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Abstract. There are a lot of works on how to compute the effec-
tive characteristics of random composite media, but behind all these
computations there are no indications on how they are related to the
rigorous methods of stochastic homogenization. The definition of a
random medium is also often unclear. In this paper we partly fill
in this gap and present numerical results where this relation is clear.
Moreover, we compare these results with other frequently used meth-
ods.
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1. Introduction

In this paper we compare some different methods of computing the
homogenized (or effective) conductivity of composite materials. In partic-
ular, we will consider composites where one phase is included in another
continuous phase.

When one assumes that the inclusions are periodically distributed,
there are well-known rigorous mathematical results which tell how to com-
pute the effective properties of different composite media, see e.g. [6] and
[13]. The effective properties are expressed in terms of a solution of a prob-
lem over one cell of periodicity. This solution can be computed by some
numerical method, see e.g. Section 3.2.

In the case when the inclusions are randomly distributed there are also
mathematical homogenization results on how to (almost surely) compute
the effective properties in terms of a solution of an auxiliary problem. Since
this auxiliary problem is stated in an abstract probability space it is not
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possible to find this solution by any numerical method. However, in (1],
it was proved how to find a converging sequence of approximations, which
can be numerically computed.

There are a lot of works on how to compute the effective characteristics
of random composite media but behind all these computations there is no
indication on how they are related to the rigorous methods of stochastic
homogenization. The definition of a random media is also often unclear.

The main goal of this paper is to apply the results in [1] to compute
effective properties of some examples of random composite media. More-
over, we compare these results with other methods frequently used in the
literature.

The paper is organized in the following way: In Section 2 give some
preliminary results concerning the theory of stochastic homogeneous fields.
In Section 3 we present some results from stochastic homogenization. In
particular, we define the abstract auxiliary problem mentioned above. We
also explain the results from [1] concerning how to make a periodic ap-
proximation of the effective properties of random media. In section 4 we
construct a class of random media and use the technique in [1] to com-
pute effective properties of some examples from this class. Moreover, we
compare these results with other methods frequently used in the literature.
Finally, we give some concluding remarks in Section 5.

2. Stochastic Homogeneous Fields
Let (2, 7, u) be a probability space.

Definition 1. An N-dimensional dynamical system is a family of maps
T, : 0 — Q, z € RN, which satisfy the following conditions:

(1) The group property:
Toty =TuTy,V 2,y € RN and Ty = I,
where I is the identity map.

(2) The map T, is measure preserving, i.e. for any z € RN and for
any p -measurable subset U C Q the set Tl is p -measurable and
pl) = p(TU).

(3) For any measurable function f on €, the function f(T,w) defined on
RY x § is measurable (R" x Q is endowed with the measure dz x i,
dz stands for the Lebesgue measure).

- r———— oy ————



A Numerical Study of the Convergence 161

A measurable function f defined on  is called invariant if f(w) =
f(Tyw) for every z in RN and a.e. w in Q. A dynamical system is called
ergodic if any invariant function is constant a.e. in Q.

Let f € L} _(RN). If for any Lebesgue measurable subset K C RN,

loc

|K| # 0, the following limit exists:

. 1 z
ti e [ 5o (1

and is independent of K, then the limit (1) is said to be the mean value of
f and is denoted by M(f). An alternative formulation is as follows: Let

Ko={zeRYN:z/te K,t>0}.
Then, we can write

li 1
= 1m -
t—=oo tN |K| K,

M(f) f(z)dz. (2)

If the family of functions f(z/e) is bounded in L{ (RN) for some a > 1
we have that "

f(g) — M(f) weakly in L{ (RN).
The following useful theorem holds, see e.g. [3],[6] and [13]:
Theorem 1. (Birkhoff’s Ergodic Theorem) Let f € LP(Q), p > 1.
Then for a.e. w €  the realization F(z) = f(Tyw) possesses a mean value
M(F), in the sense that

F(g) — M(F) weakly in L?, (RN).

loc

Moreover, the mean value M(f(T,w)) is invariant as e function of w and

<ﬁ:Aﬂmw:AMmmm@.

In particular, if the system is ergodic, then

M(f(wa)):/Qf(w)du for a.e. wefd

We will also use the following result, see e.g. [3] or [6]:

Theorem 2. Let Qg be a measuradble subset of 0 such that p(p) = 1.
Then there exists a measurable subset 1 C Qo such that p(Q;) = 1 and
for any w € Q; we have Tyw € Qg for a.e. x € RN,
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3.Homogenization of Random Operators
3.1 Main homogenization result

Let (Q,F,u) be a probability space and T, (z € RN) an ergodic
dynamical system on ). A vector field f € [LQ(Q)]N is said to be po-
tential (respectively solenoidal) if its generic realization (i.e. w is taken
from a subset of measure equal to 1) f(T,w) is a potential (respectively
solenoidal) vector field defined on RN. We denote by L;Ot(Q) (respec-

tively L;OI(Q)) the subspace of [L?(£2)] N formed by potential (respectively

solenoidal) vector fields. We can now define the following space of vector
fields with vanishing mean value:

V2,(9) {f € Bop(@): [ fau= o} |
Let A = A(w) = (a;;(w)) be a measurable matrix function such that

(AW)E,€) > -alef’, €€ RN, a>0,
aijw) < a7l

for every £ € RN and for w € o, where €2 is a measurable subset of Q such
that u(Q) = 1. By Theorem 2 there exists a measurable subset {2, C {lo
such that p(Q1) = 1 and Tyw € Qp for w € Qy and for.ae. z € RN,
This implies that for w € ©; the realizations A(z,w) := A(Tzw) have the
following properties: A(-,w) is measurable and

l€?, EcRY, a>0

«
a_l,

(Alz,w)€, &) =
a;j(zr,w) <
for every £ € RN and a.e. z € RN,

Let (¢) be a sequence of positive numbers converging to 0 and @ an
open bounded subset of RN. Given f € W~12(Q) let us consider the
following Dirichlet boundary value problem:

~div(A(%,w)Due) = f on Q,
(3)
ue € Wy (Q).

By the Lax-Milgram lemma there exists a unique solution ue € WO1 ’Z(Q)
for each e.

We have the following homogenization result:
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Theorem 3. Let (u.) be the solutions of (3). Then for a.e. w € Q we have
that

ue — u  weakly in Wol’z(Q)a

A(z/e,w)Due — ApomDu  weakly in [L2(Q)]"

7

where u 1s the unique solution of the homogenized equation

—div(ApomDu) = f  on Q,

ue WH(Q).

The operator Apom : RN — RN is defined for every n € RN by
Aot = | A@)0+ 1) d

where vy, is the solution of the auxiliary problem: Find v, € Vgot(Q) such
that

AW) + 0q(w)) € L2y (@),
For a proof of this fact see e.g. [6], [12], [13] and [14]. We also refer to the
articles [4] and [5] concerning related results in stochastic homogenization.

3.2. Periodic approximation of Ay,

Let the matrix A(z,w) be restricted to the cube Y5 = [0, 6} and then
extended by periodicity to RN, We denote the extension As per(z,w).
Then for each w we have a family of equations

—diV(A&yper(%,O))Due) = f on Q,
(4)
ue € Wo*(Q),

with periodic coefficients. Thus (4) can be homogenized in the standard

way. The so defined homogenized matrix Azs,hom is given by

1
Aspomn = = [ A(y,w) (n+ Dwn(y)) dy,. (5)
Y| Jys

where vy, is the solution of
—div(A(y,w)(n + Dwn(y)) =0 onYs, Duwy € Wpir(¥s).

For more information concerning periodic homogenization, see e.g. [6] and
[13]. Recently it was proved in [1] that

Aé’hom — Ahom as 6 - 0Q,
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§,hom

h . C s
i =g’ asd»o00,4,j=1,...,N.

that is, a i
This remarkable fact makes it possible to relate stochastic homoge-
nization to periodic homogenization. For example we show in this paper

that it is important for the numerical analysis of different applications.

4. A Class of Random Media

In this section we construct a class of matrices A(z,w) which admit
homogenization as described in section 3. Moreover, we use the technique
of periodic approximation to compute effective properties of some examples
from this class of random composite media. We also compare these results
with other methods frequently used in the literature.

Figure 1: Y for one realization of randomly distributed circles. Indicated
are also Yy and Y5.

4.1 Construction

We will now via an example (randomly distributed circles) show how
to construct a family of stochastic heterogeneous media described by ran-
dom fields.

Let each point (m,n) € Z2 be the centre of a circle of radius p, where
0 < p < 1/2. In this way we have split R? into two sets, namely points
inside the circles and points outside the circles. We assume that R? consists
of two different isotropic materials, material 1 in the circles and the rest of
material 2, with conductivities a; and as, respectively.

We proceed by randomly moving each circle a distance r; in the -
direction and a distance r,, in the y-direction, where 0 < 7o, 7, <1/2 — p.
On the set Spn = (0,1/2 — p) x (0,1/2 — p), ((m,n) € Z?) we define the
measure A\g = 1/(1/2 - p)? dzdy. Let I' = [l n)ez2 Smn and Apr be the
product measure on I'. T can now be identified with the set of functions
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I'*, where
I'* = {y:v =1 on each moved circle and v =2 otherwise} .

To the set I'™* we now add all the functions which are obtained by a shift.
In this way we obtain a new set 0 of functions, namely

Q= {w:w(t) =~(+n),yeT*,neR?}.

The set € is naturally associated with ' x R?/Z? and we can define a
measure p on 2 as 4 = Ar x dz, where dz stands for the Lebesgue measure.
By construction § is translationally invariant, i.e. contains all functions of
the form w(- + z). We introduce the dynamical system T : {2 — {2 defined
as

(Tpw)(t) = w(t + ).
Let the function a : © — R be defined as

a if w(0) =1,
a(w) =
ag if w(0) = 2.

We define the random field A(z,w) = a(z,w)] in terms of realizations of
the function a in the following way:

a ] if w(z) =1,
A(z,w) = a(Tew)l =
axI if w(z) = 2.

To sum up, we have now constructed a random field which may be
used to model certain 2-phase composite materials with circular inclusions.
Moreover, it is clear that the dynamical system is ergodic (see e.g. the book
[3], page 180).

This example can in an obvious way be generalized to cover a whole
class of random media. For instance, assume that we instead would like to
construct a composite consisting of ellipses that are randomly rotated be-
tween the angles a and 3. Then I' = H(m,n cz2 Smn, where Spn = (a, B).
Moreover, Ar is then the product measure of the normalized Lebesgue mea-
sure on the interval (o, 8) (see our second example below).

4.2 Numerical analysis

We will here use the technique of periodic approximation (see Section
3.2) to compute effective properties of the examples described above. We
will also compare these results with other methods frequently used in the
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literature. Contrary to the method of periodic approximation there is no
indication on how the other methods are related to the rigorous method
of stochastic homogenization. For more information concerning the com-
putation of effective properties of random materials we refer to the book

[15].
000N

.
e e

Figure 2: Yy for one realization of randomly rotated ellipses.

Remark 1. We want to emphasize that all the computations are done by
finite element methods because they are simple to use and offer satisfyingly
good accuracy. There are however several different methods more suitable
to computations of this kind if high accuracy is of importance. We refer to
the articles {7],[8],[9],[10] and [11].

4.2.1 Randomly distributed circles

Let us consider a stochastic two-phase composite in R? generated as
described in section 4.1 with circles of radii p-= 0.3. Moreover, a; = 1000
(thermal conductivity in the circles) and az = 1 (thermal conductivity
outside the circles). In Figure 1 we see Yz {(defined in Section 3) for one
realization.

To be able to apply the numerical homogenization method described
in section 3.2 we fix a realization. In Figure 3 we have used solid lines
to indicate Ashom (defined in (5)) for three different realizations and for
§=1,...,12.

There is also another frequently used method for computing effective
properties of random composite media, see e.g. [2]. The method is as
follows: Assume that we have a cell of periodicity (e.g. Y3) in which we
randomly distribute 16 circles according to the rule described in Section
4.1 (we remark that the precise definition of randomly is unclear in many
papers). Then we use the standard periodic homogenization to compute
the effective properties. We repeat this procedure N times and compute
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the average. This average is used as a numerical value of the effective
properties. We used N = 400 and Y3 to calculate the effective properties in
this way (we repeated the procedure for Yg, Y3 and Y3, obtaining the same
effective conductivity as for Yz within an accuracy of three decimals). The
result is plotted as a dashed line in Figure 3.

3

e % w s e a N e e

n
T 1 ¢ 1 1 7 & 8 % hou

Figure 3: Numerical results for randomly distributed circles. A denotes the
effective conductivity and n is the number of cells.

We emphasize that the computation based on the rigorous theory of
stochastic homogenization uses one single realization while the straight line
is based on a mean value for 400 realizations. From Figure 3 we can see that
in our example the two methods seem to give the same result. However,
the theoretical reason for this is unclear.

4.2.2 Randomly rotated ellipses

Let us now consider another composite structure in R2? within the
class described in section 4.1. Indeed, the composite is made up of randomly
rotated ellipses with centers in (m,n) € Z? having an eccentricity e of 0.93
and the same volume fraction of inclusions as in the example in the previous
subsection. The corresponding set Sp,n, is in this case (0,2m). In Figure 2
we see Y, for one realization.

Let us now compute the effective properties according to the method
based on stochastic homogenization when a; = 1000 (thermal conductivity
in the ellipses) and az = 1 (thermal conductivity outside the ellipses).
In Figure 4 we have plotted these results. The two curves correspond to
the effective conductivities in the z;- and zo-directions, respectively, for
subcells Y5, 1 < 6 < 12, of one fixed realization. As expected they seem
to converge to the same value. We have also marked the conductivity in
the zy-direction by -lines for the two extreme situations (upper and lower
bounds) where all ellipses are directed either horizontally or vertically. It
can be interesting to note that the "stochastic” distribution is closer to the
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lower bound.

h

T+ 4 8 8 7 8 v omo®ou

Figure 4: Numerical results for randomly distributed ellipses. A denotes the
effective conductivity and n is the number of cells.

Next, we use the second numerical method for computing effective
properties. The calculations are based on 400 realizations and Yz as the
cell of periodicity. Moreover, a; = 10 (thermal conductivity in the ellipses)
and ay = 1 (thermal conductivity outside the ellipses). The 400 values
obtained by periodic homogenization are plotted in Figure 5 together with
the famous G-closure, containing all possible pairs of eigenvalues (see e.g.
page 194 in [6].

5. Concluding Remarks

Most papers on stochastic homogenization either deal with theoretical
aspects or with questions regarding computational issues. The main contri-
bution of this paper is that we have tried to connect these two directions.

We started by giving some basic definitions of stochastic fields. Then
we presented the main ideas and results on how to homogenize random
media. As shown in Section 3, the effective properties of a random medium
are expressed in terms of a solution of an auxiliary problem. Unfortunately
this auxiliary problem is stated in an abstract probability space making
it impossible to numerically compute the effective properties. However, it
was recently shown in [1] that it is possible to find a converging sequence
of periodic approximations that easily can be computed.

In many papers dealing with the computation of effective properties
of random composites, the main method used is such: Take a periodic unit
cell with thousands of inclusions. Then displace every inclusion a small
amount so.that it will not cause an overlap with other inclusions. Re-
peat this procedure until an equilibrium is achieved. Compute the effective
properties of this unit cell using standard periodic homogenization. Now
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iterate this full procedure many times and finally take the average of all
effective values obtained. This average is then used as an approximation of
the effective properties of a random medium. Though this method seems to
work well and is intuitively correct, it is not very rigid from the stochastic
homogenization standpoint.

Ay

N\

M

] 8 0 3 s 35 0

Figure 5: Distribution of the conductivities for 400 different realizations of
Ys. A denotes the effective conductivity in the z; direction.

In this paper we have compared the recent method described in (1]
with the method of iterations mentioned above. We applied both methods
to two different examples of random media and noticed that they seem to
give same results. However, as we have pointed out before, the theoretical
reason for this is unclear since only the first method is based on a rigorous
mathematical foundation. We also point out that in many works concerning
the estimation of effective properties of random media, the precise descrip-
tion of randomness is often diffuse or not indicated. By this article, we hope
that the questions and issues described above will be paid more attention
in forthcoming papers.

As a final remark we want to mention that when one considers elastic
properties of composite materials the results of this paper are still valid. In
particular, it is straightforward to generalize the results concerning periodic
approximation in [1} to the vector-valued (elasticity) case.
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