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A B S T R A C T   

The construction sector is a major contributor to global greenhouse gas emissions. Using recycled 
and waste materials in concrete is a practical solution to address environmental challenges. 
Currently, agricultural waste is widely used as a substitute for cement in the production of eco- 
friendly concrete. However, traditional methods for assessing the strength of such materials are 
both expensive and time-consuming. Therefore, this study uses machine learning techniques to 
develop prediction models for the compressive strength (CS) of rice husk ash (RHA) concrete. The 
ML techniques used in the present study include random forest (RF), light gradient boosting 
machine (LightGBM), ridge regression, and extreme gradient boosting (XGBoost). A total of 348 
values of CS were collected from the experimental studies, and five characteristics of RHA con-
crete were taken as input variables. For the performance assessment of the models, multiple 
statistical metrics were used. During the training phase, the correlation coefficients (R) obtained 
for ridge regression, RF, XGBoost, and LightGBM were 0.943, 0.981, 0.985, and 0.996, respec-
tively. In the testing set, the developed models demonstrated even higher performance, with 
correlation coefficients of 0.971, 0.993, 0.992, and 0.998 for ridge regression, RF, XGBoost, and 
LightGBM, respectively. The statistical analysis revealed that the LightGBM model outperformed 
other models, whereas the ridge regression model exhibited comparatively lower accuracy. 
SHapley Additive exPlanation (SHAP) method was employed for the interpretability of the 
developed model. The SHAP analysis revealed that water-to-cement is a controlling parameter in 
estimating the CS of RHA concrete. In conclusion, this study provides valuable guidance for 
builders and researchers to estimate the CS of RHA concrete. However, it is suggested that more 

* Corresponding author. 
** Corresponding author at: Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Sweden. 

E-mail addresses: 18pwciv4988@uetpeshawar.edu.pk (M. Khan), yaser.gamil@ltu.se (Y. Gamil).  

Contents lists available at ScienceDirect 

Case Studies in Construction Materials 

journal homepage: www.elsevier.com/locate/cscm 

https://doi.org/10.1016/j.cscm.2024.e02901 
Received 16 May 2023; Received in revised form 26 December 2023; Accepted 17 January 2024   

mailto:18pwciv4988@uetpeshawar.edu.pk
mailto:yaser.gamil@ltu.se
www.sciencedirect.com/science/journal/22145095
https://www.elsevier.com/locate/cscm
https://doi.org/10.1016/j.cscm.2024.e02901
https://doi.org/10.1016/j.cscm.2024.e02901
https://doi.org/10.1016/j.cscm.2024.e02901
http://creativecommons.org/licenses/by/4.0/


Case Studies in Construction Materials 20 (2024) e02901

2

input variables be incorporated and hybrid models utilized to further enhance the reliability and 
precision of the models.   

1. Introduction 

The world is advancing at an unprecedented pace. Every day, new technology and inventions are developed in every industry. 
These technological advances have impacted every aspect of human civilization. Infrastructure represents one of the most significant 
aspects that has shaped contemporary civilization. Humankind began living in durable and attractive shelters constructed by their 
inventive and clever brains, beginning with caves. Even now, infrastructure is regarded as the most crucial factor in any country’s 
success. Cement is a widely employed building material all over the globe for the development of structures. However, along with the 
benefits of cement, there are also drawbacks. Considering cement’s binding properties, the US geological survey (USGS) estimated that 
around four billion tons of cement will be produced globally in 2020 [1]. Cement is claimed to account for 7% of the total CO2 
emissions [2]. To be more precise, 1 ton of cement manufacturing produces 1 ton of CO2; therefore, such massive CO2 generation can 
present a severe risk to humans and the environment [3]. Regarding this, the cement sector is considered the third highest sector in 
producing CO2 globally [4]. When water is added to cement, it creates carbon dioxide as it reacts. Secondly, higher temperatures are 
necessary for cement manufacturing [2]. This higher heat is produced by consuming fossil fuels, which raises cement’s carbon 
footprint [5]. The earth is in dire peril due to such serious challenges. Some of these concerning problems include global warming and 
the degradation of the environment [6,7]. These issues, if not addressed promptly, will bring the planet to the edge of catastrophe [8]. 
CO2 emissions from various products and operations are a key driver of global warming and environmental deterioration [3,4]. Given 
that cement contributes significantly to global CO2 emissions, the necessity of construction cannot be underestimated [9]. Cement 
must be substituted with a substance with a lower carbon footprint and better or the same qualities as cement. 

Supplementary cementitious materials (SCMs) are substances that resemble the qualities of ordinary Portland cement (OPC). They 
exhibit lower levels of carbon dioxide emissions [10]. SCMs are commonly generated waste and byproducts of several manufacturing 
sectors [11,12]. If these materials are not used appropriately or disposed of, they turn into causes of many sorts of pollution. To reflect 
the required features of OPC, SCMs can be utilized in different amounts and combinations. Rice husk ash (RHA), fly ash (FA), and 
corncob ash are some kinds of SCMs [13–20]. RHA is produced from the waste of rice crops [21]. Rice husks (RH) wrap rice grains and 
serve as a biofuel for boiling paddies in mills that grind rice [22]. It possesses greater than 90% silica and may be utilized as an SCM to 
produce concrete effectively. The RHA chemical composition is provided in Table 1 [23]. A stacked bar plot is also given in Fig. 1 to 
illustrate various chemical constituents present in RHA. As a summation of alumina, silica, and ferrous oxides greater than 70%, RHA 
can be considered a pozzolanic substance according to ASTM C618 [24]. According to reports, around 70 million tons of RHA were 
generated globally in 2016 [25]. Given its enormous quantity, disposing of RHA is turning into a difficult challenge in rice-producing 
regions. Rice husk may be transformed into ash under regulated conditions, converting the ash into an appropriate pozzolanic material 
to substitute cement in concrete ingredients [26–28]. Researchers were attracted to the utilization of RHA as a pozzolanic substance 
because of its superior chemical and physical features (i.e., porous structure, higher silica content, adequate durability, cheaper 
manufacturing cost, and contribution to sustainability) [29–31]. Furthermore, RHA has been used in concrete, concrete blocks, and 
mortar, which has shown significant environmental effects to reduce CO2 [32–35]. 

It is widely recognized that CS plays a significant importance in the concrete design process and quality control [36]. Several 
studies investigated the RHA integration in concrete to minimize the cement quantity and explore the impacts on compressive 
strength. The inclusion of RHA as a substitute for cement improves the CS of concrete; however, the optimal substitute percentage of 
cement by RHA for the highest strength improvement has been observed between 10% and 30%. For instance, Mahmud et al. [37] 
stated that 15% cement substitution with RHA is the optimum amount for obtaining higher strength improvement. Zhang et al. [38] 
reported that 10% RHA substitution provided greater strength at all ages than control OPC. Furthermore, Ganesan et al. [31] stated 

Table 1 
Chemical composition of rice husk ash in weight (%) [23].  

Chemical 
composition    

Sources      

[83] [84] [85] [86] [87] [88] [89] [24] [90] 

SiO2 96.7 86.0 89.61 87.4 85.58 97.5 93.4 90.0 96.7 
Na2O 0.16 0.05 0.07 0.04 NA 0.10 0.1 NA 0.26 
CaO 0.49 1.26 0.91 0.9 1.83 0.18 0.31 1.10 0.49 
Fe2O3 0.05 1.12 0.22 0.3 0.21 1.18 0.06 0.43 0.05 
P2O5 NA 0.48 NA NA 0.67 NA 0.8 2.43 NA 
SO2 NA 2.79 NA 0.4 0.26 0.49 NA NA NA 
TiO2 NA 0.17 NA NA NA NA NA NA 0.16 
MgO 0.19 0.48 0.42 0.6 0.50 NA 0.35 0.77 0.19 
K2O 0.91 1.82 1.58 3.39 3.39 1.39 1.4 4.60 0.91 
Al2O3 1.01 5.12 0.04 0.4 0.25 0.73 0.05 0.46 1.01 
LOI* 4.81 NA 5.91 4.60 6.99 NA NA 3.90 4.81 

NA; Not available, LOI; Loss on ignition 
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that concrete with 15% RHA had more CS, and reduction occurred at higher amounts than 15%. Dakroury et al. [39] found that 
employing 30% RHA as a substitute for cement might be deemed optimal for all w/c ratios in mortars. Zhang et al. [40] found that the 
enhancement in CS and reduced permeability of RHA concrete may be due to lower porosity, low calcium hydroxide concentration, 
and minimum space of the interfacial zone between the aggregate and the paste. The growth of additional CS-H gel in RHA concrete 
may advance the qualities of concrete because of the chemical reaction between calcium hydroxide and RHA in the hydration process. 
[41]. As reported by Rodriguez [19], the concrete with RHA had more CS than the normal concrete at 91 days. The filler impact may 
also justify the enhancement in CS of concretes containing RHA. In conclusion, RHA can improve the CS of concrete at an early stage. 
Additionally, the CS of RHA mixed concrete generated by controlled incineration performs excellently in the long term. 

It is vital to get accessibility to the experimental test data as timely as possible to save cost and time in construction. In-situ and 
laboratory testing need specialized equipment, which is both expensive and time-consuming. Furthermore, experimental testing needs 
a specialized location to cure and store concrete mixes, significantly raising expenses. Furthermore, several factors, such as curing age, 
concrete mix, and aggregate materials, influence the strength of concrete, and analyzing all of these characteristics takes time [42–45]. 
Addressing this challenge, multiple statistical and empirical formulations for estimating the compressive strength of concretes under 
diverse laboratory settings have been presented [46–48]. These equations were generated primarily to forecast the CS of normal 
concretes, making them unreliable for other kinds of concretes [49]. Furthermore, these formulations fail to account for the influence 
of all feasible variables on CS, resulting in estimation with insufficient precision [50–52]. Therefore, there is a need for more accurate 
and advanced estimation formulations that efficiently relate the input and output features of RHA concrete. 

In this regard, machine learning (ML) approaches are gaining attraction in the materials industry for developing efficient predictive 
models that explicitly recognize the relationship between response parameters and input factors [42,43]. Numerous research studies 
have been undertaken in the civil engineering sector that use ML approaches to identify valuable and trustworthy mathematical 
expressions for various characteristics of building materials [53–58]. Evolutionary algorithms (EA), M5 model trees (M5P), fuzzy logic, 
support vector machines (SVM), and artificial neural networks (ANN) are some of the frequently used ML methods [59,60]. Armaghani 
et al. [61] employed ANN and ANFIS to estimate the strength of cement-based mortar. The ANFIS model exhibited overfitting con-
cerns; the ANN model precisely estimates the outcome. In another study, Apostolopoulou et al. [62] explored the ANN method for 
estimating the CS of hydraulic lime mortar. Asteris et al. [63] used the ANN technique to estimate the CS metakaolin concrete and 
reported precision with R-value of 0.987. Alabdullah et al. [64] used XGBoost model for forecasting the chloride resistivity of concrete 
incorporated with metakaolin. It is reported that the optimum accuracy of XGBoost was observed with a learning rate of 0.2. Similarly, 
Yang et al. [65] reported higher predictive accuracy (R=0.98) for the random forest (RF) method in estimating the strength of carbon 
nanotube cement materials. Shah et al. [66] performed a comparative analysis of RF with GEP, ANN, and M5P techniques for esti-
mating the strength properties of metakaolin concrete. The RF exhibited higher precision than other models. Pal et al. [67] employed a 
comprehensive analysis involving thirteen distinct ML methods. Their findings underscore the noteworthy performance of the Cat-
Boost model, demonstrating its robust accuracy in predicting the CS of concrete with fibers, recycled aggregate, and waste rubber. 
Similarly, Rahman et al. [68] applied a diverse set of 11 ML techniques to forecast the shear capacity of concrete beams. Notably, 
XGBoost emerged as the standout performer, delivering highly precise predictions with the minimum root mean squared error (1.346) 
and minimal MAE (0.704). Song et al. [69] forecasted the strength of concrete containing fly ash with ANN, DT, and boosting methods. 
Notably, the boosting model surpassed both ANN and decision tree (DT), demonstrating superior prediction precision. Dao et al. [70] 
forecasted the strength of geopolymer concrete utilizing ANFIS and ANN models. The ANFIS outperformed the ANN model and showed 
higher prediction precision with R-value of 0.94. Khan et al. [71] predicted CS of concrete with steel fiber using RF and XGBoost 
models. The RF model demonstrated superior accuracy, boasting an R-value of 0.98, outperforming the XGBoost model. Another 
investigation by Kumar et al. [72] applied neural networks to investigate the strength of concrete reinforced with hybrid fibers. 

Fig. 1. Stacked bar plot showing the various chemical constituents of RHA.  
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Additionally, Amin et al. [73] utilized XGBoost and SVM methods to predict the CS of nano-silica-reinforced fiber concrete. Their 
findings revealed that the XGBoost method exhibited higher precision than the SVM. Moreover, Uddin et al. [74] utilized XGBoost, 
LightGBM, SVR, and RF models for estimating the strength of 3D-printed concrete. The LightGBM model exhibited higher precision 
compared to the SVR, XGBoost, and RF models. Moreover, Sharma et al. [75] utilized ridge and lasso regression to estimate the CS of 
geopolymer concrete. These AI techniques follow the same basic rules of developing the model and determining a feasible solution to a 
problem [76,77]. These models have demonstrated excellent outcomes for predicting different characteristics of cement-based ma-
terials and have been effectively employed to produce predictions for several uses, such as strength prediction, damage detection, and 
durability performance [78]. 

Recently, few studies have been carried out to forecast the CS of RHA concrete. For example, Li et al. [79] model the CS of RHA 
concrete with the hybrid neural network using 192 data points and six input variables. Their model achieved sufficient precision in 
forecasting the RHA concrete CS. Similarly, Iqtidar et al. [80] used the same database to forecast the CS of RHA concrete using the 
ANN. Furthermore, Hamidian et al. [81] used a hybridized ANN model with robust optimization techniques to model the CS of RHA 
concrete. Their models showed higher accuracy with R of more than 0.95. Amin et al. [82] utilized bagging regressors, decision trees, 
and AdaBoost regressors and exhibited higher precision in estimating the CS of the concrete containing RHA. However, there is still a 
gap in knowledge in ML prediction of RHA concrete to estimate the CS utilizing multiple input variable combinations. Moreover, the 
databases utilized in the previous studies were not comprehensive and contained a comparatively smaller number of data points. 

In the present study, CS of concrete containing RHA has been predicted using four different Al-based techniques, such as RF, 
LightGBM, ridge regression, and XGBoost, while considering the most dominant input parameters. An extensive database of experi-
mental studies has been collected from the literature for modeling purposes. Multiple statistical metrics were considered to assess the 
predictive models’ validity and precision. Furthermore, the SHAP technique and parametric analysis were utilized to interpret the 
model predictions. 

2. Theory of the ML-based modeling techniques 

ML methods are widely used to model various characteristics of cement-based materials [54–58,60,77,91,92]. These methods can 
be used to establish prediction models for material properties. This section briefly overviews the ML methods used in this research. 

2.1. Ridge regression model 

Ridge regression is a popular regression technique utilized to overcome the limitations of ordinary least squares (OLS) and analyze 
multicollinear regression data. It is a form of regularization that adds a penalty term to the cost function to minimize overfitting. OLS 
regression determines the connection between a dependent characteristic and one or more independent attributes. One of the main 
problems with OLS is that it can overfit the data, specifically when independent variables are in more significant numbers. Overfitting 
happens when the model learns the noise in the data. Resultantly, the model performs excellently on the training set but badly on the 
test set. However, ridge regression uses L2 regularization to avoid overfitting [93]. It adds a penalty term to the cost function of the 
OLS, which reduces the coefficients toward zero. The penalty term in ridge regression is given by:  

α * 
∑

(i=1 to n) β^2                                                                                                                                                                  (1) 

Where α is the regularization parameter, n shows the number of coefficients, and β shows the coefficient. The penalty term is added to 
the cost function and shrinks the coefficient towards zero, but it does not make them exactly zero. This is called the L2 regularization 
because the penalty term is the L2 norm of the coefficient vector. The value of α determines the amount of regularization. A high value 
of α will produce more regularization, and a lower value of α will result in less regularization. If α is set to zero, ridge regression will be 
the same as OLS regression. Ridge regression works by balancing the bias-variance trade-off, as shown in Fig. 2. Bias is the difference 
between the model prediction and the true values. Variance is the variability of the estimated values for different training sets. In ridge 

Fig. 2. Ridge regression method illustration.  
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regression, the penalty term adds bias to the model but reduces variance by shrinking the coefficients toward zero. The target of ridge 
regression is to obtain the optimal value of α that balances the bias-variance trade-off. 

There are some advantages and disadvantages of employing ridge regression for prediction modeling. Ridge regression can handle 
multicollinearity between the independent variables. Moreover, it can minimize overfitting and enhance the precision of the model. 
However, it adds bias to the model, which can affect the accuracy of the predictions. It is sensitive to the choice of the regularization 
variable α. The ridge regression model was trained using the Python sci-kit-learn library in the present study. 

2.2. Random forest (RF) 

A widely used ML approach called random forest (RF) is utilized for regression and classification problems. Multiple decision trees 
are combined in this type of ensemble algorithm to create a model that is more precise and reliable [94]. In this method, each decision 
tree is built independently and combined through bagging (Bootstrap Aggregating). The random forest model works in three stages: 
data sampling, decision tree generation, and ensemble learning [95]. The first stage in the RF technique is to sample the training data. 
This sampling process uses bootstrapping, where a random subset of the original data is selected. This applies that some of the data sets 
may be selected multiple times, while others may not be selected at all. This process creates multiple subsets of the data employed to 
train each decision tree. Secondly, once the training set is sampled, the next stage is to generate a decision tree for each subset. Each 
tree is built utilizing a unique subset of the training set in this process. As a result, a variety of decision trees that capture various 
elements of the data are produced. The decision trees are built using a recursive process where each node in the tree is split based on 
chosen characteristics that provide the maximum information gain. This procedure continues until a stopping requirement, such as the 
minimal amount of data points at a leaf node or the maximum depth of the tree, is satisfied [96]. Thirdly, after generating all the 
decision trees, the next step is combining them through ensemble learning. In RF, this is done using a method called majority voting. 
The predicted class for a new data point is found for classification tasks by taking the mode of the estimated classes of all the individual 
decision trees. The forecasted value is found for regression tasks by taking the mean of the forecasted values of all the individual 
decision trees [97]. The overall prediction process of RF is provided in Fig. 3. 

Like other machine learning algorithms, RF algorithms possess some benefits and drawbacks. Advantageously, the RF technique 
provides reliable and robust results compared to other techniques, can handle many features, and does not require scaling of features. 
Moreover, RF is less susceptible to overfitting concerns than other algorithms due to the ensemble learning process and the random 

Fig. 3. Schematic illustration of random forest prediction.  
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sampling features. It can manage missing data and maintain accuracy even if a significant portion of data is missing. On the other hand, 
RF has some limitations, such as it is computationally expensive and needs significant memory. RF may not perform well with 
imbalanced data, where one class has significantly more data points than the remaining classes. It must be noted that RF may not 
perform well with datasets with a high correlation between features. Furthermore, RF sometimes lacks to explain the connection 
between characteristics and response variables because each tree in the ensemble is constructed independently. 

2.3. Light gradient boosting machine (LightGBM) 

LightGBM is a popular boosting framework for building highly efficient and accurate machine-learning models. It was developed by 
Microsoft and is written in C+ +, making it faster than other gradient-boosting frameworks like XGBoost and CatBoost. Unlike other 
gradient boosting methods, LightGBM builds trees leaf by leaf, using a histogram-based methodology for splitting the leaf node, which 
leads to enhanced performance [41], as shown in Fig. 4 [98]. Because a leaf-wise tree improves the model’s complexity, LightGBM can 
improve precision with each algorithm iteration [93]. 

Take a set containing n samples s = {(x1, y1),(x2, y2).,(xn, yn)}, where {x1, x1., xn} are prediction variables and {y1, y2., yn} are 
response variables. Then, the estimated values of gradient boosting decision tree f(x) are the sum of the results of a series of decision 
trees ht(x): 

f(x) =
∑T

t=1
ht(x) (2)  

where T shows the number of the tree. 
LightGBM employs a method known as gradient-based one-side sampling (GOSS) to decrease the quantity of data needed for 

training. GOSS is a sampling technique that takes advantage of the fact that many samples in a dataset have little impact on the overall 
loss function. It samples the data to keep a certain proportion of the most informative data points while discarding the rest. This 
significantly reduces the training time and memory usage of the model. LightGBM’s ability to handle category characteristics is 
another essential aspect. It uses exclusive feature bundling (EFB) to group similar categories and reduce the number of unique values 
[99]. This reduces the complication of the model and improves its accuracy. It uses a histogram-based algorithm to compute the 
gradients and find the best-split points, which is much faster than other algorithms that use sorting-based approaches [100]. LightGBM 
also supports parallel and distributed computing, which enables it to scale to large clusters of machines. This makes it suitable for big 
data applications where the data is too large to fit in memory on a single machine. 

2.4. Extreme gradient boosting (XGBoost) 

Chen and Guestrin [101] presented XGBoost a tree-based technique that employs the boosting notion. XGBoost is an extension of 
the classic gradient boosting algorithm developed to be significantly scalable and accurate. The primary distinction between XGBoost 
and RF is that trees in RF are formed one at a time, while XGBoost provides new trees to complement existing ones [102]. The XGBoost 
algorithm combines the strengths of several different ML methods, such as decision trees and gradient boosting, to generate a 
significantly accurate and generalized predictive model. It works by building an ensemble of weak learners, like decision trees, and 
iteratively refining them by adding new trees that correct the errors made by the previous ones. It has several advantages over other 

Fig. 4. Graphical illustration of LightGBM algorithm.  
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algorithms, such as managing a large number of attributes, and it is suitable for high-dimensional data and has built-in regularization 
to prevent overfitting. Moreover, it can be extensively customized and enables the precise adjustment of model settings to enhance 
performance [103]. The XGBoost can be mathematically expressed as follows: 

Given a training set {xi, yi}n_i= 1, where xi is a vector of features and yi is the response variable, the XGBoost algorithm aims to 
determine a function F(x) that reduces the objective function: 

L(F) =
∑

i = 1n I(yi, F(xi)) +
∑

k = 1k Ω(fk) (3)  

Where:L(F) shows the objective functionI(yi, F(xi)) is the loss functionΩ(fk) is the regularization term that penalizes complex modelsfk 
is the kth decision tree. 

The XGBoost algorithm uses a specific loss function based on the kind of problem being solved. For instance, the algorithm uses the 
loss function mean squared error for regression tasks, while for classification problems, it uses the cross-entropy loss function. 

The regularization term Ω(fk) is defined as: 

Ω(fk) = γTk + 1
/

2 λ
∑

j = 1T wj2 (4)  

where:γ is the regularization factor that regularizes the model complexity and accuracy trade-off.Tk is the total leaves in the kth tree.λ is 
the regularization variable that determines the magnitude of the penalty term.wj is the score of the jth leaf node. 

The XGBoost algorithm uses a specialized gradient boosting approach called gradient boosting with regularization, which adds 
penalties to prevent overfitting [104,105]. The objective function is the summation of the regularization factor, and the loss function, 
where the loss function determines the discrepancy between the model and true values, and the regularization factor penalizes 
complex models. Moreover, the overall prediction process of XGBoost is provided in Fig. 5. Firstly, the model starts with a single 
decision tree. Then, compute the error (residuals) between the estimated and original values. After calculating the residual, a new 
decision tree is trained with residual in such a way that the new decision tree focuses on correcting the errors made by the previous 
decision tree. Further, a new tree is added to the ensemble, and the estimated values are updated by combining the estimations of all 
the trees in the ensemble. Finally, the residual computation and new tree to ensemble stages are iterated until a criterion for stopping is 
met, such as the maximum number of trees or a threshold level of performance. 

2.5. Comparison of the utilized ensemble techniques 

The utilized ensemble techniques, namely, RF, XGBoost, and LightGBM, based on the decision tree. However, each algorithm 
exhibits distinct characteristics to address the regression tasks. RF method combines multiple decision trees through bootstrapping and 
feature randomization [95]. In the RF method, each decision tree is built independently and combined through bagging (Bootstrap 
Aggregating). On the other hand, the XGBoost method combines the strengths of several ML approaches, such as gradient boosting and 
decision trees, to generate a significantly accurate and generalized predictive model. The XGBoost method creates an ensemble of weak 
learners like decision trees and iteratively refines them by adding new trees that minimize the errors made by the previous ones. The 
major distinction between XGBoost and RF is that trees in RF are formed one at a time, while XGBoost provides new trees to com-
plement existing ones [102]. Furthermore, unlike the XGBoost algorithm, LightGBM builds trees leaf by leaf, using a histogram-based 
methodology for splitting the leaf. 

Fig. 5. Architecture of XGBoost algorithm [106].  
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3. Research methodology 

3.1. Database description 

To build up predictive models for the CS of RHA concrete, four ML models were established. For the models’ development, a total of 
348 data points were acquired from 42 published experimental studies [19,31,107–145]. The five most influential input parameters, 
which include fine aggregate (FA), superplasticizer (SP), water-to-cement (W/C), rice husk ash (RHA), and coarse aggregate (CA), 
were utilized for model development of CS. Moreover, to avoid errors linked to the shape of the sample, all samples were transformed 
into homogenous cubic shapes. The CS values for RHA concrete have been meticulously chosen, all corresponding to a standardized 
and critical age of 28 days. Besides this, the CS values with a 25% deviation from the universal pattern were discarded to enhance the 
accuracy of the models. The target property of RHA concrete to be modeled is compressive strength (MPa). Moreover, the preparation 
of RHA concrete specimens generally follows the guidelines outlined in ASTM C39 [67]. Consequently, the content of cement in the 
collected dataset was standardized to 1, and the quantities of other components were standardized according to content of the cement. 
The data were standardized because in ML modeling, data standardization or normalization is crucial to ensure that features contribute 
uniformly to the model. Standardizing the data by scaling it to a common range helps prevent certain variables from controlling the 
learning process due to scale differences [146,147]. This process aids in the convergence of algorithms, enhances model interpret-
ability, and contributes to the stability and efficiency of the ML model, especially when algorithms, such as gradient-based optimi-
zation, are sensitive to feature scales. 

Pearson’s correlation coefficient (r) is mostly used to find the dependency between parameters [148]. Therefore, the correlation 
map is plotted for the features, as given in Fig. 6. The r provides insight into the multicollinearity and interdependency between 
parameters [149]. The r ranges from − 1 to + 1, whereas − 1 provides a strong negative relationship, + 1 shows a strong positive 
relationship, and 0 shows no correlation [150]. The bottom row of Pearson’s matrix represents the correlation between output (CS) and 
input variables. It must be noted that ML algorithms have the issue of multicollinearity [151,152]. Therefore, it is recommended that 
the r should be lower than 0.8 between two variables to avoid the issue of multicollinearity in ML models [153,154]. The r-value is 
below 0.8, whether negative or positive and within the permissible limit (Fig. 6). Thus, there are very rare chances of multicollinearity 
occurring for the models of CS. 

Furthermore, the various statistics of the acquired database are provided in Table 2. To generalize the prediction model, it is 
essential to provide input data distribution [151]. This table provides data center (median, mean, mode) and data extremes (max, min). 
Moreover, skewness and kurtosis show the data’s symmetry and shape (peak or flat). The values of both these statistical metrics can be 
positive, negative, and sometimes undefined [155]. The permissible ranges of skewness and kurtosis are − 3 to + 3 and − 10 to + 10, 
respectively [156]. As can be noticed in Table 2, the values of both metrics for each input feature are within the recommended limit, 
indicating that the data distribution is excellent. 

3.2. Hyperparameter tuning 

Optimizing hyperparameters is a vital stage in training ML models, as it can enhance the models’ ability to generalize and make 
robust predictions while mitigating the risks of overfitting and underfitting. In the present study, hyperparameter optimization using 
grid search was used to enhance the precision and accuracy of the outcomes obtained. In hyperparameter tuning, some of the data 
(testing set) is kept hidden from the predictive models and used to enhance the prediction performance while avoiding overfitting. In 
grid search, the best value is determined for hyperparameters by evaluating the efficacy of every possible hyperparameter 
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Fig. 6. Correlation heat map for parameters.  
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combination. Table 3 displays the hyperparameter optimization values of the models. 

3.3. Models’ performance assessment criteria 

The model performance is assessed using statistical error measurements to evaluate model accuracy. For this aim, various per-
formance indicators, such as RRMSE, RMSE, MAE, RSE, and performance index (ρ), a10-index, and a20-index, were used to check the 
precision of the models of compressive strength. Since ML-based models are prone to overfitting, the objective function (OF) is 
considered to determine the overfitting of the prediction models [157,158]. The equations of these statistical errors are given as Eqs. 
(5)-(11). 

MAE =

∑n

i=1
|ei − mi|

n
(5)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ei − mi)2

n

√
√
√
√
√

(6)  

RRMSE =
1
|ē|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ei − mi)2

n

√
√
√
√
√

(7)  

Table 2 
Descriptive statistics of the acquired database.  

Statistics W/C FA CA RHA SP CS (MPa) 

Standard Error  0.0101  0.0329  0.0530  0.0068  0.0012  1.3923 
Standard Deviation  0.1890  0.6141  0.9884  0.1267  0.0230  25.9721 
Median  0.4386  1.6015  2.7705  0.1111  0.0039  53.5850 
Mode  0.4000  1.0494  3.3388  0.0000  0.0000  61.0000 
Range  1.5292  4.4912  7.0619  0.6667  0.1470  124.96 
Mean  0.4793  1.7337  2.9824  0.1354  0.0134  59.3561 
Kurtosis  9.2764  3.1692  3.5728  3.1512  8.725  0.0271 
Skewness  1.9042  1.3653  1.3573  1.5547  2.9271  0.7487 
Sample Variance  0.0357  0.3772  0.9768  0.0161  0.0005  674.5498 
Minimum  0.2417  0.4393  0.9936  0.0000  0.0000  14.420 
Maximum  1.7708  4.9306  8.0556  0.6667  0.1470  139.3800  

Table 3 
Hyperparameters tuning of the models.  

Algorithm Hyperparameter Range Optimum Value 

RF n_estimators [10, Inf) 100  
min_samples_split [2, Inf) 2  
max_depth [1, Inf) 5  
max_features [sqrt(num_features), num_features] sqrt(num_features)  
min_samples_leaf [1, Inf) 5 

LightGBM learning_rate (0, 1] 0.08  
num_iterations [10, Inf) 200  
max_depth [1, Inf) 12  
feature_fraction (0, 1] 0.6  
min_data_in_leaf [1, Inf) 10 

XGBoost learning_rate (0, 1] 0.08  
num_boost_round [10, Inf) 100  
max_depth [1, Inf) 10  
min_child_weight [0, Inf) 5  
subsample (0, 1] 0.5 

Ridge Regression alpha [0, Inf) 0.01  
solver [’auto’, ’svd’, ’cholesky’, ’lsqr’, ’sag’] lsqr  
max_iter [1, Inf) 100  
tol [0, Inf) 1e-4  
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R =

∑n

i=1
(ei − ēi)(mi − mi)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ei − ēi)2∑n

i=1
(mi − mi)2

√ (8)  

ρ =
RRMSE

1 + R
(9)  

a20 − index =
m20

n
(10)  

OF =
(nT − nv

n
pT

)
+ 2

(nv

n

)
pv (11) 

Where mi represents model value, ei represents experimental value, and n shows the count of data samples. Whereas mi and ēi 
indicate the mean of true and model values, respectively. The subscript V shows validation or testing data, and T shows training data. 
The term m20 shows the number of instances where the ratio of true-to-estimated falls between 0.80 and 1.20. The R quantifies the 
relationship between two parameters, and its value equal to 1 indicates perfect correlation, while 0 indicates no correlation. Overall, 
an R-value higher than 0.8 is considered a better model prediction accuracy. However, R is not sensitive to the multiplication and 
division of output with constant and does not provide error magnitude. Thus, it cannot be considered the sole measure of performance 
evaluation. A high RMSE indicates that the number of predicted values with significant errors is greater than expected and should be 
minimized. A model is perfect if the RMSE lies 0 <RMSE< 0.10; good if 0.11 <RMSE< 0.20. In addition to these indicators, an en-
gineering index, namely, a20-index, is utilized for model assessment. The a20-index shows the number of predictions with a deviation 
of ± 20% error [159–161]. The a20-index indicator value closer to one signifies better model accuracy [160]. Furthermore, the in-
tegrated performance parameters (ρ and OF) values range from zero to infinity, and the model with values less than 0.2 is considered a 
perfect model. It is noticeable that the objective function includes both testing and validation sets; thus, its minimum error values 
indicate the better precision of the suggested model. Table 4 shows the best-fit ranges of the various utilized statistical metrics. 
Additionally, the formulations and conditions of external validation are shown in Table 5. 

3.4. SHAP interpretation of the developed model 

The application of ML methods that can gain insight from fresh data and anticipate responses in previously unseen data has 
increased. However, these ML techniques are often complex and challenging to explain. The interpretability of the ML model is 
required to explain the underlying logic and reasoning behind predictions. 

SHAP relies on the principles of Shapley values as derived from game theory, which attributes a value to features in a prediction by 
computing the importance of that feature to the overall prediction. In other words, SHAP explains what proportion of each attribute 
contributed to the final forecast of the model. Based on SHAP, the relevance of a feature for model response is a weighted summation of 
the feature’s influence on projected output over all feasible feature combinations. A baseline is a reference value for the input features 
that will be used to compare the contribution of each feature. The most common baseline is the average value of each feature in the 
dataset and given as Eq. (12): 

Q(s) = θ0 +
∑n

j=1
skθk (12)  

Where Q shows the explanatory model, θk represents the SHAP value for feature k, n shows the total number of model features, 
θ0 shows the model constant, and sk is 1 if the features exist; otherwise, it is equal to zero. 

The positive SHAP value for an attribute explains that the feature has a favorable influence on output and, in this study, the 
enhancement in CS. In contrast, a negative SHAP value for a feature indicates that this feature is negatively affecting the output. 
However, there are some limitations of SHAP analysis, such as (i) being computationally expensive, (ii) interpretation issues when 

Table 4 
Statistical metrics and their ranges.  

Statistical indicator Range Best fit 

R [0, 1) 1 (ideal fit)  

RMSE [0, ∞ ) 0 (best model value)  

MAE [0, ∞ ) 0 (best model value)  

ρ, RRMSE [0, ∞ ) 0 (best model value)  

OF [0, ∞ ) 0 (best model value)  
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there is a complex interaction between features, (iii) being limited to additive models, and (iv) restricted to supervised machine 
learning models where there is a known target to predict. To address the issue of employing more features in SHAP analysis, Lundberg 
and Lee [165] developed the Tree-Explainer, a tool useful for tree-based ML models like XGBoost and CatBoost. 

4. Results and discussion 

4.1. Regression slope analysis 

This section discusses the comparison of actual and model estimated values. The comparison of actual vs model values is shown in  
Fig. 7, along with the fitting lines for both subsets. The regression slope above 0.8 signifies excellent alignment between the true and 
model values [77,91]. The ridge regression model exhibited slope of 0.891 for testing and 0.922 for training. Likewise, the RF model 
showed regression slope of 0.989 and 0.958 for testing and training, respectively. The LightGBM model provided an excellent 
regression slope of 0.974 and 0.974 for testing and training, respectively. The XGBoost model showed regression slope values of 0.952 
and 0.980 for training and testing, respectively. The slope values of the four developed models are higher than 0.8, indicating a good 
agreement between model estimated and true values. In addition, the fitting lines for testing and training sets are closer to the ideal fit 
line, showing that the developed models provided comparable outcomes for both sets. 

Furthermore, the error representation in developed models is illustrated in Fig. 8. The average, minimum, and maximum errors for 
the ridge regression model are 5.459, 0.011, and 32.605 MPa, respectively. In the ridge regression model, 67% of errors are below 
6 MPa, 15% range between 5–7 MPa, and 18% are above 7 MPa. Similarly, the average, minimum, and maximum errors in the case of 
the RF model are 3.1, 0.012, and 20.268 MPa, respectively. For the RF model, 82% of errors are below 5 MPa, 8% range between 
5–7 MPa, and just 10% are above 7 MPa. Moreover, the LightGBM model exhibited average, minimum, and maximum error values of 
1.514, 0.003, and 8.769 MPa, respectively. The error analysis of the LightGBM model revealed that 88% of errors are below 5 MPa, 8% 
range between 5–7 MPa, and 4% are above 7 MPa. The average, minimum, and maximum errors in the case of the XGBoost model are 
2.873, 0.009, and 16.828 MPa, respectively. The error analysis of the XGBoost model provided that 82% of errors are below 5 MPa, 
10% range between 5–7 MPa, and 8% are above 7 MPa. 

4.2. Performance assessment 

4.2.1. Statistical analysis 
The performance efficiencies of the models were determined via multiple error indicators, and their values are provided in Table 6. 

The model with lower statistical errors and higher correlation is considered a better prediction model. It is proposed that the ratio of 
total data points to the number of parameters must be three for an acceptable prediction model, and five is preferable [166]. This ratio 
in this study is quite greater, i.e., 69.6 for the CS model. In the training set, the LightGBM model provided excellent prediction per-
formance (i.e., R=0.996, RMSE=2.348, MAE= 1.664) compared to ridge regression model (i.e., R=0.943, RMSE=8.597, MAE=
5.830), RF model (i.e., R=0.981, RMSE=4.950, MAE= 3.481), and XGBoost model (i.e., R=0.985, RMSE=4.540, MAE= 3.120). The 
excellent accuracy of the LightGBM model, in terms of higher R values and lower error values, is also validated by RRMSE value. 
Moreover, the RF, LigthGBM, and XGBoost models exhibited a20-index score closer to 1, indicating that these models provided ma-
jority (90%) within 20% error limit. Similarly, in the testing phase, the LightGBM model has a greater value of R (i.e., 0.998) compared 
to ridge regression (R=0.971), RF (R=0.993), and XGBoost (R=0.98) models. Furthermore, the LigthGBM model showed lower errors 
(MAE, RMSE) and higher correlation (R), followed by RF, XGBoost, and ridge regression models. The better prediction accuracy of 

Table 5 
External validation criteria.  

S.No. Equation Condition Ref. 

1 k =

∑n
i=1(ei × mi)

ei2 [162]  

2 k’ =
∑n

i=1(ei × mi)
mi2 [162]  

3 m =
R2 − R2

◦

R2 m< 0.1[163]  

4 Rm = R2 × (1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

|R2 − R2
o

√

|) Rm> 0.5[164]  

where  

R2 = 1 −

∑n
i=1(mi − e◦

i )
2

∑n
i=1(mi − mo

i )
2 R

2 ≅ 1 

R2
◦ = 1 −

∑n
i=1(ei − m◦

i )
2

∑n
i=1(ei − eo

i )
2 R2

◦ ≅ 1 

e◦

i = k× mi , m◦

i = k’
× ei  
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Fig. 8. Error representation: (a) Ridge regression, (b) RF, (c) LightGBM, (d) XGBoost.  
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LightGBM model can also observed in Fig. 9. Moreover, the OF value is lower than 0.2 for all models, showing that the model 
overfitting issue has been successfully addressed. 

Additionally, several other checks were utilized to validate the precision of the prediction models externally. The summary of these 
validation requirements is provided in Table 7. It is stated that the line going through the origin must have a slope (k or k′) equal to 1 
[162]. Roy and Roy [164] recommended that the confirming indicator (Rm), when the Rm value is greater than 0.5, then the model 
can be considered better for prediction. In addition, the determination coefficient (m) value must be less than 0.1 [163,167]. The 
developed four prediction models satisfactorily met all these requirements, showing the accuracy of the models to estimate the CS of 
concrete containing RHA precisely. 

4.2.2. Model overfitting validation 
To assess whether the developed model experienced issues like overfitting or underfitting, the convergence curve is plotted, as 

shown in Fig. 10. The curve depicts the relationship between the epoch used and the loss or accuracy, where the horizontal axis shows 
the epoch and the vertical axis represents the loss and accuracy. The decrease in training and testing loss, accompanied by the rise in 
accuracy for both datasets, signifies the model’s efficiency in capturing underlying data patterns. It can be observed in Fig. 10 that loss 
decreases and accuracy increases with the increasing number of epochs for testing and training testing sets. In addition, there is little 
difference in the accuracy of both sets, indicating that the model performed excellently on training data and generalized well on unseen 
or testing data. Therefore, the proposed model can potentially reduce generalization errors and avoid overfitting to some extent. 

4.3. Comparison of the ML models with MLR 

The ML methods were compared with the multivariable linear regression (MLR) model to further validate the developed prediction 
models. MLR establishes the relationship between multiple predictors and a single response parameter (i.e., the target of interest) 
[168]. The MLR model formulation for the CS of RHA concrete is given as Eq. (13): 

CSMLR = -3.39-0.24(water) + 0.16(cement) + 0.016(FA) + 0.009(CA) + 0.17(RHA) + 0.13(age) + 0.42(SP) (13) 

The MLR model showed poor estimations for compressive strength of RHA, as illustrated in Fig. 11. Conventional linear models 
cannot capture nonlinearity between input and response parameters. For instance, the R-value of the LightGBM model is 34.432% 
higher than that of the MLR model. The RMSE of the LightGBM model is 82.331% lower than that of the MLR model, indicating the 
excellent performance of the ML model compared to the conventional linear regression models. Moreover, the conventional regression 
models are based on pre-defined functions and assume linear relationships between parameters. Therefore, these drawbacks obstruct 
the use of statistical regression models for prediction purposes. 

4.4. Comparative analysis of the models 

The assessment of goodness-of-fit indicators, including R, RMSE, MAE, OF, and ρ, was conducted by comparing experimental and 
estimated values of compressive strength. This thorough evaluation is crucial as these parameters offer valuable insights into the 
reliability and accuracy of the machine learning models, thereby gauging their overall performance. LightGBM and RF models 
exhibited higher correlation and lower error values than ridge regression and XGBoost models. For instance, the RMSE testing score for 
the LightGBM model was 52.34% less than that of the ridge regression and 39.67% lower than the XGBoost model. In addition, Taylor 
diagram is frequently utilized to compare and assess the performance of ML models. The visual illustration of the Taylor diagram is 
shown in Fig. 12. The actual data is set as a benchmark (red color), and the estimated values of the models are evaluated against the 
benchmark data. The benchmark dataset typically serves as the ideal correlation, and other datasets or models are assessed in terms of 
how well they match this benchmark. The point model closer to the benchmark indicates that the corresponding model has higher 

Table 6 
Performance evaluation of training and testing sets for developed models.  

Indicator Ridge regression RF LightGBM XGBoost 

Training         
MAE  5.830  3.481  1.664  3.120 
RMSE  8.597  4.950  2.348  4.540 
R  0.943  0.981  0.996  0.985 
RRMSE  0.145  0.083  0.040  0.076 
p  0.075  0.042  0.020  0.039 
a20-index  0.623  0.931  0.971  0.932 
Testing         
MAE  4.458  2.084  1.188  2.366 
RMSE  6.506  3.254  1.711  3.508 
R  0.971  0.993  0.998  0.992 
RRMSE  0.110  0.055  0.029  0.059 
p  0.056  0.028  0.014  0.030 
20-index  0.854  0.921  0.945  0.825 
OF  0.061  0.030  0.025  0.050  
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Fig. 9. Radar plots showing the statistical indicators: (a) Training, (b) Testing.  

Table 7 
External validation assessment of the models.  

Indicator Ridge regression RF LightGBM XGBoost 

k  0.987  0.994  0.995  0.990 
k  1.006  0.998  1.002  1.003 
m  -0.00002  -0.000003  0.001  -0.00001 
Rm  0.992  0.998  0.961  0.994 
R2  0.953  0.999  0.996  0.998 
R2

0  0.964  0.999  0.995  0.998  
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accuracy. It can be noticed in Fig. 12 that the LightGBM model is very close to the benchmark, followed by RF, XGBoost, and ridge 
regression models. 

4.5. Comparison with literature models 

In this section, the performance of the established models is compared with the models available in literature for compressive 
strength of concrete containing RHA, as provided in Table 8. Amin et al. [169] forecasted the CS of RHA concrete using GEP and MEP. 
The MEP model outperformed the GEP model to estimate the CS with an impressive R-value of 0.938 and an MAE value of 4.694. 
Similarly, Iftikhar et al. [170] used RF and GEP to estimate the CS of RHA concrete and reported that RF model exhibited an excellent 
accuracy. Furthermore, Amin et al. [82] used DT, AdaBoost regressor (AR), and bagging regressor (BR) to estimate the CS. The AR, DT, 
and BR models provided comparable performance with R-value exceeding 0.93 and MAE score below 8.0. Li et al. [79] developed 
hybrid model using ANN, reptile search algorithm (RSA), and circular mapping (CM). The CMRSA–ANN model achieved excellent 
prediction accuracy to estimate the CS of RHA concrete, as provided in Table 8. Moreover, Iqtidar et al. [80], Amin et al. [171], and 
Amin et al. [172] also utilized different ML methods to predict the CS of RHA concrete. 

While the existing literature models for the RHA concrete demonstrated effective prediction accuracy, our newly developed model, 
specifically LightGBM, surpasses them by exhibiting significantly enhanced precision. This superiority is evident in terms of achieving 
the highest correlation (R) and the lowest error, marking a notable advancement in predictive capabilities. While the RF and XGBoost 

Fig. 10. Convergence curve for best-optimized model (LightGBM).  

Fig. 11. Actual vs MLR model values trend.  
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models demonstrated prediction accuracy comparable to that of the literature models, it is noteworthy that the precision of the ridge 
regression model falls significantly below the standards set by existing models in the literature. Moreover, the RF, LightGBM, and 
XGBoost models exhibited an impressive reduction in MAE values, demonstrating 62.82%, 78.80%, and 57.79% lower MAE, 
respectively, in comparison to the mean MAE of the literature models. This significant improvement underscores the enhanced pre-
dictive accuracy of our developed models. 

4.6. Enhanced SHAP interpretability of the developed models 

4.6.1. SHAP feature importance 
In SHAP analysis, feature importance means how significantly a feature (i.e., input variable) contributes to the output. Accordingly, 

the features importance plot is shown in Fig. 13. The prediction of compressive strength (CS) is notably influenced by the water-to- 

Fig. 12. Taylor diagram of the models.  

Table 8 
Comparison of the established models with literature models for CS of concrete containing RHA.  

Ref. Methods Dataset Inputs Performance 

R MAE 

Amin et al.[169] MEP  192  6  0.938 4.694 
GEP  0.912 7.889 

Iftikhar et al.[170] RF  192  6  0.956 2.290 
GEP  0.983 3.751 

Amin et al.[82] DT  192  6  0.933 7.390 
AR  0.954 7.300 
BR  0.959 7.250 

Li et al.[79] ANN  192  6  0.936 4.142 
CMRSA–ANN  0.984 2.316 
SOA–SVM  0.980 2.852 
SOA–RF  0.960 3.235 

Iqtidar et al.[80] ANN  192  6  0.990 - 
ANFIS  0.949 - 
NLR  0.837 - 

Amin et al.[172] ANN  192  6  0.989 - 
ANFIS  0.943 - 
RSM  0.837 - 

Amin et al.[171] GB  1212  7  0.949 5.825  
XGBoost  0.954 12.200  
AR  0.988 8.500 

This study Ridge regression  348  5  0.971 4.458  
RF  0.993 2.084  
LightGBM  0.998 1.188  
XGBoost  0.992 2.366  
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cement (W/C) ratio, with a substantial Shapley value of approximately + 16. In addition, the SP also exhibited higher Shapley value of 
+ 8, showing its significant importance in estimating the CS of RHA concrete, followed by RHA, FA, and CA. These findings are in 
accordance with experimental studies and previous modeling findings [79,82,169,170]. 

It is critical in the ML prediction model to understand the influence of input variables on target concrete characteristics. 
Accordingly, a SHAP summary plot is provided in Fig. 14, indicating the impact of input features on the CS of RHA concrete. Each dot 
depicts the SHAP value of a variable, and the dots’ color shows the intensity, which ranges from blue (low impact) to red (strong 
impact). The y-axis shows the features and their importance in decreasing order, whereas the x-axis depicts the SHAP value of the input 
parameters. A higher feature value means that this feature enhances the target property, while a low feature value means that this 
input feature has an unfavorable impact on the output. The influence of each input feature on the response property is given in Fig. 14. 
It is evident that increasing the water-to-cement (W/C) ratio results in a pronounced decrease in the CS of RHA concrete, illustrated by 
the red dots positioned on the left side of the x-axis. Moreover, the CS is improved with RHA content, as represented by red dots on the 
right side of Fig. 14. Similarly, multiple studies stated that CS of RHA concrete improved at later ages [141,173]. 

5. Limitations and recommendations for future work 

This research work utilized RF, XGBoost, LightGBM, and ridge regression models to forecast the CS of RHA concrete in the 2.35 to 
143.78 MPa range. However, it is strongly recommended to use metaheuristic algorithms such as nuclear reaction optimization, and 
lightning search algorithm, as these approaches have the capacity to provide more precise outcomes when forecasting the strength of 
concrete. Furthermore, it is suggested to incorporate further input variables such as density, slump of concrete, chemical and physical 
characteristics of constituents, curing conditions, and temperature. Enhancing the number of parameters could bolster the models’ 
accuracy and enhance their overall responsiveness. In addition, both the existing literature and the present study have studied ML 
models for estimating the strength property of RHA concrete. It is recommended to leverage machine learning models for estimating 
additional strength properties and durability characteristics of RHA concrete, such as carbonation, sulfate, and chloride resistance. 
Furthermore, in the present study, the SHAP method was utilized for interpreting the model; however, other interpretability tech-
niques are available, such as LIME, ICE, and PDP techniques. These interpretability methods might be used in future research and can 
be compared with the SHAP outcomes. 

6. Conclusion 

This study uses four unique machine learning techniques, such as ridge regression, RF, XGBoost, and LightGBM, to develop pre-
diction models for the compressive strength of RHA concrete. The developed models are based on widely spread data of 348 values 

Fig. 13. Features importance plot.  

Fig. 14. SHAP summary plot indicating the impact of input variables on the target property.  
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collected from published experimental literature. Multiple statistical indicators were used to evaluate the prediction accuracy and 
performance of the models. The SHAP-based interpretation was utilized to get insights into the relative significance of input features 
and their influence on compressive strength. The main findings of the study are herein:  

1. The developed models exhibited superior prediction accuracy in estimating the compressive strength of RHA concrete. During the 
training phase, the R-values obtained for ridge regression, RF, XGBoost, and LightGBM were 0.943, 0.981, 0.985, and 0.996, 
respectively. In the testing set, the developed models demonstrated even higher performance, with correlation coefficients of 0.971, 
0.993, 0.992, and 0.998 for ridge regression, RF, XGBoost, and LightGBM, respectively.  

2. The statistical analysis revealed that the LightGBM model surpassed the remaining models in terms of accuracy, whereas the ridge 
regression model exhibited comparatively lower accuracy. The testing RMSE for the LightGBM model demonstrated a remarkable 
52.34% reduction compared to the ridge regression model and a notable 39.67% decrease compared to the XGBoost model, 
underscoring the superior predictive precision of the LightGBM algorithm in estimating the compressive strength of concrete 
containing RHA.  

3. The comparative analysis of ML and conventional regression models showed that the developed ML models are much superior in 
predicting output. The LightGBM model showcases a striking 34.432% increase in the R-value compared to the MLR model. 
Additionally, the RMSE of the LightGBM model exhibits an impressive 82.331% reduction compared to that of the MLR model. 
These results underscore the exceptional performance of the machine learning models in contrast to traditional linear regression 
models.  

4. The SHAP feature importance analysis unveiled that the key factors influencing the compressive strength of RHA concrete included 
water-to-cement and RHA content. These findings underscore the significant contributions of these specific input variables in 
determining the strength of RHA concrete, which holds notable implications for optimizing concrete mixtures and enhancing the 
overall understanding of its structural behavior.  

5. Future work should utilize feature engineering to integrate additional input variables to develop more generalized and accurate 
prediction models. Additionally, future studies should utilize hybrid ML models to investigate other characteristics of RHA con-
crete, such as chloride resistance, flexural strength, tensile strength, and acid attack resistance. 
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[86] V.-T.-A. Van, C. Rößler, D.-D. Bui, H.-M. Ludwig, Pozzolanic reactivity of mesoporous amorphous rice husk ash in portlandite solution, Constr. Build. Mater. 59 
(2014) 111–119, https://doi.org/10.1016/j.conbuildmat.2014.02.046. 
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[148] M.-T. Puth, M. Neuhäuser, G.D. Ruxton, Effective use of Pearson’s product–moment correlation coefficient, Anim. Behav. 93 (2014) 183–189, https://doi.org/ 
10.1016/j.anbehav.2014.05.003. 

[149] K. Pearson X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be 
reasonably supposed to have arisen from random sampling Lond., Edinb., Dublin Philos. Mag. J. Sci. 50 1900 157 175 doi: 10.1080/14786440009463897. 

[150] J. Gravier, V. Vignal, S. Bissey-Breton, J. Farre, The use of linear regression methods and Pearson’s correlation matrix to identify 
mechanical–physical–chemical parameters controlling the micro-electrochemical behaviour of machined copper, Corros. Sci. 50 (2008) 2885–2894, https:// 
doi.org/10.1016/j.corsci.2008.07.022. 

[151] M.F. Iqbal, M.F. Javed, M. Rauf, I. Azim, M. Ashraf, J. Yang, Q. Liu, Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand 
based concrete using multi-expression programming, Sci. Total Environ. 780 (2021) 146524, https://doi.org/10.1016/j.scitotenv.2021.146524. 

[152] I. Azim, J. Yang, M.F. Iqbal, Z. Mahmood, M.F. Javed, F. Wang, Q. Liu, Prediction of catenary action capacity of RC beam-column substructures under a missing 
column scenario using evolutionary algorithm, KSCE J. Civ. Eng. 25 (2021) 891–905, https://doi.org/10.1007/s12205-021-0431-0. 

[153] F.E. Jalal, Y. Xu, M. Iqbal, B. Jamhiri, M.F. Javed, Predicting the compaction characteristics of expansive soils using two genetic programming-based 
algorithms, Transp. Geotech. 30 (2021) 100608, https://doi.org/10.1016/j.trgeo.2021.100608. 

[154] G.N. Smith, “Probability and statistics in civil engineering.” Collins professional and technical books 244, (1986). 
[155] C. Sharma C.S.P. Ojha Stat. Parameters Hydrometeorol. Var.: Stand. Deviat., SNR, Skewness Kurtosis 2020 59 70 doi: 10.1007/978-981-13-8181-2_5. 
[156] S.C. Brown, J.A. Greene, The wisdom development scale: translating the conceptual to the concrete, J. Coll. Stud. Dev. 47 (2006) 1–19, https://doi.org/ 

10.1353/csd.2006.0002. 
[157] E.M. Golafshani, A. Behnood, M. Arashpour, Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized 

with Grey Wolf Optimizer, Constr. Build. Mater. 232 (2020) 117266, https://doi.org/10.1016/j.conbuildmat.2019.117266. 
[158] A. Behnood, E.M. Golafshani, Machine learning study of the mechanical properties of concretes containing waste foundry sand, Constr. Build. Mater. 243 

(2020) 118152, https://doi.org/10.1016/j.conbuildmat.2020.118152. 
[159] M. Apostolopoulou, P.G. Asteris, D.J. Armaghani, M.G. Douvika, P.B. Lourenço, L. Cavaleri, A. Bakolas, A. Moropoulou, Mapping and holistic design of natural 

hydraulic lime mortars, Cem. Concr. Res. 136 (2020) 106167, https://doi.org/10.1016/j.cemconres.2020.106167. 
[160] P.G. Asteris, M. Koopialipoor, D.J. Armaghani, E.A. Kotsonis, P.B. Lourenço, Prediction of cement-based mortars compressive strength using machine learning 

techniques, Neural Comput. Appl. 33 (2021) 13089–13121, https://doi.org/10.1007/s00521-021-06004-8. 
[161] P.G. Asteris, P.B. Lourenço, M. Hajihassani, C.-E.N. Adami, M.E. Lemonis, A.D. Skentou, R. Marques, H. Nguyen, H. Rodrigues, H. Varum, Soft computing- 

based models for the prediction of masonry compressive strength, Eng. Struct. 248 (2021) 113276, https://doi.org/10.1016/j.engstruct.2021.113276. 
[162] A. Golbraikh, A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002) 269–276, https://doi.org/10.1016/S1093-3263(01)00123-1. 
[163] A. Ashrafian, F. Shokri, M.J. Taheri Amiri, Z.M. Yaseen, M. Rezaie-Balf, Compressive strength of foamed cellular lightweight concrete simulation: new 

development of hybrid artificial intelligence model, Constr. Build. Mater. 230 (2020) 117048, https://doi.org/10.1016/j.conbuildmat.2019.117048. 
[164] P.P. Roy, K. Roy, On some aspects of variable selection for partial least squares regression models, QSAR Comb. Sci. 27 (2008) 302–313, https://doi.org/ 

10.1002/qsar.200710043. 
[165] Scott M. Lundberg and Sun-In Lee, A Unified Approach to Interpreting Model Predictions, NeurIPS Proc. (2017). 
[166] A.H. Gandomi, D.A. Roke, Assessment of artificial neural network and genetic programming as predictive tools, Adv. Eng. Softw. 88 (2015) 63–72, https://doi. 

org/10.1016/j.advengsoft.2015.05.007. 
[167] A. Ashrafian, A.H. Gandomi, M. Rezaie-Balf, M. Emadi, An evolutionary approach to formulate the compressive strength of roller compacted concrete 

pavement, Measurement 152 (2020) 107309, https://doi.org/10.1016/j.measurement.2019.107309. 
[168] S.W. Grant, G.L. Hickey, S.J. Head, Statistical primer: multivariable regression considerations and pitfalls, †, Eur. J. Cardio-Thorac. Surg. 55 (2019) 179–185, 

https://doi.org/10.1093/ejcts/ezy403. 

M. Alyami et al.                                                                                                                                                                                                        

https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
http://refhub.elsevier.com/S2214-5095(24)00052-4/sbref122
http://refhub.elsevier.com/S2214-5095(24)00052-4/sbref122
http://refhub.elsevier.com/S2214-5095(24)00052-4/sbref123
http://refhub.elsevier.com/S2214-5095(24)00052-4/sbref123
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://www.researchgate.net/publication/264869618_Rice_Husk_Ash_Concrete_the_Effect_of_RHA_Average_Particle_Size_on_Mechanical_Properties_and_Drying_Shrinkage
https://www.researchgate.net/publication/264869618_Rice_Husk_Ash_Concrete_the_Effect_of_RHA_Average_Particle_Size_on_Mechanical_Properties_and_Drying_Shrinkage
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html


Case Studies in Construction Materials 20 (2024) e02901

24

[169] M.N. Amin, W. Ahmad, K. Khan, A.F. Deifalla, Optimizing compressive strength prediction models for rice husk ash concrete with evolutionary machine 
intelligence techniques, Case Stud. Constr. Mater. 18 (2023) e02102, https://doi.org/10.1016/j.cscm.2023.e02102. 

[170] B. Iftikhar, S.C. Alih, M. Vafaei, M.A. Elkotb, M. Shutaywi, M.F. Javed, W. Deebani, M.I. Khan, F. Aslam, Predictive modeling of compressive strength of 
sustainable rice husk ash concrete: Ensemble learner optimization and comparison, J. Clean. Prod. 348 (2022) 131285, https://doi.org/10.1016/j. 
jclepro.2022.131285. 

[171] M.N. Amin, S.A. Khan, K. Khan, S. Nazar, A.M.A. Arab, A.F. Deifalla, Promoting the suitability of rice husk ash concrete in the building sector via contemporary 
machine intelligence techniques, Case Stud. Constr. Mater. 19 (2023) e02357, https://doi.org/10.1016/j.cscm.2023.e02357. 

[172] M.N. Amin, A. Iqtidar, K. Khan, M.F. Javed, F.I. Shalabi, M.G. Qadir, Comparison of machine learning approaches with traditional methods for predicting the 
compressive strength of rice husk ash concrete, Crystals 11 (2021) 779, https://doi.org/10.3390/cryst11070779. 

[173] C. Fapohunda, B. Akinbile, A. Shittu, Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – a 
review, Int. J. Sustain. Built Environ. 6 (2017) 675–692, https://doi.org/10.1016/j.ijsbe.2017.07.004. 

M. Alyami et al.                                                                                                                                                                                                        

https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html
https://kings-printer.alberta.ca/1266.cfm?page=E00P3.cfm&amp;leg_type=Acts&amp;isbncln=9780779829408&amp;display=html

	Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models
	1 Introduction
	2 Theory of the ML-based modeling techniques
	2.1 Ridge regression model
	2.2 Random forest (RF)
	2.3 Light gradient boosting machine (LightGBM)
	2.4 Extreme gradient boosting (XGBoost)
	2.5 Comparison of the utilized ensemble techniques

	3 Research methodology
	3.1 Database description
	3.2 Hyperparameter tuning
	3.3 Models’ performance assessment criteria
	3.4 SHAP interpretation of the developed model

	4 Results and discussion
	4.1 Regression slope analysis
	4.2 Performance assessment
	4.2.1 Statistical analysis
	4.2.2 Model overfitting validation

	4.3 Comparison of the ML models with MLR
	4.4 Comparative analysis of the models
	4.5 Comparison with literature models
	4.6 Enhanced SHAP interpretability of the developed models
	4.6.1 SHAP feature importance


	5 Limitations and recommendations for future work
	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data Availability
	Acknowledgment
	References


