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Abstract: In this article, the challenge of discriminating between essential and Parkinson’s tremor
is addressed. Although a variety of methods have been proposed for diagnosing the severity of
these highly occurring tremor types, their rapid and effective identification, especially in their
early stages, proves particularly difficult and complicated due to their wide range of causes and
similarity of symptoms. To this goal, a clinical analysis was performed, where a number of volunteers
including essential and Parkinson’s tremor-diagnosed patients underwent a series of pre-defined
motion patterns, during which a wearable sensing setup was used to measure their lower arm tremor
characteristics from multiple selected points. Extracted features from the acquired accelerometer
signals were used to train classification algorithms, including decision trees, discriminant analysis,
support vector machine (SVM), K-nearest neighbor (KNN) and ensemble learning algorithms, for
providing a comparative study and evaluating the potential of utilizing machine learning to accurately
discriminate among different tremor types. Overall, SVM related classifiers proved to be the most
successful in terms of classifying between Parkinson’s, essential and no tremor diagnosed with
percentages reaching up to 100% for a single accelerometer measurement at the metacarpal area. In
general and in motion while holding an object position, Coarse Gaussian SVM classifier reached
82.62% accuracy.

Keywords: essential tremor; Parkinson’s tremor; classification; machine learning

1. Introduction

A tremor [1] is defined as the involuntary rhythmic oscillation of a part of the human
body, which is produced by the competing acting contractions of the muscles in the joints.
The need to find the tremor’s origin and its diagnosis is imperative to achieve immediate
reduction and treatment of the related syndrome. Tremor is distinguished in the following
basic categories: (a) resting tremor, where the affected body part is placed on a surface
so that it remains unaffected by the force of gravity, (b) postural tremor, which is the
most commonly occurring type, where the subject attempts to keep his trembling body
part steady during a pose affected by gravity and (c) motion tremor, which occurs during
movement and increases with its duration [2].

There are several tremor types, each with different causes and characteristics: Parkin-
sonian (Parkinson’s disease and parkinsonism), essential, cerebellum, post-traumatic,
pharmaceutical, dystonia, multiple sclerosis, neuropathy, Holmes, Wilson disease, psy-
chogenic tremor, etc. [3]. The clinical picture and the proper reception of medical history, as
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well as the experience of the individual doctor contribute to a more accurate determination
of tremor type. From the different types of tremor, essential and Parkinson’s are described
by the highest occurrence, reaching up to 5% and 1% of a country’s population [4], respec-
tively, and with increasing frequency. Despite the existence of various diagnostic methods
for Parkinson’s and tremor, their rapid and effective discrimination, especially in their
early stages, proves particularly difficult, mainly due to their wide range of causes and
similarity of symptoms [5].

The challenge of finding an accurate and effective method for discriminating among
tremor types, while being able to predict their stage and severity, has led to the use of sensor-
enabled systems for extracting various elements of tremor, which cannot be extracted solely
from the clinical picture of the patient. Recently, there has been an increasing interest of
applying machine and deep learning modeling methodologies on the various acquired
bio-signals for identifying and predicting the severity of Parkinson’s disease [6–8].

Specifically, machine learning has been used for symptom quantification of Parkin-
son’s as well as essential tremor patients via gyroscope and accelerometer sensors [9–15].
Furthermore, recognition of Parkinson’s was recently tested on phonation and speech
datasets for identifying dysphonia signs related to the syndrome [16–20]. Predictive di-
agnosis of Parkinson’s has also been attempted via machine learning on demographic,
movement and speech data [21], as well as using typing and mouse behavior for detecting
and monitoring the severity of Parkinson’s disease with supervised machine learning
classifiers [22,23]. Other bio-data including dopamine transporter data from tomographic
images [24] and serum cytokines [25] have also been used for classification performance
evaluation via extraction of shape features based on generated areas of interest from images
and other indicators, while discrimination of patient motor status via machine learning has
also been recently tested on a digital biomarker data set using Neural Network Construc-
tion methodology [26]. Deep learning modeling algorithms have also been recently utilized
for tracing and identifying Parkinson’s via fuzzy recurrence plots [27] and monitoring and
predicting of Parkinson’s disease via wearable sensors [28,29]. Work has also been done
on Parkinson’s diagnosis via deep learning through medical imaging [30], handwritten
dynamics [31] and voice data sets [32]. Moreover, in [33], an attempt to classify between
Parkinson’s and essential tremor has been performed.

The aforementioned research shows the high potential in utilizing machine and deep
learning for discriminating tremors. However, the majority of the studies are mainly
focused on Parkinson’s identification, with only a few targeting at the differential diagnosis
between different tremor types [29,33–35]. Moreover, most of these efforts provide results
based on a binary classification problem, while the majority utilize accelerometer sensors
through wearable means from a single point of measurement, usually placed on the
metacarpal region or the index finder. Such analyses are performed at postural arm
poses, while the use of smartphones and their integrated accelerometers can limit the
hand motion ranges. Therefore, this state-of-the-art overview shows an increasing need
in further investigating this problem by expanding the classification target via inclusion
of more measurement points on the user’s arm, while assessed at different poses and via
multiple different classifiers.

The contribution of the presented work stems from the multi-class classification prob-
lem among essential, Parkinson’s tremor- and non-tremor-diagnosed volunteers. For the
presented research, a clinical trial was performed, where essential and Parkinson’s tremor-
diagnosed patients, along with healthy volunteers, underwent a series of pre-defined
sequences involving multiple arm poses (resting, postural and motion patterns). During
these sequences, an accelerometer-based wearable setup was used to measure their lower
arm tremor characteristics from multiple selected points on the hand and forearm. Initially,
the information extracted from the patients’ medical history and questionnaire answers
were used for assessing the efficiency of hierarchical grouping into tremor discrimination.
Then, the extracted features from all acquired accelerometer signals were used as a basis
for a comparative study between multiple different classification algorithms, including
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decision trees, discriminant analysis, support vector machine (SVM), K-nearest neighbor
(KNN) and ensemble learning algorithms. The goal was to provide a detailed evaluation
on utilizing machine learning algorithms for accurately discriminating between the two
different tremor types, while providing information on the arm measurement points that
provide better classification results. It has to be noted that this work is based on the
initial findings presented in [36], providing the hierarchical grouping evaluation, as well
as extended performance and accuracy results on the essential and Parkinson’s tremor
discrimination via the multiple utilized classification algorithms.

The rest of the article is structured as follows. Section 2 provides an overview of
essential and Parkinson’s tremor, along with the existing diagnostic methods. Section 3
presents the measurement setup specifics utilized in the clinical trial. In Section 4, the
methodology concerning the data processing algorithms for patient categorization, feature
extraction, training and prediction are provided in detail. Section 5 provides the results
of the clinical trial, along with commentary on the acquired data involving the volunteer
categorization, hierarchical grouping and tremor classification. Finally, concluding remarks
along with comments on future work are provided in Section 6.

2. Essential and Parkinson’s Tremor
2.1. Essential Tremor: Overview and Diagnosis

Essential tremor (ET) is described as a disorder of the nervous system in which the
hands and arms are usually trembling [37]. Individuals over 40 years of age who are
diagnosed with essential tremor belong to 4% of the world’s population [38]. Some of
them manifest tremor only in certain postures (static shaking), while others present it when
performing a task, for example during writing or eating (motor shaking). Most patients
with ET experience both shaking forms, while voluntary movements, such as holding a
fork, usually worsen the tremor. This contrasts with Parkinson’s disease, in which the
tremor tends to diminish with such movements. While the Parkinsonian tremor maximizes
at rest with respect to amplitude and frequency [39], the essential tremor’s higher frequency
and amplitude occur mainly during activity and are decreased at rest [40]. However, these
changes in the tremor amplitude and frequency cannot be easily determined and depend
each time on the affected person and on the condition stage. The causes of ET are various
genetic mutations, which are not yet fully determined, and it is often observed that ET
patients have difficulty in daily activities, such as writing, swallowing food, speaking,
etc. [41]. Before someone is diagnosed with ET, other factors must first be excluded, such as:

• chronic alcohol use;
• intake of antiarrhythmic, antidepressant and antispasmodic drugs;
• use of substances such as nicotine or cocaine.

Tremor can additionally be caused by thyroid problems, strokes and Parkinson’s
disease. It is not uncommon for Parkinson’s Tremor (PT) to be mistaken for ET. Initially, ET
usually affects the hands, head and voice, while the tremor that characterizes PT occurs
primarily in the hands and then spreads to the jaw, legs and other parts of the body.
It is also important to note that ET does not cause any other health problems, unlike
Parkinson’s disease that causes problems in posture, movement and gait. Finally, as it was
previously stated, ET occurs mainly during movement and not in a resting position such as
Parkinson’s disease.

ET has some clinical traits that facilitate its diagnosis, namely that the tremor:

• Starts gradually, mainly on one side of the body and focusing on the hands.
• Gets worse as movement increases.
• Increases with caffeine intake, stress, excessive fatigue and abrupt temperature changes.
• Causes a “yes-yes” and “no-no” head movement.

In addition to the ET symptoms mentioned above, as with PT, there is a scale of tremor
evaluation called The Essential Tremor Rating Assessment Scale (TETRAS) [42], presented
in Table 1. TETRAS evaluates the tremor in the head, the language, the face, the voice, along
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with the upper and lower limbs. Furthermore, TETRAS rates the tremor by evaluating the
performance during the conduction of daily activities, such as writing. Depending on the
performance of the examined person, tremor is scored 0 to 4 points, with 0 marking absence
of tremor. The length numbers (e.g., 1–3 cm) indicate the peak oscillation amplitude of the
body part under evaluation.

Table 1. The Essential Tremor Rating Assessment Scale (TETRAS) [42].

Body Part 1 2 3 4

Face or tongue Slightly visible Visible Obvious in most
facial expressions Intense, deformable

Voice Slight in voices such as
“eee” or “aaa”

Visible in voices
such as “eee” or “aaa”

and slight during speech
Visible during speech Difficulty in understanding

certain words

Upper limb Barely visible 1–3 cm 5–10 cm 20 cm
Lower limb Barely visible Visible but feckless 5 cm 5 cm

Writing Barely visible Visible, all words
can be read

Visible, most of the
words can be read No word can be read

Dot approximation task Barely visible 1–3 cm 5–10 cm 20 cm
Upright position Barely visible Visible but feckless Moderate Severe

2.2. Parkinson’s Tremor: Overview and Diagnosis

Parkinson’s disease [43] is one of the most common neurodegenerative diseases, with
a frequency of about 1% in the population over 65 years. It is the main representative of the
exopyramidal diseases and is a result of the destruction of nerve cells in the brain, resulting
in incomplete production of dopamine, with consequences in unusual brain activity. In
more detail, Parkinson’s disease may have a genetic cause or be due to exposure to certain
toxins, in the presence of lewy particles together with a-synucleons, as well as in other
factors such as age and gender. The symptoms begin gradually, often with tremor occurring
in one hand. PT usually occurs at rest, i.e., when the hand is not working, but remains
motionless. In the early stages of the disease, it has been observed that facial expressions
are reduced, hands begin to vibrate when walking and the voice becomes softer. Other
symptoms may be the change in handwriting, imbalance and reduction of automated
movements [44]. In addition, Parkinson’s disease may be responsible for depression and
emotional swings, difficulty in thinking, swallowing problems, sleep disturbances, sudden
pressure drop, sexual dysfunction, etc. However, it is important to mention that Parkinson’s
disease is not by itself fatal. The life-threatening factor is subject to the fact that because of
these symptoms, the person could cause involuntary self-harm. For example, it is possible
because of the lack of balance to fall and cause serious injuries or to aspirate food to the
lungs causing pneumonia and other lung diseases.

Until today, the diagnosis of Parkinson’s disease is primarily based on the clinical
picture of the patient [45]. More specifically, the chances of a person suffering from the
disease Parkinson’s increase as the following symptoms increase, the observation of which
stems from daily life tasks:

• some daily activities are accomplished slower than in the past,
• balance problems,
• the letters become smaller when writing,
• tremor appears in the palm, hand, lips and legs,
• muscle stiffness,
• problems when walking (confused feet, step diminishes),
• the feeling that the feet are stuck on the floor,
• one hand remains motionless when walking,
• change in voice and sound pitch,
• difficulty of the person to get up from a seated position,
• weakness when fastening a garment.
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At this point, a reasonable question is whether the specific symptoms are found to
be capable of deciding whether the patient is suffering from Parkinson’s disease. The
answer to the above question is not easy and even depends on two key factors. First and
decisive factor is the stage of the disease. Often in its early stages, PT can be confused
with the syndrome of ET. Other times the pharmaceutical administration of anti-psychotic
drugs to combat depression or even treatment of drugs to cure nausea cause PT. In ad-
dition, the syndromes of progressive supranuclear palsy [46]) and the normal pressure
Hydrocephalus [47] cause symptoms similar to Parkinson’s disease. The second factor
relies on the particular neurologist, who initially attempts to identify the fundamental
traits of the disease (tremor at rest, stiffness, slowness and instability) and then observes
the reaction of the body of the patient to anti-Parkinson’s drugs.

Unfortunately the error rate in diagnosing the disease, when its symptoms are not
clear touches that of 25% and often the patient seeks the opinion of more than one specialist,
which creates the need for an accurate diagnosis of PT. In 2011, Food and Drug Admin-
istration (FDA) approved the Datscan technique, which allows physicians to observe the
dopamine system in the brain through detailed imaging. This technique is not enough to
diagnose the disease, but it is an important tool when used in conjunction with the clinical
picture of the patient and helps distinguishing between PT and ET. In addition, the ex-
ploitation of a Positron Emission tomography (PET) Scan offers physicians the opportunity
to study the function of cells of a part of the body, in this case the brain. A different method
for identifying the disease is CT-Scan [48]. During this method a radioactive drug is placed
intravenously and depicts the D2 dopaminergic receptors leading to the separation of the
ET from Parkinson’s disease.

It is easily understood that the diagnosis of Parkinson’s disease has several difficulties
and depends to a large extent on the severity of the disease, as well as the medical doc-
tor’s experience. For this reason, Movement Disorder Society (MDS) created the Unified
Parkinson’s Disease Rating Scale (UPDRS), which consists of 4 sections and a total of
50 multiple choice questions associated with the motor and non-motor symptoms of the
disease. The first two following sections are conducted by the patient, while the other two
are by the expert:

• daily life experiences,
• daily life kinetic experiences,
• motion examination,
• difficulties occurring during various movements.

The acquired questionnaire replies are interpreted based on the Parkinson’s disease
stages model [49] presented in Table 2 and the daily activities scale [50] presented in Table 3.

Table 2. Hoen and Yahr Parkinson’s disease stage model [49].

Disease Stage Description

Stage 0 No sign of the disease
Stage 1 Unilateral disease
Stage 1.5 Unilateral disease plus axial involvement
Stage 2 Bilateral illness, without any impairment of balance
Stage 2.5 Mild bilateral disease, with recovery in the helix test
Stage 3 Mild to moderate bilateral disease. Some volatility, independent
Stage 4 Severe disabilities. Still able to walk or stand without help
Stage 5 Use of wheelchair or lying in bed, unless assisted
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Table 3. Schwab and England daily activities scale [50].

Percentage Description

100% Completely independent. Able to do all tasks without slowness or difficulty.
90% Completely independent. Able to do all tasks with some degree of slowness or difficulty.
80% Fully independent in most tasks, but with many tasks taking twice as long to complete. Awareness of

difficulty and slowness.
70% Not completely independent. More challenges during some activities.
60% Some dependency. Ability to complete most tasks, but extremely slowly and with great effort.
50% More dependent. Difficulty during most tasks.
40% Very dependent. Ability to assist only in certain tasks.
30% More effort to accomplishing a few tasks. Greater assistance is needed.
20% Inability of performing unsupervised tasks.
10% Fully dependent.
0% Functions such as swallowing, cystic bladder and intestine do not work. Bedridden.

3. Data Acquisition Setup
3.1. Setup Specifics

In order to investigate the discrimination possibility of essential and Parkinson’s
tremor, as well as the effect of utilizing tremor data from different parts of the hand, a
signal acquisition device was developed based on the use of 4 accelerometers for enabling
the extraction of hand tremor information from multiple measurement points.

Specifically, the index and thumb were selected for their tactile dominance and kine-
matic difference, while the metacarpal and forearm were chosen to further analyze the
tremor origin and its propagating properties. Thus, the accelerometers are placed each on
the index, the thumb, the outer side of the metacarpal region and on the lower part of the
volunteer’s forearm, as graphically shown in Figure 1, while their placement is properly
stabilized via a protective glove and the use of Velcro straps. The standard coordinate
systems are defined as presented in Figure 1, where the accelerometers are placed on the
outer side of the hand and parallel to the transverse plane formed when the hand is in the
extended position.

To be able to extract the necessary data for classifying and discriminating PT and ET,
an acquisition device was developed for implementing the aforementioned conceptual
approach. The device (Figure 2) consists of 4 ADXL345 3-axes accelerometers connected to
two Arduino Mega Boards via SPI protocol. The reason for utilizing two boards was for
ensuring the highest possible sampling rate during the tremor recording sessions, enough
for safely measuring the maximum PT and ET frequencies. Double-sided Velcro straps are
used for easy and comfortable adjustment of the accelerometers on the volunteer’s hand,
while minimizing the effect on the measurements during hand motions and maintaining
the tactile ability of the person’s fingertips.

3.2. Acquisition Procedure

Prior to the measurement trials, all volunteers were informed about the process in
detail and were asked to sign an ethical agreement form. A brief questionnaire with basic
personal information (gender, age, etc.), as well as tremor-related medical information
(age of first tremor occurrence, medication status, etc.) was filled, with the presence and
confirmation of a supervising neurologist in the case of tremor-diagnosed patients.

Next, and for the purpose of the measurement trials, the volunteers had the setup
properly set on their hand while, as defined via the utilized examination protocol, they were
being asked to have the target hand at the following positions presented at Figure 3a–d:

• Resting position: The palm touches the table without exercising force (Figure 3a).
• Extended position: The hand is extended at shoulder height (Figure 3b).
• Free motion: The hand performs an oscillatory movement from the table to the nose.

This movement is repeated for the whole recording at moderate speed (Figure 3c).
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• Motion while holding an object: The hand makes the same movement as in the
free motion position, but this time the hand is holding a bottle half-full of water
(Figure 3d).
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Figure 1. Graphical representation of the selected accelerometer placement points on the human hand.

Figure 2. The measurement acquisition device utilized in the clinical trials with highlighted accelerometers
{I, T, M, F} = {index, thumb, metacarpal, f orearm}.
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The duration of each measurement was 30 s. Before the start of each measurement, it
was explained to the volunteers the exact hand pose or movement that they had to perform
for the duration of the recording. In case of measurement failure due to volunteer’s
weakness to keep his hand straight or in motion, software/hardware issue or other external
factor the measurement was performed again when the problem was resolved.

(a) (b) (c) (d)

Figure 3. The selected arm poses: (a) resting position, (b) extended position, (c) free motion, (d) motion while holding
an object.

4. Methodology
4.1. Data Acquisition and Processing

The data set acquired from each volunteer is divided into 4 measurement sets for
each of the i = {1, 2, 3, 4} arm poses: resting position (i = 1), extended position (i = 2),
free motion (i = 3) and motion with object (i = 4). Every measurement set consists
of 4 acquired subsets j = {I, T, M, F}, one for every accelerometer positioned on the
volunteer index (j = I), thumb (j = T), metacarpal (j = M) and forearm (j = F), as
summarized in Table 4 for each arm pose i. Each subset contains 3 acceleration signals,
one for each axis k = {x, y, z} as defined in Figure 1. Therefore, the data set acquired from
each volunteer consists of a total 48 acquired acceleration signals defined as ai,j,k for each
measurement set i, accelerometer position j and accelerometer axis k.

Table 4. Measurement points for selected arm poses.

Position Index Thumb Metacarpal Forearm

Rest I1 T1 M1 F1
Postural I2 T2 M2 F2

Free motion I3 T3 M3 F3
Motion with object I4 T4 M4 F4

All measurements acquisitions were performed with respect to the Nyquist criterion
to avoid undersampling. The maximum sampling rate achieved for each accelerometer was
62.5 Hz, enough to safely measure the maximum tremor frequencies of PT and ET. Each
measurement consisted of approximately 1800 samples, taking into account the duration
of each recording. The data were then post-processed, while for each accelerometer and
measuring position the frequency spectrum was calculated for extracting the dominant
tremor frequency.
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4.2. Extracted Features

For each acquired acceleration magnitude, 12 features are extracted based on statistical
signal characteristics (SSC) proposed in [33]. For extracting these features, the following
procedure is utilized:

1. Division of initial acquired signal in sections (Ns). Given that the total number of
samples for each measurement is approximately 1800 (sampling rate: 62.5 Hz and
recording time: 30 s) and each section consists of 40 samples, the total number of
sections is approximately 45 with no overlaps.

2. Calculation of local maximum for every section (αn).
3. Calculation of an amplitude change, An, for every section, defined as the absolute

difference of the maximum acceleration of the previous section (αn−1) from the maxi-
mum of the current section (αn), with α0 = 0.

An = |αn − αn−1|

4. Calculation of the mean amplitude change.

mean_amp = ∑Ns
m=1

Am
Ns

5. Calculation of the mean absolute deviation of amplitude changes.

amp_dev = ∑Ns
m=1

|Am−mean_amp|
Ns

6. Calculation, for every section, of the period, Tn, the difference between the time of the
current section’s maximum and the previous section’s maximum.

Tn = tn − tn−1

7. Calculation of the mean period.

t_mean = ∑Ns
m=1

Tm
Ns

8. Calculation of the mean absolute deviation of periods.

t_dev = ∑Ns
m=1

|Tm−t_mean|
Ns

9. Finally, from the 4 extracted parameters, the mean, maximum, and minimum across
accelerometer axes of each of the 4 features described above are calculated:

• Mean, maximum and minimum value of median value sum of each section’s
amplitude (mean_amp).

• Mean, maximum and minimum value of median value sum of each section’s
amplitude deviation (amp_dev).

• Mean, maximum and minimum value of median value sum of each section’s Tn
(t_mean).

• Mean, maximum and minimum value of median value sum of each section’s Tn
deviation (t_dev).

4.3. Categorization

All volunteers are grouped under certain categories which relate to gender, age, time
period from the occurrence of disease/tremor, the stage of their condition, the medication, if
any, that volunteers have followed and finally the maximum tremor frequency as extracted
from the calculated frequency spectrum.
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4.4. Hierarchical Clustering

The extracted categories are then utilized for hierarchical clustering of the data, with
the purpose of revealing any similarities between patients with Parkinson’s and essential
tremor. In this work, the agglomerative hierarchical clustering technique is used [51]. In
this technique, initially each data point is considered as an individual cluster. In each
iteration, similar clusters merge to form new, larger clusters. The hierarchical grouping to
be presented is intended to distinguish individuals in basic categories in order to create a
basic image of the samples collected regarding the tremor-diagnosed patients.

4.5. Classification

After calculating the parameters from the acquired data, the features of the training
data are introduced to the 21 classifiers shown in Table 5. For the Tree classifiers, the
maximum number of splits is 100 for the Fine, 20 for the Medium and 4 for the coarse tree
while the split criterion is the Gini’s diversity index. Moreover, the covariance structure for
the discriminant analysis category is selected as full. Regarding SVMs, the Kernel scale for
Linear, Quadratic and Cubic is automatic while for Fine Gaussian it is 0.87, for Medium
Gaussian 3.5 and for Coarse Gaussian 14. For all the SVMs, the box constrained level is
selected at 1 and the multi-class method is one-vs.-one. Furthermore, for Medium, Cosine,
Cubic and Weighted KNN the number of neighbors is 10, for Fine KNN it is 1 and lastly
for Coarse KNN it is chosen at 100. The distance metric is defined as Euclidean for Fine,
Medium, Coarse and Weighted KNN. In parallel, Cosine and Minkowski distances are
used for the Cosine and Cubic KNN classifiers, respectively. Finally, for the Ensemble
learning category, the maximum number of splits is 20 for the Boosted (ensemble method:
AdaBoost) and RUSBoosted (ensemble method: RUSBoost) and 134 for the Bagged trees
(ensemble method: Bag). For the subspace KNN classifier, the subspace dimension is 6 and
the ensemble method is the subspace one. For all the ensemble classifiers the number of
learners is 30.

Table 5. Tested classification algorithms.

Category Algorithm

Trees [52]
Fine tree
Medium tree
Coarse tree

Discriminant analysis [53] Linear discriminant analysis (LDA)
Quadratic discriminant analysis (QDA)

Support vector machine (SVM) [54]

Linear SVM
Quadratic SVM
Cubic SVM
Fine Gaussian SVM
Medium Gaussian SVM
Coarse Gaussian SVM

K-nearest neighbor (KNN) [55]

Fine KNN
Medium KNN
Coarse KNN
Cosine KNN
Cubic KNN
Weighted KNN

Ensemble learning [56]

Boosted trees
Bagged trees
Subspace KNN
RUSBoosted trees
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5. Results

In this section, the results of grouping the acquired data in various categories, as
well as the discrimination results between PT, ET and no-tremor (NT) conditions will
be demonstrated.

5.1. Received Data

A total of 43 samples were collected, 12 were from patients diagnosed with PT, 3 with
ET, while the other 28 were from volunteers with no diagnosed tremor (NT). The data
extracted from the measuring device include the signals of acceleration in x, y, z axes as
a function of time t and are utilized to calculate the frequency spectrum of amplitude of
the resultant acceleration vector of the measured signal for the extraction of the dominant
tremor frequency. Indicatively, Figure 4a–c present the data acquired via a (a) Parkinson’s-
diagnosed patient, (b) an ET-diagnosed patient and (c) a volunteer without tremor evidence.
The acceleration measurements refer to the extended arm position and for the index I2. It
is noted that for the amplitude spectrum plots in Figure 4 a high-pass filter was applied
with a cutoff frequency of 0.5 Hz to avoid the DC artifact at 0 Hz.

By observing Figure 4a, it is easy to distinguish the occurring PT particularly after the
16th second, when the volunteer started to tire. In this case, the maximum tremor frequency
is extracted from the frequency spectrum as 5.91 Hz. From Figure 4b, the main extracted ET
frequency for the specific measurement is observed close to 4.93 Hz. An observed difference
from the Parkinson’s patient was that the volunteer’s index was trembling throughout the
duration of the measurement. At the same time, the PT case was observed to have a lower
maximum amplitude of the frequency spectrum, which was measured close to 0.25 Hz,
while the amplitude in the ET case was measured at 0.5 Hz.

From Figure 4c, it is easily distinct how the volunteer keeps his arm extended without
shaking significantly. However, as shown by the spectral diagrams, some small amplitude
frequency peaks appear, the causes of which are attributed to the measurement noise from
the accelerometer. Finally and as expected, the NT volunteer’s tremor frequency shows a
significantly smaller amplitude in comparison to the tremor-diagnosed volunteers.

It is important to point out that there were Parkinson’s-diagnosed volunteers who
showed no tremor during the measurements, which was verified in the subsequent process-
ing of the acquired data. This is expected, as tremor may be one of the basic characteristics
of the disease, but it is not a necessary and unique trait of the disease, it may not have a
lasting nature and may not occur during experimentation.

5.2. Categorization

Table 6 contains the summarized data collected from the volunteers’ medical history
and questionnaire answers. PT refers to Parkinsonian tremor patients, ET to essential
tremor and NT means person with no diagnosed tremor. The status ON refers to a person
who is taking medication and has even taken medication within the last 12 h. Instead,
in the OFF mode, the person has not taken any medicine for a 12 h period, but is under
pharmaceutical supervision. Moreover, 33% of PT subjects were at the early stage of
the disease.

Table 6. Volunteer categorization groups.

Category PT ET NT

Gender (M/F) 7/5 3/0 19/9
Age (range) 47–89 50–69 14–76
Years since tremor appearance (range) 1–18 5–42 -
Early stage (yes/no) 0/3 4/8 -
Medication (Yes(ON/OFF)/No) 10(7/3)/2 1(0/1)/2 -
Tremor frequency in Hz (range) 0–8.7 0–10 -
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Figure 4. Indicative accelerometer measurements and respective frequency spectrum and power
spectral densities, as acquired from the index measurement point and the extended arm pose I2

of a (a) Parkinson’s-diagnosed patient, (b) ET-diagnosed patient and (c) volunteer with no visible
tremor evidence.
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5.3. Hierarchical Grouping

By considering the variables presented in Table 6, the categories of tremor, medication,
gender and age are properly symbolized and normalized in the hierarchical unit, while
the four classes complement the years of tremor occurrence and the maximum tremor
frequency in any of the four arm poses. The indicative dendrogram produced for only
the tremor-diagnosed patients (e.g., ET and PT) is presented in Figure 5. Patient numbers
1–3 (highlighted with red font) concern the volunteers with ET, while 4–15 (highlighted
with green font) concern those with Parkinson’s. The main remark extracted from the
diagram is that the 3 volunteers with ET do not appear grouped with each other, but
instead appear to have more in common with Parkinson’s patients. This demonstrates
the difficulty in diagnosing the tremor type, especially if that is attempted without the
appropriate information, both from the part of the clinical background and from the
bio-signal acquisition. Acquiring more data from volunteers with ET for extending the
presented results is work in progress.
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Figure 5. Dendrogram displaying patient categorization.

5.4. Model Training and Prediction

To amend the inequality between volunteers with ET and PT, as well as for increasing
the available number of data and for providing an initial overview of their differential
diagnosis and grouping, data augmentation techniques were considered. Data augmenta-
tion is often used in conjunction with convolutional neural networks (CNN) and can be
used to address both the requirements of the diversity of the training data and the amount
of data [57–60]. In addition to these two, augmented data can also be used to address
the class imbalance problem in classification tasks, in our case the essential tremor class.
Normally, in the case of many parameters, the learning model should be introduced with
a proportional amount of examples to achieve satisfactory performance. To this goal, the
data were initially separated into train and test data in order to be handled independently
from each other and avoid information leakage from training to testing sets. Then, a sparse
autoencoder with hidden size 1200 maximum epochs was trained in the Matlab environ-
ment along with a linear transfer function for the decoder. The autoencoder contains an
autoencoder network, which consists of an encoder which maps the input to a hidden
representation and a decoder which attempts to map this representation back to the original
input. Specifically, the data were transferred to a low-level neural network that implements
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Principal Component Analysis (PCA) and, in this case, new data were predicted from the
trained autoencoder [61]. It must be noted though that although the data augmentation
technique aids to counter the limited data number and the class imbalance, it is by no
means better than a database composed from real participants.

As we observe in Table 4, for each volunteer we received a total of 16 measurement
subsets, as defined in Section 4.1. Therefore, tremor classification was performed in
16 different cases, concerning the 4 different arm poses and each of the 4 accelerometers,
where the resulting acceleration vector was utilized for each case. Table 7 summarizes the
number of original data collected, the data resulted from the data augmentation technique,
as well as the total training and test data used for the classification procedure. For each of
the three ET subjects (minority class) 15 new data were synthesized in order to counter the
data imbalance. Each of the 8 PT subjects used for training had 5 new data synthesized
while the rest 4 PT subjects used for testing had 3 new data synthesized. Finally, each of
the 15 NT subjects who were categorized as training data had 3 new data synthesized and
each of the rest 13 subjects sorted as test data had 1 new data synthesized.

Table 7. Summary of data used for classification.

Data Original (ET, PT, NT) Augmented (ET, PT, NT) Total (ET, PT, NT)

Training 25 (2, 8, 15) 115 (30, 40, 45) 140 (32, 48, 60)
Test 18 (1, 4, 13) 40 (15, 12, 13) 58 (16, 16, 26)
Total 43 (3, 12, 28) 155 (45, 52, 58) 198 (48, 64, 86)

For the training examples, the 12 parameters extracted from the data processing
technique were defined as predictors and k as a response variable for tremor, with k = 1
for ET, k = 2 for PT and k = 3 for NT volunteers. The training examples were a total of
140, with 32 belonging to the ET class, 48 to PT and the remaining 60 as NT cases. The
21 training algorithms were tested via Matlab and the respective training success rates
were extracted for each of the measurements. The models with the higher accuracy were
stored and were used for predictions.

For the test data, the tremor prediction rates were extracted for the respective machine
learning algorithms selected for each measurement subset. The test data included a total of
58 examples, with the first 16 involving ET, the next 16 PT, while the remaining 26 examples
involved NT cases.

5.5. Results

Table 8 lists the name of each measurement subset, the three best prediction algorithms
for each of the 16 measurements, their success rates, both aggregated and separated for each
type of tremor, as well as the training times and the prediction speeds of these classifiers.
Variable success rates when trying to make predictions with new examples (test data)
are observed.

Table 8. Maximum achieved prediction rates.

Measurement ET (%)
(k = 1)

PT (%)
(k = 2) NT (%) (k = 3) Total (%) Algorithm Training Time

(sec)
Prediction
Speed (obj./sec)

I1

93.7 68.7 50.0 67.2 RUS Boosted trees 0.45 4800
87.5 37.5 73.1 67.2 Medium tree 4.71 3400
87.5 43.7 43.6 51.72 Bagged trees 7.29 690

I2

100.0 75.0 92.3 89.6 Bagged trees 2.89 1200
100.0 50 92.3 78.8 Quadratic SVM 2.65 2800
100.0 41.7 92.1 78.8 Fine KNN 3.07 3300

I3

81.2 56.2 61.5 63.8 Quadratic SVM 1.81 3600
62.5 45.8 73.1 61.4 Linear SVM 1.91 3800
62.5 37.5 73.1 57.6 Bagged trees 2.12 1300



Signals 2021, 2 215

Table 8. Cont.

Measurement ET (%)
(k = 1)

PT (%)
(k = 2) NT (%) (k = 3) Total (%) Algorithm Training Time

(sec)
Prediction
Speed (obj./sec)

I4

100.0 6.2 92.3 70.7 Bagged trees 2.18 1300
93.7 6.25 91.7 67.8 Linear SVM 1.66 1900
100.0 0 91.7 67.8 Quadratic SVM 1.58 3800

T1

100.0 50.0 96.1 84.5 Fine Gaussian SVM 1.72 2700
100.0 50.0 100.0 85.7 Weighted KNN 1.67 6300
93.7 36.4 95.8 78.8 Quadratic SVM 1.86 2700

T2

100.0 87.5 88.4 91.4 Quadratic SVM 1.88 4100
100.0 100.0 61.5 78.3 Fine Gaussian SVM 1.74 3500
100.0 100.0 30.78 68.9 Linear SVM 1.95 4300

T3

100.0 18.7 84.6 70.7 Bagged trees 2.28 1200
100.0 0 100.0 71.9 Fine Gaussian SVM 1.68 3500
100.0 0 28 40.3 Linear SVM 1.96 3500

T4

100.0 75.0 92.3 89.6 Bagged trees 2.83 950
100.0 0 100.0 73.9 Quadratic SVM 1.73 3300
100.0 0 100.0 73.9 Linear SVM 1.80 3600

M1

93.7 87.5 38.4 67.2 Bagged trees 2.26 1000
93.7 50 50 62.1 Weighted KNN 0.55 5700
93.7 56.25 50 63.2 Quadratic SVM 1.75 3000

M2

100.0 100.0 92.3 96.5 Linear SVM 1.86 3600
100.0 100.0 100.0 100.0 Quadratic SVM 1.78 3500
100.0 100.0 100.0 100.0 Cubic SVM 1.69 3600

M3

100.0 50.0 100.0 86.2 Cubic SVM 1.20 2900
0 75.0 100.0 62.5 Quadratic SVM 1.28 2900
0 75.0 100.0 62.5 Linear SVM 1.36 3700

M4

100.0 68.7 100.0 91.4 Cubic SVM 2.20 4700
100.0 68.7 100.0 91.4 Quadratic SVM 2.53 4300
100.0 62.5 92.3 86.2 Fine KNN 1.41 3800

F1

93.7 43.7 50.0 60.3 Linear SVM 1.89 4200
100.0 31.2 52.4 60.2 Quadratic SVM 1.81 3500
100.0 50.0 57.1 67.9 Bagged trees 2.46 890

F2

100.0 93.7 34.6 68.9 Bagged trees 2.69 1100
100.0 68.7 23.1 56.9 Quadratic SVM 2.45 4500
100.0 68.7 23.1 56.9 Fine KNN 1.98 5300

F3

100.0 75.0 76.9 82.8 Quadratic discriminant 1.65 6100
100.0 75.0 95.2 90.6 Linear discriminant 1.78 8600
100.0 50.0 100.0 84.9 Linear SVM 2.28 4100

F4

100.0 100.0 92.3 96.5 Cubic SVM 1.38 2200
100.0 100.0 86.9 92.0 Linear SVM 1.17 4200
100.0 75.0 93.3 90 Bagged trees 2.82 860

From the presented results, there are algorithms that predicted correctly all 16 ET cases.
Specifically, for the thumb and forearm measurements the majority of the chosen classifiers
were able to accurately discriminate subjects with ET among the rest of the subjects, while
for the index and metacarpal positions the prediction percentages of ET are high and reach
up to 100%.

On the contrary, it appears challenging to distinguish between PT and NT volunteers.
This is reasonable since there were Parkinson’s-diagnosed volunteers who showed no
tremor during the measurements, which was verified in the subsequent processing of the
acquired data. This was expected, as tremor may be one of the basic characteristics of
the disease, but it is not a necessary and unique trait of the disease and it may not have a
lasting nature.

Therefore, in a resting position, where the hand is not affected from the gravitational
pull, it is possible to produce false results in the distinction PT from NT cases. This phe-
nomenon was not observed in ET subjects, most of which were properly classified, due
to the fact that all such volunteers experienced tremor at a resting position. Thus, after
the appropriate processing of the signals and the extraction of the relevant parameters for
the 3 ET subjects and for the signals created on the basis of the data augmentation tech-
nique, they were correctly classified as ET observations, which applied to all measurement
positions. However, PT was correctly classified at 100% for the SVM algorithms in both
extended arm position measurements (M2, T2) and in motion while holding an object (F4).
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From the algorithms with the highest success rate, the lowest achieved rate was 40.3%
for the Linear SVM classifier. This percentage belonged to the thumb measurement in
free motion, while also relatively low percentages were observed in measurements at
resting positions of the index (I1—Bagged Trees), metacarpal (M1) and lower forearm
(F1—Weighted KNN) and at free motion measurements of the index (I3—Bagged Trees)
and thumb (T3—Linear SVM).

The highest success rates measured up to 100.0% for the Cubic and Quadratic SVM al-
gorithms in extended arm position measurement of the metacarpal area (M2). Furthermore,
the 96.5% accuracy provided by the Cubic SVM classifier in F4 stands out among the rest
in terms of accuracy while success rates over 90% were provided for other measurements
in the aforementioned arm positions (M4—Cubic SVM, T2—Quadratic SVM, T4). In the
object-holding arm position, the classification of new examples was more successful than of
the free motion position, because as the hand moves, the strength of the muscles gradually
weakens causing an increase in tremor amplitude.

In the midst of the extracted success rates are the tremor identification algorithms
based on free movement positions. Although at these positions the hand muscles are
similarly weakened due to the existence of gravitational pull and movement, they do not
fade in free-motion as much as in the holding-object position and the characteristics of each
tremor become less distinct. However, accuracy of around 90% can be observed for Cubic
SVM and Linear discriminant through the free motion measurements of the metacarpal
and lower forearm.

In order to further analyze the classifiers’ performance, the training times and pre-
diction speeds have been extracted and are presented in Table 8. As observed, the lowest
training time was achieved by RUSBoosted trees classifier with 0.45 s during I1 measure-
ment, along with the high prediction speed of 4800 obj./s. However, RUSBoosted trees
managed to classify correctly 67.2% of the total examples, a relatively low rate comparing
to the rest of the classifiers. Similarly, Weighted KNN achieved high prediction speed
(5700 obj./s) with low training time (0.55 s) but in expense of low accuracy rate, that of
62.1%. It is noteworthy that the highest training time was over 7 s from Bagged trees during
I1, the same measurement where the lowest training time was achieved. In M2, Quadratic
and Cubic SVM classifiers achieved the highest accuracy rates while combining relatively
low training time and high prediction speed. Finally, Linear SVM must be highlighted
as the classifier that during F4 measurement was characterized by high accuracy, training
time and prediction speed with 92.0%, 1.17 s and 4200 obj./s, respectively.

Tables 9–12 summarize the average sensitivity, specificity and accuracy percentages
of each measurement subset, in order to further assess the presented classification results
concerning the performance of the 21 selected classifiers.

Table 9 presents the average values of sensitivity, specificity and accuracy percentages
for each of the 21 tested classifiers for the rest measurement subsets. As observed from the
Table, the majority of the algorithms were able to accurately classify the positive cases of
ET with high success. Especially, all but one SVM classifier reached very high sensitivity
percentages and even near 99% for the case of Cubic SVM. In parallel, SVM algorithms
managed to classify most of the negative cases of ET as negative, although similar to the
sensitivity, for ET cases most of the classifiers achieved high specificity percentages with
Medium KNN and Boosted trees classifiers predicting correctly all the negative ET cases as
negative. Unlike the ET cases, for the PT we can discern the difficulty of the classifiers to
correctly predict the positive cases with the maximum sensitivity percentage being that of
Medium Gaussian SVM classifier with 65.63%. On the contrary, the specificity rates are
highly increased and reach up to 100% for Boosted trees. Lastly, regarding the sensitivity
rates of NT, Boosted trees and Medium KNN classifiers achieved the highest with 100%
while for the specificity of NT, RUS Boosted trees achieved a percentage of 89.84%.



Signals 2021, 2 217

Table 9. Average sensitivity, specificity and accuracy percentages of classification methods for rest
position measurements.

Classifier
Sensitivity Specificity

Accuracy
ET PT NT ET PT NT

Fine Tree 90.63 51.56 46.52 85.59 73.92 81.25 60.31
Medium Tree 90.63 51.56 46.52 85.59 73.92 81.25 60.31
Coarse Tree 89.06 57.81 35.53 90.62 65.43 79.69 57.30
Linear discriminant 89.06 59.38 64.74 83.64 83.53 88.28 69.88
Quadratic discriminant 85.94 48.44 77.24 92.57 87.10 75.00 71.60
Linear SVM 96.88 39.06 76.01 80.98 94.64 80.47 71.54
Quadratic SVM 96.88 39.06 75.60 85.86 91.51 78.13 71.56
Cubic SVM 98.44 43.75 80.59 87.81 95.24 77.34 75.17
Fine Gaussian SVM 92.19 64.06 59.66 97.30 75.43 81.25 69.73
Medium Gaussian SVM 92.19 65.63 50.41 88.67 77.73 83.59 66.78
Coarse Gaussian SVM 48.44 32.81 64.29 82.74 75.97 64.84 50.98
Fine KNN 98.44 53.13 57.55 84.75 82.66 84.38 67.64
Medium KNN 84.38 62.50 47.02 88.84 72.38 82.03 62.08
Coarse KNN 0.00 0.00 100.00 100.00 98.21 2.34 43.53
Cosine KNN 93.75 53.13 40.75 86.42 67.29 86.72 59.26
Cubic KNN 79.69 62.50 47.25 90.19 69.00 82.03 60.66
Weighted KNN 96.88 62.50 50.14 90.70 76.54 82.81 66.86
Boosted trees 0.00 0.00 100.00 100.00 100.00 0.00 43.53
Bagged Trees 92.19 48.44 57.10 90.03 81.55 73.44 64.79
Subspace KNN 92.19 29.69 41.71 75.58 78.17 74.22 52.43
RUS Boosted trees 96.88 59.38 46.02 77.69 80.20 89.84 64.00

Regarding the average accuracy for each of the 21 classifiers for the rest measurement
subsets, the Cubic SVM classifier provided the most successful prediction rate with 75.17%,
while Linear, Quadratic and Fine Gaussian SVM reached relatively high percentages near
70%. Moreover, Cubic SVM, as observed from the Table 9, appears to have high sensitivity
and specificity rates, except the occasion of the PT sensitivity which is lower than 45%.

Table 10 shows the average sensitivity, specificity and accuracy percentages for the
measurement subset at postural position. Regarding the classification of ET, we can observe
that 18 out of 21 classifiers were able to accurately predict the positive ET cases with a
success rate over 96.88%. In parallel, all the classifiers predicted correctly the negative cases
as negative with percentages over 78.55%. For the subjects with PT, the sensitivities of the
classifiers at rest positions are clearly lower than the ones for the ET subjects. However,
Quadratic discriminant classifier predicted correctly the 81.25% of positive cases of PT,
although the specificity of the classifier for PT instances fell below 69%. On the contrary,
Boosted trees classifier managed to identify correctly all the negative cases of PT. Lastly, all
the classifiers showed difficulty in predicting all NT positive cases, except the Boosted trees
which achieved 100% sensitivity of NT cases despite the inability of the same classifier
to predict any of the negative NT cases. Specifically, the majority of the tested classifiers
categorized the negative NT cases as negative at a percentage around 90%.

Regarding the average accuracy for each of the 21 classifiers for the postural measure-
ment subset, Fine KNN classifier stands out as the most successful in terms of prediction
rate with 72.81%. Furthermore, this classifier, as observed from Table 10, appears to have
high sensitivity and specificity rates, except the occasion of the NT sensitivity which is
lower than 60%. It must be mentioned that the accuracy rates of the most of the classifiers
are close to 70% and the accuracy of Fine KNN.
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Table 10. Average sensitivity, specificity and accuracy percentages of classification methods for
postural position measurements.

Classifier
Sensitivity Specificity

Accuracy
ET PT NT ET PT NT

Fine Tree 98.44 54.69 58.23 83.53 81.36 90.63 68.15
Medium Tree 98.44 54.69 58.23 83.53 81.36 90.63 68.15
Coarse Tree 98.44 48.44 57.48 78.55 83.47 90.63 65.83
Linear Discriminant 98.44 53.13 64.24 84.41 81.20 96.09 71.59
Quadratic Discriminant 100.00 81.25 55.11 100.00 68.43 90.63 70.41
Linear SVM 96.88 53.13 48.15 88.51 66.30 93.75 61.68
Quadratic SVM 100.00 62.50 54.27 94.14 70.07 90.63 67.48
Cubic SVM 100.00 71.88 50.62 96.27 66.61 91.41 66.83
Fine Gaussian SVM 100.00 70.31 58.03 100.00 70.73 85.16 69.83
Medium Gaussian SVM 100.00 54.69 56.97 90.51 73.85 91.41 68.08
Coarse Gaussian SVM 67.19 50.00 61.16 91.51 69.27 85.16 62.95
Fine KNN 100.00 76.56 59.18 98.90 72.22 89.84 72.81
Medium KNN 100.00 51.56 60.21 88.51 76.82 92.19 69.32
Coarse KNN 0.00 18.75 82.69 100.00 79.76 21.88 50.30
Cosine KNN 100.00 43.75 55.67 81.85 77.08 93.75 65.29
Cubic KNN 100.00 46.88 59.84 87.01 77.13 91.41 68.07
Weighted KNN 100.00 51.56 61.36 90.51 76.65 90.63 69.98
Boosted trees 0.00 0.00 100.00 100.00 100.00 0.00 52.89
Bagged Trees 100.00 65.63 60.36 93.57 75.47 91.41 71.86
Subspace KNN 100.00 60.94 58.32 91.20 75.17 89.84 69.08
RUS Boosted trees 100.00 54.69 58.18 84.31 82.41 86.72 68.27

Table 11. Average sensitivity, specificity and accuracy percentages of classification methods for free
motion measurements.

Classifier Sensitivity Specificity
Accuracy

ET PT NT ET PT NT

Fine Tree 82.81 9.38 91.59 82.71 95.06 66.41 66.62
Medium Tree 82.81 9.38 91.59 82.71 95.06 66.41 66.62
Coarse Tree 78.13 3.13 92.26 79.05 97.56 63.28 64.36
Linear Discriminant 50.00 37.50 65.02 65.36 86.98 77.34 53.16
Quadratic Discriminant 50.00 4.69 99.26 100.00 89.48 40.63 60.28
Linear SVM 50.00 32.81 62.88 67.49 84.98 73.44 51.10
Quadratic SVM 57.81 39.06 91.59 93.01 88.48 65.63 68.13
Cubic SVM 57.81 15.63 84.84 92.34 80.30 60.16 57.95
Fine Gaussian SVM 50.00 0.00 100.00 100.00 100.00 25.00 59.52
Medium Gaussian SVM 65.63 28.13 73.58 94.95 85.86 49.22 58.12
Coarse Gaussian SVM 25.00 31.25 84.84 91.50 85.80 45.31 53.47
Fine KNN 65.63 7.81 84.12 93.82 95.71 36.72 57.44
Medium KNN 65.63 28.13 75.53 90.89 92.24 48.44 59.26
Coarse KNN 0.00 0.00 98.81 100.00 99.32 0.00 44.48
Cosine KNN 65.63 32.81 64.72 82.46 90.20 56.25 55.90
Cubic KNN 65.63 28.13 70.90 88.89 91.14 48.44 56.93
Weighted KNN 65.63 28.13 76.53 91.50 92.74 47.66 59.69
Boosted trees 0.00 0.00 100.00 100.00 100.00 0.00 44.32
Bagged Trees 90.63 12.50 80.29 78.85 93.56 69.53 63.53
Subspace KNN 71.88 29.69 70.55 96.82 82.06 54.69 59.48
RUS Boosted trees 57.81 9.38 93.06 86.25 90.56 57.81 60.48
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As shown in Table 11, ET sensitivity percentages for the measurement subset at
free motion position are clearly lower than the rest and postural measurement subsets.
More specifically, only the Trees classifiers achieved high sensitivity rates with only the
Bagged trees reaching up to 90%. However, this is not the case for ET specificity, where
the majority of algorithms classified as negative the ET negative cases with success rates
up to 100% for Quadratic discriminant analysis, Fine Gaussian SVM, Coarse KNN and
Boosted trees. Furthermore, regarding the positive PT cases, only 39.06% of them were
correctly categorized by the Quadratic SVM classifier while the other classifiers had even
lower sensitivity percentages. In a different pattern, the PT specificity rates for the majority
of the classifiers are over 90%. with Fine Gaussian SVM and Boosted trees predicting
correctly all the negative PT cases. Moreover, and in comparison to the positive PT cases,
the NT ones were categorized as positive at high percentages with Fine Gaussian SVM
and Boosted trees achieving the highest success rates. Lastly, the specificity rates of NT
remained at relatively high levels with the best percentage being that of 77.34% from Linear
Discriminant classifier.

In general, the accuracy percentages of the classifiers from the free motion measure-
ment subset are lower than the ones extracted from the previous measurement subsets.
This is an expected outcome, because, as seen from the aforementioned paragraph, the
sensitivity and specificity rates were lower than for the rest and postural measurement
subsets. Specifically, Quadratic SVM along with the Tree classifiers achieved the highest
accuracy rates reaching up to 68.13%.

Table 12. Average sensitivity, specificity and accuracy percentages of classification methods for
motion with object measurements.

Classifier
Sensitivity Specificity

Accuracy
ET PT NT ET PT NT

Fine Tree 82.81 9.38 91.59 82.71 95.06 66.41 66.62
Medium Tree 82.81 9.38 91.59 82.71 95.06 66.41 66.62
Coarse Tree 78.13 3.13 92.26 79.05 97.56 63.28 64.36
Linear Discriminant 100.00 35.94 73.53 82.96 86.61 86.72 70.71
Quadratic Discriminant 100.00 35.94 73.53 82.96 86.61 86.72 70.71
Linear SVM 100.00 35.94 70.65 82.96 84.82 86.72 69.42
Quadratic SVM 98.44 48.44 86.68 87.50 92.73 86.72 79.13
Cubic SVM 98.44 48.44 86.68 87.50 92.73 86.72 79.13
Fine Gaussian SVM 98.44 48.44 88.86 82.58 94.05 98.44 80.86
Medium Gaussian SVM 100.00 40.63 90.53 84.45 95.24 90.63 80.40
Coarse Gaussian SVM 100.00 40.63 91.91 83.26 97.02 93.75 82.62
Fine KNN 100.00 25.00 84.56 90.48 87.50 75.00 71.36
Medium KNN 100.00 37.50 85.72 79.98 94.94 93.75 78.47
Coarse KNN 85.94 50.00 85.98 83.18 89.29 99.22 78.00
Cosine KNN 100.00 37.50 87.75 85.42 94.35 86.72 79.01
Cubic KNN 98.44 39.06 77.32 76.33 90.48 100.00 74.37
Weighted KNN 0.00 3.13 100.00 100.00 97.32 6.25 56.40
Boosted trees 96.88 17.19 66.75 64.43 90.18 99.22 64.79
Bagged Trees 98.44 37.50 76.36 76.33 89.88 99.22 73.50
Subspace KNN 100.00 34.38 81.17 75.74 93.45 98.44 75.23
RUS Boosted trees 0.00 0.00 100.00 100.00 100.00 0.00 55.72

The sensitivity, specificity and accuracy rates of the measurement subset related to
motion while holding an object are summarized at Table 12. By looking at the table, the
majority of the classifiers appear to have high ET sensitivity rates up to 100%. The same can
be said for the ET specificity and for the Weighted KNN and RUSBoosted trees classifiers.
However, it is worth mentioning that these two classifiers with the highest ET specificity
have the lowest ET sensitivity as they were unable to categorize a single positive ET case
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as positive. Moreover, the correct classification of the positive PT cases proved difficult
for the classifiers with the highest percentages being below 50% which was the best PT
sensitivity rate achieved from the Coarse KNN. On the other hand, the algorithms were
able to categorize as negative most of negative PT cases with the RUSBoosted trees classifier
achieving 100% success rate. Lastly, both the NT sensitivity and specificity rates are high for
most of the classifiers with Weighted KNN and RUSBoosted trees having 100% sensitivity
percentage and Cubic KNN having the same perfect specificity percentage.

Regarding the average accuracy for each of the 21 classifiers for the motion with object
measurement, subset Coarse Gaussian SVM classifier stands out as the most successful in
terms of accuracy with 82.62% while simultaneously having high sensitivity and specificity
rates, except NT sensitivity which is relatively low. Finally, it is notable that 5 out of 6 SVM
classifiers predicted correctly the examples with approximately 80% success.

Overall, as we observe from Tables 9–12, ET is well classified for all four measurement
subsets with high sensitivity and specificity percentages. On the contrary, positive PT
cases were more difficult to classify. In detail, only in the postural measurement subset the
positive cases of PT were correctly categorized as positive at a satisfactory level with the
high success sensitivity rate of 81.25% from the Quadratic Discriminant classifier. However,
the majority of the classifiers managed to efficiently categorize correctly the negative cases
of PT at all four measurement positions and at percentages reaching up to 100% in each of
the sets. In general, the NT cases were classified correctly at high success rates especially for
free motion and motion with object measurement subsets. Regarding the various classifiers,
Boosted trees recognized all the positive NT cases as positive at rest, postural and free
motion measurement positions. Furthermore, the NT specificity rate was relatively high in
all sets, but the motion with object one proved to be the most accurate with 100% specificity
rate for Cubic KNN.

To summarize, the measurement subset which provided the best accuracy percentage
is the motion while holding an object with 82.62% average accuracy for the accelerometer
signals from index, thumb, metacarpal and forearm. This percentage is approximately 8%
better than the second best accuracy achieved at rest position, 10% better than at postural
position and 15% better than at free motion position. The highest percentage belongs to the
Coarse Gaussian SVM classifier while the second best accuracy percentage belongs to Cubic
SVM classifier at the rest measurement subset, with Fine KNN at postural position and
Quadratic SVM at free motion position following third and forth, respectively. Therefore,
our investigation shows that it is possible to efficiently classify among essential, Parkinson’s
and no diagnosed tremor, especially at motion with object position. This observation agrees
with our findings from Table 8 that during the object-holding arm position, the classification
of new examples is more successful than of the other three positions, for the reason that
as the hand moves, the strength of the muscles gradually weakens causing an increase in
tremor amplitude thus creating a clear margin of separation between the three classes.

6. Conclusions

In this work, an attempt was made in differentiating Parkinson’s and essential tremor
via the use of machine learning modeling algorithms. To this goal, a clinical trial was
conducted involving tremor-diagnosed patients and healthy volunteers, where a data
acquisition setup was implemented and utilized for acquiring acceleration measurements
from multiple arm points and for multiple motion scenarios. Initially, after collecting data
from the medical history of tremor-diagnosed patients, grouping of patients was attempted
via the use of dendrograms, for investigating the possibility of distinguishing between
these kinds of tremor via diagrammatic representation. The overlapping in symptoms
and characteristics of these two types of tremor further highlighted the challenge and risk
of their misdiagnosis, which fueled the utilization of more advanced machine learning
techniques for improving the identification possibilities.

Via the acceleration measurements acquired from all volunteers under different arm
poses and measurement points on the hand and forearm, the data was processed and
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augmented to account for the inequality between volunteers with essential and Parkinson’s
tremor, which was then followed by the extraction of statistical signal characteristics.
Machine learning models were trained via the use of the augmented data, while multiple
classification algorithms were tested for identifying the ones with the highest success rates
and for making predictions.

From the tremor identification results, it was noted that the prediction algorithms
with the lowest prediction percentages appeared in the measurements with the arm in a
resting position or during free motion with the lowest achieved success rate was the of
T3 with 40.3%. On the contrary, the highest forecasting percentages were acquired from
SVM-based algorithms, in both extended and moving while holding an object arm poses.
Specifically, Cubic and Quadratic SVM managed to predict correctly with high speed, while
requiring low training time, all the examples at M2. In parallel, Cubic SVM achieved 96.5%
success rate at F4 while during the same measurement Linear SVM effectively combined
accuracy with training time and prediction speed. Thus, the increased tremor in these
two positions made the discrimination more distinct from each type of tremor parameter,
thus resulting in more accurate predictions. In contrast, the free-motion arm pose, which
includes the parallel action of different muscle groups, resulted in less muscle fatigue and
less distinct characteristics for better discriminating among tremor types. In overall, Cubic
and Quadratic SVM algorithms managed to provide good prediction rates under most
measurement points and arm poses, reaching up to 100% prediction success rates for both
(i) metacarpal measurements with the arm extended and (ii) forearm measurements with
the arm moving while holding an object.

Finally, from the results presenting the average sensitivity, specificity and accuracy of
each measurement subset for the 21 selected classifiers, the SVM algorithms provided the
best results, where for the motion with object position the accuracy percentage of Coarse
Guassian SVM reached up to that of 82.62%. This high percentage along with superiority
of the SVM classifiers denotes that there can be clear margin of separation between the
three classes PT, ET and NT.

7. Future Work

The preliminary results presented in this article show the potential of utilizing machine
learning optimization for discriminating between essential and Parkinson’s tremor, while
reinforcing the imperative need for future research. The future goal of the presented work
is the development of an automated wearable diagnostic tool for early stages of different
tremor syndromes, thus reducing the risk of a misdiagnosis and enabling an efficient and
individualized treatment plan. Efforts to acquire data from a larger number of volunteers
is an ongoing task, for the purpose of further improving the quality of the results, while
configuring the measurement protocol to better facilitate tremor identification. Finally,
the inclusion of volunteers with more tremor types, for expanding this research direction
towards the creation of a differential diagnostic tool, as well as the tool’s integration with
tremor suppression methods involving soft exoskeletons [62] are also part of current and
future work.
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Abbreviations
The following abbreviations are used in this manuscript:

PT Parkinson’s tremor
ET Essential tremor
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FDA Food and Drug Administration
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CT Computed tomography
MDS Movement Disorder Society
UPDRS Unified Parkinson’s Disease Rating Scale
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QDA Quadratic discriminant analysis
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PSD Power spectral density
CNN Convolutional Neural Network
PCA Principal Component Analysis
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