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Abstract. We study the asymptotic behavior of solutions of the evolution Stokes equation in a thin three-dimensional domain
bounded by two moving surfaces in the limit as the distance between the surfaces approaches zero. Using only a priori estimates
and compactness it is rigorously verified that the limit velocity field and pressure are governed by the time-dependent Reynolds
equation.
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1. Introduction

In 1886 Osborne Reynolds [7] derived, on physical grounds, a two-dimensional equation describing
the flow of a viscous fluid which is brought into motion by two rigid surfaces in close proximity. This
equation, later known as the Reynolds equation, marks the foundation of lubrication theory and has
since become the standard tool for computing the pressure distribution in various types of bearings. As
Reynolds’ lubrication equation is used in more general settings than the rather simple one in which it
was originally derived, it is important to affirm the validity of the approximation from a theoretical point
of view.

Rigorous lubrication theory is founded on a general fluid model, such as the full Navier–Stokes equa-
tion or intermediate models, and provides careful justifications for all the simplifications that lead to the
Reynolds equation. Mathematically this means studying the asymptotic behavior of the flow in the limit
as ε, a parameter that describes the relative gap between the surfaces, approaches zero. The limiting
equations can be found by formally expanding velocity field, pressure and related quantities (notably the
forces on the rigid surfaces) in a power series in ε, as shown in e.g. [4]. The asymptotic solution should
also be compared to the “true” solution by studying convergence.

The asymptotic behavior of an incompressible viscous fluid in a thin domain has been studied in
numerous papers. In 1983 Cimatti [3] considered the Stokes equation in a thin two-dimensional do-
main. As in Reynolds’ original paper, it is assumed that the lower boundary is flat, moving at constant
speed whereas the upper boundary is curved and at rest. These particular circumstances lead to a sta-
tionary problem. Cimatti then compares the solution of the Stokes equation, formulated in terms of a
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stream function, to the flow corresponding to the one-dimensional Reynolds equation by estimating the
L2-norm of the difference. The generalization to three dimensions is due to Bayada and Chambat [1]
whose approach is based on formal asymptotic expansion, energy estimates and compactness. Also in
this study, the assumptions on the rigid surfaces are such that the resulting problem becomes station-
ary. Under additional hypotheses on the boundary data, convergence of velocity field and pressure is
proved. A notable conclusion in [1] is that the proper boundary condition for the Reynolds equation is
of Neumann type, although a Dirichlet condition is often used in reality for practical reasons. A more
detailed review of the above cited works is found in the introduction of [9]. Let us finally mention that
Marušić and Marušić-Paloka [6] introduced in 2000 a technique called “two-scale convergence for thin
domains”. As one of several applications, they obtain a degenerate Reynolds equation as the asymptotic
limit of the stationary Navier–Stokes equation in a thin domain where the upper and lower boundaries
meet at a sharp edge. Although the actual problem bears little resemblance to classical lubrication in that
the boundaries are fixed and that the flow is driven by an external body force, the method is appealing
thanks to its generality.

The present analysis deals with the asymptotic behavior of incompressible Stokes flow in a thin three-
dimensional domain bounded by two moving rigid surfaces. The assumptions regarding curvature and
motion of the surfaces are sufficiently general to include most realistic applications and lead to a time-
dependent problem with a non-cylindrical space–time domain. This causes the main difficulty compared
to the stationary case. In the limit as ε → 0, we rigorously derive the time-dependent Reynolds equation
and show how the limiting velocity field and pressure are governed by the Reynolds equation. The corre-
sponding problem in two dimensions has been considered in [2], where the transition from the nonlinear
Navier–Stokes equation to the Reynolds equation is proved. Due to well-known difficulties associated to
estimating the inertial term in the three-dimensional case, see [2, Remark 4.1], we restrict our study to
the linear Stokes equation. Our approach, entirely based on a priori estimates and compactness, follows
that of Bayada et al. [2] but differs in some aspects. Notably, in regard to the derivation of estimates and
the passage to the limit in the Stokes equation. The main improvement is that we are able to derive the
Reynolds equation and deduce weak convergence of the velocity field without any bounds on the pres-
sure. Let us also mention that the assumptions in [2] on the boundary data are unnecessarily restrictive,
whereas we allow both surfaces to be curved and in “arbitrary” motion.

2. Statement of the problem

Let ω be an open bounded subset in R
2, with sufficiently smooth boundary. Let h+, h− ∈ C2(R2 ×

[0,T ]) such that

hmin � h = h+ − h− � hmax,

where T > 0 is given and hmin, hmax are positive constants. For t ∈ [0,T ] define the thin film

Ωε(t) =
{
x ∈ R

3: x′ = (x1,x2) ∈ ω, εh−
(
x′, t

)
< x3 < εh+

(
x′, t

)}
.

The boundary ∂Ωε(t) can be split into three disjoint parts:

∂Ωε(t) = Σ−
ε (t) ∪Σ+

ε (t) ∪Σw
ε (t),
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where

Σ±
ε (t) =

{
x ∈ R

3: x′ = (x1,x2) ∈ ω,x3 = εh±
(
x′, t

)}
,

Σw
ε (t) =

{
x ∈ R

3: x′ = (x1,x2) ∈ ∂ω, εh−
(
x′, t

)
� x3 � εh+

(
x′, t

)}
.

Furthermore, for any t ∈ [0,T ] set

Ωεt =
⋃

0<τ�t

Ωε(τ ) × {τ}, Σ±
εt =

⋃
0<τ�t

Σ±
ε (τ ) × {τ}, Σw

εt =
⋃

0<τ�t

Σw
ε (τ ) × {τ}.

We consider the incompressible time-dependent Stokes equation in ΩεT , i.e.

DtU
ε − νΔU ε +∇P ε = 0 in ΩεT , (2.1)

divU ε = 0 in ΩεT , (2.2)

where Dt = ∂/∂t, ν (kinematic viscosity) is a positive constant, U ε (velocity field) and P ε (pressure)
are unknowns, with initial-boundary values

U ε =
(
v±1 , v±2 , εv±3

)
on Σ±

εT (no-slip condition), (2.3)

U ε = gε on Σw
εT , (2.4)

U ε = U ε
0 on Ωε(0), (2.5)

where gε and U ε
0 are described below. Following [2], it is assumed that gε ∈ H1/2(Σw

εT ;R3) and U ε
0 ∈

H1(Ωε(0);R3) are of the form

gε(x, t) = Eĝ
(
E−1x, t

)
, (2.6)

U ε
0 (x) = EÛ0

(
E−1x

)
, (2.7)

for all ε > 0, where ĝ and Û0 are independent of ε (see [2] for more details) and E is the matrix

E(ε) =

( 1 0 0
0 1 0
0 0 ε

)
, (2.8)

and that for a.e. t ∈ (0,T ) the following compatibility condition is satisfied:∫
ω
Dth

(
x′, t

)
dx′ +

∫
∂ω

(∫ h+(x′,t)

h−(x′,t)
ĝ
(
x′, z, t

)
dz

)
· n̂ dS

(
x′
)
= 0, (2.9)

where n̂ denotes the outward unit normal. Assumptions on v±i and U ε
0 are

v± =
(
v±1 , v±2

)
∈ C

(
ω × [0,T ];R2

)
(2.10)

v±3 = Dth
± + v±1 D1h

± + v±2 D2h
± (2.11)
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U ε
0 =

{(
v±1 , v±2 , εv±3

)
on Σ±

ε (0),
gε on Σw

ε (0),
(2.12)

divU ε
0 = 0 in Ωε(0), (2.13)∫

ω

∫ h+(x′,0)

h−(x′,0)

∣∣Û0
(
x′, z

)∣∣2 dz dx′ < ∞. (2.14)

Here Di (i = 1, 2, 3) denotes the ith partial derivative. Moreover, if u :R3 → R
3, Du denotes the 3 × 3

matrix with Djui in row i column j. In this regard, if A = {aij} and B = {bij} are matrices of equal
dimensions their Frobenius product is defined as A : B =

∑
i,j aijbij , which induces a Euclidean norm

|A| =
√
A : A.

Remark 2.1. The typical example of rigid body motion in lubrication is

v±1 (x, t) = −α±(t)x2 + β±
1 (t),

v±2 (x, t) = α±(t)x1 + β±
2 (t),

v±3 (x, t) = 0,

where (0, 0,α±) and (β±
1 ,β±

2 , 0) are angular and translational velocity vectors respectively. However,
(2.11)–(2.12) do not require that the bounding surfaces be rigid. In fact, v±1 , v±2 are arbitrary continuous
functions, whereas v±3 and h± must be compatible through (2.11). Regarding certain conditions on the
geometry and motion of Σ±

ε (t) for such h± to exist we refer to the introduction to [4].

We introduce the new unknown function ûε = U ε − Ûε, where Ûε is chosen so that ûε satisfies
homogeneous boundary condition. It is assumed that there exists a measurable vector field Û such that

Ûε(x, t) = EÛ
(
E−1x, t

)
, (2.15)

div Ûε = 0 in ΩεT , (2.16)

Ûε = U ε on Σ±
εT ∪Σw

εT , (2.17)∫ T

0

∫
ω

∫ h+(x′,t)

h−(x′,t)

∣∣Û(x′, z, t
)∣∣2 + ∣∣DtÛ

(
x′, z, t

)∣∣2 + ∣∣DÛ
(
x′, z, t

)∣∣2 dz dx′ dt < ∞. (2.18)

Thus we obtain the following equation for ûε

Dtû
ε − νΔûε +∇P ε = f ε in ΩεT , (2.19)

div ûε = 0 in ΩεT , (2.20)

ûε = 0 on Σ±
εT ∪Σw

εT , (2.21)

ûε(x, 0) = ûε0 in Ωε(0), (2.22)

where

f ε = −DtÛε + νΔÛε (2.23)
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and ûε0(x) = U ε
0 (x) − Ûε(x, 0). Let ε0 > 0 be given. Then it follows from (2.14) and (2.18) that there

exists a constant K (which depends on ε0) such that∫
Ωε(0)

∣∣ûε0∣∣2 dx � εK (2.24)

for all 0 < ε � ε0.
As a first step towards a definition of weak solution for this problem we define the bilinear (in u and

v) form

Ŝε(u, v, t) =
∫
Ωε(t)

Dtu · v + νDu : Dv dx. (2.25)

Then, for each t ∈ (0,T ], a smooth solution ûε of (2.19)–(2.22) must satisfy the identity

Ŝε
(
ûε, v, t

)
= −Ŝε

(
Ûε, v, t

)
for all smooth v :Ωε(t) → R

3 with compact support such that div v = 0.
The goal of this paper is to study the asymptotic behavior of ûε as ε → 0. The main result is formulated

in Theorem 5.1 which states that the limit flow is governed by the Reynolds equation (5.20).

3. Casting the problem in a fixed domain

The above problem, formulated using the natural choice of coordinates, is complicated to analyze
due to the time-dependent space domain. To circumvent this, the domain Ωε(t) is transformed into
Ω = ω× (0, 1), which depends neither on ε nor t, by a change of variables (see Fig. 1). A weak solution
for the considered problem may then be defined in terms of Ω.

To this end let ψε(·, t) :Ω → Ωε(t) be defined by

ψε(ξ, t) =
(
ξ′, (1 − ξ3)εh−

(
ξ′, t

)
+ ξ3εh

+
(
ξ′, t

))
,

where ξ′ = (ξ1, ξ2) is a point in ω. The following notation convention is applied throughout the paper:

A point x ∈ Ωε(t) and a point ξ ∈ Ω are related through x = ψε(ξ, t) or equivalently ξ = φε(x, t),
where φε(·, t) :Ωε(t) → Ω is the inverse of ψε(·, t).

Fig. 1. Cross sections of the domains Ωε(t) and Ω. (Colors are visible in the online version of the article; http://dx.doi.org/
10.3233/ASY-131165.)



108 J. Fabricius et al. / The time-dependent Reynolds equation

We have

∂Ω = Σ− ∪Σ+ ∪Σw,

where

Σ− =
{
ξ ∈ R

3: ξ′ ∈ ω and ξ3 = 0
}

,

Σ+ =
{
ξ ∈ R

3: ξ′ ∈ ω and ξ3 = 1
}

,

Σw =
{
ξ ∈ R

3: ξ′ ∈ ∂ω and 0 � ξ3 � 1
}

and set ΩT = Ω × (0,T ), ωT = ω × (0,T ).
Furthermore, let

Aε(ξ, t) =
{
Djψ

ε
i (ξ, t)

}
=

( 1 0 0
0 1 0

ε(1 − ξ3)D1h
− + εξ3D1h

+ ε(1 − ξ3)D2h
− + εξ3D2h

+ εh

)
(3.1)

and define Bε as the inverse matrix of Aε, i.e.

Bε(ξ, t) =

⎛⎝ 1 0 0
0 1 0

− (1−ξ3)D1h
−+ξ3D1h

+

h − (1−ξ3)D2h
−+ξ3D2h

+

h
1
εh

⎞⎠ . (3.2)

Note that detAε = εh. We sometimes write Aε = EA and Bε = BE−1 where

A =

( 1 0 0
0 1 0
a b h

)
, B = A−1 =

( 1 0 0
0 1 0

−a/h −b/h 1/h

)
,

a = (1 − ξ3)D1h
− + ξ3D1h

+ and b = (1 − ξ3)D2h
− + ξ3D2h

+.
Let us now see how Ŝε, defined by (2.25), transforms under this change of variables.

Lemma 3.1. Let Sε be the bilinear form

Sε(u, v, t) =
∫
Ω

(hDtu− cD3u) · v + νhDuBε : DvBε dξ,

where c = (1 − ξ3)Dth
− + ξ3Dth

+, and let F ε be the linear functional〈
F ε(t), v

〉
= −ε−1Ŝε

(
Ûε, v ◦ φε, t

)
. (3.3)

Then a smooth field ûε :Ωε(t) → R
3 satisfies

Ŝε
(
ûε, v, t

)
= −Ŝε

(
Ûε, v, t

)
(3.4)
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for all smooth v :Ωε(t) → R
3 with compact support, if and only if uε = ûε ◦ ψε, i.e.

uε(ξ, t) = ûε
(
ψε(ξ, t), t

)
,

satisfies

Sε
(
uε, v, t

)
=

〈
F ε(t), v

〉
(3.5)

for all smooth v :Ω → R
3 with compact support. Moreover

div ûε = 0 in Ωε(t)

if and only if

div
(
hBεuε

)
= 0 in Ω.

Proof. By the chain rule we have

Dφε(x, t) = Dψε(ξ, t)−1 = Bε(ξ, t),

Dtφ
ε
3(x, t) = −Dtψ

ε
3(ξ, t)

D3ψε
3(ξ, t)

= − c

h
.

Thus

Ŝε
(
u ◦ φε, v ◦ φε, t

)
=

∫
Ωε(t)

(
Dtu(ξ, t) +Dtφ

ε
3(x, t)D3u(ξ, t)

)
· v(ξ)

+ νDu(ξ, t)Dφε(x, t) : Dv(ξ, t)Dφε(x, t) dx

=

∫
Ω

((
Dtu− c

h
D3u

)
· v + νDuBε : DvBε

)∣∣detAε
∣∣ dξ

= ε

∫
Ω

(hDtu− εcD3u) · v + νhDuBε : DvBε dξ = εSε(u, v, t).

Hence

Sε(u, v, t) = ε−1Ŝε
(
u ◦ φε, v ◦ φε, t

)
or equivalently

Ŝε(u, v, t) = εSε
(
u ◦ ψε, v ◦ ψε, t

)
.

Let us now show that div(u ◦ φε) = 0 in Ωε(t) is equivalent to div(hBεu) = 0 in Ω. Indeed∫
Ωε(t)

u ◦ φε · ∇
(
v ◦ φε

)
dx=

∫
Ωε(t)

Dφε(x)u(ξ) · ∇v(ξ) dx

=

∫
Ω
Bεu · ∇v

∣∣detAε
∣∣ dξ =

∫
Ω
εhBεu · ∇v dξ

for all smooth v :Ω → R with compact support. �
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The preceding lemma motivates the following definition of generalized solution which is formally
obtained by replacing v in (3.5) with Aεv/h, where div v = 0.

Definition 1. Let

H =
{
u ∈ L2

(
Ω;R3

)
: divu = 0,u · n̂ = 0 on ∂Ω

}
,

V =
{
u ∈ H1

0

(
Ω;R3

)
: divu = 0 in Ω

}
and let V ′ denote the dual of V . We say that ûε = uε ◦ φε is a weak solution of (2.19)–(2.23) if uε

satisfies hBεuε ∈ L2(0,T ;V ) ∩ L∞(0,T ;H), Dt((Aε)Tuε) ∈ L2(0,T ;V ′) and

d
dt

∫
Ω
uε ·Aεv dξ +

∫
Ω
−uε ·DtA

εv − c

h
D3u

ε ·Aεv + νhDuεBε : D
(
Aεv/h

)
Bε dξ

=
〈
F ε(t),Aεv/h

〉
(3.6)

for all a.e. t ∈ (0,T ) and all v ∈ V and satisfies

uε(ξ, 0) = uε0(ξ), ξ ∈ Ω, (3.7)

where uε0 = ûε0 ◦ ψε.

4. Existence and uniqueness

Thus, the idea is to prove existence and uniqueness of uε and then define ûε as uε ◦ φε. The following
result holds.

Theorem 4.1. The boundary-value problem (3.6) has a unique solution uε for each ε > 0. Moreover,
there exists a constant K (which depends on ε0) such that∥∥uε∥∥

ΩT
+

∥∥D3u
ε
∥∥
ΩT

� K, (4.1)

sup
0�t�T

∥∥uε∥∥
Ω
+
∥∥D1u

ε
∥∥
ΩT

+
∥∥D2u

ε
∥∥
ΩT

� ε−1K (4.2)

for all 0 < ε � ε0.

To prove Theorem 4.1 we need some preliminary estimates. The construction of uε, defined by (3.6),
is standard and relies on the so called Galerkin method. For simplicity we denote the norm in L2(Q;Rk)
as ‖ · ‖Q, where Q is an arbitrary open set and k = 1, 3, 3 × 3 is clear from the context. The various
constants introduced in the derivations are denoted by K1,K2, . . . .

Lemma 4.1. Let Bε and E be given by (3.2) and (2.8) respectively. For each ε0 > 0 there exist positive
constants λ−, λ+ such that

λ−∣∣XE−1
∣∣2 �

∣∣XBε
∣∣2 � λ+

∣∣XE−1
∣∣2 (4.3)

for all real 3 × 3 matrices X , for all 0 < ε � ε0.
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Proof. Set Y = (XE−1)T , then∣∣XBε
∣∣2 =

∣∣(EBE−1
)T

Y
∣∣2 =

∑
i

∣∣(EBE−1
)T

yi
∣∣2

where yi denotes the ith column vector of Y . Some elementary calculations show that any eigenvalue
λ = λ(ε) of the quadratic form

Qε(y) =
∣∣(EBE−1

)T
y
∣∣2, y ∈ R

3

satisfies

1
1 + h2 + ε2(a2 + b2)

< λ < 1 +
1 + ε2(a2 + b2)

h2
.

Thus there exist positive constants λ± which depend on ε0, h+ and h− such that λ− � λ � λ+ for all
ε ∈ [0, ε0]. Hence

λ−|Y |2 �
∣∣(EBE−1

)T
Y
∣∣2 � λ+|Y |2

for all matrices Y which implies (4.3). �

Lemma 4.2. For each ε0 > 0 there exists a constant λ+ such that

∣∣〈F ε(t), v
〉∣∣�(∫

ω

∫ h+

h−
|EDtÛ |2 dz dx′

)1/2(∫
Ω
|v|2h dξ

)1/2

+ ν
√
λ+

(∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′

)1/2(∫
Ω

∣∣DvE−1
∣∣2h dξ

)1/2

for all v ∈ H1
0 (Ω;R3), for all 0 < ε � ε0.

Proof. From the definitions of F ε and Ûε

〈
F ε(t), v

〉
= −ε−1

∫
Ωε(t)

EDtÛ
(
E−1x, t

)
·
(
v ◦ φε

)
+ νEDÛ

(
E−1x, t

)
E−1 : D

(
v ◦ φε

)
dx.

Thus, using Lemma 4.1,

∣∣〈F ε(t), v
〉∣∣� ε−1

(∫
ω

∫ h+

h−
|EDtÛ |2ε dz dx′

)1/2(∫
Ω
|v|2εh dξ

)1/2

+ ε−1ν

(∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2ε dz dx′

)1/2(∫
Ω

∣∣DvBε
∣∣2εh dξ

)1/2
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�
(∫

ω

∫ h+

h−
|EDtÛ |2 dz dx′

)1/2(∫
Ω
|v|2h dξ

)1/2

+ ν
√
λ+

(∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′

)1/2(∫
Ω

∣∣DvE−1
∣∣2h dξ

)1/2

. �

Proof of Theorem 4.1. We shall construct uε as a Galerkin approximation. For this we choose an
orthonormal basis {un}∞n=1 in H that is dense in the space V , e.g. the solutions of the eigenvalue problem

−Δun +∇pn = λnu
n in Ω,

divun = 0 in Ω,

un = 0 on ∂Ω.

For t ∈ [0,T ] set

wn(ξ, t) =
1

h(ξ, t)
Aε(ξ, t)un(ξ).

It is more convenient to work with the time-dependent sequence {wn}∞n=1 rather than {un}∞n=1. Clearly
{wn(·, t)}∞n=1 are linearly independent and finite linear combinations from this set are dense in{

v ∈ H1
0

(
Ω;R3

)
: div

(
hBε(·, t)v

)
= 0 in Ω

}
for each t ∈ [0,T ]. A finite dimensional approximation uεN is constructed as

uεN (ξ, t) =
N∑
n=1

φn(t)wn(ξ, t),

where φn : [0,T ] → R are functions to be determined. Then, by construction, div(hBεuεN ) = 0. Taking
(3.6) into account we want uεN to satisfy∫

Ω

(
hDtu

εN − cD3u
εN

)
· wm + νhDuεNBε : DwmBε dξ =

〈
Fε(t),w

m
〉

(4.4)

for m = 1, . . . ,N which is equivalent to

Cε(t)φ′(t) = Dε(t)φ(t) + f ε(t), (4.5)

where φ = (φ1, . . . ,φN ), Cε = {cεmn}Nm,n=1, Dε = {dεmn}Nm,n=1 and f ε = (f ε
1 , . . . , f ε

N ) are given by

cεmn(t) =
∫
Ω
hwn · wm dξ,

dεmn(t) = −
∫
Ω

(
hDtw

n − cD3w
n
)
· wm + νhDwnBε : DwmBε dξ,

f ε
m(t) =

〈
Fε(t),w

m
〉
.
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Note that Cε(t) is the Gram matrix of the linearly independent set {wn(·, t)}Nn=1 with respect to the scalar
product

(u, v) �→
∫
Ω
u(ξ) · v(ξ)h(ξ, t) dξ. (4.6)

In particular Cε is invertible with bounded inverse and so (4.5) becomes

φ′(t) = Cε(t)−1Dε(t)φ(t) + Cε(t)−1f ε(t). (4.7)

Next, we determine what initial condition to choose for φ. The orthogonal projection

PN :L2
(
Ω;R3

)
→ Span

{
w1(·, 0), . . . ,wN (·, 0)

}
with respect to the scalar product (4.6) satisfies PN (uε0) =

∑N
n=1 αnw

n(·, 0) for some unique α =
(α1, . . . ,αN ) ∈ R

N ,∫
Ω

∣∣PN

(
uε0
)∣∣2h dξ �

∫
Ω

∣∣uε0∣∣2h dξ and lim
N→∞

∫
Ω

∣∣uε0 − PN

(
uε0
)∣∣2h dξ = 0.

It is well known, see e.g. Filippov [5, Theorem 3, p. 5], that under the above stated conditions, the
linear ODE (4.7) has a unique absolutely continuous solution φ : [0,T ] → R

N , satisfying φ(0) = α, or
what is equivalent uεN = PN (uε0) for t = 0. This proves the existence of uεN such that (4.4) holds.

From (4.4) it follows that∫
Ω

(
hDtu

εN − cD3u
εN

)
· uεN + νh

∣∣DuεNBε
∣∣2 dξ =

〈
Fε(t),u

εN
〉
.

Using

d
dt

∫
Ω

1
2
h
∣∣uεN ∣∣2 dξ =

∫
Ω
hDtu

εN · uεN +
1
2
Dth

∣∣uεN ∣∣2 dξ

and Lemmas 4.2 and 4.1 we obtain

d
dt

∫
Ω

1
2

∣∣uεN ∣∣2h dξ − 1
2

∫
Ω
Dth

∣∣uεN ∣∣2 dξ

−K1

(∫
Ω

∣∣D3u
εN

∣∣2h dξ

)1/2(∫
Ω

∣∣uεN ∣∣2h dξ

)1/2

+K2

∫
Ω

∣∣DuεNE−1
∣∣2h dξ

�
(∫

ω

∫ h+

h−
|EDtÛ |2 dz dx′

)1/2(∫
Ω

∣∣uεN ∣∣2h dξ

)1/2

+ ν
√
λ+

(∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′

)1/2(∫
Ω

∣∣DuεNE−1
∣∣2h dξ

)1/2

.



114 J. Fabricius et al. / The time-dependent Reynolds equation

Since∫
Ω
Dth

∣∣uεN ∣∣2 dξ � K3

∫
Ω

∣∣uεN ∣∣2h dξ,

K1

(∫
Ω

∣∣D3u
εN

∣∣2h dξ

)1/2(∫
Ω

∣∣uεN ∣∣2h dξ

)1/2

� K2

4

∫
Ω

∣∣DuεNE−1
∣∣2h dξ + ε2K4

∫
Ω

∣∣uεN ∣∣2h dξ,

ν
√
λ+

(∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′

)1/2(∫
Ω

∣∣DuεNE−1
∣∣2h dξ

)1/2

� K5

∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′ +

K2

4

∫
Ω

∣∣DuεNE−1
∣∣2h dξ

we deduce

d
dt

∫
Ω

∣∣uεN ∣∣2h dξ +K2

∫
Ω

∣∣DuεNE−1
∣∣2h dξ

�
∫
ω

∫ h+

h−
|EDtÛ |2 dz dx′ +K5

∫
ω

∫ h+

h−

∣∣EDÛE−1
∣∣2 dz dx′ +K6

∫
Ω

∣∣uεN ∣∣2h dξ, (4.8)

where K6 = 1 +K3 + 2ε2
0K4. Applying Grönwall’s inequality yields

sup
0�t�T

∫
Ω

∣∣uεN ∣∣2h dξ �
∫
Ω

∣∣uε0∣∣2h(ξ, 0) dξ +K7R(ε), (4.9)

where

R(ε) =
∫ T

0

∫
ω

∫ h+

h−
|EDtÛ |2 +

∣∣EDÛE−1
∣∣2 dz dx′ dt.

Integrating (4.8) from 0 to T gives∫ T

0

∫
Ω

∣∣DuεNE−1
∣∣2h dξ dt � K8

(
ε−1

∫
Ωε(0)

∣∣ûε0∣∣2 dx+R(ε)

)
. (4.10)

From (2.18) it follows that ε2R(ε) is bounded for 0 < ε � ε0. Taking also (2.24) into account, we
deduce∥∥D3u

εN
∥∥
ΩT

� K,
(4.11)

sup
0�t�T

∥∥uεN∥∥
Ω
+

∥∥D1u
εN

∥∥
ΩT

+
∥∥D2u

εN
∥∥
ΩT

� ε−1K
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for some constant K > 0. Owing to the Friedrichs inequality(∫
Ω
|v|2 dξ

)1/2

� 2

(∫
Ω
|D3v|2 dξ

)1/2

(4.12)

it holds also that ‖uεN‖ΩT
� 2K.

Using standard compactness and density arguments we obtain uε as a weak subsequential limit of
{uεN}∞N=1. It is readily checked that uε satisfies (3.6) and has all the properties stated in our definition
of weak solution. Moreover uε is unique and satisfies the estimates (4.1)–(4.2). �

5. Derivation of the Reynolds equation

This section is devoted to the asymptotic analysis of uε, the solution of (3.6). Following [2], we
introduce the scalar product

(u, v) �→
∫
Ω
u · v +D3u ·D3v dξ (5.1)

and define Vξ3 as the completion of C∞
c (Ω;R3) with respect to the norm induced by (5.1). Furthermore

we denote as f the average in the ξ3-direction of a function f :Ω → R
k, i.e.

f
(
ξ′
)
=

∫ 1

0
f (ξ) dξ3.

Lemma 5.1. Assume F ∈ L2(ΩT ;R3) with divF = 0 in ΩT , F · n̂ = g on Σw × (0,T ), where
g ∈ L2(Σw × (0,T );R3). Then

d
dξ3

∫
ωT

F3φ dξ′ dt =
∫
ωT

F · ∇φ dξ′ dt−
∫
∂ω×(0,T )

gφ dS
(
ξ′
)

dt (5.2)

for all φ ∈ L2(0,T ;H1(ω)) and a.e. ξ3 ∈ (0, 1).

Proof. Assume φ ∈ L2(0,T ;H1(ω)), ψ ∈ H1
0 (0, 1) and set Φ(ξ, t) = φ(ξ′, t)ψ(ξ3). Since div(ΦF ) =

∇Φ · F , the Gauss–Green theorem implies∫
Ω
∇Φ · F dξ =

∫
Σw

Φg dS(ξ). (5.3)

Integration over (0,T ) gives∫ 1

0

(∫
ωT

F3(ξ, t)φ
(
ξ′, t

)
dξ′ dt

)
ψ′ dξ3

=

∫ 1

0

(
−
∫
ωT

F (ξ, t) · ∇φ
(
ξ′, t

)
dξ′ dt+

∫
∂ω×(0,T )

g(ξ, t)φ
(
ξ′, t

)
dS

(
ξ′
)

dt

)
ψ dξ3.

This proves (5.2). �
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Lemma 5.2. Let uε be the sequence of solutions of (3.6). Then there exists u∗ ∈ L2(0,T ;Vξ3 ) such that
up to a subsequence uε ⇀ u∗ in L2(0,T ;Vξ3 ) as ε → 0. Moreover,

(1) u∗(ξ, t) = 0 on Σ± for a.e. t ∈ [0,T ].
(2) u∗3 = 0 a.e. in Ω × (0,T ).
(3) divhu∗ = 0 in ω × (0,T ) and hu∗ · n̂ = 0 on ∂ω × (0,T ).

Proof. By (4.1), uε is bounded in the Hilbert space L2(0,T ;Vξ3 ). Thus there exists a subsequence such
that uε ⇀ u∗ in L2(0,T ;Vξ3 ). The inequality∫

Σ−∪Σ+

|v|2 dS � (1 +
√

2)
∫
Ω
|v|2 + |D3v|2 dξ

which holds for all v ∈ C1(Ω;R3) implies that u∗ = 0 on Σ− ∪Σ+ in the trace sense.
Passing to the limit in∫

ΩT

εhBεuε · ∇v dξ dt = 0 (5.4)

gives∫
ΩT

u∗3D3v dξ dt = 0

for all v ∈ L2(0,T ;H1(Ω)). Thus D3u
∗
3 = 0 and so Friedrichs’ inequality (4.12) implies u∗3 = 0 in

Ω × (0,T ). In view of (5.4) and Lemma 5.1, with F ε = hBεuε,

∫
ωT

(
F ε

3

(
ξ′, b, t

)
− F ε

3

(
ξ′, a, t

))
φ
(
ξ′, t

)
dξ′ dt =

∫ b

a

(∫
ωT

F ε(ξ, t) · ∇φ
(
ξ′, t

)
dξ′ dt

)
dξ3 (5.5)

for all φ ∈ L2(0,T ;H1(ω)) and a, b ∈ (0, 1). Since F ε
3 = 0 on Σ± we conclude that

0 = lim
ε→0

∫ 1

0

(∫
ωT

F ε(ξ, t) · ∇φ
(
ξ′, t

)
dξ dt

)
dξ3

=

∫
ωT

(∫ 1

0
h
(
ξ′, t

)
u∗(ξ, t) dξ3

)
· ∇φ

(
ξ′, t

)
dξ′ dt (5.6)

for all φ ∈ L2(0,T ;H1(ω)), that is divhu∗ = 0 in ωT and hu∗ · n̂ = 0 on ∂ω × (0,T ). �

At this point it is convenient to introduce

U(ξ, t) = Û
(
E−1ψε(ξ, t), t

)
= Û

(
ξ1, ξ2, (1 − ξ3)h− + ξ3h

+, t
)
.
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Observe that

div(hBU) = 0 in Ω, (5.7)

U =
(
v±,Dth

± + v± · ∇h±
)

on Σ±, (5.8)

U = g on Σw = ∂ω × (0, 1), (5.9)

where g(ξ, t) = ĝ(E−1ψε(ξ, t), t).

Lemma 5.3. Assume, as in Lemma 5.2, that u∗ is a weak subsequential limit of uε. Then there exists
p∗ ∈ L2(0,T ;

◦
L2(ω) ∩H1(ω)) such that

u∗ = −ξ3(1 − ξ3)h2

2ν
∇p∗ + ξ3v

+ + (1 − ξ3)v− − PU , (5.10)

where

◦
L2(ω) =

{
p ∈ L2(ω) :

∫
ω
p dξ′ = 0

}
and P denotes the projection Py = (y1, y2, 0), y ∈ R

3.

Proof. As a first step it is shown that

U∗ =
ν

h2
P
(
u∗ + U

)
satisfies the so called thin-film equation

D2
3U

∗ = ∇p∗. (5.11)

To this end, multiply (3.6) with ψ ∈ C1([0,T ]) such that ψ(T ) = 0 and integrate (by parts) over [0,T ].
Thus we obtain

−ψ(0)
∫
Ω
uε0 ·Aεv dξ −

∫ T

0
ψ′(t)

∫
Ω
uε ·Aεv dξ dt

+

∫ T

0
ψ(t)

∫
Ω
−uε ·DtA

εv − c

h
D3u

ε ·Aεv + νhDuεBε : D
(
Aεv/h

)
Bε dξ dt

=

∫ T

0
ψ(t)

〈
F ε(t),Aεv/h

〉
dt.

Next, multiply the above equation with ε2 and let ε → 0. From (4.1) it is easily seen that the first four
terms on the left side tend to zero. As to the fifth term, we write

DuεBε : D
(
Aεv/h

)
Bε =

(
EDuεE−2

)(
E2BE−2

)
: D(Av/h)B
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and observe that

ε2EDuεE−2 =

(
ε2D1u

ε
1 ε2D2u

ε
1 D3u

ε
1

ε2D1u
ε
2 ε2D2u

ε
2 D3u

ε
2

ε3D1u
ε
2 ε3D2u

ε
2 εD3u

ε
2

)
⇀

( 0 0 D3u
∗
1

0 0 D3u
∗
2

0 0 0

)

weakly in L2(ΩT ), while

E2BE−2 =

( 1 0 0
0 1 0

−ε2a/h −ε2b/h 1/h

)
→

( 1 0 0
0 1 0
0 0 1/h

)

uniformly on ΩT . Thus

lim
ε→0

ε2
∫ T

0
ψ(t)

∫
Ω
νhDuεBε : D

(
Aεv/h

)
Bε dξ dt

=

∫ T

0
ψ(t)

∫
Ω
νh

( 0 0 D3u
∗
1/h

0 0 D3u
∗
2/h

0 0 0

)
: D(Av/h)B dξ dt

=

∫ T

0
ψ(t)

∫
Ω

ν

h2

(
D3u

∗
1D3v1 +D3u

∗
2D3v2

)
dξ dt.

Similarly one finds that

lim
ε→0

ε2
∫ T

0
ψ(t)

〈
F ε(t),Aεv/h

〉
dt

= −
∫ T

0
ψ(t)

∫
Ω

ν

h2

(
D3U∗

1 D3v1 +D3U∗
2 D3v2

)
dξ dt.

Thus one obtains

0 =

∫ T

0
ψ(t)

∫
Ω

ν

h2
D3P

(
u∗ + U

)
·D3v dξ dt

=

∫ T

0
ψ(t)

∫
Ω
D3U

∗ ·D3v dξ dt

for all v ∈ V and all ψ ∈ C1([0,T ]) such that ψ(T ) = 0. In view of de Rham’s theorem, see e.g. [8],
there exists p∗ ∈ L2(0,T ;

◦
L2(Ω)) such that∫

ΩT

D3U
∗ ·D3Pv dξ dt =

∫
ΩT

p∗ div v dξ dt (5.12)

for all v ∈ L2(0,T ;H1
0 (Ω;R3)), i.e. U∗ satisfies (5.11) in a weak sense. Observe that (5.12) implies

D3p
∗ = 0 in ΩT , hence p∗(ξ, t) = p∗(ξ′, t), i.e. p∗ does not depend on ξ3. It remains to show that
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p∗ ∈ L2(0,T ;H1(ω)). To this end choose v(ξ) = ψ(ξ3)φ(ξ′) in (5.12), where φ ∈ H1
0 (ω;R2) and

ψ ∈ H1
0 (0, 1). Using Fubini’s theorem we obtain

∫ 1

0

(∫
ωT

D3U
∗ · φ dξ′ dt

)
ψ′ dξ3 =

∫ 1

0

(∫
ωT

p∗ divφ dξ′ dt

)
ψ dξ3. (5.13)

Let the function z : (0, 1) → R and the constant λ ∈ R be defined by

z(ξ3) =
∫
ωT

U∗(ξ, t) · φ
(
ξ′, t

)
dξ′ dt,

λ =

∫
ωT

p∗
(
ξ′, t

)
divφ

(
ξ′, t

)
dξ′ dt.

Then z ∈ H1(0, 1) and (5.13) says that

−z′′ = λ in (0, 1). (5.14)

The general solution of (5.14) is

z(ξ3) =
λ

2
ξ3(1 − ξ3) + z(1)ξ3 + z(0)(1 − ξ3). (5.15)

Taking into account that U∗ = νh−2v± on Σ±, we obtain∫
ωT

U∗ · φ dξ′ dt =
∫
ωT

1
2
ξ3(1 − ξ3)p∗ divφ+

ν

h2

(
ξ3v

+ + (1 − ξ3)v−
)
· φ dξ′ dt. (5.16)

Integrating this equality from ξ3 = 0 to 1 using Fubini gives∫
ωT

(
−12U∗ +

6ν
h2

(
v+ + v−

))
· φ dξ′ dt =

∫
ωT

p∗ divφ dξ′ dt. (5.17)

This shows that p∗ ∈ L2(0,T ;H1(ω)) with

∇p∗ = 12U∗ − 6ν
h2

(
v+ + v−

)
. (5.18)

On integrating by parts in (5.16), we deduce that

U∗ = −1
2
ξ3(1 − ξ3)∇p∗ +

ν

h2

(
ξ3v

+ + (1 − ξ3)v−
)
.

From this (5.10) follows. �
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Theorem 5.1. As ε → 0, the whole sequence uε of solutions of (3.6) converges weakly in L2(0,T ;Vξ3 )
to

u∗ = −ξ3(1 − ξ3)h2

2ν
∇p∗ + ξ3v

+ + (1 − ξ3)v− − PU , (5.19)

where p∗ ∈ L2(0,T ;
◦
L2(ω) ∩H1(ω)) is the unique solution of the Reynolds equation

⎧⎪⎪⎨⎪⎪⎩
Dth+ div

(
− h3

12ν
∇p∗ +

h

2

(
v+ + v−

))
= 0 in ω × (0,T ),(

− h3

12ν
∇p∗ +

h

2

(
v+ + v−

))
· n̂ = hg · n̂ on ∂ω × (0,T ),

(5.20)

where

g
(
x′, t

)
=

∫ h+(x′,t)

h−(x′,t)
ĝ
(
x′, z, t

)
dz.

Proof. Equation (5.10) implies

hu∗ + hPU = − h3

12ν
∇p∗ +

h

2

(
v+ + v−

)
.

Applying Lemma 5.1 with F = hBU yields

∫
ωT

hPU · ∇φ dξ′ dt=
∫ 1

0

(∫
ωT

F · ∇φ dξ′ dt

)
dξ3

=

∫
ωT

(
F3

(
ξ′, 1, t

)
− F3

(
ξ′, 0, t

))
φ dξ′ dt

+

∫ 1

0

(∫
∂ω×(0,T )

φF · n̂ dS
(
ξ′
)

dt

)
dξ3

=

∫
ωT

Dthφ dξ′ dt+
∫
∂ω×(0,T )

φhg · n̂ dS
(
ξ′
)

dt.

Combining this with Lemma 5.2(3) we deduce

∫
ωT

(
− h3

12ν
∇p∗ +

h

2

(
v+ + v−

))
· ∇φ dξ′ dt

=

∫
ωT

Dthφ dξ′ dt+
∫
∂ω×(0,T )

φhg · n̂ dS
(
ξ′
)

dt (5.21)
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for all φ ∈ L2(0,T ;H1(ω)). The integral identity (5.21) is indeed the weak formulation of (5.20).
Furthermore (5.21) has a unique solution if and only if∫ T

0

(∫
ω
Dth dξ′ +

∫
∂ω

hg · n̂ dS
(
ξ′
))

φ dt = 0

for all φ ∈ L2(0,T ). Since this condition is equivalent to assumption (2.9), we conclude that p∗ is
uniquely determined by (5.21). Hence the whole sequence uε converges to u∗. �

6. Concluding remarks

Summing up, we have proved weak convergence of the “velocity field” uε and found an expression
for the limit u∗, see Theorem 5.1. Unlike previous studies, no estimates for the pressure (P ε in (2.1))
were used to pass to the limit. In fact we have not even showed the existence of such a function, although
it can be deduced from (3.6) and de Rham’s theorem. Nevertheless a “limit pressure” p∗ appears in the
Reynolds equation (5.20). The reason for this is that de Rham’s theorem was invoked only after letting
ε → 0. The authors hope that convergence of the pressure can be addressed in future work.
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