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Boosting‑based ensemble machine 
learning models for predicting 
unconfined compressive strength 
of geopolymer stabilized clayey soil
Gamil M. S. Abdullah 1, Mahmood Ahmad 2,3*, Muhammad Babur 4, 
Muhammad Usman Badshah 5, Ramez A. Al‑Mansob 6, Yaser Gamil 7,8* & 
Muhammad Fawad 9,10

The present research employs new boosting‑based ensemble machine learning models i.e., gradient 
boosting (GB) and adaptive boosting (AdaBoost) to predict the unconfined compressive strength 
(UCS) of geopolymer stabilized clayey soil. The GB and AdaBoost models were developed and 
validated using 270 clayey soil samples stabilized with geopolymer, with ground‑granulated blast‑
furnace slag and fly ash as source materials and sodium hydroxide solution as alkali activator. The 
database was randomly divided into training (80%) and testing (20%) sets for model development 
and validation. Several performance metrics, including coefficient of determination  (R2), mean 
absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE), were utilized 
to assess the accuracy and reliability of the developed models. The statistical results of this research 
showed that the GB and AdaBoost are reliable models based on the obtained values of  R2 (= 0.980, 
0.975), MAE (= 0.585, 0.655), RMSE (= 0.969, 1.088), and MSE (= 0.940, 1.185) for the testing dataset, 
respectively compared to the widely used artificial neural network, random forest, extreme gradient 
boosting, multivariable regression, and multi‑gen genetic programming based models. Furthermore, 
the sensitivity analysis result shows that ground‑granulated blast‑furnace slag content was the key 
parameter affecting the UCS.

Abbreviations
ANN  Artificial neural network
LL  Liquid limit
PL  Plastic limit
PI  Plasticity index
S  Ground granular blast furnace slag
FA  Fly ash
M  Molar concentration
A/B  Alkali to binder ratio
Na/Al  Ratio of Na to Al
Si/Al  Ratio of Si to Al
MAE  Mean absolute error
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MSE  Mean squared error
ML  Machine learning
MGGP  Multi-gen genetic programming
MLSR  Multivariable regression model
MVR  Multivariable regression
RMSE  Root mean square error
SVM   Support vector machine
GB  Gradient boosting
AdaBoost  Adaptive boosting
UCS  Unconfined compressive strength
RF  Random forest
PSO  Particle swarm optimization

The study of geopolymer technology for improving cohesive soil properties is significant from a scientific and 
practical perspective. The utilization of stabilizers such as lime and fly ash has been employed to improve the 
geotechnical properties of cohesive soils. The term "geopolymer" is commonly used to describe inorganic sub-
stances that are produced by the synthesis of aluminosilicate compounds. The raw material system utilized in 
the production of geopolymer materials comprises two primary constituents, namely, starting materials and 
alkaline chemical active ingredients. The investigation of geopolymer materials is being conducted with the 
aim of developing environmentally sustainable products made from industrial waste materials that possess 
significant  utility1–3. Geopolymer has a wide range of applications in acid-resistant cement, unburned masonry, 
quick-setting cement, and fireproof materials. Geopolymer technology is a subject of considerable interest and 
extensive research globally, exhibiting promising prospects for further development. Geopolymer has emerged 
as a viable alternative to standard Portland cement due to its composition as a synthetic alkali aluminosilicate 
material. This material is created through the reaction of solid aluminosilicate with a solution containing a com-
bination of hydroxide-silicate or a concentrated aqueous alkali  hydroxide4,5. its production process uses less fuel 
energy overall and produces less greenhouse gas emissions  overall6,7. Geopolymers can be synthesized with a 
solid aluminosilicate material obtained from diverse sources of industrial waste, such as silicate and/or alumina 
components. The acronyms for these materials include ground-granulated blast-furnace slag (S), metakaolin, 
and fly ash (FA)8,9. In geotechnical engineering projects, FA or S has been utilized for soil  improvement10,11. 
Building foundations, highways, dams, canals, and other similar constructions are examples of embankment 
 works12–14. Based on previous research, the introduction of S or FA into the soil has been found to potentially 
improve its mechanical  strength10,15–17. Sharma and Sivapullaiah conducted a study to investigate the efficacy 
of FA and S in soil stabilization  applications18. The curing durations of 7, 14, and 28 days were used to examine 
the properties of S and FA. The stabilized soil’s strength of 0.45 MPa was obtained after 28 days of curing, and 
its plastic limit and water content values were both decreased. Based on the findings, the utilization of S and FA 
as binders presents a novel prospect for enhancing the activity of pozzolans, hence potentially increasing the 
unconfined compressive strength (UCS) and reducing the swelling potential of clay  soils15–17,19. Many researchers 
undertook work on soil stabilization using different materials e.g.20–22. Abdullah and  Shahin23 investigated the 
geo-mechanical characteristics of a clay–binder composite that incorporates a unique mix of fly ash activated 
by alkali. This combination leads to the formation of a geopolymer material that exhibits cement-like qualities 
upon hardening in soil. The findings indicate that geopolymer-treated clay specimens exhibit superior mechanical 
properties compared to untreated clay specimens, as demonstrated by the results of the UCS test and consolidated 
undrained (CU) test. Depending on the amount of geopolymer and curing time, the unconfined compressive 
strength could increase by up to six times. Rios et al.24 carried a total of 16 specimens of geopolymer-stabilized 
soil tests to analyze unconfined compressive strength (UCS) and stiffness. These specimens were prepared using 
different quantities of fly ash, soil, and alkaline solutions.

In general, determining the geotechnical parameters of soft soil is a laborious, time-consuming, costly, and 
energy-intensive procedure that requires a great deal of effort, equipment, and time. In order to acquire pre-
cise data pertaining to the compaction characteristics and UCS of soils, a minimum of six tests and four tests, 
respectively, must be  conducted9.

In order to accurately predict compaction parameters, UCS, and other soil properties, predictive models 
have been developed. These methodologies often result in the development of equations including several unde-
termined coefficients, which may have an influence on the relationships between independent and dependent 
variables. In spite of being successful in some scenarios of stabilized soils, the resulting models are intrinsically 
erroneous despite, primarily due to their complexity. Machine learning (ML) models have been used success-
fully in various domains such as in geotechnical issues including prediction of the  UCS25–41. Boosting is a ML 
technique that leverages the strengths of ensemble methods, which involve combining multiple weak learners to 
construct a powerful and effective learner. The utilization of this approach enhances the efficiency of following 
learning models, concurrently reducing the errors associated with the preceding learning models. There are vari-
ous types of boosting algorithms, two of which are gradient boosting (GB) and adaptive boosting (AdaBoost)42.

A comprehensive literature review reveals that GB and AdaBoost ML models have not yet been used to predict 
the UCS of clayey soil stabilized with geopolymer, despite the fact that these are the most effective and widely 
used ML methods. Therefore, an attempt was made to evaluate its capability for predicting the UCS of clayey soil 
stabilized with geopolymer, while bearing in mind the applicability of this modeling approach in civil engineer-
ing applications. This study focuses on development of boosting-based ML models to assess the potential use of 
these models in rapidly predicting the UCS. The dataset of total 270 soil samples consists of a single dependent 
variable, the UCS, and several independent variables including the ground-granulated blast-furnace slag (S; 
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%), the plasticity index (PI; %), the alkali-to-binder ratios (A/B), the percentage of fly ash (FA; %), the molar 
concentrations of an alkali solution (M; mol/l), and the ratios of Si/Al and Na/Al. The evaluation of the model’s 
performance was conducted using four performance metrics, namely mean absolute error (MAE), root mean 
square error (RMSE), mean squared error (MSE), and coefficient of determination  (R2). The main contributions 
of this study are:

1. To investigate the feasibility of boosting-based ensemble ML models for predicting UCS of geopolymer 
stabilized clayey soil and to provide executable models for frequent use in practice;

2. To compare the performance of boosting-based ensemble ML models, such as GB and AdaBoost, with that 
of some of the most widely used ML models; and

3. To investigate the relative importance of the factors influencing the UCS of geopolymer stabilized clayey soil 
using a sensitivity analysis.

Related literature
Recently, several ML models have been proposed to estimate the UCS of geopolymer stabilized soil (see Table 1) 
such as artificial neural network (ANN), support vector machine (SVM), random forest (RF), multi-gen genetic 
programming (MGGP), hybrid neuro-fuzzy (NF)-group method of data handling (GMDH) and particle swarm 
optimization (PSO). For example, Mozumder and  Laskar43 utilized a database including 282 samples and 8 input 
factors, namely liquid limit (LL), plastic index (PI), ground-granulated blast-furnace slag content (S), fly ash 
content (FA), molarity of sodium hydroxide (NaOH) concentration (M), alkaline content to binder content ratio 
(A/B), atomic number ratio of sodium to aluminum (Na/Al), and atomic number ratio of silicon to aluminum (Si/
Al). The input parameters used in this study were employed for the development of an ANN model, specifically a 
multi-layer perception (MLP) feed-forward network, with the Bayesian Regularization back propagation training 
technique. The objective of this model was to predict the UCS of clayey soil stabilized with geopolymer. The ANN 
model, as described by Mozumder and  Laskar43 demonstrates a high level of performance in the testing dataset 
as indicated by the coefficient of determination  (R2 = 0.9643). Mozumder et al.44 developed a new dataset with 
the same input variables excluding FA content from the database of Mozumder and  Laskar43. Mozumder et al.44 
used SVM to predict the UCS of clayey soil stabilized with geopolymer having  R2 = 0.9801 for testing dataset. 
Soleimani et al.8 created a MGGP model to estimate the UCS of geopolymer stabilized soil. The model utilized 
an original database consisting of 282 samples and 8 input variables. The model exhibited strong performance, 
as evidenced by an  R2 value of 0.9420 and MAE of 1.071 MPa when evaluated on the testing dataset. Javdanian 
and  Lee45 developed a hybrid ML model that combines NF, GMDH and PSO, known as NF-GMDH-PSO was 
devised to predict the UCS of stabilized cohesive soils using geopolymers. The model’s performance was evaluated 
using the following metrics:  R2 = 0.971, mean absolute error (MAE) = 0.231 MPa, and root mean square error 
(RMSE) = 0.401 MPa. Nagaraju and  Prasad46 investigated the efficacy of the PSO technique in predicting the UCS 
of geopolymer-stabilized expansive blended clays. Zeini et al.9 utilized random forest (RF) algorithm to predict 
the UCS of geopolymer stabilized clayey soil. The researchers employed the primary database and assessed the 
efficacy of the machine learning model by analyzing the testing dataset. This analysis resulted with the  R2 value 
of 0.9757 and the RMSE value of 0.9815 MPa. ANN is used by Ngo et al.47 to predict the UCS of geopolymer 
stabilized clayey soil and found reliable results with  R2 = 0.9808, RMSE = 0.8808 MPa, and MAE = 0.6344 MPa. 
Despite the fact that the aforementioned models can predict the UCS, there is still room for improvement in 
terms of accuracy. Therefore, this field is still being researched and investigated.

Dataset and correlation analysis
The present study utilized a database that was obtained from the study conducted by Mozumder and  Laskar43. 
A total of 270 unconfined compressive strength (UCS) samples of cohesive soils stabilized with geopolymer has 
been collected (see Supplementary File, Appendix A, Table A1). The experiments were conducted on three types 
of cohesive soils. Fly ash (FA) and ground-granulated blast-furnace slag (S) as well as their combinations were 
used as the source materials for  geopolymerization43.

Table 1.  Summary of recent advances in predicting unconfined compressive strength of geopolymer stabilized 
clayey soil.

Model Input parameter Data size Performance metric on test set References

ANN LL, PI, GGBFS, FA, M, A/B Na/Al, Si/Al 282 R2 = 0.9643 Mozumder and  Laskar43

SVM LL, PI, GGBFS, M, A/B Na/Al, Si/Al 213 R2 = 0.9801 Mozumder et al.44

MGGP LL, PI, GGBFS, FA, M, A/B Na/Al, Si/Al 282 R2 = 0.9420
MAE = 1.0710 MPa Soleimani et al.8

NF-GMDH-PSO LL, PI, GGBFS, FA, M, A/B Na/Al, Si/Al 282
R2 = 0.9710
RMSE = 0.4010 MPa
MAE = 0.2310 MPa

Javdanian and  Lee45

RF LL, PI, GGBFS, FA, M, A/B Na/Al, Si/Al 282 R2 = 0.9757
RMSE = 0.9815 MPa Zeini et al.9

ANN LL, GGBFS, FA, M, A/B Na/Al, Si/Al 282
R2 = 0.9808
RMSE = 0.8808 MPa
MAE = 0.6344 MPa

Ngo et al.47
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The amount of alkali to binder proportion (A/B), molar concentration of alkali solution (M), atomic pro-
portions of silicon to aluminum (Si/Al), and sodium to aluminum (Na/Al) were varied in the experiments 
and the influence of these parameters on the unconfined compressive strength (UCS) of stabilized cohesive 
soils was  investigated43. Hence, the parameters plasticity index (PI; %), liquid limit (LL; %), ground-granulated 
blast-furnace slag (S; %), fly ash (FA; %), A/B, M (moles per liter (mol/l)), Si/ AL, and Na/Al were considered 
as inputs parameters. In addition, the USC parameter was considered as output in the model development. The 
binder content exhibited a range of 4–50% for S, 4–20% for FA, and a composite of S and FA, denoted as a ratio 
relative to the dry weight of the soil solids. In the investigation of Mozumder and  Laskar43, alkali solutions with 
molar concentrations of 4 M, 8 M, 10 M, 12 M, and 14.5 M were used in the experiment. The weight ratio of the 
alkali solution to the binder (A/B) was selected as 0.45, 0.65, and 0.85. The 28 day UCS test on the samples was 
carried out in line with Indian Standard:  272048. The 270-sample dataset, which contains various UCS tests, is 
summarized in Table 2, and the inputs and output statistics of the present study are shown in Table 3.

Figure 1 displays the violin plots of eight input variables and one output indicator. The visual representation 
consisted of a combination of box plots and sample points, serving to illustrate the comprehensive distribution 
of the dataset. In each violin plot, the upper and lower boundaries of the thick line correspond to the third and 
first quartiles of the samples, respectively. and, the upper and lower boundaries of the thin line reflect the upper 

Table 2.  The present study’s inputs and outputs.

S. No LL (%) PI (%) S (%) FA (%) M (mol/l) A/B Na/Al Si/Al UCS (MPa)

1 116 88.46 20 0 4 0.45 0.39 1.49 0.0595

2 116 88.46 16 0 4 0.45 0.39 1.49 0.0616

3 116 88.46 12 0 4 0.45 0.39 1.49 0.0551

… … … … … … … … … …

… … … … … … … … … …

… … … … … … … … … …

268 38 14.07 0 16 12 0.65 1.18 2.49 0.197

269 38 14.07 0 12 12 0.65 1.18 2.49 0.1689

270 38 14.07 0 8 12 0.65 1.18 2.49 0.1103

Table 3.  The study’s input and output statistics.

Statistical Index LL (%) PI (%) S (%) FA (%) M (mol/l) A/B Na/Al Si/Al UCS (MPa)

Minimum 37.70 14.07 0.00 0.00 4.00 0.45 0.24 1.49 0.00

Maximum 116.00 88.46 50.00 20.00 15.00 0.85 1.98 2.49 24.26

Mean 65.02 40.02 16.22 1.87 12.31 0.62 1.16 1.68 5.73

Standard Deviation 32.52 30.97 12.96 4.28 2.74 0.15 0.45 0.33 6.46

Kurtosis − 1.36 − 1.37 0.27 6.12 2.43 − 1.07 − 0.66 0.89 − 0.35

Skewness 0.57 0.56 0.91 2.58  −  1.54 0.25 − 0.21 1.56 0.89

Figure 1.  Violin plots of the dataset.
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and lower adjacent values. The findings depicted in Fig. 1 indicate that the distribution of S and UCS exhibited 
a rather balanced pattern, with their respective medians positioned towards the center of the violin plots. Con-
versely, LL, PI, FA, M, A/B, Na/Al, and Si/Al displayed a few individual outliers.

Correlation analysis analyzes the closeness of a relationship between two variables by analyzing two or more 
variables that are correlated. In order to ascertain the correlation among the input variables, this study performed 
a correlation analysis on the eight input variables prior to the training of the model. The resulting correlation 
analysis is presented in Fig. 2. The Pearson correlation coefficient showed that S has a strong positive correlation 
i.e., (r = 0.79) whereas exhibited a notably weak correlation (r = 0.05) with UCS of geopolymer stabilized clayey 
soil for the experimental data. The negative correlation (i.e., LL; r = − 0.20 and Si/Al; r = − 0.25) means a value 
increases with a  decrease49.

Machine learning models
Boosting is an ensemble approach in which several weak learners are combined to produce a strong learner. It 
reduces the errors of the previous learning model while improving the performance of the subsequent learning 
model. Gradient boosting (GB) and Adaptive Boosting (AdaBoost) are two often employed approaches among 
the several boosting methods  available42. These two methods have been the focus of this study.

Gradient boosting method
Gradient boosting (GB) is a type of ensemble method in which multiple weak models are developed and then 
combined to improve overall performance. Gradient Boosting (GB) uses the methodology of gradient descent 
in order to minimize the loss function that relates to a given model. The process of incorporating weak learners 
into the model is carried out using an iterative approach. The ultimate prediction is established by the combined 
input of every weak learner, which is then determined by a gradient optimization procedure with the objective of 
reducing the overall error of the strong  learner42,50. Gradient boosting involves three fundamental mechanisms. 
The initial step that must be undertaken is the optimization of a loss function. A loss function that is differenti-
able is necessary. The degree of concordance between a machine learning model and observed data relevant to 
different phenomena is quantified using a loss function. The selection of the loss function may vary based on 
the particular problem under consideration. During the subsequent phase, the utilization of the weak learner is 
employed. The decision tree is utilized as the weak learner within gradient boosters. The application of regres-
sion trees that produce accurate values for divisions and allow for output aggregation is a distinctive approach 
used to handle residuals in prior iteration predictions by combining the output of consecutive models. While 
classification problems and regression concerns involve different methodologies, they both have a common 
approach in terms of data classification. The strategy employed for regression analysis involves the utilization 
of decision trees. The third phase entails the aggregation of numerous poor learners. Successive decision trees 
are incrementally incorporated into the analysis. The process of incorporating trees involves the implementa-
tion of a gradient descent technique in order to minimize loss. The gradient component is an essential part of 
gradient boosters. Instead of employing the parameters of the weaker models, the gradient descent optimization 
approach is utilized on the output of the model. The gradient boosting approach is an improved version of the 
gradient descent technique that enables generalization through the modification of both the gradient and the 
loss  function51. The generic gradient boosting algorithm is represented in pseudocode  as52,53: 

Figure 2.  Correlation coefficients matrix diagram.
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Algorithm 1: Gradient boosting.

Adaptive boosting method
Adaptive boosting (AdaBoost), an ensemble of many weak learner decision trees, outperforms random guessing 
by a slight margin. The AdaBoost approach has an adaptive characteristic whereby it transfers the gradient infor-
mation from prior trees to succeeding trees in order to minimize the error of the preceding tree. Consequently, 
the ongoing process of learning trees at each step fosters the development of a proficient student. The final pre-
diction is determined by calculating the weighted average of the forecasts generated by each tree. In the process 
of training individual tree models, it is necessary to modify the weight distribution of each sample within the 
dataset. As the training data varies, the resulting training outcomes similarly exhibit variability, culminating in 
the aggregation of all  outcomes54. AdaBoost demonstrates enhanced robustness against outliers and irrelevant 
data because to its notable adaptability. Furthermore, the methodology is specifically designed to operate in a 
manner where subsequent trees are provided with the information acquired by preceding trees. This enables 
them to focus exclusively on training samples that provide challenges in terms of  prediction55.

Due to its constrained capabilities, a single decision tree is referred to as a weak learner. The possibility of 
generating a robust learner through the combination of numerous weaker learners is a subject of contemplation 
among researchers. The conjecture was proven in 1990, establishing the fundamental principles underlying the 
boosting algorithm, which involves the sequential combination of numerous weak  learners56. The pseudocode 
of generic AdaBoost method  is57:
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Algorithm 2: AdaBoost.

Model evaluation
The selection of suitable evaluation metrics is of utmost importance in the development of different machine 
learning (ML) models, as it enables the assessment of the models’ reliability and accuracy. The coefficient of deter-
mination  (R2), mean absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE) are 
commonly employed as evaluation metrics for regression  models58–61. The coefficient of determination, denoted 
as  R2, is a statistical metric that quantifies the proportion of the variance observed in the dependent variable that 
can be accounted for by the independent variables included in the model. The range of the metric is from 0 to 1, 
where higher values signify greater agreement between the model and the observed data. The MAE quantifies 
the average absolute discrepancy between the predicted values and the observed values, thereby serving as an 
indicator of the model’s precision in predicting the target variable. On the other hand, the RMSE calculates the 
square root of the average squared discrepancy between the predicted values and the observed values. Lastly, 
the MSE computes the average squared discrepancy between the predicted and observed values. A decrease in 
the MAE, RMSE, and MSE indicates a higher level of model fit to the dataset. The evaluation measures chosen 
for the ML model in this work include  R2, MAE, RMSE, and MSE. Table 4 provides definitions and calculation 
formulas. Furthermore, Taylor diagrams were employed to assess the efficacy of the models, thereby presenting 
both experimental and statistical parameters concurrently.

Models development
Orange, a well-known open-source machine learning technology platform for statistical computation and data 
mining, was used for developing the models for predicting the UCS of geopolymer-stabilized clayey  soil62. The 
data analysis in this study was conducted using Orange software (version 3.32.0), which was developed at the 
Bioinformatics Laboratory, Faculty of Computer and Information Science, University of Ljubljana, in collabora-
tion with the open source community. Orange software incorporates a comprehensive range of ML algorithms 
that are widely utilized in research and practice. The database was randomly divided into training (80%; 216 
samples) and testing (20%; 54 sample) sets for model development and validation. Random split aids in assessing 
data quality and addressing fairness concerns related to biased model predictions. The aforementioned meth-
odologies were utilized in the building of our innovative ML models. The documentation provides a summary 
of the input parameters and implementation details for each ML method. It may be obtained at (https:// orang 

Table 4.  Performance metrics definition and computation. ŷi represents the predicted value; yi represents the 
average value; yi represents the measured value; and m is the training or testing samples.

Performance metric Definition Formula

R2 The statistical metric that measures the proportion of the variance in the target variable R2 = 1−

∑m
i=1 (ŷi−yi)

2

∑m
i=1 (yi−yi)

2

MAE The average absolute difference between predicted and observed values MAE =
1

m

∑m
i=1

∣

∣ŷi − yi
∣

∣

RMSE The root mean squared difference between predicted and measured values RMSE =

√

1

m

∑m
i=1

(

ŷi − yi
)2

MSE The mean squared difference between the observed and predicted values MSE =
1

m

∑m
i=1

(

ŷi − yi
)2

https://orangedatamining.com/widget-catalog/
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edata mining. com/ widget- catal og/, retrieved on 7 May 2023). The Orange platform offers a framework for the 
development of predictive modeling. Data normalization was not conducted. The schematic model, which was 
constructed using Orange Software, is depicted in Fig. 3. Additionally, Table 5 provides the specific values for 
each proposed model. The Orange 3 software used in this study does not have an optimizer function that can 
automatically determine the model’s hyper-parameters. Consequently, the authors painstakingly fine-tuned the 
parameters of each ML model in Orange 3, beginning with the default values, in order to provide viable output. 
In the present study, the GB and AdaBoost models were fine-tuned by adjusting the important hyperparameters, 
as presented in Table 5. The initial selection of tuning parameter values for the models was followed by iterative 
adjustments during the trials, aiming to achieve the optimal fitness measures as presented in Table 5. Figure 3 
depicts the schematic representation of the methods employed for the construction of the developed models.

Results and discussion
Performance analysis
In the field of ML, it is necessary to examine models in order to verify the effectiveness of the obtained models. 
Different models utilize different evaluation approaches. After the successful development of the ML model 
for predicting the UCS of geopolymer stabilized clayey soil, the subsequent critical step entails evaluating the 
effectiveness of the generated ML model in producing accurate predictions. The primary objective of this work 
was to assess the validity of boosting-based models in accurately predicting the UCS of geopolymer stabilized 
clayey soil. The accomplishment was attained by a process of comparing the predicted values determined by the 
models with the measured or observed values of UCS.

Figure 4 illustrates a comparison between the predicted and measured unconfined compressive strength 
(UCS) of clayey soil stabilized with geopolymer. The comparison is made between the training and testing data-
sets. Figure 4 illustrates the excellent agreement observed between the predicted value of the training set and the 
actual measured value. Although there are some instances in the testing set when the predicted value exhibits 
substantial deviation from the measured value, on the whole, the predicted value coincides with the actual value. 
The results suggest that the GB model exhibits greater accuracy in predicting the UCS of geopolymer stabilized 
clayey soil when compared to the AdaBoost model.

Figures 5 and 6 illustrate scatter diagrams that represent the fitting effect between predicted and measured 
values in both the training and testing sets, so providing an improved understanding of this relationship. The 
unconfined compressive strength of both the training set and the testing set is concentrated at 0–25 MPa, as can 
be seen in Figs. 5 and 6. The predicted value and measured value of the training set and the testing set, on the 

Figure 3.  Flowchart of the proposed methodology (adopted from Wang et al.63).

Table 5.  Selection of model parameters.

Model Parameter Explanation Value

GB

Number of trees How many gradient boosted trees will be included 100

Learning rate Boosting learning rate 0.1

Limit depth of individual trees Maximum depth of the individual tree 5.0

Do not split subsets smaller than Smallest subset that can be split 5.0

Friction of training instances Percentage of the training instances for fitting the individual tree 1.0

AdaBoost

Number of estimators Maximum number of iterations of the weak learner 100

Learning rate The iteration pace may be slowed down if the step size of the update parameter is too small 1.0

Classification algorithm SAMME and SAMME.R classification algorithms update the weights of the base estimator with classification/prob-
ability outcomes SAMME

Regression loss function There are three choices—linear, square and exponential Linear

https://orangedatamining.com/widget-catalog/
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whole, have a good fitting effect, with only a few noise/error points in the testing set having significant errors. In 
the training set for GB model, there were multiple instances with errors such as the actual value of unconfined 
compressive strength was about 8.2621 MPa, and the predicted value was as low as 6.92243 MPa.

Nevertheless, it is important to note that slight variations in specific data points do not impact the overall 
predictive efficiency of the developed models. Specifically, the GB model demonstrates superior accuracy in 
predicting the UCS of geopolymer stabilized clayey soil compared to the AdaBoost model. The  R2 value of the 
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Figure 4.  Comparing predicted and actual UCS of geopolymer stabilized clayey soil in training dataset using 
(a) GB, (b) AdaBoost and testing dataset using (c) GB and (d) AdaBoost.
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testing set is 0.980, the MAE value is 0.586, the RMSE value is 0.969, the MSE value is 0.940, whereas in Ada-
Boost model, The  R2 value of the testing set is 0.975, the MAE value is 0.655, the RMSE value is 1.088, and the 
MSE value is 1.185. Thus, the  R2 value, RMSE value, MAE value and MSE value of the testing set have common 
characteristics-namely, their  R2 value is high, and their RMSE, MAE and MSE values are low in GB model as 
compared to AdaBoost model. In order to mitigate the risks of overfitting and ensuring that developed models 
remain robust and reliable, early stopping strategy is used i.e., stop training when the model’s performance starts 
to degrade. It is evident from the results that the GB model has capable to predict the UCS accurately, and there 
is no over-fitting situation.

Comparison between developed models with previously developed models
To highlight the predictive power of the developed models (i.e., GB and AdaBoost), the model results are com-
pared to those of the most recently developed ML models in the literature in this study. A total of five machine 
learning models were taken into consideration: multivariable regression model (MLSR)8,  MGGP8,  RF51, extreme 
gradient boosting (XGB)51, and  ANN51. Table 6 presents a comprehensive overview of the statistical performance 
metrics pertaining to both the pre-existing models and the newly developed models, specifically the GB and 
AdaBoost models, in terms of their predictive performance on the training and testing datasets. Figures 7 and 
8 depict a scatter plot showing the relationship between the actual and predicted values of the UCS of geopoly-
mer stabilized clayey soil. It is evident from the figures that all the developed models exhibit a satisfactory level 
of accuracy in predicting the UCS values of geopolymer stabilized clayey soil. Based on Table 6, the GB and 
AdaBoost models are efficient in predicting UCS values better than  MLSR34,  MGGP34,  RF39,  XGB39, and  ANN39 
techniques. However, the GB model with an  R2 of 0.980 for the testing part was more accurate than the MGGP 
with an  R2 of 0.922, MLSR with an  R2 of 0.803, RF with an  R2 of 0.9459, XGB with an  R2 of 0.9671, ANN with 
an  R2 of 0.9676 and AdaBoost with an  R2 of 0.975. It can be concluded that the GB model is a superior model in 
predicting UCS values of geopolymer stabilized clayey soil. The GB model is found to be superior in predicting 
UCS values of geopolymer stabilized clayey soil. Furthermore, the GB model demonstrates the lowest MAE, 
RMSE, and MSE in the present investigation, indicating its superior efficiency and robustness.
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Figure 5.  Actual/measured UCS of geopolymer stabilized clayey soil versus predicted UCS based on training 
dataset (a) GB model and (b) AdaBoost model.
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Sensitivity analysis
In the final stage of this study, the most and least significant parameters for determining the UCS of geopolymer-
stabilized clayey soil were determined. Sensitivity analysis can help to understand which input features or vari-
ables have the most significant impact on the model’s predictions. This can provide insights into which factors 
are driving the predictions, making the model more interpretable. This knowledge is vital for feature selection 
or understanding the underlying dynamics of the problem. In this study, cosine amplitude (CA) method of sen-
sitivity analysis was  used64. The CA approach has been employed in numerous research studies e.g.65–68.The CA 
approach measures the strength of the relationship between each effective parameter and the UCS of geopolymer 
stabilized clayey soil. The following equation is used in this  context69.

In which rij is the intensity impact between xi (input) and xj (output). The sensitivity results and impact-
ful parameters were determined. From Fig. 7, the S parameter has the most effect on unconfined compressive 
strength of geopolymer stabilized clayey soil with a strength of 0.899 and align with the finding reported from 
a previous study carried by Soleimani et al.8. Noteworthy, the influence of the parameters based on the rij value 

(1)rij =

m
∑

n=1

xin · xjn

√
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·
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Table 6.  Comparison of the developed models with available machine learning models in literature. “–” not 
reported in the respective reference.

Model Dataset R2 MAE (MPa) RMSE (MPa) MSE Input Parameters References

MGGP
Training 0.924 1.354 1.790 3.206

LL, PI, S, FA, M, A/B Na/Al, Si/Al 8
Testing 0.922 1.305 – 3.149

MLSR
Training 0.788 2.769 3.739 14.722

Testing 0.803 2.258 – 10.951

RF
Training 0.9824 0.6051 0.8665 –

LL, PI, S, FA, M, A/B Na/Al, Si/Al 51

Testing 0.9459 0.9706 1.4795 –

XGB
Training 0.9929 0.3767 0.5500 –

Testing 0.9671 0.7357 1.1537 –

ANN
Training 0.9883 0.4311 0.7084 –

Testing 0.9676 0.7140 1.1445 –

GB
Training 0.999 0.145 0.229 0.052

LL, PI, S, FA, M, A/B Na/Al, Si/Al This study
Testing 0.980 0.586 0.969 0.940

AdaBoost
Training 0.999 0.062 0.148 0.022

Testing 0.975 0.655 1.088 1.185
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Figure 7.  The strength relationship between effective parameters on UCS of geopolymer stabilized clayey soil.
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can be prioritized in ascending order as FA < PI < LL < Si/Al < A/B < M < Na/Al < S with an impact of 0.051, 0.382, 
0.496, 0.630, 0.656, 0.675, 0.682, and 0.899, respectively.

Taylor diagrams
Taylor  diagram70 provides a straightforward visual representation of a model’s performance in comparison to 
other models. The Taylor diagram incorporates three indices: the correlation coefficient, the standard devia-
tion, and the root mean square error (RMSE). The Taylor diagram presented in Fig. 8 is utilized to conduct a 
comprehensive analysis of the model outcomes and facilitate a comparison between them. The Taylor diagram 
is a useful tool for visually representing the accuracy of prediction models. It accomplishes this by comparing 
various metrics such as the standard deviation, correlation coefficient, and RMSE. The evaluation of the per-
formance of the created prediction models is also assessed using the Taylor diagram depicted in Fig. 8. The best 
model using a Taylor diagram based on standard deviation is the model that closely matches observed data in 
terms of standard deviation and have points closer to the reference point. AdaBoost’s predictions are the closest 
to the observed/measured values in the training set. However, in case of testing dataset, it was seen that the GB 
model had somewhat superior performance compared to the AdaBoost model, suggesting that the GB model 
demonstrates a higher level of accuracy.

Conclusions
This study examines the performance of boosting-based ML models in predicting the UCS of geopolymer 
stabilized clayey soil using experimental dataset. The dataset comprises input variables including fly ash and 
ground granulated blast furnace slag, liquid limit, plastic limit, plasticity index, molar concentration, alkali to 
binder ratio, and ratios of sodium and silicon to aluminum. The accuracy of the developed models was validated 
by examining  R2, MAE, RMSE, and MSE values, as well as the predicted and actual values of the training and 
testing sets. The output variable was the UCS of geopolymer stabilized clayey soil. The results indicate that the 
GB algorithm performs well. The findings are summarized as follows:

1. The GB model can be used to predict the unconfined compressive strength of geopolymer stabilized clayey 
soil and achieved better prediction results when compared to the AdaBoost model developed in present 
study and other models such as MLSR, MGGP, RF, XGB, and ANN developed in literature.

2. Results showed that the  R2 values of the GB model in training set and the test set were 0.999 and 0.980, 
respectively, and the MAE, RSME, and MSE values were 0.145, 0.229, and 0.052 for training and 0.586, 0.969, 
and 0.940 for testing set, respectively—that is, the training set and the testing set both had high  R2 values 
and low MAE, RSME, and MSE values.

3. Based on the scatter plots of actual and predicted values, the GB model exhibited a better fit to the actual data, 
indicating that it has potential for broader applications in in predicting the UCS of geopolymer stabilized 
clayey soil.

4. The Pearson correlation coefficient showed that S and the UCS of geopolymer stabilized clayey soil have a 
strong positive correlation, while M and A/B have a very weak positive correlation.

5. The sensitivity analysis revealed that S held the highest level of significance in its contribution to UCS of 
geopolymer stabilized clayey soil. Moreover, Na/Al and M were identified as the subsequent key factors. 
In contrast, FA and PI demonstrated the least significance in the prediction of UCS values. The degree of 
importance can be prioritized in ascending order as FA < PI < LL < Si/Al < A/B < M < Na/Al < S.

Figure 8.  Taylor diagram comparing predicted and measured UCS of geopolymer stabilized clayey soil in (a) 
training and (b) testing datasets.
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The developed models are valid only within the considered ranges of inputs and should be verified beyond 
these ranges. In addition, more experimental data should be collected to improve the generalization capability of 
the proposed models. The prediction of unconfined compressive strength value of geopolymer stabilized clayey 
soil using sophisticated ML algorithms such as deep learning is left as a topic for future study.

Data availability
Data is provided within the manuscript or supplementary information files.
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