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Monte Carlo Calculation of the Linear Resistance of a Three Dimensional Lattice
superconductor Model in the London Limit
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We have studied the linear resistance of a three dimensional lattice superconductor model in the
London limit by Monte Carlo simulation of the vortex loop dynamics. We find excellent finite size
scaling at the phase transition. We determine the dynamical expgrerit.51 for the isotropic London
lattice model. [S0031-9007(97)02775-0]
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The fluctuation regime in high. superconductors The LLM describes the vortex loop fluctuations of
(HTSC) is expected to be sufficiently wide that critical a bulk superconductor. The model originates from a
fluctuations are observable [1,2]. In particular, the con-Ginzburg-Landau description with no amplitude fluctua-
ductivity is supposed to scale asx« £2-972 [1,2], where tions and the spin waves integrated out within a Villain
¢ is the correlation length and is the dimension of the approximation. On a cubic lattice a vortex loop consists
system. This scaling relation has been applied in recendf four line elements forming a closed loop.
experiments on YBCO in zero magnetic field [3] from The LLM is defined by the partition functiod on a
which the valuex = 2.6 andv = 1.2 (v is the corre- cubic lattice of side lengtll. using periodic boundary
lation length exponent) were extracted. Accordingly anconditions,
accurate determination af and v in models of highT.

superconductors is of great interest. The phenomenology Z = Trexd—BH], (1)
of superconductors is described by the Ginzburg-Landau 3

(GL) model. The model is too complicated to allow all H = Z aniGa(ri — ) qa; )
degrees of freedom to be included in calculations. Among a=1i]

the standard approximations of the GL model one can . I . .
mention are theXY [4,5], Villain [6—8], and the lattice whereH is the Hamiltonian, the link variableg, represent

superconductor model in the London limit [9—15]. ;he vortheé'llnet_elements. '(Ij'hereTa;]re threg kindgnfone
In the present paper we determindn the zero field or each directiore,, e,, ande . e positions oY, are

London lattice model (LLM). The exponentis known given byr;. The link variables;,; € {~1,0,1}. The sum
to be close to 22 in the three dimensionatY model, of g, over a unit cube equals zero. This is achieved by
corresponding to modelE) [16], the symmetric planar the trial updating algorithm, which only adds closed vortex
magnet in zero external magnetic field. loops to the system. The Green’s functigng(r) [13] are

It is of interest to know whether the London model in 9'V€"N by i
which the spin wave degrees of freedom are integrated 1 JX<K2 + %)erik-(r,fr,)

out is characterized by the same exponent. EquilibriumG.(r) = I Z AV AT
properties of theXY and the LLM for A = « are k <K + 4A3><Kx TRy TG KD T W)
known to be the same since they are connected through (3)
the Villain duality transformation [6]. However, the

dynamical properties might not be'the same. This is G.(r) = G (r) — LZ J,m2eik i)

seen in other systems where the spin degrees of freedom-'~ y L34 <K2 AN d_)’
have an effect on the dynamics of the topological defects . y T A (4)

[17]. However, as we show below, in fact, the LLM has
z = 1.5. This result is reassuring given that the modelwhere k are the reciprocal lattice vectors,, k,, and
is used to study the dynamics of vortex systems in thé. = 27n/L,n =0,....L — 1, &> =i + k; + &2
relation to HTSC [18]. and k, = sin(k,/2d), d is the side length of the unit cell
Since the magnetic field/,,,, = 0 we can limit our andis settal = 1. TheA, and\; are the bare magnetic
study to the isotropic system. We derive an expressiopenetration lengths in theandz directions. The coupling
for the resistanc®, based on the Nyquist formula [19] for constanty, andJ, determine the anisotropy of the model
voltage fluctuations. From the Nyquist formula we deriveand are related to the screening length/bg/, = A2/A2.
a simple finite size scaling relation for the resistivity In the work presented in this Letter the penetration length
at the critical temperatur@,. and determine the critical is taken to be infinitep, = A, = «; we further restrict
dynamical exponeng. the model to the isotropic cadg = J, = 1.
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We simulate the model defined by Eq. (2) by theFrom Eq. (8) we conclude that &. is approached the
standard Metropolis Monte Carlo (MC) method [20]. Thevoltage scales aB ~ 1/7 wherer is the dynamical time
trial move consists of adding a closed vortex loop formedscale. Dimensional analysis of Eq. (6) leadstte- 1/7,
out of 4 link variablesq. The loop is placed at a wherer is related to the correlation length through~
randomly chosen position and with one of the 6 differenté<. At T, the correlation length is cut off by the finite

orientations at random. sizeL of the system and we have
The standard test for superconducting coherence of a R~rl~g2=1L"% (9)
model superconductor has been to sample the helicity . . .
In three dimensions we have the relatiprn= RL for
modulusl/e, R . vl .
| g2 the resistivity. Hgm_:g, the following finite size scaling
o -1 - W(%k%—k)- (5) relation f?r the resistivity:
€ pL* ' =const at T=7T. and d=3. (10)

In the limit k — 0 the phase transition is detected in the.l_he Meptropolis algorithm does not in itself contain

following way. For temperatures in the superconductingany reference to time. One can, however, show [25]

phasel/e # 0 and above the transitiohye = 0. . . . X
: ; that there is a linear relation between the time scale
In this Letter we use an alternative test for the supercon- . . . .
of Langevin dynamics and Metropolis MC trial moves.

ducting transition, namely, the vanishing of the resistancc—‘rhe success of this similarity has proven itself in man
[11]. The dissipation in a three dimensional superconduc- Y P y

. . . “simulations [10,11]. This argument indicates that our
tor is caused by the creation of vortex loops and expandlnf,‘;/IC dvnamics is a faithful representation of the Lanaevin
them out to the system boundary. Alternatively if there is yr P 9

dynamics of a gas of vortex loops. We cannot be

an external magnetic field that gives vortex lines through . : . .
' . 1. o.certain about the relationship between the dynamics of
the system, the movement of these vortex lines will dissi-

ate ener The linear resistivity is definedoy= £/ our model and the dynamics of a real superconductor as
pate 9y C . y =L/ represented, e.g., by the time dependent Ginzburg Landau
for j — 0, wherej is the applied supercurrent density and

E is the resulting induced electric field. The resistaRce ﬁr?g:r“%?\zg?ﬁti )a.lti-(lj-zg T[égtIHEt;sg;ag;SfI?Bﬂlgtlijgssag?e
is given by the Nyquist fc::cmula [19,21] absent in the London model. However, the dynamical
- dt (V(£)V(0)). (6) equivalence we have established between the X3D
2T J - model and the London model shows that the absence of
The integral is evaluated as a sum over discrete timéinear phase fluctuations are inessential. It is therefore
steps, defined as one MC trial move. The voltagés)  possible that the considered MC dynamics of the London
is defined by the fluctuation of loops and is calculated bymodel is equivalent to the vortex dynamics of a real
the following procedure.N, +(N,—) denotes the number superconductor.
of accepted trial moves with a vortex loop oriented in  Now we turn to the results. The analysis is based on
the x direction asx + (x—) for a MC sweep through the finite size scaling relation Eqg. (10). The temperature
the lattice. Thex direction refers to the vector normal is measured in units of,. The determination of is done
to the vortex loop plane. Ther and — keep track by the following minimization procedure on our Monte
of whether the vortex loop is positively or negatively Carlo data. For a specific value of we form the data
oriented. The voltag®,(r) at timer, in thex direction, is  curvesp(L,T)L*~! as a function of7. Depending on
V.(t) « N.+ — N,—. As aloop is accepted this implies the choice ofz the crossings, of these curves, will be
the expansion of the link elements over an elementarynore or less well gathered. Their average separation along
square. In the correspondity’ model this is associated the T axis (or p axis) will be denotedsS(z) [or S, (z)].
with a phase slip, by the Josephson relation [22], and’he common minima of7 (or S,) determines the for
hence the voltag&,(r). The resistanceR,,R,, andR,  which the scaling relation Eq. (10) is fulfilled. In Fig. 1

R

are equal in the isotropic case considered here. the functionsS; and S, are plotted versug — 1. The
We consider now the finite size scaling. In threelattice sizes in the figure are=38§, 10,12, 14,16. Both
dimensionsl /e obeys the scaling relation [23,24] functions have a clear minimum, which occurs at nearly the
1 same valug —1=0.51. Less well converged data will
L————~=~¢const at T =7, and d =3. not have coinciding minima for th&; and S, functions.
etk =27 /L) p

) We have also tried to exclude some of the lattice sizes in
the calculation ofSy and S, but this does not change the

result forz, at maximum 3%. Including lattice sizés= 4
and 6 will change the determinationof EspeciallyL = 4
v~ d Vo ®8) is outside the scaling regime and including bbtk 4 and

dt 6 would change to 1.49. We identifyT. as the average
relates the voltage to the time derivative of the gradient of/alue of T for which the set ofp(L, T)L*~! curves cross
the phasep of the superconducting order parameter [22].each other and; has its minimum.

A finite size scaling relation for the resistivity can be
derived in the following way. The Josephson relation
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0.1 T T z — 1 is found to be small. For high temperatures there
P P — will always be the trivial scaling as there are no finite size
i (a) effects inp for temperatures far above., and eventually
0.08— N one would findz = 1 far aboveT,.. We check now how
Tl | strongly 7. depends on the chosen valuezof- 1. We

- : plot in the inset of Fig. 1(a) the value @f. determined
(like we did above) as the average value of the abscissa
0.06— . of the crossings of the (L, T)L:"! versusT curves for
wn L 5% o s o8 1 i different values ot — 1. We see that a small change in
7-1 T. corresponds to a large changein- 1. Taken together
0.04— — with the well defined minimum i andS, we infer that
N o the procedure to determineis stable.
Tt In Fig. 1(b) the finite size scaling is shown foye in
0.021- n accordance with Eqg. (7). The evaluated critical tempera-
’ ture corroborates the result achieved with the resistivity

\_,/ scaling. The critical temperature determined is in good
agreement with determinations for the three dimensional

0 J | Villain model [8]. There are no adjustable parameters in
04 0.5 0.6 0.7 this procedure, and we can clearly see there is a small
z-1 finite size effect, as the curves for larger lattices intersect
22 ' L I A at slightly lower temperatures. One might also note that as
the scaling relation fot /e works it indicates that the static
1 (b) 8 scaling exponents are the same as for the three dimensional

XY model. This is also corroborated by hyperscaling of

1.7 3 pL:~" versus(T — T.)"”, which is shown in the inset
o~ of Fig. 1(b). Herer = 0.669 [26] is the static exponent
2 from the 3DXY model, and for; andT, we have used the
2 -6 :
" s, values determined by the procedure above.
~ 12 i In Fig. 2 the resistance scaling is shown for the
— 9 that minimized the spread in Fig. 1. The data show a
* ) 10 very_g_ood splay_ atr, and Eg. (10) _|s_o_beyed to hlgh
- ‘ precision. The inset shows the resistivity as a function
0.7 of temperature. From Fig. 2 it is evident that there is a
small finite size effect. The curves for larger lattices cross
at higher temperatures. The effect is small a@ndwill
have its upper bound given from thge scaling shown
0.2 in Fig. 1(b). From the inset in Fig. 1(a) an approximate

5.8 5.9 6 6.1 6.2 6.3  Vvalue forz would be 1.5.
We have used the Nyquist relation to determifie
T directly from the vanishing resistivity. From the size
FIG. 1. Monte Carlo results for the LLM. Shown in (a) Scaling neaff'. we determine the dynamical critical expo-
are results for the scaling relation Eq. (10). The functisps nentz to bez = 1.51 = 0.03. This result is interesting
(dashed curve) andr (solid curve) are drawn as a function since it is equivalent to superdiffusive behavior. Most
3{ tréetdynamipal exgon%rttl.o IgeliatticglgizeTshemplqyed N models have subdiffusive behavior, i.e.> 2 [27]. It
oc%uri ?{Q"ial'_%r},a%he critical t’em,pae?aturé of fhgn'sn;lrsqgm is Is also worth emphasizing that the resu!ts establish that
determined t@, = 5.99. The inset shows the determingdas  the DdXY model and the 3D London lattice model have
a function ofz. In (b) the results for the scaling relation Eq. (7) the same dynamical critical behavior, not only the same
are shown. Lattice sizesare4 = stars,6 = open circles§ = equilibrium exponents. It is interesting to compare our
e e e e S el 10 @ work by Lee and Sitoud [28] where a stuy
for Igrge’r lattices Fi)ntersect at lower temp)tleratures. The inse?f the 3_’D reS|stlyer shuntgd junction (RSJ) model with
showspL:~! as a function of T — T,)"/*, » = 0.669 for the  L-angevin dynamicsis described. They study the current-
static 3DXY model. voltage characteristics and from it deduce= 1.5 = 0.5.
We thank Petter Minnhagen, Peter Olsson, and Steve
One might also note that if the data had not been welleitel for useful discussions. H.W. was supported by
converged, the minimum in Fig. 1(a) would have been lesgrants from Carl Trygger and from the Kempe founda-

well pronounced. This is because the scaling exponeritons. H.J.J. was supported by the British EPSRC Grant
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FIG. 2. Monte Carlo results for the scaled resistivity. The
function p(T)L*~! is plotted against temperature. The dynami-
cal exponent is determined from Fig. 1(a)= 1.51. Lattice
sizes L are 4 = stars,6 = open circles,8 = filled circles,
10 = open squaresl]2 = filled squares,14 = triangles, and

16 = plusses. There is a finite size effect present, intersections
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