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Abstract
Multiple modern robotic applications benefit from centralized cognition and processing schemes. However, modern equipped
robotic platforms can output a large amount of data, which may exceed the capabilities of modern wireless communication
systems if all data is transmitted without further consideration. This research presents a multi-agent, centralized, and real-
time 3D point cloud map merging scheme for ceaselessly connected robotic agents. Centralized architectures enable mission
awareness to all agents at all times, making tasks such as search and rescue more effective. The centralized component is
placed on an edge server, ensuring low communication latency, while all agents access the server utilizing a fifth-generation
(5G) network. In addition, the proposed solution introduces a communication-aware control function that regulates the
transmissions of map instances to prevent the creation of significant data congestion and communication latencies as well as
address conditions where the robotic agents traverse in limited to no coverage areas. The presented framework is agnostic of
the used localization and mapping procedure, while it utilizes the full power of an edge server. Finally, the efficiency of the
novel established framework is being experimentally validated based on multiple scenarios.
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1 Introduction

Autonomous robots and vehicles have emerged as a vastly
growingfield in recent years, and they are deployed in various
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terrains, spanning from meticulously designed and known
environments, such as factories, to moderately or entirely
unknown environments, such as forests, roads, or other
regions of interest; some examples could be found in [1–
3]. All of the above scenarios require accurate and efficient
localization, as well as environment and situational aware-
ness. Without GNSS localization, robots have to localize and
orient on individually produced maps. Such procedures are
challenging to succeed in large-scale scenarios, hence, the
collaboration of multiple robots or multiple robotic systems
(MRS) is usually preferred to increase situational and envi-
ronmental awareness; where in [4] a comprehensive example
is being presented. Search and rescue missions are a criti-
cal paradigm of the above-mentioned considerations. Areas
that have been affected by natural disasters are considered
dangerous and often contain unstable structures and modi-
fied environment that makes precise GNSS localization over
available maps uncertain. Additionally, indoor and outdoor
search and rescue missions are of major importance. Com-
monly enough, robotic agents are used to localize and identify
objects of interest in challenging environments [5].
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It is in general evident that MRS can benefit from a
constant communication, while centralized processing units
provide MRS with increased situational awareness and an
increased understanding of the global frame, i.e. a global
environment makes for a seamless localization of objects
of interest [6, 7]. This research considers the definition of
a global map that describes numerous agents to maximize
every agent’s situational awareness. To do so, the decoupling
from a monolithic and isolated localization and mapping
methodology for each agent should occur. This article pro-
poses the utilization of a constant communication ofmultiple
robots over a 5G network. More specifically, 5G-enabled
robots operating within radio coverage are exploiting the
available 5G infrastructure and an edge server, in order to
establish a constant communication low-latency link and
increase their situational awareness. While doing so, they
share local environment information to an external virtual
agent that is located in the edge server provided by the cel-
lular network. Figure 1 illustrates the high-level components
of the proposed architecture.

When establishing a constant communication between the
connected robots, the potential benefits of the centralized
architecture are evident and highlighted in the known liter-
ature, e.g. [8, 9], however, many challenges also appear in
such networked architectures, while this research considers
two main challenges for the considered scenario [10, 11].
The first challenge refers to the adjustment of the amount
of data to be transmitted between multiple robots to fit the
capabilities of the communication system, and the second
one refers to the reliability of the individual autonomous
robots. In terms of the former, modern robotic platforms that
can support reliable autonomous missions must be outfit-

ted with a variety of modern sensors, e.g. RGB-D cameras,
2D or 3D LiDARs, radars, and so on. Such sensors produce
large amounts of data that can overcome the capabilities of
state-of-the-art communication schemes [12]. Therefore, an
intelligent mechanism for controlling the required data is
essential to prevent that the communication link becomes
the bottleneck that limits the performance. Concerning the
second challenge, the robotic agents should benefit from the
shared information without being dependent on it. Thus, the
distribution of global awareness should be designed to pro-
vide additional information but, in case of a failure, it should
not intervene with the individual robot’s mission.

To that end, the authorswant to highlight that the presented
research does not target a collaborative SLAM solution.
However, SLAM is being employed in each agent and
consequently the solution specifically targets the real-time
distribution and map merging of the individually produced
maps. Taking into account the two main challenges, this
research targets the integration and the real-life evaluation
of state-of-the-art technologies and proposes solutions for
some of these challenges. The contributions of this research
can be concluded as follows:

1. The establishment of a framework designed for 5G-
enabled robots. This framework is centered aroundmulti-
agent collaboration and communication awareness, with
specific focus on 3D point cloudmapmerging. It empow-
ers robots to seamlessly merge maps in real-time using
a centralized approach, leveraging the high-performance
capabilities provided by the 5G network. The proposed
solution not only enables seamless collaboration among
multiple robots and is crucial for swift and accurate inte-
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gration of their 3D maps, facilitating advanced robotics
applications in diverse fields, from autonomous naviga-
tion to complex environmental monitoring.

2. The development of a control function specifically tai-
lored for 5G-enabled multi-robot systems. This control
function is designed to manage large data transmission
efficiently while considering crucial factors such as data
latency and other Key Performance Indicators (KPIs)
associated with radio communication. By seamlessly
integrating these considerations, the control function
ensures that each individual robot does not exceed its
uplink throughput capabilities and data transmission
within the multi-robot system is not only designed to
prevent data loss but also aligns with the essential KPIs.
The latter ultimately enhances the overall performance
and reliability of the 5G-enabled multi-robot system in
various applications.

Additionally, the field evaluation of the proposed frame-
work is thoroughly tested on a multi-agent 5G enabled
robotic system and a real-world full-scale 5G network. The
field evaluation of the proposed framework enables the in-
depth analysis of the proposed solution and helps the authors
to identify and discuss the discovered limitations and future
work. It is important to note that this is critical to the com-
munity and is intended to constitute a point of reference
and evaluation, since, to the best of our knowledge there is
no real-time physics simulator or emulator existing capable
of capturing the real-time operation of radio-based commu-
nication phenomena along with different robot and sensor
modalities. Hence, many applications do not translate to real-
ity. Lastly, based on the observed performance metrics and
the behavior of the system, a practical implementation guide-
line is presented.

The rest of the article is structured as such. In Section 2 the
related work and some insightful comparisons are presented.

Then in Section 3 the overall architecture is discussed and
depicted in Fig. 2. The aforementioned section is divided
into Section 3.1 that describes the map merging frame-
work in detail, in Section 3.2 that describes the adaptive
sampling parameters and to Section 3.3 that describes the
communication control function. In Section 4 the experi-
mental evaluation results are discussed, in two subsections,
Sections 4.1 and 4.2. The first one presents the results from
the real-world experiments and focuses on the merged maps
while the latter analyzes the communication aspect of the
proposed framework. In Section 5 the main limitations and
challenges are discussed along with a proposed guideline
for practical implementation. Finally the article is concluded
with Section 6.

2 RelatedWork and Comparisons

In the existing literature, many MRS solutions utilize either
a collaborative SLAM approach or a map merging approach
as an intermediate step to achieve a certain goal [6, 13]. The
common denominator often lies on the fact that a global
frame of reference is needed to identify and localize objects
of interest in the global frame of reference. Here we aim
in considering works that are applicable in real-life sce-
narios, where wide-area connectivity and the corresponding
said challenges arise. The considered solutions should also
achieve the possibility of constructing a global map in rel-
atively real-time scenarios so that the shared information
can be utilized throughout the manifestation of the mis-
sion. Given the evident differentiation between collaborative
SLAM and map merging, where SLAM algorithms persis-
tently aim to estimate position and map the environment,
while map merging focuses solely on aligning multiple local
maps into a unified global representation, we opt to organize
the related works into two distinct subsections, addressing
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Fig. 2 The overall centralized architecture of the proposed framework.
Each robot r1 and r2 performs SLAM individually and collects the map
instances in a buffer Mn regulated by a control function f (d). The map

instances are transmitted to the other agents as well as the edge unit
where the map merging process takes place
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each aspect separately. It isworth noting that both approaches
share the common objective of transforming local maps into
a global frame.

2.1 Collaborative SLAM

One reasonably early characteristic example of collabora-
tive SLAM is the CoSLAM approach [14], a vision-only
collaborative SLAM solution that handles dynamic environ-
ments. CoSLAM uses powerful GPU processing to address
the immersive requirements of processing data frommultiple
synchronized cameras. However, the authors do not elabo-
rate on any component related to the communication and
connection of the multiple camera set-up. Other works that
exhibit remarkable performance, such as [15] and [16], do
not consider any communication or connectivity feedback
or rely on the assumption that a large amount of data could
always be transmitted from the network. Frequently, this is
a common practical problem that restricts the application of
such techniques in realistic conditions.

Thework of [17], presents amultiagentmapping approach
and proposes connecting multiple vehicles utilizing cellular
networks. However, they consider that GNSS information is
available, which makes the solution unsuitable for GNSS-
denied environments. Additionally, they do not consider
network conditions or any feedback to address communi-
cation challenges on map information transmission. Due to
that, the deployment of this solution will be challenging con-
sidering real-life cellular networks. Sboia et al. [7] presented
a thorough solution designed to explore subterranean envi-
ronments in light of intermittent communication conditions.
This work consists of many parts that include the co-design
of exploration and communication while mainly focusing on
the mission objective, i.e. the exploration component. Never-
theless, the authors address the challenge of communicating
various types of essential data (including maps), targeting
themaximization of situational awareness between themulti-
robot systems. The communication-related aspect targets two
main objectives, the deployment of lower-level communi-
cation KPIs, like SNR, and a token bucket rate limiting
algorithm to optimize themesh network deployment and reg-
ulate data transmission. Data transmission regulation serves
in many ways, e.g. congestion, available bandwidth, inter-
ference, etc. Although the authors considered network KPIs
on the map information transmission, there is no application
layer feedback mechanism in place in the map transmission
phase. Thus, data transmission is safely performed while
avoiding network overload, but does not take into account
application layer KPIs and hence cannot operate in full per-
formance. Finally, this work does not explicitly define the
use of the merging of map information.

Lastly, a very comprehensive work from [13] takes a mul-
tiagent SLAM approach and intelligently accounts for the
communication aspect of the solution. By doing so, this
approach ensures that individual robots benefit from the col-
laborative scheme, and in the case of communication loss,
each robot’s autonomy ismaintained. The proposed architec-
ture employs a server that handles computationally intensive
processes and is responsible for further data coordination
tasks. An intelligent design limits the publishing rate to a
maximum value for each robot. However, this solution does
not consider the dynamic changes that could emerge in a pub-
licwireless network (e.g. cellular networks), thus limiting the
framework’s performance.

2.2 3DMapMerging

Another popular solution that targets the map merging
approach appeared in [18] where a map merging framework
has been developed suitable for multi-robot scenarios. This
work initially preprocesses the point cloud maps to remove
outliers, then performs a 3D feature extraction algorithmwith
SIFT points [19] or Harris corners [20] and finally com-
pares features to find correspondences and align the two point
clouds. Subsequently, the succession of this solution relies
on the sensing equipment, various map characteristics, and
the utilized SLAM algorithm. Finally, this work resulted in
a ROS package that is commonly known and used through-
out the robotics community [21]. Although the solution is
validated in complex scenarios, it didn’t examine the commu-
nication aspect of the problem nor the real-time applicability.
The 3D feature extraction process is a time-consuming oper-
ation, resulting in processing times of 10 to 30 seconds or
more, depending on the size of the maps. These amount
of time can be considered substantially large, especially for
aerial platforms and real-life, time-critical missions. Sim-
ilarly to the aforementioned, the work in [22] proposed a
3D map merging scheme for multi-robot systems based on
overlapping regions, and to be more specific, based on the
SHOT descriptors [23] and the SAC-IA alignment method.
Although the results were promising, it did not consider any
communication aspects for amulti-agent systemand from the
comparisonsmade in our previouswork [24] the hand-crafted
global descriptor extraction operation results in processing
times of 100 to 260 seconds, making it unsuitable for any
real-time application.

A learning based approach in the localization andmapping
problem is discussed by [25], focusing more on compress-
ing and transmitting local maps. During this work, the
authors propose a solution where the robot’s surroundings
are captured and decomposed in segments. Each segment
is represented by a low dimensional descriptor encoding
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the robot’s surroundings. Then, the same descriptor is fed
to a neural network that reconstructs the initially observed
surroundings. This approach is particularly interesting and
presents an intelligent mechanism to reduce data transmis-
sion (since the data required for transmission is the lower
dimensional descriptor) when the considered architecture is
deployed over a wireless network. However, the authors do
not present any communication awaremechanism to transmit
the descriptors.

In summarizing the existing body of work and aligning it
with the contributions of our proposed framework, a notice-
able gap emerges in collaborative SLAM algorithms that
incorporate a feedback signal and integrate KPIs related to
the communication channel. The prevailing literature in map
merging also falls short, lacking both speed in delivering
solutions and consideration of the communication aspects
inherent in exchanging maps among agents. Consequently,
our contribution lies in the introduction of a communication-
aware control function that seamlessly integrates with the
map merging framework. This combined approach presents
a comprehensive and real-time solution for the intricate task
ofmapmerging inmulti-robot scenarios, addressing the iden-
tified shortcomings in the current landscape of collaborative
SLAM and map merging methodologies.

3 The Proposed Architecture

This research aims to design and examine a large-scale
communication-aware framework for MRS that communi-
cates over a 5G system,while addressing communication and
autonomy challenges. The proposed framework is designed,
so individual agents can either perform exploration, be
assisted, or be teleoperated from a control station. In this
study, each agent is equipped with a 3D LiDAR scanner in
order to individually localize and map its environment. The
framework accounts for radio channel variations or loss in
coverage by utilizing a communication-aware control func-
tion. The control function exploits a decision mechanism to
decide when to transmit map instances to a centralized unit,
i.e. an edge server, so that the computational intensive process
of map merging can be later executed. More specifically, it
accounts for the selection of the desired transmissiondata rate
of the map instances, as well as the size of the individual map
instances.Altogether, regulating the data rate throughput cor-
responding to the transmission of the map instances and the
feasibility of the framework to perform the multi-agent map
merging operation in arguably what is considered real-time.
The edge server constitutes the centralized unit of the whole
architecture and is responsible formaximizing the situational
awareness of each individual agent, i.e. distributing local
maps from a considered agent to the remaining agents.

3.1 Proposed Large-Scale MapMerging Framework

The map merging procedure, described in more details
in [24], considers the following problem to be solved, under
the only assumption that there is a sufficient overlapping
region between the local maps to be merged. Assuming a
system of N robots R = {r1, r2, . . . , rN }, in R

3 space, each
robot produces a local map Mn(t), with respect to its local,
static map frameMn and the appropriate homogeneous rigid
transformation T ∈ SE(3) is calculated, so that the local
maps are merged into a single global map frame MG , at
any given moment. The global map can be expressed as a
combination of the individual local maps, correctly trans-
formed to the global map frame, MG and is defined as
MG = {M ′

1, M
′
2, ..., M

′
N }. For simplicity, this operation is

described for two agents at a time, without loss of generality
since we can make the assumption that more than two maps
can be merged recursively. The merging procedure can be
defined as a function fm as:

fm : R3 × R
3 → R

3 (1)

More precisely, the merged map is denoted as:

MG = fm(M1, M2) = M1 ∪ T12M2, (2)

where T12 : M2 → M1 represents the homogeneous rigid
transformation of the special Euclidean group, denoted as:

T12 =
[
R p
0 1

]
∈ SE(3), (3)

where R ∈ SO(3) is the rotation and p ∈ R
3 is the

translation.
In order to calculate the transformation T12 the prob-

lem is divided into two parts. First, the two overlapping
regions S1 ⊂ M1 and S2 ⊂ M2 are selected by utilizing the
place recognition and yaw discrepancy regression descrip-
tors, described in more detail in 3DEG [26]. This step will
provide an initial transform T0 that will roughly align the two
local frames M1 and M2 and can be described as:

T0 =
[
Rẑ(δθ) p1,ki − p2,k j

0 1

]
(4)

where Rẑ(δθ) is the predicted yawdiscrepancy and p1,ki −
p2,k j is the translation difference between the pose of r1 at
the time step ki and the pose of r2 at the time step k j . The
indexes ki and k j are selected by querying the two place
recognition descriptor vector sets Q1 and Q2 of the robots
r1 and r2 respectively.

(ki , k j ) = argmin
(i, j) ∈N

f (Q1,i , Q2, j ) (5)
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The second and final step of the merging procedure
is applying the initial transform T0 as a prior to the
FAST-GICP algorithm [27], providing a considerably faster
convergence and the final refined alignment. The GICP algo-
rithm [28] is used to estimate the transformation matrix
T between two sets of points, A = {a0, . . . , aN } and
B = {b0, . . . , bN }. The error in the transformation is deter-
mined by computing the difference between the transformed
point b̂i and the corresponding point in A, âi , which are
both assumed to be sampled from Gaussian distributions;
ai ∼ N (âi ,CA

i ) and bi ∼ N (b̂i ,CB
i ). This difference is

denoted by:

d̂i = b̂i − T âi , (6)

and its distribution is given by the Gaussian distribution with
mean zero and covariance matrix:

di = N (0,CB
i + TC A

i T
T ), (7)

according to the reproductive property of the Gaussian distri-
bution. The GICP algorithm seeks to find the transformation
matrix T that maximizes the logarithmic likelihood of the
distribution of d̂i , as expressed in Eq. 7. This is achieved by
minimizing the sum of the squared Mahalanobis distances
between d̂i and the origin, weighted by the inverse of the
covariance matrixCB

i +TC A
i T

T for each point i . The result-
ing equation for the transformation matrix T is given by:

T = argmin
T

∑
dTi (CB

i + TC A
i T

T )−1di (8)

3.2 Keyframe Adaption andMap Instances

In order to acquire the aforementioned descriptor vector sets
Qn and the corresponding poses pn , a keyframe sampling
process occurs. We define a keyframe Kn,k as the pair of a
point cloud scanPn,k and the corresponding pose pn,k of the
robot, at a time step k:

Kn,k = {Pn,k, pn,k} (9)

When constructing global or local graphs, keyframes are
commonly used as sampling positions. In many existing
works, such as those in [29–31], keyframe nodes are selected
at fixed intervals, such as every 2 meters of translational dis-
placement or every 15degrees of rotational change.However,
inspired by [32, 33], we opt to adaptively adjust the sam-
pling distance threshold for keyframe selection based on the
spaciousness of the current point cloud Pn,k . This approach
is motivated by the observation that in large-scale environ-
ments, the characteristics detected by the point cloud scan
are typically noticeable for a longer period and can be relied
upon, whereas in confined or limited spaces, it is necessary

to use a lower threshold to consistently capture small-scale
attributes such as tight corners. The concept of spaciousness
is defined as:

sk = αsk−1 + βSk (10)

The spaciousness of the current point cloud scan Pr ,k is deter-
mined by calculating the mean Euclidean distance, Sk , from
the center of the point cloud to each point. Based on this, a
smoothed signal, sk , is obtained, which defines the sampling
threshold thk for selecting keyframe nodes. The values of α

and β are set to 0.9 and 0.1, respectively, to ensure appropri-
ate smoothing of the signal.

thk =

⎧⎪⎪⎨
⎪⎪⎩

10m if sk > 10m
6m if 6m < sk ≤ 10m
3m if 3m < sk ≤ 6m
sk if 0m < sk ≤ 3m

(11)

For the MRS, as depicted in Fig. 2, a master-slave archi-
tecture is assumed. For every robot rn , the produced local
map Mn(t) can be defined as a combination of multiple
map instances mn,i ∈ R

3 acquired between two keyframe
instances. The map instances are defined as:

mn,i =
⋃

k∈{t−1,t}
h(Pn,k) (12)

where Pn,k is the current LiDAR scan and h(·) is the func-
tion that denotes the post-processed point cloud scans (e.g.
outlier removal, registration, etc). Therefore, the local map
can be described as the union between the local map of the
previous time instance and the current map instance. From
this, in order to avoid duplicate points, the identical points
from Mn(t − 1) and mn,t are removed.

Mn(t) = {Mn(t − 1) ∪ mn,t } 	 {Mn(t − 1) ∩ mn,t } (13)

Since the produced map Mn(t) depends on the duration and
total distance of the mission, the direct transmission of a
complete local map Mn(t)would require the transmission of
immense data structures when considering larger missions.
On the other hand,mn,i is independent of the mission’s dura-
tion or distance and the maximum size of each mn,i depends
on the SLAMalgorithm, the LiDAR sensor and the keyframe
sampling threshold thk . Thus, a map instance mn,i is chosen
for transmission to the edge server as it is a bounded data
structure defined as:

thmin

T
[Pn] ≤ [mn,i ] ≤ thmax

T
[Pn], (14)

where T is the mapping period depending on the SLAM
algorithm and the [·] symbol denotes the size of the scan
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in bits. The selection of mn,i is the first measure taken to
reduce the transmitted data. The edge server collects each
local map instance mn,i , and stitches them to replicate each
local map Mn(t) of the considered robot rn . Subsequently,
the edge server distributes the received local map instances
to the remaining agents, Rr = R − {rtr }. Finally, after the
succession of the merging process, the computed transfor-
mation T is distributed to the remaining robots Rr . Since
throughout the mission, the edge server has distributed the
local map instances mn,i , all the agents are capable of trans-
forming their local maps and creating the global mapMG . To
do so, the transformation matrix T has to be distributed to all
the respective agents R. It is important to note that the distri-
bution of the local maps has already taken place and the map
merging operation is hosted on the edge server; thus, after
the successful map merging operation, the only information
to be transmitted back to the agents is the produced transfor-
mation matrix. Lastly, note that the process of transforming
the one map to the coordinate space of the other map is sig-
nificantly lighter compared to the map merging process. The
latter also justifies the placement of the map merging pro-
cess on the edge server, while the transformation process can
easily happen onboard the robotic agents.

3.3 Communication Aware Map Transmission

The utilized network architecture is depicted in Fig. 1. Here
it is essential to highlight the main principal components
of a 5G network. Generally, a 5G network consists of two
main components, the 5G radio access network (RAN) and
the 5G core. The RAN represents the wireless interface of
a 5G network and is responsible for tasks like connecting
user equipment (UEs), modulation, signal transmission and
reception, managing radio resources among users, and more.
The 5G core serves as the backbone of the 5G network
and is highly flexible and programmable (usually runs on
server clusters). Some main functionalities of the 5G core
include security, packet routing, authentication, sessionman-
agement, network slicing, and much more. Additionally, the
5G RAN can be found in the 5G radio equipment, either
indoor or outdoor, i.e. cellular base stations; while the 5G
core is a centralized unit that manages multiple 5G base
stations. For reference, a 5G core could potentially handle
enough base stations to cover a small city [34], while a 5G
base station or a 5G cell tower could cover a few city blocks
and up to a few kilometers depending on the environment
and the utilized radio network configuration.

One important note is that traffic is commonly routed
through the 5G core (in this case the 5G local core breakout).
Thus, all packets in the utilized network have to go through
the 5G local breakout of the system so that they can be routed
to the correct destination. Since this research focuses on the

application layer of the 5G network, i.e. the 5G-connected
robots, the two potential bottlenecks that we are considering
refer to the uplink throughput capabilities of a 5G-connected
robot. For example, if the amount of data scheduled for trans-
mission from a robot exceeds the systems capabilities in the
current radio and network conditions, a user in the applica-
tion layer has to adjust its data transmission so that seamless
communication is preserved.

To that end, a critical aspect of the proposed framework
relies on the intelligent transmission of map instances mn,i .
The proposed solution proactively avoids excessive commu-
nication latency that may be created by extensive buffer build
up on the agent when overloading the agent’s uplink capa-
bilities by adjusting the amount of data to be transmitted.
The received map instances mn,i are necessary to create the
correct replica of the robot’s local map in the edge server.
In case multiple instances get lost, the stitching of the local
map might include incoherent regions and thus negatively
affect the framework’s performance. Another problem that
may occur is the congestion of the network. As mentioned
above, robotic platforms can output a significant amount of
data; thus, in the case of multiple robots, each robotic agent
should regulate the transmission ofmap instances. Therefore,
a control mechanism that accounts for communication vari-
ations and regulates transmission is included in the proposed
solution.

To regulate transmission data and account for commu-
nication variations, e.g. radio channel variations, cell load
variations and others, the first expression refers to transmis-
sion data. Let

Tx =
R∑

i=1

[mn,i ], (15)

define the amount of the transmitted data, i.e. map instances
within the time interval of 1 second. Then, [mn,i ] represents
the size in bits of the corresponding map instances, and R
is the frequency at which the map instances mn,i are being
transmitted. Furthermore,mn,i is an element of the local map
Mn(t) which defines the part of the map that due to commu-
nication conditions is not yet transmitted. After the decision
of the data rate transmission, the remaining map left on each
agent can be defined by the following expression:

Mn(t + 1) = Mn(t) −
R⋃
1

mn,i (16)

where,Mn(t+1) is the localmap remaining on the agent, and⋃R
1 mn,i defines the map instances along with the transmis-

sion rate of themap instances. Additionally, note that the size
of each map instance [mn,i ] is determined by the operation
described in Section 3.2. For the considered architecture, the
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maximum map instance size [mn,i ] presents an upper limit
that corresponds to the raw LiDAR scans. Therefore, seeking
a mechanism regulating Tx (defined by Eq. 15), the frame-
work considers a feedback signal corresponding to the delays
captured through theheartbeat (HB)message exchange.Note
that the HB message captures the delay expressed from the
time that the map instance was created until the time that the
map instance was received in the edge server. The measured
delay is communicated back to the agent with the HB’ as
depicted in Fig. 3. Hence, a control function that governs the
transmission rate R of Tx is defined as such:

R = f (d) =

⎧⎪⎨
⎪⎩
trmax , d̄ < d̄min

ad + b , d̄min < d̄ < d̄th
0 , d ≥ d̄th

(17)

where, a = (trmin − trmax )/(d̄max − d̄min), and b =
(d̄max trmax − d̄mintrmin)/(d̄max − d̄min). Then, trmin and
trmax constitute the minimum and maximum desired trans-
mission rates, while trmax has an upper limit defined by the
SLAM algorithm as discussed in 3.2. Then, d̄max and d̄min

constitute the maximum expected latency and the minimum
expected latency respectively (captured by the heartbeat
signal), while d̄max = d̄th for the considered design. In
determining a suitable threshold d̄th , various approaches
may be pursued based on the real-time demands of the
application. One method involves gathering latency statistics
and choosing a threshold, such as the 95th percentile. This
approach aims to control map instance transmission to the
edge server, preventing excessive buffer buildup that could
lead to latency escalation and impact other communication
flows associated with the agent. Thus, for this problem, d̄th
and d̄min are evaluated considering the statistics of the mea-
sured expected latency under normal conditions (as described
below). The statistics were captured in a probability density
function (PDF). The PDF captured the latency in the HB sig-
nal recorded in a series of pilot experiments with the same
agent and network configuration used for the evaluation of
the solution. The selected threshold d̄th is derived by the 95th

percentile of the said PDF.Note that to perform a coherent set
of pilot experiments and latency statistic measurements, the
following aspects must bemet. The bit rate selected for trans-
mission during the pilot experiments and the capture of the
latency statistics for the map instances transmission should

always be less than the maximum available bit rate that the
current link can support. The subsequent rationale suggests
that, for varying channel conditions, data transmission should
always stay within the limits of the radio channel capacity.
Furthermore, at eachposition, the transmitteddata rate during
pilot trials should not exceed the data rate corresponding to
the radio resources allocated to the specific agent. These two
statements help define the expected latency for map instance
transmission in traversed areas. The goal is to gather statis-
tics without causing cell or UE overload. Subsequently, the
control function utilizes these statistics to prevent significant
buffer buildup on the considered robotic agent (i.e., the UE)
based on network conditions. Figure 3 illustrates the closed-
loop architecture, and the proposed algorithm for each robot
is presented in Algorithm 1.

Algorithm 1: The algorithm for controlling the trans-
mission of the map instances

Data: mn,i ,Mn,i ,Kn,i ; /* map instance, map
instances buffer (FIFO list), keyframe
list */

Data: HB,Pk , pk ; /* heartbeat, LiDAR scan,
pose */

Result: R ; /* rate */
1 while exploring do
2 Pk , pk ← SLAM(lidar , imu); /* registered scan

*/
3 sk ← spaciousness(Pk);
4 thk ← threshold(si); /* adaptive threshold

*/
5 if dist ≥ thk then
6 Kn,i.append(pk); /* new keyframe */
7 end
8 if not new keyframe then
9 mn,i.append(Pk);

10 end
11 if new keyframe then
12 Mn,i.append(mn,i);
13 i ← i + 1;
14 end
15 HB ←echo ; /* measure latency */
16 R ← f (HB) ; /* control function */
17 k ← k + 1;
18 end
19 while Mn,i not empty and R is not zero do
20 offLoadToEdge(Mn,i.pop(mn,i));
21 sleep(1/R);
22 end

Fig. 3 Control scheme for the
map instances transmission

5G Network

Robots Edge
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Fig. 4 The figure depicts the correlation between SINR values and the
measured latency

Although the problem is quite complex, the proposed
design accounts for degraded connectivity and out of cov-
erage conditions. With the term degraded connectivity, the
authors refer to circumstances in which the radio resources
scheduled for the considered agent might be limited (e.g.
due to scheduling algorithms and large background traf-
fic) or the overflow of the throughput uplink capabilities
for each corresponding agent [12] or to occasions that the
robot might be positioned to the boundary of the cell’s cover-
age. Furthermore, the complexity of public cellular networks
in terms of the expected load and the mobile aspect of the
robots may result in various combinations of the discussed
key performance indicators. Ideally, the control function
should be extended to depend on multiple KPIs, for exam-
ple, the signal to interference noise ratio (SINR), the cell
load and others, i.e. f (latency, SI N R, RSRP, cell load).
During this research, the proposed solution was tested to
capture correlations between the captured latency from the
heartbeat signal and corresponding characteristic SINR values.
Figure 4 depicts the relationship between the two KPIs. The
experimental evaluation occurred in a real 5G network in
indoor and outdoor scenarios. Note that the slight increase
in latency corresponds to scheduling latencies when the
resource utilization increases with reduced SINR. When the
agent traverses to regions with decreased signal quality, for
example close to the cell edge, the 5G system assigns addi-
tional radio resources to the specific agent so that the required
bit rate is met. The use of the additional radio resources are
captured by the slight increase in the latency of the transmit-
ted map instances.

To further elaborate on the reasoning behind the control
function design and its relationship with the corresponding

5G radio KPIs, the authors present the following reasoning.
The utilized 5G network employs a mid-band deployment
at 3.5GHz with a time division multiplexing (TDD) archi-
tecture. The downlink to uplink ratio (DL/UL) is 4-to-1 and
the corresponding 5G frame structure is shown in Fig. 5. In
other words, the ratio defines the fraction of radio resources
that are assigned for either uplink or downlink transmis-
sion. Here, there are several additional components that we
have to account for to reason around the additional pre-
sented latency and its correlation to the radio KPIs. At each
specific radio condition, the 5G system selects an appro-
priate coding scheme, or modulation code scheme (MCS)
to transmit the considered data, either in the downlink or
the uplink direction. Further, the amount of data that can
be transmitted is partly defined by the selected MCS. Addi-
tionally, for the uplink case, since the uplink and downlink
resources are disproportionately duplexed in time (according
to the selected TDD pattern), longer scheduling delay will
be experienced since the uplink resources are less frequently
available. Finally, the radio resources are shared among all
the users served by the corresponding base station. Thus,
when the radio KPIs present lower values the appropriate
MCS must be respected and the users or agents might have
to wait for the next UL slot to transmit the complete con-
sidered data, hence the additional latency with respect to the
radio KPIs.

To couple the latter analysis with the selection of the con-
trol mechanism, one has to consider that if the requirement
is to control the map instances data rate (about to be trans-
mitted over the 5G network), the dynamics of the considered
system vary with respect to the agent’s radio KPIs and the
state of the 5G system, i.e. the load of the cell, the selected
configuration, and the location of the edge server. Adaptive
control schemes are more appropriate for the described prob-
lem. The map instances transmission is handled by the ROS
framework, and an appropriate modeling would consider the
modeling of the queue in the ROS publisher subscriber archi-
tecture. The queue can be modeled utilizing queuing theory
such as M/G/1 queues, where the arrival of the data rate in
the queue, i.e. the arrival of the map instances depends on the
map instance generation process and the service distribution
depend on all the aforesaid communication KPIs. That said,
such analysis of the system is rather a future direction and
out of scope for this research paper. The focus here lies on
the design and implementation of a resilient framework that
can handle the relatively real-time map merging operation.
Thus, this paper considers a more simplistic approach where
the signal responsible to capture both the radio KPIs and
the latency of the system is encapsulated in the latency cap-
tured by the HB signal, and the corresponding performance
is depicted and discussed in the following section.
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DL DL DL DL S UL
12 13 14 15 16 17

DL DL DL DL S UL

Fig. 5 5G frame structure for a common 4:1 TDDDL/UL pattern. Note that with DL we refer to the downlink slots, withUL we refer to the uplink
slots, and with S we refer to the special slot

4 Experimental Evaluation

For the experimental evaluation of the proposed solution, the
complete architecture was tested in large scale deployment
of robots in real environments at the premises of Luleå’s Uni-
versity of Technology (LTU). Two robot agents were used to
manifest the experimental evaluation, shown in Fig. 6. The
two missions encompassed both indoor and outdoor terrains
in their exploration paths. More specifically, in the initial
mission, a segment of LTU’s outdoor space and the base-
ment corridors of the building were traversed for the outdoor
and indoor paths, respectively. In the subsequent mission, the
two robots navigated through the main roads in the outdoor
areas of the LTU campus, broadening their exploration and
covering a larger area. The utilized 5G network is a real-life
innovation network that operates at the mid-band frequen-
cies (3.4 - 3.8 GHz) and includes both an external macro
base station and a Radio Dot System (RDS) installation
coveringmost of the considered experimental area.Neverthe-
less, due to the indoor-outdoor character of the first mission,
and the larger scale of the second mission, the experimen-
tal areas include regions with degraded coverage (depicted in
Fig. 10 and discussed in Section 4.2). Regarding the two used
robotic platforms, the first platform utilized was the legged
quadruped platform Spot from Boston Dynamics. The Spot
platform was equipped with a Velodyne Puck Hi-Res 3D
LiDAR, an Intel NUC on-board computer, and a D-link 5G
router. The second platform used was a Pioneer 3AT rover
platform and was equipped with a Velodyne PuckLite 3D
LiDAR.As for the onboard computing unit and the 5G router,
the Pioneer platform was equipped with the same hardware
as the Spot platform. For the indoor experiments, DLO [32]

was utilized as the odometry and mapping source, while on
the outdoor experiments, LIO-SAM [29] was preferred.

Section 4.1 depicts and discusses the performance of the
overall proposed framework regarding the map merging, the
increased situational awareness and the resilience of the sys-
tem in intermittent communication conditions, while Section
4.2 focuses solely in the evaluation and analysis of the perfor-
mance of the communication-aware distribution and control
of the individual maps.

4.1 Overall Framework Evaluation

Experimentswere carriedout in realistic scenarios to evaluate
the complete proposed framework. To further challenge the
communication scheme, in the first experiment, the legged
robot’s mission includes transitioning from the outdoor to
the indoor environment, while the rover’s mission is con-
tained in the indoor space. Throughout the mission, both
robots connect to more than one 5G base station. One macro
base station covers the outside area and a portion of the
indoor area that is interconnected with the outdoor space.
Subsequently, an RDS DOT system covers the majority of
the indoor area. Therefore, the exploration of the complete
site contains regions characterized by various communica-
tion conditions and includes handovers between network
cells. Considering the setup of the described mission, it is
evident that the covered areas do not provide coverage for
GNSS localization. Thus, a ground truth comparison needed
to be included manually. To address this and evaluate the
framework’s accuracy, expert researchers manually aligned
the two maps and provided a ground truth transformation

Fig. 6 The two robotic
platforms, representing r1 and
r2, utilized for the experimental
evaluation in LTU’s premises.
(a) Spot from Boston Dynamics.
(b) Pioneer 3AT, rover platform
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Table 1 The experimental metric results, where M1 and M2 represent the amount of points in each point cloud and Tr1 and Tr2 represent the
trajectory travelled

M1 M2 Tr1 (m) Tr2 (m) OVERLAP (%) Te (m) Re (deg) TIME (s)

Figure 7 (A) - (B) 8.29 · 105 14.15 · 105 843 556 35 0.183 2.318 0.648

Figure 8 (A) - (B) 81.62 · 105 48.90 · 105 1433 829 14 1.274 2.738 1.012

and a global map that was used for comparison purposes.
More specifically, CloudCompare [35], an open-source soft-
ware that provides point cloud alignment and merging, was
used to create the ground truth representation. Namely, the
researchers aligned the twomaps, and the software provided a
final rotation Rgt and a final translation Tgt . Then, two errors
are defined as follows using the aforementioned ground truth
transformation components:

Te = ||Tgt − T || and Re = ||Rgt R
−1 − I3||, (18)

where T constitutes the translation part and R constitutes the
rotation matrix of the final provided transform T which was
yielded by the framework. Subsequently, the acquired scores
for the considered scenarios are presented in Table 1, where

for the first experiment the translational error is Te = 0.183
m and the rotational error is Re = 2.318 deg.

Figure 7 depicts the firstmission’s results described above.
The rover robot r1 producedM1, consisting of approximately
829, 000 points and a total path of 843 meters, while the
legged robot r2 produced M2, consting of approximately
1, 415, 000 points and a total path of 556 meters. For the
full length of the mission, both robots constantly communi-
cate with the edge server and transmit their locally produced
map instancesmn,i . Consequently, the edge server distributes
the map instances of the first robot agent to the second and
contrariwise. Figure 10 depicts the map instance stitching
procedure hosted in the edge server. Here, it is crucial to
point out that the robots explore overlapping regions at dif-
ferent times; thus, the two robots do not co-locate at any

Fig. 7 The indoor environment
from Luleå University of
Technology, where the two
robots explore different
branches of the building. (A)
Robot r1 and its corresponding
local map M1. (B) Robot r2 and
its corresponding map M2. (C)
The maps M1 and M2 before the
map merging operation. (D) The
merged maps that represent the
global map MG and the
overlapping regions S1 and S2
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Fig. 8 Large scale outdoor
environment from Luleå
University of Technology, where
the robots explore different
paths of the campus. (A) Robot
r1 and its corresponding local
map M1. (B) Robot r2 and its
corresponding map M2. (C) The
maps M1 and M2 before the
alignment. (D) The merged
maps that represent the global
map MG and the overlapping
regions S1 and S2

given moment throughout the described mission. Therefore,
the map merging operator is triggered by an operator’s input.
This operation is possible since, as an outcomeof the constant
communication, the operator has access to the locally pro-
duced maps through the edge server. Note that this operation
could also be triggered by utilizing cellular positioning [36]
or a feature-matching mechanism between the twomaps [37,
38]. As depicted in Fig. 7, themerging operation is successful
and is performed in real time and with an average compu-
tational time of less than 1 second. From there on, the edge
server distributes the yielded transformation to both robots,
which consequently register the two local maps. Addition-
ally, once the initial merging has occurred, the two robots can
continuously combine the local maps as the robots continue
the exploration mission, enabling the possibility of mission
re-planing.

Proceeding to the second experiment, our emphasis shifts
towards covering amore extensive area, thereby substantially
increasing the accumulated instances and, consequently,
challenging the framework’s capacity to handle larger data
over time. As illustrated in Fig. 8, the robots traverse two
distinct routes within LTU’s campus, resulting in the gener-
ation of respective maps and trajectories denoted as M1, M2,
and Tr1, Tr2. As outlined in Table 1, the first map comprises
8,162,000 points, covering a total distance of 1.4 km, while
the second map consists of 4, 890, 000 points and a total
trajectory length of 829 meters. Notably, the scale of this
experiment is approximately ten times larger than the first,
leading to a heightened translational error of Te = 1.274

m. Despite this increase, the error is considered small for
such a scale, with the primary contributing factor being the
accumulation of drift in the employed SLAM algorithms.
The map merging algorithm demonstrates efficiency with
a processing time of approximately 1 second, showcasing
its ability to identify overlapping regions and execute the
registration algorithm within those bounds. In terms of 5G
connectivity, the outdoor setting of the experiment ensures
consistent connection to the 5G base station for the agents,
though with occasional degraded radio channel conditions
in areas affected by blockage, shadowing effects, etc. As
depicted inFig. 16, the proposed communication-aware func-
tion adeptly manages these degraded areas, facilitating a
smooth exchange of information between the agents. Sim-
ilar to the first experiment, the map merging operation is
triggered in the same manner. Subsequently, the edge server
distributes the resulting transform to both robots, enabling
them to seamlessly integrate the updated information into
their respective local maps for the remainder of the mission.

Finally, the definition of "real-time" depends on the
intended use of the output from the map merging operation.
In the described scenario, where the merged map improves
the situational awareness of the MRS by identifying objects
of interest, the proposed solution is considered real-time.
The average computational time, as mentioned earlier, is
around 1 second or less. A more detailed breakdown of
the latency-dominant components is illustrated in Fig. 9.
It is essential to note that, due to the experimental nature,
the results are categorized into two groups. The first group
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Fig. 9 Average component time
resolution of operations in the
proposed framework. The values
correspond to good radio
conditions

encompasses experiments where the robots maintained con-
stant communication with the edge server, experiencing no
loss of connectivity. The second group involves scenarios
where the robots explored areas with coverage holes and
potential momentary loss of connectivity. The results pre-
sented in Fig. 9 refer exclusively to the first case. In this
context, without any loss of connectivity, the likely bottle-
neck is the map merging operation. In a related study [24]
the authors evaluated two alternative map merging frame-
works, previously discussed in Section 2, exhibiting varying
computational times: 9.21 seconds for [21] and 260.47 sec-
onds for [22]. Such extended computational times may cause
substantial delays in the overall MRS system, affecting swift
exploration and hindering critical tasks, especially in scenar-
ios with Unmanned Aerial Vehicles (UAVs) having limited
battery life. Emphasizing the need for a fast and scalable
communication-aware map merging solution that delivers
results within a second, particularly in expansive areas like
the one shown in Fig. 8, is essential. In conclusion, the
additional latency from communication components is con-
sidered negligible compared to the merging operation. As a
result, themergedmap can effectively enhanceMRSmission
situational awareness in real-time.

4.2 Communication Aware Map Transmission

To evaluate the performance of the controlled transmission of
the selected map instances, the authors seek to evaluate three
aspects of the proposed architecture. Initially, it is essential
to showcase the transmission behavior of the map instances
when the communication is degraded. Thus, a comparison
is performed relating to the produced data output of the

SLAM algorithm at any given moment and the selected map
instances for transmission over the 5G network. Figure 11
corresponds to the same map merging experiment depicted
in Fig. 7 which is presented in Section 4.1 and depicts the
transmission behavior of the controlled map instances. More
specifically, as previously mentioned, the described mission
contained large regions with various communication con-
ditions, i.e. regions with degraded coverage and a partially
loaded network. The first condition correlates to the mobile
nature of the 5G-enabled robots, while the second correlates
to the somewhat unpredictable behavior of the cellular’s net-
work load.

4.2.1 Intermittent Communication and System’s
Performance

During the considered experiment, the two robots explored
a large section of a basement building located at the LTU’s
premises. The outdoor macro base station and the RDS dots
partially cover the said area. However, between the regions
covered by the macro cell and the RDS units, some areas
experience significantly degraded coverage. Therefore, the
considered mission contains areas with high signal power
values, hence ideal or satisfactory coverage, and areas that
experience low signal strength. Figure 10 depicts a tran-
sition between the two coverage regions. Therefore, the
latency significantly increases and reaches the peak value of
approximately 1 second (compared to the average value of
18 milliseconds. Furthermore, as mentioned in Section 3.3,
there is an evident correlation between the captured latency
of the heartbeat signal and the lower SINR values of the
5G-enabled robots. However, its important to note that peak

Fig. 10 Transmission of map instances in good and bad coverage con-
ditions, captured by good and bad SINR values. The blue color points
depict the remaining local map onboard the agent, and the green color
points depict the transmitted points on the edge server. The left image

depicts the transmission of images in good coverage conditions, thus
minimum latency is observed on the figure. The right image depicts the
map transmission under very weak coverage conditions, thus latency is
observed due to buffered map instances on the agent
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latencies close to 1 sec relate to the robot’s position in no
coverage areas or an outcome of significant buffer build up
(where in the considered scenario is handled by the control
mechanism). Throughout the transition period, the SLAM
algorithm constantly produces new map instances locally
used to construct the local map. However, the connectiv-
ity of the 5G-enabled robot is degraded, and the controller
receives the increased value of the heartbeat signal. Then, the
controller adjusts the data rate produced by the SLAM algo-
rithm. Subsequently, when the communication is restored,
the output of the controlled action follows the produced
data from the SLAM algorithm. The later behavior is also
visible in Fig. 10. Here, the right image captures a region
where the robot traversed under good SINR values, more
specifically, 15 < SI N R < 23 and the map instance trans-
mission occurred under minimum latency. On the contrary,
the left image depicts a scenario were the robot traversed
a region under very weak SINR values, more specifically
−3 < SI N R < 5; thus the robot traversed this region par-
tially out of the coverage of the 5G NW. As an outcome, the
robot’s mission is continued completely autonomous, and
the connectivity outage is detected by the HB signal and veri-
fied by the capture of the SINR values; this results in delayed
buffered data that are transmitted in a controlled fashionwhen
the robot re-obtains coverage. The two sub-images depict the
robot’s local map with the blue color and the selected map
instances with the green color.

Furthermore, it is essential to mention that when a robot
traverses out of coverage, it utterly loses the ability to
communicate. That case is also identified by the complete
disruption of the HB signal and the SNR values captured
on the robot. Nevertheless, the robot can maintain its local
autonomy and explore the environment as planned. The rea-
son lies in the design of the proposed framework. More
specifically, because of the map merging design, each robot
can maintain a local map onboard, which can be utilized
for autonomy. Additionally, if a map merging operation has
already occurred, the robot has already updated its local map
with the global map of the corresponding traversed area by
the MRS. On the other hand, concerning centralized cogni-
tion (in the edge server), communication loss does not affect
performance and is regarded a normal condition. More pre-
cisely, the robot communication is expected to be intermittent
throughout such missions while it’s entitled to the robot and
the local autonomy to traverse back to coverage.

Now focusing on the transition between various radio con-
ditions, i.e., good and bad coverage, Fig. 11 depicts that at
certain moments, the output of the controlled data can be
also greater than the original produced data. This behavior
corresponds to situations where the control function initially
reduces the data transmission. Then, when the communica-
tion is restored, the buffered data are transmitted with the
corresponding rate that the control function dictates. During

Fig. 11 (a) The production of the local map instances with the black
color. The red color depicts the controlled transmitted map instances.
The behavior of the red curve corresponds to the output of the control
signal (latencies of the system) which is depicted in (b). Note that the
increased latency of approximately 1 sec is captured in very low SNR
values

this process, the SLAM algorithm may or may not register
any new map instances; the latter depends on the traversed
environment. A potential overshoot depicts the case that the
buffered data are transmitted along with newly created map
instances and upon restored connectivity coverage.

4.2.2 Large Data Transmission and Transport Layer Protocol
Choice

Of particular interest are the cases that involve large data
transmissions. Large data transmissions stress-test the abil-
ity of the framework and can highlight the performance of
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Fig. 12 Captured throughput for SN R > 20. The histograms compare between experiments with the application of the control mechanism and
without. Left side depicts experiments conducted with the TCP protocol. Right side depicts experiments conducted with the UDP protocol

the proposed solution under various communication condi-
tions (different SNR and network cell load values). For this
set of experiments, the produced maps were on average∼ 42
Mbps. Note that such uplink data rates are high in relation
to the maximum uplink cell throughput of 94Mbps that can
be achieved with the given communication system. Addi-
tionally, the relationship between the achieved throughput and
latency in the application layerand the robot’s radio conditions
is visible, as there is lessmargin for worse channel conditions
when the data rate is high [39]. Moreover, different transport
layer protocols (TLP) were utilized, either TCP (Transmis-
sionControl Protocol) orUDP (UserDatagramProtocol) and
the performance of each protocol is discussed later on.

The UDP protocol is commonly used in networked
robotics applications due to its lower latency in normal
conditions, lacking retransmissions, handshakes, and a flow
congestion mechanism compared to TCP. However, in situa-

tions where the client lacks enough throughput capacity, this
can lead to full data buffers, dropped packets, and uncon-
trolled latency rise. Design considerations should align with
the specific application and data flows. For time-critical data,
sacrificing a few packets for lower latency may be accept-
able, whereas for essential, reliable transmission, sacrificing
latency may be tolerable. Also, consider that over-the-top
congestion control mechanisms (over the UDP layer) can be
employed to regulate transmission [40]. For example, in the
presented scenario, the reliable transmission of the transfor-
mation matrix T is crucial, making TCP the suitable choice
due to its reliability and tolerance for lower throughput. The
proposed approach regulates data transmission based on the
health of the HB signal, which oversees critical robot opera-
tions.

Figures 12, 13 and 14 depict the achieved throughput cap-
tured for different regions of SNR. The comparison has been

Fig. 13 Captured throughput for 13 < SN R < 20. The histograms compare between experiments with the application of the control mechanism
and without. Left side depicts experiments conducted with the TCP protocol. Right side depicts experiments conducted with the UDP protocol
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Fig. 14 Captured throughput for 1 < SN R < 13. The histograms compare between experiments with the application of the control mechanism
and without. Left side depicts experiments conducted with the TCP protocol. Right side depicts experiments conducted with the UDP protocol

made with and without the utilization of the proposed con-
trol strategy. The histograms in various radio conditions show
that the throughput is not significantly reducedwhen the con-
trol mechanism is applied - this is an important finding when
examining the behavior of the HB signal’s latency. A set of
14 experiments over the TCP protocol and another set of 10
experiments over the UDP protocol have been performed.
The network was congested with various loads across all
the conducted experiments. Finally, please note that the raw
and unregulated (before the application of the control mecha-
nism) throughput for themap instances is less in the particular
set of UDP experiments. The latter is an outcome of narrower
traversed areas and the selection of different sensor resolu-
tions. The average value for the raw map instance generation
is ∼ 50 Mbps for the TCP set of the experiments and ∼ 30
Mbps for the UDP set. More specifically, in Figs. 12 - 14, the
throughput comparison with and without the control mecha-
nism for the TCP case is quite similar. The main difference is
that the control mechanism spreads the histograms in lower
captured throughput values - this observation is in benefit
of the HB signal’s latency and is depicted in Figs. 17 and
18. For the UDP case in Figs. 12 - 14, the benefit of the
control mechanism is evident, as it is clear that without it,
and when channel quality degrades the UDP link continues
to send packets without any consideration for the transmis-
sion’s success. The significant percentage of 0Mbps received
is an outcome of dropped packets in the application layer.

The main purpose of the control mechanism is to reg-
ulate the transmission of the map instances under various
communication conditions so that constant communication
is preserved and the robot’s transmission buffers in the appli-
cation layer are not flooded. The main reason that the HB’s
signal latency is selected for the control mechanism, and not
the latency of the transmitted map instances themselves is
that the HB signal is of higher importance. For example,

it is essential to maintain constant communication with the
robot (when the platform is within coverage) so that essential
information is communicated.TheHB signal usually contains
robot telemetry data that capture the health of the robot (bat-
tery readings, temperature, position of the robot or objects
of interest, etc.) and can be also used to command the robot
to execute various tasks (emergency termination, navigation
information, deployment of supplies, etc.). If the transmis-
sion of large sensor data (i.e., map instances) is not regulated
it is probable that under varying channel quality conditions
and varying network load the wireless connected robot might
proceed to generate and transmit more data than the com-
munication link between the robot and the base station can

Fig. 15 Mission snapshot of the communication KPIs from one 5G
connected robot. No control mechanism was applied. The experiment
utilized the UDP protocol. On low SNR values, the map instances
throughput goes to 0 Mbps
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Fig. 16 Mission snapshot of the communication KPIs from one 5G
connected robot. The proposed control mechanism was applied. The
experiment utilized the UDP protocol. On low SNR values, the map
instances throughput reaches a minimum of 7.68 Mbps

support at the moment - thus, resulting in extended buffer
delays. The later is also subject to the utilized transport pro-
tocol, e.g. TCP employs a congestion control mechanism,
but UDP does not [41].

Figure 15 depicts a closer look with respect to time for
the case of large data transmission on a partially loaded net-
work and different radio signal conditionswithout the control
mechanismand over theUDPprotocol.Here, it is evident that
as the robot traverses to worse signal conditions, the latency
of the HB signal significantly rises, and the overall transmis-
sion of the correspondingmap instances drops to 0Mbps. The
latter is due to dropped packets and the reception of damaged
packets in the application layer while maintaining a highly
congested channel and utilizing the UDP protocol that inher-
ently does not account for dropped packets and congestion.
On the other hand, Fig. 16 depicts the case for which the
application of the control mechanisms occurs. Here, it is evi-
dent that the latency of the HB signal is significantly reduced
even in the worst radio conditions. Also, note that the trans-
mission of map instances never fails. More specifically, the
global minimum throughput for the depicted mission takes
the value of 7.68 Mbps. The latter two observations are a
direct outcome of the control mechanism - reduced trans-
missions do not overload the application’s layer data buffers
for both the data flows of themap instances and theHB signal.

Figure 17 illustrates the RTT latency of the HB signal
using the TCP protocol, while Fig. 18 represents the same
over the UDP protocol. These experiments were conducted
under varying radio conditions. Note that, in the considered
scenarios, optimal radio conditions are characterized by an
SN R ≥ 20 dB. Then, within optimal radio conditions, the

Fig. 17 Latency of the HB signal across 14 conducted experiments.
The results are depicted in three SNR groups. The comparison has been
made between the application of the control function (abbreviated with
“wc") and without abbreviated with “nc". The corresponding experi-
ments utilized the TCP protocol

mean latency remains relatively consistent, irrespective of the
application of the control mechanism. However, as the radio
channel quality degrades, a noticeable increase in latency
is observed in cases where the control mechanism is not
applied. Table 2 summarizes the statistics gathered from 24
experiments, with 10 trials using the UDP protocol and 14
using theTCPprotocol. Lastly, the complete proposed frame-
workwas assessed in a significantly larger area, and the entire

Fig. 18 Latency of the HB signal across 10 conducted experiments.
The results are depicted in three SNR groups. The comparison has been
made between the application of the control function (abbreviated with
“wc") and without abbreviated with “nc". The corresponding experi-
ments utilized the UDP protocol
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Table 2 RTT Latency average
across 14 experiments with the
application of the control
mechanism (wc) and without
(nc) for the TCP case and 10
experiments for the UDP case

Mode 20 < SNR (dB) 20 > SNR > 13 (dB) 1 > SNR (dB)

Latency - wc - TCP (sec) 0.0687 0.0979 0.1485

Latency - nc - TCP (sec) 0.0764 0.1674 0.2375

Latency - wc - UDP (sec) 0.0256 0.0298 0.0371

Latency - nc - UDP (sec) 0.0288 0.0640 0.1250

mission, along with the merged maps, is depicted in Fig. 8.
It’s important to note that this particular mission is also part
of one of the 14 conducted experiments shown in Fig. 17.

Lastly, in order to further assess the controller’s behavior,
an approachwhere simulated and experimental data are com-
bined is chosen. For this evaluation, the captured heartbeat
signal from the presented experiment is used in combination
with simulated map instances. Utilizing such an approach,
the production rate of the map instances can be constant. As
a result, it is possible to observe the controlled transmission’s
raw output more clearly. The observed behavior is depicted
in Fig. 19. Here a clear correlation with the latency of the
system is visible. Further, some may argue that the output
of the controlled transmission is aggressive. This behavior
is attributed to the heartbeat signal’s abrupt changes. In that
case, to smoothen the output, one could investigate a non-
linear control function or consider the addition of further
KPIs that capture the complete transition between connec-
tivity levels.

5 Discussion

In light of the presented performance and results of the pro-
posed framework, this section highlights the central themes
of the study, emphasizing critical challenges in technical,
integration, and design aspects of the problem under con-

Fig. 19 Evaluation of the transmission control function on simulated
constant production of map instances. The used heartbeat (latency) sig-
nal is obtained from the real experiment

sideration. Further, Section 5.2 concludes the discussion by
presenting a proposed methodology that one should consider
when designing similar applications.

5.1 Challenges and Limitations

Concluding this work, it is essential to highlight and summa-
rize the important challenges, learnings and limitations of the
proposed framework and the studied phenomena. Figure 20
depicts the complete mission architecture for each specific
agent. The highlighted boxes with grey background repre-
sent the components of the proposed framework, while the
components withwhite background represent other vital pro-
cesses. The underline goal can be abridged to the few critical
requirements: 1) transmit all the required map instances to
the centralized agent without losing data, 2) do not exceed
the throughput uplink capabilities of each robot, 3) distribute
map instances to the whole MRS, 4) perform successful map
merging operations in the edge cloud, 5) reliably distribute
the transformation matrix T ∈ SE(3). For the first chal-
lenge, although our framework relies on the utilization of a
5G network where data packets are rarely lost, it is important
to understand that there are many other critical components
where data packets can get lost. For example, TLP buffers
can be one of the main ones, then ROS subscribers and pub-
lisher buffers, 5G module buffers, and so on. The second
challenge is often a direct cause of the first one. Here, the dis-
cussion concerns the HB signal. If the 5G connected device
is constantly trying to transmit more data than its current
capabilities allow, then the likelihood of creating full buffers
increases. This problem affects all the data connections of
the connected robot. This scenario is possible since the robot
is intended to potentially traverse regions with degraded con-
nectivity.

The third challenge is also a direct outcome of the second
challenge. If the centralized unit possesses all the produced
information from the MRS, it can reliably transmit back
to the MRS by looking at the HB signal. The latter is also
valid because most 5G systems are optimized to provide
higher throughput in the downlink direction. In addition to
the challenges mentioned earlier, the fourth and final chal-
lenge concerns the performanceof the proposedmapmerging
accuracy, which is demonstrated and compared on multiple
occasions. Concluding this rationale, buffers in each partic-
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Fig. 20 Framework architecture on the 5G enabled robot side. Utilized components for sensor modalities, onboard algorithms, and the communi-
cation software stack. The main focus of this research is highlighted with gray

ular device are the key bottleneck of the presented problem.
It is essential to prevent buffer overflow, which is one of the
main objectives. Therefore, the latency of HB signal in the
application layer is representative to the robot’s communica-
tion with the centralized units and human operators - thus it
was chosen as the most critical parameter to preserve.

Another important challenge concerns the potential of sin-
gle point of failure (SPOF). In that case, the potential failing
point is the centralized unit in the edge cloud. Although the
current work does not focus on that particular challenge the
proposed architecture is designed to enable the application
of robust safety measures on the centralized component - the
authors provide the following analysis and potential use of
the cloud technologies:

Initially, it has to be addressed that due to the fact that each
agent is designed to hold the potential for individual auton-
omy by maintaining a local map onboard, then, even on the
complete failure of the centralized unit, each agent can con-
tinue the mission and apply safety fall-backs, for example,
return-to-base activity [42]. Thus, it’s up to the individual
agent to guarantee its safety in that scenario.Nevertheless, the
utilization of cloud computing technologies along with local
robot autonomymakes the deployment of the centralized unit
resilient to failures. More specifically, as mentioned above,
the centralized unit is deployed on a Kubernetes (commonly
noted as k8s) enabled environment [43]. Consequently, it is
implied that the application is deployed in a software bun-
dle along with all the required deployments in the form of a
Docker container [44]. To that end, one can use k8s features
to maintain a safe operation. k8s is a container orchestrator
manager that is responsible for the docker container life-
time. For example, k8s are capable of container monitoring,
container deployment and termination, container run-time
memory, storage management, and others [45, 46]. Hence,
for the proposed application, one potential use of k8s fea-
tures is to store the receivedmap instances,monitor the health
of the application, and in case of failure re-deploy the cen-
tralized unit while maintaining the received map instances.

Regarding the limitations of the proposed map merg-
ing solution over a 5G network, the authors emphasize two

key points. The first limitation is associated with the cur-
rent control mechanism for transmitting map instances from
the isolated SLAM components, which does not account for
the latency of the transmitted map instances. While this is
intentional, the authors suggest that additional communica-
tion KPIs could enhance the control mechanism, optimizing
the joint latency aware transmission of map instances and
latency of the HB signal. It’s important to note that this
stands out as a primary consideration for future improve-
ments. The second limitation pertains to themanual initiation
of the merging operation by a human operator. The authors
propose the development of an automated triggering mecha-
nism to enable optimal map merging operations, potentially
aligning with the mission’s requirements.

5.2 Proposed Guidelines

To ensure the success of the proposed map merging frame-
work over 5G, several key components require careful
consideration. Primarily, it is crucial to address the robot’s
autonomy and account for potential out-of-coverage regions.
Specifically, the design should be tailored to potential scenar-
ios. If robots are anticipated to venture into out-of-coverage
regions, incorporating fallback actions such as “return to cov-
erage" within the local autonomy of the robot is essential to
ensure the uninterrupted and safe continuation of operations
(note that this aspect was beyond the scope of the current
work). Second, all the data flows connecting the robot to
any external unit must be identified and classified in terms
of importance. The important characteristics to consider for
each data flow are the low and upper bounds of latency and
throughput characteristics. Therefore, the latter will indicate
which data flows must be developed with and without a data
rate controlmechanismand the corresponding transport layer
protocol. Then, when the latency of the essential data flows is
softly bounded under normal coverage conditions, this will
characterize the potential for real-time map merging and the
corresponding map merging triggering mechanism. Lastly,
since the proposed map merging operation is a centralized
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mechanism, it is vital to consider SPOF and appropriate
resilience mechanisms as proposed in Section 5.1.

6 Conclusions

This article presented a novel architecture for multiple
5G-enabled robotic agents that seek the maximization of
situational awareness. The main focus was on creating a
communication-aware framework that adjusts data trans-
mission according to communication conditions to prevent
significant buffer build up (on the agent side), extensive laten-
cies and account for varying channel conditions. Moreover,
this research introduced a master-slave architecture in which
an extra agent located in the edge server of the cellular net-
work is responsible for the operation of the map merging
procedure and the distribution of local information through-
out the MRS. The benefits of utilizing the existing cellular
infrastructure become evident throughout a series of exper-
imental evaluations. The experimental evaluation assesses a
realistic scenario where an outdoor and indoor space has to
be explored and mapped so that the produced maps can be
further utilized for additional processing, e.g. object detec-
tion and localization. Additionally, processes that are hosted
on the master agent can utilize the full resources of the edge
server’s computing cluster. Even though the proposed con-
trol function does not include additional KPIs, a correlation
between the proposed one, i.e. the latency of the system, and
the SINR values is identified and justified; the expansion in
this direction is planned for future work. Further, some could
consider KPIs that identify the cell load and the mobile char-
acteristic of the robot agents. Evidently, the proposed solution
introduces delays in data transmission that could affect more
time-critical operations. Hence, other future research direc-
tions could consider the proposed architecture for operating
time-critical operations, such as the closed-loop control of
robots while utilizing remote controllers.
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