-
ficult because the excitation spectrum extends to very high
energies. The spin-wave spectra is known to be strongly af-
fected by interactions with the Stoner continuum, which give
rise to the so-called Landau damping of the collective magnon
modes. This is well described by TDDFT calculations of the
dynamical transverse susceptibility [44–46]. Obviously this
is missing in the adiabatic approach employed here, which
is only expected to be accurate in the long-wavelength limit.
However, it is less computationally demanding and very use-
ful in combination with other methods.

The adiabatic spin-wave spectra was calculated by finding
the eigenvalues of the dynamical matrix in Eq. (4). The spin-
wave stiffness was also based on the adiabatic spectra (see the
end of this section), and the number of exchange parameters
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FIG. 7. Magnon spectra for three different concentrations in the
A2 phase together with experimental results measured at 10 K for
bcc-Fe [75] (circles) and at room temperature for Fe0.88Si0.12 [76]
(crosses). The color scheme is the same as in Fig. 5

used in these calculations is based on the convergence of the
spin-wave stiffness. The spin-wave spectra and, thus, the spin-
wave stiffness are very sensitive to the number of exchange
parameters included [74]. This is due to the slowly decaying,
oscillating behavior found for the exchange parameters in bcc-
Fe (Fig. 5). Convergent results for the stiffness were achieved
by including all exchange interactions up to 10×a for A2 and
5×a for D03.

The adiabatic spectra for low concentrations in the
A2 phase are presented in Fig. 7. Although the shape of the
magnon dispersions for bcc-Fe are similar to other theoretical
results using the adiabatic approach [47–49,52], the band-
width at H is considerably lower than expected (≈100 meV).
However, due to the limitations of the adiabatic approach,
the results further from the � point are questionable and no
experimental data exists for validation of calculated results.
Moreover, the spectra closer to the BZ edges were found to
be extremely sensitive to the number of exchange parameters
included in Eq. (1). Hence, since the presented results are
converged with respect to the spin-wave stiffness in the long
wavelength limit for which the theory should be correct, this
deviation is not very surprising.

Regarding the effect of Ga concentrations, the Kohn
anomalies that are very distinct for bcc-Fe are seen to be
smeared out with higher Ga content. In addition, the disper-
sion curves at the H and N high-symmetry points are seen to
increase with increasing Ga content and decrease at P, which is
related to the large increase of the nearest-neighbor interaction
(see Figs. 5 and 6).

Figure 7 also shows experimental results measured at 10 K
for bcc-Fe [75] along the �-P direction and at room temper-
ature for Fe0.88Si0.12 [76] along the �-H direction. For such
low concentrations, there are only small changes in the spectra
at low energies, and the experimental values are seen to fit
reasonably well to the calculated ones.

In addition to smearing of the magnon modes due to
Landau damping, increasing dilution of nonmagnetic atoms,
or rather increasing disorder will also lead to broadening of
the magnon dispersions. While this is not seen in the case
of the adiabatic spectra, it is very obvious when calculating
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FIG. 8. Calculated spin-wave dispersion for a temperature
of 4.2 K in the D03 phase. Red lines show adiabatic dis-
persion. Experimental values (black circles and triangles) from
Zarestky et al. [33].

the spectra from the correlation function in ASD. This can be
seen for two different D03 compositions in Fig. 8 where the
dispersion curve is more spread out for the more disordered
case (x = 0.16).

Another reason for the broadening originates from finite-
temperature effects, which are included in terms of the
stochastic fields and the Gilbert damping parameter. How-
ever, in this case, these effects should be relatively small
since they are calculated for low temperatures (T = 4.2 K)
to replicate the experimental values (black symbols) by
Zarestky et al. [33].

Figure 8 also shows the magnon dispersions calculated
in the adiabatic approximation (solid lines). These are seen
to match the dispersions from ASD very well at this low
temperature. Moreover, the experimental values are seen to fit
very well to the calculated spectra, in particular, for the more
ordered case of Fe0.775Ga0.225. A flattening of the bands can be
seen for increasing Ga concentration, leading to an increase of
the band gap. In particular, this is seen for the acoustic branch
around the � point, which should be well described by our
approach. The flattening of the acoustic branch is also found
experimentally and indicates a reduction of the spin-wave
stiffness.

The spin-wave stiffness was evaluated for the [110] direc-
tion to be consistent with recent experimental results [33].
Since the energy dispersion is only quadratic for small q
around the � point, the interval used in the fitting was de-
creased until convergence was obtained.
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The calculated spin-wave stiffness as a function of
Ga concentration is shown in Fig. 9 together with experimen-
tal results from Antonini and Stringfellow [77], Zarestky et al.
[33], and Kawamiya et al. [14]. For low concentrations, the
disordered A2 structure follows the experimental values quite
well. However, for higher concentrations, it deviates consider-
ably and increases in size in contrast to experiments. The same
trend has also been found for Fe1−xAlx [34,35], where after
an initial decrease in stiffness with a minimum at x = 0.05,
the stiffness increases and saturates around x = 0.2. Similar
behavior was also found for Fe1−xSix [36], but deviating even
more from experimental values.

The deviation from experiments has been assigned to long-
range chemical order found in the B2 and D03 structures for
larger concentrations [34]. In Fig. 9, it is also seen that the
fit is much better for the partially ordered D03 calculations,
in particular for larger concentrations, thus strengthening the
claims regarding the importance of structural order in the
magnetic properties of diluted Fe-based alloys. It should also
be noted here that our method of calculating the adiabatic
magnon spectra and extracting the stiffness constant also
seems to work well compared to other arguably more involved
methods.

The spin-wave stiffness results that stand out most com-
pared to experiments are the ones for x = 0.0625. Even
though similar trends were found in previous related studies
[34,35], spin-wave stiffness calculations for the arguably sim-
pler case of bcc-Fe are very sensitive [59]. It is also known that
short-range order is found even in the disordered A2 phase
and increases with Ga content, leading to the ordered D03

phase [13]. However, in the present calculations, short-range
order is only included for the partially ordered D03 structure
in the sense that the length scale of the pair correlations goes
to infinity and thus forms long-range chemical order.

For the low temperatures investigated here, the effects on
the magnon spectra would be rather small compared to spin-
flip excitations. It should nonetheless be commented on. It is
known that Fe–Ga alloys demonstrate the interplay between
magnetic and chemical ordering [15] where the chemical
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ordering can be qualitatively different above and below the
Curie temperature [78]. The electronic contribution to the free
energy can be added as a thermal electron excitation [79] by
including the Fermi–Dirac distribution to the ab initio calcu-
lations. This is, however, not considered here. Temperature
effects are only considered in the form of spin temperature,
included in terms of the Boltzmann distribution in Monte
Carlo simulations and the stochastic fields in the Landau-
Lifschitz equations. Hence, lattice excitations, e.g., phonons,
are not included, which, in some cases, can be important [15].
However, magnon-phonon coupling is known to be relatively
small in bcc-Fe [80]. This is likely also the case when diluting
bcc-Fe with Ga since the magnon and phonon branches are
well separated [32,33]. Nonetheless, such theoretical investi-
gation would be very interesting and is left for future work.

IV. CONCLUSIONS

In this paper, the spin-wave spectra of dilute Fe1−xGax

alloys were considered for compositions up to x = 0.25. Two
different phases were investigated, including the disordered
A2 phase, which is known to be found in the dilute limit (x ∼
0) as well as the partially ordered D03 phase, found around
x = 0.25. The ground-state magnetic properties were cal-
culated using the fully relativistic Korringa-Kohn-Rostocker
method in the atomic sphere approximation, where disorder
was included by means of the CPA.

Mapping the exchange energy to a semiclassical
Heisenberg Hamiltonian, the spin-wave spectra were calcu-
lated using ASD, where the nonstoichiometric compositions
were represented using large supercells. In addition, the

adiabatic spin-wave spectra were calculated, where disorder
was included by configurational averages of the exchange
parameters. This approach was seen to work very well for
the Fe–Ga system, with a good fit to experimental results.
The same could be seen in the spin-wave stiffness, which was
estimated by a quadratic fit around the � point.

The results strongly suggest the importance of atomic or-
dering since the partially ordered calculations generally better
fit experimental results. This is in spite of not including short-
range order in the calculations, which could be important,
especially in the A2 phase. Nonetheless, the calculations over-
all give a correct picture of the concentration dependence of
the spin-wave spectra and stiffness.

The present paper neglects the presence of Landau damp-
ing and leaves unanswered the question about the vibrational
free-energy contribution to the magnon spectrum. The ques-
tions of whether the effect of lattice vibrations on the magnon
spectrum is large or not and how to accurately model the
short-range order and correctly take it into account in the
magnon spectra modeling call for further investigations.
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