Low-Noise Photodiode-Amplifier Circuit
Kalevi Hyyppä and Klas Ericson

Abstract—A photodiode-amplifier circuit with the photodiode in the feedback path is presented. It is named the PIF-circuit. No resistor is needed at the amplifier input to provide a path to ground for the signal and leakage currents from the photodiode and the amplifier input bias current. Therefore, one potentially dominating noise source is eliminated. At frequencies below 10 kHz, the implemented PIF-circuit has an NEP \(\approx 3 \text{ fW}/\text{Hz} \).

I. INTRODUCTION

Common photodiode-amplifier circuits have a resistor connected to the amplifier input [1], [2]. The resistor functions as a load element for the photodiode or as a feedback element for the amplifier. The resistor also provides the necessary dc-path to ground for signal and leakage currents from the photodiode and bias currents from the amplifier input. The thermal noise contribution from the resistor decreases with increasing resistance. A limit of resistance is set by the allowed amplifier output offset voltage produced by the dc-current at the amplifier input. The bulkiness, the fragility, and the microphony of a high-resistance resistor make it less suitable in certain application areas, e.g., space instrumentation.

In the circuit proposed in this brief paper, the resistor is eliminated by placing the photodiode in the feedback path. The circuit has been given the acronym PIF, from Photodiode In Feedback. The outstanding feature of the PIF-circuit is its ability to detect weak light or radiation pulses. The gain of the circuit is dependent on background light or radiation, making it less suitable in applications where good linearity is a requirement.

An implementation of the PIF-circuit, discussed below, is designed to detect pulses with pulse lengths in the interval 0.1–1 ms. The circuit models to be presented have been chosen to be valid in the frequency band 10 Hz–100 kHz.

II. THE PIF-CIRCUIT

The gate current of an FET and the dark current of a photodiode are of the same nature—they are both leakage currents in reverse biased p–n junctions. With proper selection of devices and bias voltages, the currents can be made equal. The correct bias can be achieved automatically by placing the photodiode in the feedback path of an operational amplifier with FET's in the input stage. This is the PIF-circuit. Its circuit diagram is shown in Fig. 1.

The PIF-circuit output voltage is coupled to the photodiode through a feedback network. It enhances the high-frequency gain of the circuit which otherwise would be too low due to the pole created by the photodiode capacitance and resistance.

III. SMALL-SIGNAL ANALYSIS

A. Transfer Function

A linear small-signal model of the PIF-circuit is shown in Fig. 2. The photodiode is represented by the photocurrent generator \(I_p \), the capacitor \(C_d \), the parallel resistor \(R_d \), and the series resistor \(R_s \).

The operational amplifier in the PIF-circuit is represented by the input capacitor \(C_m \) and a controlled voltage generator. A first-order expression is used for the transfer function of the controlled voltage generator

\[
A(s) = \frac{A_0}{1 + s\tau_0}
\]

where \(A_0 \) denotes the low-frequency voltage gain of the operational amplifier, \(\tau_0 \) denotes the time constant of the transfer function, and \(s \) denotes complex angular frequency.

The transfer function from photocurrent to output voltage for the PIF-circuit becomes

\[
H_{\text{PIF}}(s) = \frac{R_d(1 + s\tau_1)}{(1 + s\tau_2)(1 + s\tau_3)(1 + s\tau_d)}
\]

where \(\tau_1 = R_1C_2, \tau_2 = R_2C_2, \tau_3 = \tau_1(1 + (C_m/C_d)) \), \((R_1/R_2) \), \(\tau_1 = (\tau_0/\tau_0) \), and \(\tau_d = R_dC_d \).
Fig. 3. Noise equivalent circuit of the PIF-circuit. The photodiode noise is represented by \(I_{nd} \) and \(V_{n,R1} \), the amplifier noise is represented by \(I_{na} \) and \(V_{n,R2} \), and the noise in the feedback network is represented by \(V_{n,R} \).

TABLE I

PARAMETERS OF THE LINEAR MODEL OF THE IMPLEMENTED PIF-CIRCUIT

<table>
<thead>
<tr>
<th>(R_1)</th>
<th>(R_2)</th>
<th>(R_3)</th>
<th>(R_4)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
<th>(C_4)</th>
<th>(A_0)</th>
<th>(\tau_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 k(\Omega)</td>
<td>100 k(\Omega)</td>
<td>82 (\Omega)</td>
<td>8 p(\Omega)</td>
<td>16 p(\Omega)</td>
<td>10 (\mu \Omega)</td>
<td>55.10(^6)</td>
<td>7.5 ms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the derivation of (2), a number of terms have been cancelled due to the conditions below, which are valid for a correctly designed PIF-circuit:

1. \(A_0 \gg 1 \)
2. \(\tau_1, R_6 C_d \ll \tau_2, \tau_d \)
3. \(\tau_3 \ll \tau_1, \tau_2 \)
4. \(R_1 \ll R_d \)
5. \(R_2 \ll R_1 \).

B. Noise Analysis

A noise equivalent circuit of the PIF-circuit is shown in Fig. 3. The symbols \(I_{nd}, I_{na}, V_{n,R1}, V_{n,R2}, \) and \(V_{n,a} \) should be interpreted as the square roots of the spectral densities of the currents and voltages of the respective noise generators.

The total noise of the PIF-circuit is represented by a current noise source connected in parallel with the photocurrent source. With the usual assumption that all noise sources are uncorrelated, the spectral density of the total noise of the PIF-circuit becomes

\[
I^2_{n,PIF} = I^2_{nd} + I^2_{na} + (V^2_{n,R1} + k_1 V^2_{n,R2} + k_2 V^2_{n,a})
\]

\[
\left(\frac{1}{R_d^2} + \omega^2 C_d^2 \right)
\]

where

\[
k_1 = \frac{1 + \omega^2 \tau_1^2}{1 + \omega^2 \tau_1^2}
\]

and

\[
k_2 = \frac{R_d^2}{R_2^2} \cdot \frac{\omega^2 \tau_2^2}{1 + \omega^2 \tau_2^2}
\]

The function \(k_2 \) is approximately equal to one for frequencies well above \(1/(2\pi \tau_1) \). This frequency is typically less than 1 Hz in a correctly designed PIF-circuit. Due to the condition (7), the noise contribution from \(R_1 \) is much smaller than the contribution from \(R_2 \) throughout the frequency range defined in the Introduction. The expression for the total noise of the PIF-circuit then becomes

\[
I^2_{n,PIF} = I^2_{nd} + I^2_{na} + (V^2_{n,R1} + V^2_{n,R2} + V^2_{n,a})
\]

\[
\left(\frac{1}{R_d^2} + \omega^2 C_d^2 \right)
\]

IV. AN IMPLEMENTATION OF THE PIF-CIRCUIT

The schematics of an implementation of the PIF-circuit is shown in Fig. 4. The feedback components of the circuit are denoted by \(R_1, R_2, \) and \(C_2 \). The amplifier consists of the cascode stage \(Q_1 \) followed by the operational amplifier \(XI \).

V. SIMULATIONS

SPICE simulations have been made of the implemented PIF-circuit. Both the linear model, described above, and a complete SPICE model have been used. The parameter values used for the linear model are shown in Table I. The parameters \(C_{in}, A_0, \) and \(\tau_0 \) are the equivalent input capacitance of the cascode stage, the low-frequency gain, and the time constant of the transfer function of the cascode stage and the operational amplifier.

A. Pulse Response

The pulse responses of the implemented PIF-circuit, given by the linear model and the SPICE model, are shown in Fig. 5. The photocurrent pulse used in the simulations has an amplitude of 10 pA. The rise and fall times of the pulse are 10 \(\mu \)s and the pulse width is 1 ms.

B. Frequency Response

The magnitudes of the transfer functions using the linear model and the SPICE model are shown in Fig. 6. To illustrate the influence of the photodiode bias point, several curves corresponding to different amounts of dc-current in the photodiode—generated by background light—are shown.
Both the curve corresponding to the linear model and the curve corresponding to the SPICE model with no background generated dc-current conform well with the derived expression (2) for the transfer function.

C. Noise Properties

The square root of the spectral density of the noise current, given by a SPICE simulation, is shown in Fig. 7. The low-frequency noise is $1.4 \text{ fA/}\sqrt{\text{Hz}}$ and the break frequency is 10 kHz. For comparison, the thermal noise contributions from two fictitious resistors connected in parallel and in series with the photodiode are also shown.

The derived noise expression (11) has been used to calculate the noise properties of the implemented PIF-circuit. The low-frequency noise became $2.0 \text{ fA/}\sqrt{\text{Hz}}$ and the break frequency became 20 kHz. The noise parameters used in the calculations were $I_{nd} = I_{nq} = 1.4 \text{ fA/}\sqrt{\text{Hz}}$ and $V_{na} = 2.0 \text{ nV/}\sqrt{\text{Hz}}$.

In this context, a remarkable discovery was made: the shot noise in the gate current of an FET is not modeled in the SPICE model of an FET [4]. The shot noise in the gate current should be approximately equal to the shot noise in the photodiode leakage current because the currents are equal. Then both the simulated low-frequency noise and the simulated break frequency should be scaled by a factor $\sqrt{2}$ to give a correct result. Considering this and the general uncertainties in noise parameters, the calculated noise conforms well with the simulated noise.

VI. MEASUREMENTS

A. Pulse Response

An LED radiating at $\lambda = 650 \text{ nm}$ was used as a light source for the pulse response measurements. The voltage pulse driving the LED was adjusted to produce a current pulse in the photodiode with similar parameters as in the simulations.

The result of the measurement of the pulse response is shown in Fig. 5. Simulated responses, based on the linear model and the SPICE model with no background generated dc-current, are also shown for comparison.

B. Noise Properties

The spectral density of the output noise voltage of the implemented PIF-circuit was measured with a narrow-band spectrum analyzer. The result of the measurements, together with the result from a Monte Carlo simulation based on the SPICE model with no background generated dc-current, are shown in Fig. 8. All SPICE model parameters which have a direct influence on the noise have been given a uniform statistical distribution with a maximum deviation of 50% from their nominal values in the Monte Carlo simulation.

VII. DISCUSSION

A. Transfer Function

Measured pulse response and simulated results using both the linear model and the SPICE model of the implemented PIF-circuit conform well with (2).

For applications with input pulse lengths in the interval 0.1–1 ms, some further simplifications of (2) can be made. In the frequency interval 10 Hz–100 kHz the transfer function
of the implemented PIF-circuit can be approximated by
\[H_{PIF}(s) \approx \frac{\tau_1}{C_d(1 + s\tau_2)}. \] \hspace{1cm} (12)

An important observation is that \(R_d \) has disappeared from the transfer function (12). This is good because the value of \(R_d \) is normally poorly known and depends strongly on the photodiode bias point which is ambient light dependent. Although the photodiode junction capacitance \(C_d \) is also a function of the photodiode bias point, that dependence is much weaker and is furthermore well known [5]. See Fig. 6.

B. Noise Properties

The expression for the PIF-circuit noise (11) shows that the PIF-circuit has no noise contribution from a load or feedback resistor as other photodiode-amplifier circuits have [1]. Fig. 7 shows the noise contribution from a parallel resistor of 100 M\(\Omega \) resistance which could be typical for such a resistor.

Also shown in the figure is the noise contribution from a 10 \(\Omega \) series resistor. This is included to stress the importance of a low series resistance in the photodiode and a low impedance level in the feedback network. The thermal noise in \(R_s \) and \(R_2 \) contributes to the total noise in the same manner as the amplifier voltage noise.

The measured output noise of the implemented PIF-circuit is less than the predicted noise at frequencies below 1 kHz and larger than the predicted noise above 1 kHz. The discrepancy could possibly be explained by incorrect parameters used in the models of the implemented PIF-circuit. No evidence of 1/f-noise has been found in the measurements.

The maximum responsivity of the used photodiode SFH229P is 0.62 A/W at a wavelength of 850 nm. Together with the calculated noise \(I_{n,PIF} = 2.0 \, fA/\sqrt{Hz} \) for frequencies below 20 kHz, this gives a corresponding \(\text{NEP} = 3.2 \, fW/\sqrt{Hz} \) for frequencies below 20 kHz. The measurements indicate that the implemented PIF-circuit has a somewhat lower NEP.

VIII. CONCLUSIONS

A photodiode-amplifier circuit with the photodiode in the feedback path has been presented. It is named the PIF-circuit. The main benefit of the circuit is that it does not need a resistor to provide a path to ground for the signal and leakage currents from the photodiode and the bias current at the amplifier input. Therefore, a strong noise source is eliminated.

A low series resistance in the photodiode and a low impedance level in the feedback network are shown to be important in minimizing the noise of the PIF-circuit.

The PIF-circuit has been used and has shown its performance in several (rocket-borne) instruments built by one of the authors.

REFERENCES