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ABSTRACT

This doctoral thesis in physics at Lule̊a University of Technology is devoted to the
phenomenology of compact stars, and theoretical models of their interior. Particle
physics has provided fundamental concepts and details needed to develop a descrip-
tion of matter and the evolution of the universe. It is, however, difficult to obtain
information about the properties of matter at low temperature and high density from
such experiments. In this context, astrophysical observations constitute an impor-
tant source of information, thanks to the high resolution of present and near-future
terrestrial and space-based observatories. The density of matter in neutron stars ex-
ceeds that in atomic nuclei, and little is known about the nature of their interior. It
is clear that the interaction between the smallest observed building blocks of atomic
nuclei, the quarks, becomes weaker with increasing density. Matter should therefore
dissolve into a state of nearly free quarks at high densities, and models of classical
superconductivity advocate that this state is a superconductor. The argument for
this is simple: a low-temperature Fermi system with a weak attractive interaction is
unstable with respect to formation of Cooper pairs. It is not known if this state of
matter exists in neutron stars, but models suggest that it is possible. The major part
of the work summarised in this thesis is the development of a model of superconduct-
ing quark matter, and its consequences for the phenomenology of neutron stars and
their formation in the collapse of massive stars. It is a Nambu–Jona-Lasinio model
with self-consistently calculated quark masses and pairing gaps, which properly ac-
counts for the β-equilibrium and/or charge neutrality constraints in compact stars
and heavy-ion collisions. Phase diagrams and equations of state of superconduct-
ing quark matter are presented, and the influence of different assumptions about
the effective quark interaction is investigated. The effect of neutrino untrapping in
hypothetical quark cores of newborn neutron stars is investigated, and phase dia-
grams for quark matter with trapped neutrinos are presented. While no evidence
for the presence of quark matter in neutron stars exists, it is explicitly shown that
observations do not contradict this possibility. On the contrary, the presence of a
quark matter core in neutron stars can overcome problems with hadronic equations
of state. In contrast to the expectation from more simple model calculations, the
results presented here suggest that strange quarks do not play a significant role in
the physics of compact stars. While there is some room for bare strange stars, such
models suffer from low maximum masses, and the presence of a hadronic shell tends
to render stars with strange matter cores unstable. Regardless of the nature of mat-
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ter in neutron stars, general relativity and the standard model of particle physics
limit their density to � 1016 g/cm3. In the light of established theory, any object
with a density exceeding this limit should be a black hole. It is suggested in this
thesis that if quarks and leptons are composite objects, as suggested, e.g., by the
three particle generations in the standard model, a yet unobserved class of compact
objects with extremely high densities could exist. As the hypothetical pre-quark
particles are called preons, these objects are named ‘preon stars’. The properties of
preon stars are estimated, and it is shown that their maximum mass depends on the
quark compositeness energy scale. In general, the mass of these objects should not
exceed that of the Earth, and their maximum size is of the order of metres. Several
methods to observationally detect preon stars are discussed, notably, by gravita-
tional lensing of gamma-ray bursts and by measuring high-frequency gravitational
waves from binary systems. To have a realistic detection rate, i.e., to be observable,
they must constitute a significant fraction of cold dark matter. This condition could
be met if they formed in a primordial phase transition, at a temperature of the or-
der of the quark compositeness energy scale. Some unexplained features observed in
spectra of gamma-ray bursts are discussed, as they are similar to the signature ex-
pected from a preon-star gravitational lensing event. An observation of objects with
these characteristics would be a direct vindication of physics beyond the standard
model.

Keywords: Compact stars – Neutron stars – Quark stars – Hybrid stars – Protoneu-
tron stars – Preon stars – Preons – Compositeness – Colour superconductivity.
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Preface

This thesis is devoted to the physics of compact stars and some exotic phases of
matter that could exist in these fascinating objects. By tradition, it consists of an
introduction and appended research papers. The former provides some essential
background needed to grasp the content of the papers. As the physics of compact
stars is a multi-diciplinary field, a proper introduction is beyond the scope of this
thesis. I therefore focus on essential topics, in particular technical aspects applied
in the theoretical derivations and numerical calculations. References are given to
textbooks and research papers that cover some complementary topics.

I am pleased by the combination of main-stream research and investigations on
topics of more hypothetical nature that underlays this thesis. The former constitutes
a basis for the scientific content of the work, and has been performed in a highly
active field of physics in collaboration with leading experts in an international con-
text. This work has resulted in useful experiences, four completed papers and about
an equal amount of present projects. The numerical software developed in this work
is partially available on-line for cross-checking, and for others to use. The work on
preon stars is of more hypothetical nature and have resulted in valuable experiences.
It is clear that theoretical physics needs both “good” and “bad” new ideas, as it is
notoriously difficult to correctly judge the value of a new idea at an early stage in
its development. Nevertheless, it takes courage and a sensible type of confidence to
develop them, and that need some trial and error. The preon star hypothesis has
been awarded with a prize on suggestion by Gerard ’t Hooft and Antonino Zichichi,
and it has resulted in three scientific papers. Preon stars have been recognised also
in several popular magazines, and the first publication was on Science Direct’s top-
25 list of most read (downloaded) articles. It is a great joy to see that the work has
stimulated others to consider the idea.

The research presented in this thesis has been performed in collaboration, mainly
with David Blaschke, Sverker Fredriksson, Hovik Grigorian, Johan Hansson, Thomas
Klähn, and Ahmet Öztaş, and to some extent also with Amand Faessler, Chris-
tian Fuchs, Gerd Röpke, and Joachim Trümper. I thank David Blaschke for his
hospitality during my visits to Rostock and Dubna, for his guidance and support
in the daily work, and for introducing me in a group of great people and a fruit-
ful collaboration. I would also like to express my gratitude to Mark Alford, Jens
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Berdermann, Michael Buballa, Mike Cruise, Ed Fenimore, Huben Ganev, Achim
Geiser, Jeremy Goodman, Pawel Haensel, Abuki Hiroaki, Gerard ’t Hooft, Hen-
ning Knutsen, Kostas Kokkotas, John Ralston, Sanjay Reddy, Avetis Sadoyan, Igor
Shovkovy, Andrew Steiner, and Stefan Typel for useful discussions, and for their
helpful and inspiring attitude. The numerical results presented in the appended
papers were calculated on a local FreeBSD computer cluster that belongs to Hans
Weber, I am most grateful to him for giving me unlimited access to his computers,
and for useful discussions on classical superconductivity and statistical physics. It
is a pleasure to acknowledge the influence of my supervisor, Sverker Fredriksson,
who is a great mentor. He has supported me since I was an undergraduate student
attending his lectures in particle physics, on a journey from a curious student to
a nearly independent researcher and teacher, in a professional and mature manner.
Thanks to him, I got useful experiences from research projects and teaching, as a
lecturer in mechanics, already as an undergraduate student. He helped me to find
a diploma work at CERN and to get a Ph.D. position. I thank my co-supervisor,
Johan Hansson, for his support and for his ingenious ideas, which have inspired
me to learn new aspects of physics. The work on preon stars would not have been
realised without him. I am grateful to my office-mate, Erik Elfgren, for our daily
discussions on interesting topics. I thank him and Tiia Grenman for their help with
practical issues. I acknowledge support from the Swedish Graduate School of Space
Technology and the Royal Swedish Academy of Sciences.

Finally, I am grateful to my family for their support, in particular to Maria for
taking care of our little son while I have been busy completing this work.

Lule̊a in February 2007,

Fredrik Sandin
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Acronyms

2SC 2-flavour Colour Superconducting (phase)
BNL Brookhaven National Laboratory
CERN European Organisation for Nuclear Research (in French)
CFL Colour-Flavour Locked (phase)
E(s)oS Equation(s) of State
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Units and Symbols

SI units are used in the Introduction. Unless explicitly stated otherwise, I use
natural units, � = c = kB = 1 or Gravitational (geometrized) units, G = c = 1,
in subsequent chapters, depending on the application. See Appendix A for further
information. The Dirac gamma matrices, γμ, and the Gell-Mann generators, λi,
are defined in Appendix B. The Minkowski metric is ημν = diag(1,−1,−1,−1).
Three-vectors are denoted in boldface, e.g., p has components px, py and pz.
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Chapter 1

Introduction

Our universe, as we know it today, was created in the “big bang” about 13.7 billion
years ago. In the beginning, space was filled with a hot and dense energy bath, a fluid
of radiation that presumably emerged from some type of “quantum fluctuation”.
The universe has ever since expanded and cooled down. We do not know much
about the first 10−34 s after the big bang, more than that the universe seems to
have undergone a period of extremely rapid expansion, so-called inflation. Inflation is
mainly needed to explain the high level of isotropy in the so-called cosmic microwave
background, which is the electromagnetic radiation that originates from the time
when the universe became transparent to photons.

The first matter particles, the quarks, started to emerge in the radiation fluid
already after 10−32 s. Quarks are, as far as we know today, the fundamental con-
stituents of a broad range of composite particles, so-called hadrons. The most well-
known examples of hadrons are the neutrons and protons, which constitute atomic
nuclei. It is believed that one extra quark per ∼ 109 quark-antiquark pairs was cre-
ated due to an asymmetry. That is why we mainly observe matter in the universe,
rather than radiation (created when matter and antimatter annihilate) or antimat-
ter. The creation of particles from “energy” can be qualitatively understood in terms
of Einstein’s famous equation E = mc2, or as he originally wrote it, m = E/c2. This
equation suggests that energy, E, and mass, m, are somehow related, or perhaps
are the same thing. The origin of mass is still a great mystery at the conceptual
level. The rules of nature for creating massive particles out of energy is, on the other
hand, amazingly well understood within the range of energies that has been studied
in particle physics experiments.

Hadrons started to form after about one microsecond, when the universe had be-
come sufficiently cold and diluted. About 0.1 milliseconds after the big bang, leptons
started to emerge in the matter-radiation fluid. The most well-known example of
leptons is the electron, which constitutes the negative charge in atoms. After about
one minute, helium nuclei, and a small fraction of deuterium and lithium nuclei,
started to form by fusion reactions. A few minutes later, the primordial matter con-
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2 Chapter 1. Introduction

tent of the universe had been created. It consisted of roughly 75% hydrogen nuclei,
25% helium nuclei, and small amounts of deuterium and lithium nuclei. Neutral
atoms did not form until several hundred thousand years later, when the universe
had cooled down to a temperature of about 3000 K. When that happened, the
universe became effectively transparent to photons, and light could then propagate
freely in the universe. The light from that time is the cosmic microwave background
radiation that we observe in the sky today. Due to the expansion of the universe,
i.e., of the space-time fabric, the light waves have been “stretched” (redshifted) on
their journey and arrive here at Earth as microwaves, even though they started out
in the early universe as visible, mainly orange, light.

As the universe expanded, small density fluctuations in the primordial radiation
fluid were enhanced by gravity and eventually gave rise to large clouds of hydrogen
and helium, which continued to contract due to gravity and friction. The first stars
and galaxies were created in such gas clouds. Even today we observe large clouds
of interstellar gas, consisting mostly of molecular hydrogen and helium, and small
amounts of dust and heavier elements, which have been created by thermonuclear
fusion reactions in stars. The gas clouds range in size from a fraction of a light-year
to several hundred light-years, and in mass from about 10 to 107 solar masses. Stars
more massive than a few solar masses often form in small groups in the densest
regions of the clouds. About 60-70% of all stars have a companion star, i.e., half of
all stars on the sky are actually “binaries”.

1.1 Compact objects

Stars have different sizes, the smallest not even deserving the name, since the pres-
sure and temperature inside them are insufficient to start fusion. Other stars are
huge and deplete their energy rapidly. As the thermonuclear fusion reactions dimin-
ish in the core of a star, the thermal pressure decreases. Eventually, a critical point
is reached: When the force of gravity is no longer balanced by the thermal pressure,
the star starts to collapse. What happens after that depends on the mass. If the
star is a few times more massive than the Sun, the collapse is eventually halted
due to the “degeneracy pressure” of electrons, and a so-called white dwarf forms. If
the star is more massive, around ten solar masses, the collapse continues until the
atomic nuclei start to “overlap” and the core stabilises as a dense neutron star. The
gravitational energy released as the core collapses to a neutron star causes a giant
explosion - a supernova - that expels the outer layers of the star, see Figure 1.1. For
extremely massive progenitor stars, the collapse is assumed to lead to the formation
of black holes.

The endpoint of the thermonuclear processes in the core of ordinary stars depends
on their mass. For the progenitors of neutron stars, the mass is sufficiently high for
the nuclear burning to continue until a core of iron has formed. Iron has the most
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Figure 1.1: G11.2-0.3, the remnant of a massive star that exploded in a supernova
about 1600 years ago. This image is a combination of X-ray and radio observations
by the space-based Chandra X-ray observatory and the terrestrial Very Large Array
observatory. The radio observations are used to measure the remnant’s expansion
rate, which can be used to calculate how long ago the star exploded. A neutron star
and a cigar-shaped cloud of energetic particles, known as a pulsar-wind nebula, are
visible in high-energy X-rays (blue). A shell of heated gas from the outer layers of
the exploded star surrounds the pulsar and emits lower-energy X-rays (represented
in green and red). Credit: NASA/CXC/Eureka Scientific/M. Roberts et al.

stable nucleus, and heavier elements are formed only in supernovæ. Consequently,
neutron stars have practically identical chemical composition, as they are created in
the collapsing iron cores of their progenitor stars. White dwarfs, on the other hand,
have varying chemical composition, because their progenitor stars collapse before
an iron core has formed. As the chemical composition of neutron stars is unique,
so is their equilibrium sequence (see Chapter 2). This is essential in studies of their
phenomenology.

White dwarfs, neutron stars and black holes are extremely dense objects, so-
called compact objects, which are left behind in the debris when normal stars “die”.
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That is, when most of the nuclear fuel has been consumed and they collapse under the
pull of gravity. With the exception of small black holes, which evaporate quickly due
to so-called “Hawking radiation”, and accreting neutron stars and white dwarfs, all
three types of compact objects are essentially static over the lifetime of the universe
and therefore represent the final stage of stellar evolution. Some properties of these
objects are presented in Table 1-1. For comparison, the radius of the Sun, which by
itself accounts for more than 99% of the solar system’s mass, has a radius of about
7 × 105 km. Observe the significant difference between ordinary luminous stars,
such as our Sun, and the extremely compact neutron stars, which have masses that
typically exceed that of the Sun packed into a region of space about ten kilometres
in radius.

Table 1-1: Distinguishing traits of the three different types of compact stellar objects
traditionally considered in astrophysics. Here, M� � 2 × 1030 kg is the mass of the
Sun.

Object Mass Radius Mean density

White dwarf � 1.4 M� ∼ 104 km � 108 g/cm3

Neutron star ∼ 1 − 2 M� ∼ 10 km � 1015 g/cm3

Black hole Arbitrary 2GM/c2 ∼ M/R3

1.2 Neutron stars

Neutron stars are created in the aftermath of some core collapse supernovæ, as was
first suggested by Baade and Zwicky already in 1934 [1]. Following the collapse, the
core of the star is compressed to a hot protoneutron star (PNS), which cools rapidly
due to neutrino emission, leaving a hot neutron star. The neutrinos are created in the
collapse by inverse β-decay, i.e., by weak interactions between energetic electrons
and protons, which yield neutrons and electron neutrinos. During the collapse,
roughly 99% of the gravitational energy is emitted in the form of neutrinos. Only
0.01% of the energy is carried away by photons, still, supernovæ are sufficiently
bright to outshine their host galaxies. The remaining gravitational energy (∼ 1%) is
converted into the kinetic energy of the expelled crust. Although these numbers are
fairly well known, as they can be obtained from observations and basic theoretical
estimates, the inner engine of core collapse supernovæ is poorly understood. See
Paper VII for further information.

Neutron stars are extremely dense objects. In their interior, one cubic centimetre
of matter has a mass of ∼ 1012 kg. This corresponds to the density of a few thousand
oil supertankers compressed into the size of a sugar cube. Due to the high density
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and, relatively speaking, low temperature in neutron stars, they are presumably
unique astrophysical “laboratories” that can be used to explore the high-density
properties of matter. This activity complements, and is intimately connected to
particle physics experiments, which yield detailed information about particles and
their interactions. In principle, there is hope that the properties of high-density
matter in neutron stars can be deduced from the standard model of particle physics.
However, it is presently not possible to solve the complex mathematical problem,
and the only means to obtain information about their interior is therefore to use
approximate effective models in combination with observations. The composition of
neutron stars is unknown, and there are many “exotic” possibilities for the nature
of their interior, e.g., it could consist of hyperons, superconducting quark-gluon
plasma, or crystalline phases of quarks, see Figure 1.2. Consequently, the name
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Figure 1.2: Novel phases of subatomic matter in the interior of a neutron star, as
suggested by different theories. Reprinted figure with permission from F. Weber,
Prog. Part. Nucl. Phys. 54, 193 (2005). Copyright 2004 by Elsevier Ltd.

“neutron star” is presumably a misnomer, but in keeping with tradition, I will refer
to these objects as neutron stars. I will, however, distinguish between three different
classes of neutron star models in this thesis and in the appended papers. These are

• Traditional neutron stars, which consist of nucleons and leptons.
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• Hybrid stars, which have a nuclear-matter shell and a quark-matter core.

• Quark/Strange stars, which consist of (strange) quark matter and have a thin
crust, or electrostatic boundary layer.

As indicated in Figure 1.2, also other models of neutron stars exist in the literature,
but the discussion here concerns mainly these three classes.

Over the last few years, observations of neutron stars have provided important
clues about their properties. In particular, neutron stars with masses ranging from
about one solar mass to two solar masses have been observed. This is in contrast
to the numerous earlier observations, which all indicated that neutron stars have a
mass of ∼ 1.4 M�. The maximum mass of neutron stars is by itself a key parameter
in theoretical models, and in combination with measurements of neutron star radii,
it is possible to deduce information about the equation of state (EoS) of high-density
matter. For further information about neutron star observations and how they are
related to the properties of matter at high density, see Chapter 2 and Paper V.

1.3 Preon stars

Less than 100 years ago, atoms were considered to be a blob of positive charge with
embedded, negatively charged electrons. This model, which is known as the plum-
pudding model, was proposed in 1906 by Thomson, who discovered the electron a few
years earlier. The electrons were free to rotate within the cloud of positive charge,
and atomic spectra were thought to be connected to the different energy levels of the
orbits. However, Thomson was not very successful in explaining observed spectral
lines with his model. A few years later, Geiger, Marsden and Rutherford discovered
that atoms have a small positively charged nucleus, and the plum-pudding model
was thereby abandoned. The nucleus was revealed by alpha particles sent through a
thin sheet of gold, as they were reflected at high angles. Rutherford was astonished
by the result:

“It was almost as incredible as if you fired a fifteen inch shell at a piece
of tissue paper and it came back to hit you.”

As of today, the sub-atomic structure is fairly well understood down to the level
of quarks and leptons, and within the resolving power of past and present particle
accelerators, there is no evidence for further substructure.

Quarks and leptons are therefore considered to be fundamental entities in the
so-called standard model of particle physics (SM). It is clear, however, that the
SM is unable to explain the matter content of the universe, especially the vast
amounts of so-called dark matter needed to describe, e.g., the observed rotation of
galaxies and the evolution of structure in the universe. There seems to be no hope
of explaining the abundance of dark matter without introducing new fundamental
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particles. The SM is therefore considered to be incomplete. It suffers also from a
number of conceptual shortcomings. For example, it does not explain the particle
family structure, i.e., why there are six types of quarks and six types of leptons
organised into three families. Also, most quarks and leptons are unstable and decay
into particles with lower mass. There have been numerous situations in the past
when properties like these have turned out to be a result of compositeness, i.e.,
that the particles are composed of even smaller, and more fundamental particles.
The most recent example is the large number of hadrons that puzzled physicists a
half-century ago, before the quarks were discovered.

Preons constitute a conjectured, more fundamental level of elementary particles,
beneath the quarks and leptons of the SM [2]. If such particles exist, it is possible
that a yet unobserved class of compact objects could exist, composed of preons. This
possibility is investigated in Paper I, where the properties of such objects – preon
stars – are estimated. The idea is further developed in Paper II and Paper VI,
where the possibility to detect preon stars is also investigated. In general, we find
that the characteristic mass and size of preon stars depend on the compositeness
energy scale. For example, assuming that the heaviest quark (the top) is the most
weakly bound composite particle of the SM, we get the following estimates for the
mass and radius of preon stars

M ∼ 2 × 1024 kg
(

TeV
Λ

)3/2

, (1.1)

R ∼ 3 × 10−3 m
(

TeV
Λ

)3/2

. (1.2)

Here, Λ is the top quark compositeness energy scale. For details, see Paper VI. As
Λ < a few TeV is ruled out by experiments, it is clear that preon stars, if they exist,
are extremely small astrophysical objects, which could have remained unnoticed.
They could be detected only if they were created in abundance in the early universe,
and constitute a significant fraction of dark matter. Preon stars could be detected,
e.g., as gravitational lenses leaving signatures in the spectra of gamma-ray bursts, by
the high-frequency gravitational radiation emitted from binary coalescence events,
and by the seismic waves emitted as they pass through the Earth or the Moon. A
few gamma-ray burst spectra with unexplained features similar to those expected
from a preon-star gravitational-lensing event exist, see Paper VI.

Except for a few technical details, described in the references, the discussion of
preon stars in the appended papers is rather self-consistent. As the ideas presented
in the papers are not restricted to a particular preon model, I will not review specific
models here. There are many preon models and a proper discussion is beyond the
scope of this thesis. The interested reader is therefore referred to the literature, see,
e.g., [2–4] and references therein.
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1.4 This thesis

This doctoral thesis treats the phenomenology of compact stars and some theoretical
models of their interior. By tradition, it consists of an introduction and appended
research papers. The former provides some essential background needed to grasp
the content of the papers. In Chapter 2, I introduce the basic theory of compact
stars, as applied in the papers. Chapter 3 contains a brief introduction to thermal
quantum field theory, which is the theoretical framework used in the derivation and
development of the superconducting quark matter model in Paper III, Paper IV,
Paper V, and Paper VII. Some basic concepts and models of quark matter are intro-
duced in Chapter 4, and superconducting quark matter is discussed in Chapter 5.
The appendices contain some definitions and relations that I find useful in the daily
work, and which are referred to in the text.



Chapter 2

Theory of Compact Stars

The physics of compact stars is a multidisciplinary and active field of research. A
proper introduction is beyond the scope of this thesis and the interested reader
is therefore referred to one of the classical books on the subject [5, 6]. Useful
and pedagogical discussions can be found also in [7, 8]. For recent theoretical and
observational developments, see, e.g., [9–12] and references therein. The formation
and evolution of protoneutron stars are thoroughly discussed in [13, 14]. This list of
references serves as a starting point only, as there are literally thousands of papers
on the subject. Here I will focus on the essential theory needed to understand the
discussions and calculations in the appended papers. It is assumed that the reader
has some experience with Einstein’s general theory of relativity. The time coordinate
is denoted with x0, and the spatial coordinates are (x1, x2, x3). Indices denoted with
Greek letters can have any value in the set {0, 1, 2, 3}, while the values of Roman
indices are limited to the set {1, 2, 3}, i.e., these indices denote spatial coordinates
only. Greek indices should not be confused with the functions ν(r) and λ(r), which
enter the metric functions g00(r) and g11(r). The Minkowski metric is defined as
ημν = diag(1,−1,−1,−1). I use the standard notation, R, for the scalar curvature.
This quantity should not be confused with the radius R of a star. Gravitational
units are used, see Appendix A.2, but G is typically kept explicit in the formulæ to
maintain consistency with Newton’s theory in the limit of weak gravitational fields.

2.1 Hydrostatic equilibrium

In a static star there is a balance between gravity and pressure. This balance is
called hydrostatic equilibrium. Under the assumption that the gravitational field is
not too strong, so that Newton’s law of gravitation can be applied, the condition for
hydrostatic equilibrium is straightforward to derive. Consider a small region dA of
a thin spherical shell of thickness Δr, located at radius r. This piece of matter is in

9
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equilibrium if the net force acting on it vanishes∑
Fr = p(r)dA − p(r + Δr)dA − GM(r) ρ(r)dAΔr

r2
= 0. (2.1)

Here p(r) is the pressure, M(r) the mass enclosed by the shell at radius r, and ρ(r)
the matter density. Rearranging terms and taking the limit Δr → 0, the condition
for hydrostatic equilibrium becomes

lim
Δr→0

p(r + Δr) − p(r)
Δr

≡ dp

dr
= −GM(r) ρ(r)

r2
. (2.2)

In this Newtonian description the mass enclosed within a spherical shell of radius r
can be obtained with a volume integral in Euclidean space

M(r) = 4π

∫ r

0
dr r′2ρ(r′). (2.3)

Equations (2.2) and (2.3) are the hydrostatic equations for a non-rotating star in
the limit of weak gravitational fields. If the equation of state, ρ = ρ(p), of matter is
known, the hydrostatic equations can be integrated for a given value of the central
pressure up to the surface of the star, where the pressure vanishes. The radial coor-
dinate, R, where p(R) = 0, defines the radius of the star, and M(R) its gravitational
mass. For each choice of the central pressure, the solution of the hydrostatic equa-
tions describes a star configuration. For any given equation of state, the sequence of
possible equilibrium star configurations can therefore be obtained from the solutions
of the hydrostatic equations for different values of the central pressure.

The newtonian hydrostatic equations describe the structure of ordinary stars,
planets, and white dwarfs. For dense compact stars, such as neutron stars, the
curvature of spacetime cannot be neglected and a realistic model of such objects
must be based on general relativity, i.e., the generalisations of (2.2) and (2.3) to
strong gravitational fields. These equations are derived in Section 2.4, after the
discussion of curved spacetime in the next two sections.

2.2 Static isotropic spacetime

In static isotropic regions of spacetime, such as the interior and exterior regions
of an isolated static star, the most general form of the line element in spherical
coordinates is

dτ2 = U(r)dt2 − V (r)dr2 − W (r)r2(dθ2 + sin2 θ dφ2). (2.4)

For simplicity, the radial coordinate, r, is defined such that W (r) = 1. Consequently,
the line element can be written as

dτ2 = e2ν(r)dt2 − e2λ(r)dr2 − r2(dθ2 + sin2 θ dφ2), (2.5)
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where ν(r) and λ(r) are functions of r only. The relation between the line element
and the metric tensor is dτ2 = gμνdxμdxν . By comparing this with (2.5), one finds
that

gμν =

⎡
⎢⎢⎣

e2ν(r) 0 0 0
0 −e2λ(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎤
⎥⎥⎦ . (2.6)

The functions ν(r) and λ(r) are governed by Einstein’s field equation

Gμν = κTμν + Λgμν . (2.7)

Here Gμν is the Einstein curvature tensor, which is a function of the metric. The
energy-momentum tensor, Tμν , represents the “matter” content of space. Λ is the
so-called cosmological constant and κ is a constant that has to be determined in the
weak-field limit, where Einstein’s field equation should be consistent with Newton’s
theory. The Λ-term was not present in the original theory, but was added by Einstein
to obtain a static cosmology before it was known that the universe is expanding. As
of today, it appears to be the best model of dark energy and the expanding universe
[15]. It corresponds to a constant energy density of empty space, and a constant
negative pressure. Recent measurements of Λ yield a value for the corresponding
density of the order 10−29 g/cm3. This tiny “vacuum density” is negligible in models
of compact stars, because it is at least 30 orders of magnitude lower than the density
at the surface of a neutron star, and about 45 orders of magnitude smaller than their
central density. The Λ-term can therefore be omitted in the derivation of the general-
relativistic hydrodynamic equations. The situation is different in cosmology where
the vacuum density dominates, because at large scales the universe has vast regions
of empty space and the corresponding volume compensates for the smallness of Λ.

When Einstein derived the field equation (2.7) he was motivated by Poisson’s
equation, ∇2Φ = 4πGρ, for the gravitational potential, Φ, generated by a field of
density ρ in Newton’s theory. He was seeking a tensor that is linear in the second-
order derivatives of the metric, or quadratic in the first-order derivatives. The only
tensor that can be created from the metric, and its first- and second-order derivatives,
is the Riemann-Christoffel curvature tensor (hereafter Riemann tensor for short),

Rλ
σμν = Γλ

σν,μ − Γλ
σμ,ν + Γα

σνΓ
λ
αμ − Γα

σμΓλ
αν , (2.8)

where Γλ
μν is the Christoffel symbol,

Γλ
μν =

1
2
gλα (gαν,μ + gαμ,ν − gμν,α) . (2.9)

Here I use the standard ‘comma subscript’ notation for coordinate derivatives, i.e.,

S,μ =
∂S

∂xμ
. (2.10)
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The Christoffel symbol is the affine connection of the Riemann manifold, which can
be used to define the covariant derivative of a vector field

Aμ;ν =
dAμ

dxν
− Γλ

μνAλ. (2.11)

This derivative reduces to ordinary differentiation in inertial frames and, conse-
quently, locally in any gravitational field. Unlike ordinary derivatives, however, the
covariant derivative transforms as a second-rank tensor and therefore retains its form
under any coordinate transformation and in any gravitational field. This is essential
for the formulation of physical laws, as they should be independent of the frame in
which they are expressed.

In the special theory of relativity, conservation of energy and momentum requires
that the divergence of the energy-momentum tensor vanishes,

Tμν
,ν = 0. (2.12)

This conservation law can be generalised to an arbitrary frame by replacing the
ordinary coordinate derivative with a covariant derivative,

Tμν
;ν = 0. (2.13)

Now, consider the Einstein field equation (2.7). The covariant derivative of Λgμν is
zero, because the metric reduces to the Minkowski metric in an inertial frame, which
has vanishing derivatives, and this result is by definition independent on the choice
of frame. The covariant divergence of the Einstein curvature tensor, Gμν , should
therefore vanish. The only contraction of the Riemann tensor that has a vanishing
covariant derivative is

Gμν = Rμν − 1
2
gμνR, (2.14)

where Rμν is the Ricci tensor and R is the scalar curvature, which are defined by

Rμν = Rλ
μνλ, (2.15)

R = gμνRμν . (2.16)

This result follows from the Bianchi identities, which is a set of differential relations
for the Riemann tensor. For a discussion about the geometrical meaning of Gμν

;ν = 0,
see Chapter 15 in [8]. Unlike the conservation equation for an inertial system (2.12),
the generalisation to arbitrary curvature (2.13) does not ensure that the energy
and momentum of matter are conserved. It is the divergence of Gμν − κTμν that
vanishes, so matter and gravitational fields exchange energy and momentum. The
gravitational field also interacts with itself, because it has energy and momentum.
This is a consequence of Einstein’s equation and its non-linear dependence of gμν .
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The metric of static isotropic regions of spacetime obeys equations (2.5), (2.7)-
(2.9), and (2.14)-(2.16), for a given energy-momentum tensor Tμν . The affine con-
nection (2.9) is

Γ1
00 = ν ′e2(ν−λ), Γ0

10 = ν ′,

Γ1
11 = λ′, Γ2

12 = Γ3
13 = r−1,

Γ1
22 = −re−2λ, Γ3

23 = cot θ,

Γ1
33 = −r sin2 θ e−2λ, Γ2

33 = − sin θ cos θ,

(2.17)

where the primes denote differentiation with respect to r, and Γλ
μν = Γλ

νμ. The
Ricci tensor (2.15) can be expressed in the affine connection by a contraction of the
Riemann tensor (2.8)

Rμν = Γα
μα,ν − Γα

μν,α + Γα
μβΓβ

να − Γα
μνΓ

β
αβ . (2.18)

It follows from (2.17) that

R00 = −
(

ν ′′ − λ′ν ′ + ν ′2 +
2ν ′

r

)
e2(ν−λ),

R11 = ν ′′ − λ′ν ′ + ν ′2 − 2λ′

r
,

R22 = (1 + rν ′ − rλ′) e−2λ − 1,

R33 = R22 sin2 θ.

(2.19)

The scalar curvature (2.16) is obtained as a contraction of the Ricci tensor with the
metric,

R = −2e−2λ

r2

(
r2ν ′′ + r2ν ′2 − r2ν ′λ′ + 2rν ′ − 2rλ′ − e2λ + 1

)
. (2.20)

Einstein’s curvature tensor (2.14) can now be constructed from the Ricci tensor and
the scalar curvature,

G 0
0 =

e−2λ

r2

(
1 − 2rλ′)− 1

r2
,

G 1
1 =

e−2λ

r2

(
1 + 2rν ′)− 1

r2
,

G 2
2 = e−2λ

(
ν ′′ + ν ′2 − ν ′λ′ +

ν ′ − λ′

r

)
,

G 3
3 = G 2

2 ,

(2.21)

where mixed tensors are used as their explicit expressions are relatively short. In
the next section, I will derive a particularly simple and important solution for the
metric of static isotropic spacetime.
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2.3 The Schwarzschild solution

In the empty space outside a static compact star the energy-momentum tensor
vanishes, Tμν = 0, and the tiny contribution from the cosmological constant, Λ, can
be neglected. Einstein’s field equation (2.7) therefore reduces to Gμν = 0, which
implies that

Rμν =
1
2
gμνR. (2.22)

This is a set of differential equations for the functions ν(r) and λ(r). These equations
can be further simplified when multiplied with the metric gσμ,

R ν
σ =

1
2
δ ν
σ R, (2.23)

and contracted for σ = ν,

R =
1
2
R =⇒ R = 0. (2.24)

Consequently, the vanishing of the Einstein tensor implies that both the scalar cur-
vature and the Ricci tensor vanish. The Riemann tensor, however, vanishes only in
the limit r → ∞, where spacetime is flat.

Setting R00 = R11 = 0 in (2.19), it follows that

−
(

2ν ′

r
+

2λ′

r

)
e2(ν−λ) = 0 =⇒ ν ′ + λ′ = 0. (2.25)

Inserting this result in R22 = 0, I get an equation for the function λ(r),

(1 − 2rλ′)e−2λ = 1. (2.26)

This differential equation has the solution

g11 ≡ −e2λ = −
(

1 − C1

r

)−1

, (2.27)

for some constant C1. In the limit r → ∞, spacetime is flat and the metric, gμν ,
simplifies to the Minkowski metric. This condition is met by the solution (2.27).
The integration constant, C1, is determined such that the solution is consistent with
Newton’s theory of gravity in the weak-field limit. I will return to this issue later.
An equation for ν(r) can be obtained from (2.25)-(2.27),

1 + 2rν ′ =
(

1 − C1

r

)−1

, (2.28)

which has the solution

g00 ≡ e2ν = C2

(
1 − C1

r

)
. (2.29)
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The integration constant, C2, must be unity in order to give the correct limit as
r → ∞.

The constant, C1, can be determined in the following way. Consider the motion
of a slowly moving (v 	 c = 1) test particle at large r, where gravity is weak. The
motion of the particle is governed by the geodesic equation

d2xλ

dτ2
+ Γλ

μν

dxμ

dτ

dxν

dτ
= 0. (2.30)

To leading order, the proper time, τ , is equal to the coordinate time, t, because
the particle is moving slowly and gμν � ημν , where ημν is the Minkowski metric of
flat spacetime. The geodesic equation therefore simplifies to an expression for the
acceleration of the particle,

d2xi

dt2
� −Γi

μν

dxμ

dτ

dxν

dτ
. (2.31)

Because the gravitational field is weak, it possible to choose a coordinate system
where the metric can be expressed as a perturbed Minkowski metric,

gμν = ημν + hμν , (2.32)

where hμν is the perturbation. The dominant term in the sum over μ and ν in (2.31)
is for μ = ν = 0, because the other terms are smaller by at least a factor of v. The
Christoffel symbol of this term is

Γi
00 =

1
2
giα (gα0,0 + gα0,0 − g00,α) � 1

2
ηiα(2hα0,0 − h00,α). (2.33)

The chain rule, hi0,0 � hi0,j vj , where vj is the velocity of the test particle, implies
that the terms 2hα0,0 in (2.33) are negligible for α 
= 0. The Christoffel symbol
therefore simplifies to

Γi
00 � 1

2
h00,i. (2.34)

Inserting this result in (2.31), it follows that the acceleration of the test particle is

d2xi

dt2
� −1

2
h00,i. (2.35)

This weak-field result should be consistent with the expression for the acceleration
of a test particle in Newton’s theory,

d2xi

dt2
= −Φ,i = −

(
−GM

r

)
,i

, (2.36)

where Φ is the gravitational potential and M is the mass of the object that generates
it. Consequently, h00 = −2GM/r, and according to (2.32)

g00 = 1 − 2GM

r
. (2.37)
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It follows from (2.29) that the integration constant is

C1 = 2GM. (2.38)

This completes the derivation of the metric outside a static spherically symmetric
object. The solution is named in honour of Schwarzschild, who found it already in
1916, a few months after Einstein published his general theory of relativity. Later,
Birkhoff proved that this is the most general static, spherically symmetric, vacuum
solution of Einstein’s field equation. The line element of the Schwarzschild solution
is

dτ2 =
(

1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2 − r2(dθ2 + sin2 θ dφ2), (2.39)

and the corresponding diagonal metric is

g00(r) = e2ν(r) = 1 − 2GM

r
,

g11(r) = −e2λ(r) = −
(

1 − 2GM

r

)−1

,

g22(r) = −r2,

g33(r, θ) = −r2 sin2 θ.

(2.40)

Observe that the metric is singular at the radius r = 2M . This radius is called the
Schwarzschild radius, rS . The singularity can be removed by a change of coordinates
and does not correspond to a singularity of spacetime. However, if rS exceeds the
physical radius, R, of an object, it is/becomes a black hole. No particle, nor light,
can leave the region R < r < rS , as no future lightcone extends beyond rS . Observe
that the Schwarzschild solution is valid only in empty space above the surface of a
star. The equations for the interior will be derived in the next section.

2.4 The Tolman-Oppenheimer-Volkoff equations

The general-relativistic hydrostatic equations were derived and applied to models
of neutron stars already in 1939 by Tolman, Oppenheimer and Volkoff [16, 17].
These equations are derived from Einstein’s field equation under the assumptions
that the metric is static and isotropic, and that matter is a perfect fluid. The latter
assumption is expected to be a good approximation for the extremely dense interior
of a static compact star, because the strong gravitational force is balanced by a
huge pressure and rigid-body forces have a negligible effect on the structure. The
metric and the corresponding Einstein curvature tensor were derived in Section 2.2.
The energy-momentum tensor should be a symmetric second-rank tensor that has a
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vanishing covariant divergence (2.13). In a perfect fluid, the pressure is isotropic in
the rest frame of a fluid element, and there are no shear stresses. In this local frame
the energy-momentum tensor is

T ′μν =

⎡
⎢⎢⎣

ε 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎤
⎥⎥⎦ , (2.41)

where ε is the energy density and p the pressure. This result can be generalised
to any Lorentz frame by a standard coordinate transformation on the form Tμν =
Λ μ

α Λ μ
β T ′αβ . The result for an arbitrary Lorentz frame is

Tμν = −pημν + (p + ε)uμuν , (2.42)

where uμ is the four-velocity of the fluid element. In the rest frame, where u0 = 1
and ui = 0, this expression simplifies to (2.41). The energy-momentum tensor (2.42)
can be generalised to an arbitrary gravitational field by the principle of general
covariance1,

Tμν = −pgμν + (p + ε)uμuν . (2.43)

The fluid four-velocity satisfies the relation

gμνu
μuν = 1, (2.44)

because dτ2 = gμνdxμdxν and

uμ ≡ dxμ

dτ
. (2.45)

The relation between the pressure and the energy density depends on the microscopic
properties of matter and the state of the star, e.g., its temperature. I will return to
this issue later.

In a static star, the three-velocity of every fluid element is zero. It then follows
from (2.44) that

u0 = g00
−1/2, ui = 0. (2.46)

Consequently, in a static star the energy-momentum tensor of a perfect fluid (2.43)
simplifies to

T 0
0 = ε, T i

i = −p. (2.47)

1The principle of general covariance states that any law that holds in the special theory of
relativity, i.e., in the absence of gravity, can be generalised to an arbitrary gravitational field by
replacing the metric ημν with gμν , and replacing coordinate derivatives with covariant derivatives.
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Using this expression and the result (2.21), Einstein’s field equation (2.7) yields the
following set of differential equations for the functions ν(r) and λ(r)

e−2λ(r)

r2

[
1 − 2rλ′(r)

]− 1
r2

= κε(r), (2.48)

e−2λ(r)

r2

[
1 + 2rν ′(r)

]− 1
r2

= −κp(r), (2.49)

e−2λ(r)

[
ν ′′(r) + ν ′(r)2 − ν ′(r)λ′(r) +

ν ′(r) − λ′(r)
r

]
= −κp(r). (2.50)

The first equation (2.48) can be integrated immediately and yields

e−2λ(r) = 1 +
κ

r

∫ r

0
dr′r′2ε(r′). (2.51)

Here the integration constant has been fixed such that the result is consistent in
the vacuum limit, ε(r) → 0. The metric is continuous at the surface of the star.
Consequently, this result matches the Schwarzschild solution (2.27) at r = R,

e−2λ(R) = 1 +
κ

R

∫ R

0
dr′r′2ε(r′) = 1 − 2GM

R
. (2.52)

Comparing terms it follows that the integral over the energy density is proportional
to the gravitational mass of the star. It is therefore natural to define the mass,
M(r), enclosed within a shell of radius r according to

M(r) ≡ 4π

∫ r

0
dr′r′2ε(r′), (2.53)

where the prefactor is defined such that the infinitesimal element represents the
volume of the shell at radius r′ with thickness dr′. The total mass is M = M(R),
and the constant of proportionality in Einstein’s field equation (2.7) is

κ = −8πG. (2.54)

From these results it follows that

g11(r) = −e2λ(r) = −
[
1 − 2GM(r)

r

]−1

, (2.55)

which is on the same form as the Schwarzschild result (2.40), with the difference
that the metric at r depends only on the mass enclosed within a shell of radius r,
and not on the total mass.

With this information the hydrostatic equations can be derived from the differ-
ential equations (2.48)-(2.50). Rearranging terms, the first two differential equations
can be written

2rλ′(r) = 1 − e2λ(r)
[
1 + κr2ε(r)

]
, (2.56)

2rν ′(r) = −1 + e2λ(r)
[
1 − κr2p(r)

]
. (2.57)
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The derivative of the latter equation is

2ν ′(r) + 2rν ′′(r) =
{
2λ′(r)

[
1 − κr2p(r)

]− κ
[
2rp(r) + r2p′(r)

]}
e2λ(r). (2.58)

These three equations can be combined to obtain an expression for ν ′′(r),

2r2ν ′′(r) = 1 − [2κr2p(r) + κr3p′(r)
]
e2λ(r)

− [1 − κr2p(r)
] [

1 + κr2ε(r)
]
e4λ(r). (2.59)

Inserting the expressions for λ′(r) (2.56), ν ′(r) (2.57), and ν ′′(r) (2.59) in (2.50),
and using the physical value (2.54) for κ, the following differential equation for the
pressure is obtained

dp

dr
= −G[p(r) + ε(r)][M(r) + 4πr3p(r)]

r[r − 2GM(r)]
. (2.60)

This is the Tolman-Oppenheimer-Volkoff (TOV) equation for hydrostatic equilib-
rium of a spherically symmetric object. In combination with the expression for the
mass (2.53), and a microscopic theory for the relation between the pressure and
the energy density, this equation gives the equilibrium solution for the pressure in a
compact star. These equations are the generalisations of the newtonian hydrostatic
equations (2.2)-(2.3).

If the equation of state, ε(p), of matter is known, the TOV equations can be
integrated for a given value of the central pressure up to the surface of the star,
where the pressure vanishes2. The radial coordinate, R, where p(R) = 0, defines
the radius of the star, and M(R) its gravitational mass. For each choice of the
central pressure, the solution of the TOV equations describes a star configuration.
The sequence of possible equilibrium star configurations can therefore be obtained
by solving the TOV equations for different values of the central pressure. When
solving these equations numerically, it is sometimes convenient to use an adaptive
steplength, Δr, that is calculated such that the relative decrease of the pressure per
step is constant,

Δr =
1
N

rp(r)[r − 2GM(r)]
G[p(r) + ε(r)][M(r) + 4πr3p(r)]

. (2.61)

Here, N is a number that roughly determines the number of integration steps needed
to reach the surface. The value of Δr should be limited from below by some small

2In general, the number of thermodynamic degrees of freedom, NF , is given by Gibbs phase rule:
NF = NC−NP +2, where NC is the number of distinct compounds not being in thermal equilibrium
and NP is the number of phases. Consequently, even in the simple case of a homogenous star, the
equation of state is a function of two variables. Such additional microscopic degrees of freedom
can be removed with variational methods, see [18] for an example, or by making some simplifying
assumptions about the thermal state of the star. For example, in equilibrium the temperature
distribution in a compact star is given by the metric functions, see Section 2.10, and for new-born
protoneutron stars the entropy per baryon is roughly constant, see Paper VII.
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number, otherwise problems will arise at the surface. More sophisticated adaptive
algorithms can be used, but my experience is that the method outlined above is
reliable. It is convenient to set G = 1 (the speed of light, c, does not enter the
formulæ, because it is explicitely set to unity) and measure all quantities in powers
of a kilometre. Some useful conversion factors are provided in Appendix A.3.

2.5 Uniform density solution

In general, the the TOV equations, (2.53) and (2.60), have to be integrated nu-
merically. A number of analytic solutions are known, however, and one of them is
particularly interesting as it provides a limiting value of M/R that applies to any
star in hydrostatic equilibrium. Consider a hypothetical star composed of incom-
pressible matter, i.e., a star with a uniform energy density, ε(r) = ε0. This star has
the highest possible value of M/R for a given central density. The equation (2.60)
can be written

− dp

[p(r) + ε0][3p(r) + ε0]
=

4πG

3
r dr

1 − 8πGr2ε0/3
. (2.62)

This equation can be integrated and has the solution

p(r) + ε0

3p(r) + ε0
=

√
1 − 2GM/R

1 − 2GMr2/R3
, (2.63)

where the boundary condition p(R) = 0 is used to determine the integration con-
stant. It follows that

p(r) = ε0

√
1 − 2GM/R −√1 − 2GMr2/R3√
1 − 2GMr2/R3 − 3

√
1 − 2GM/R

. (2.64)

Clearly, the solution for p(r) has a singularity3 at the radius, r = r∞, where the
denominator of (2.64) vanishes,

r2
∞ = 9R2 − 4R3

GM
. (2.65)

Because the pressure is a scalar, this singularity cannot be removed by a transfor-
mation of the coordinates. The singularity is therefore unphysical and must not
appear. This implies that r2∞ must be negative, which is equivalent to

2GM

R
<

8
9
. (2.66)

3It follows from (2.70) that also the metric is singular at r∞.
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As this condition follows directly from the general relativistic hydrodynamic equa-
tions, it applies to all equilibrium compact star configurations. Note that the
Schwarzschild radius, rS = 2GM , is less than 8R/9, so there is no singularity in
the interior and exterior solutions for equilibrium star configurations.

It is possible to obtain a more stringent condition on 2GM/R of a star with
uniform density, as compared to (2.66), under the assumption that p < ε. This
is believed to be the case, because at low pressure the energy density of matter is
dominated by the mass-energy of baryons, so p < ε, and if the speed of sound is
lower than the speed of light at all pressures it follows that dp/dε < 1. According to
(2.63), the central pressure, pc = p(0), of a uniform density star obeys the relation

2GM

R
= 1 −

(
pc + ε0

3pc + ε0

)2

. (2.67)

Assuming that p < ε, it follows that

2GM

R
<

3
4
. (2.68)

This result holds for a uniform-density star, but should not be trusted in more
realistic applications. In general, (2.66) is valid and applies to any static model of
compact stars.

2.6 Decoupling of matter from gravity

The properties of matter and spacetime are linked by Einstein’s field equation.
Spacetime is affected by the energy-momentum tensor of the matter fields, and
matter is affected by the curvature of spacetime. For example, the Dirac equa-
tion contains the scalar product γμ∂μ ≡ gμνγ

ν∂μ, which depends on the metric.
Solutions of the Dirac equation, or any other relativistic equation depend on the
curvature. Consequently, the matter equations can be solved in flat spacetime only
if the changes of the metric functions are negligible at distances comparable to the
size of the microscopic system. If this condition is met, a local Lorentz frame can be
erected for the microscopic system, and the solution obtained in that frame can be
generalised to an arbitrary frame by the principle of general covariance. At Earth
this is typically the case, and the matter field equations can therefore be solved in
flat spacetime. For applications in strong gravitational fields, however, this is not
necessarily the case.

The TOV equations depend on the EoS of matter. It is therefore necessary to
check whether the EoS used in compact star calculations can be pre-calculated in
a Lorentz frame, or if it is necessary to solve the matter equations and the TOV
equations self-consistently. Using the expression (2.55) for the metric function g11(r)
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and the upper limit (2.66) for the compactness of a compact star, it follows that

g11(R)
g11(0)

=
(

1 − 2GM

R

)−1

<

(
1 − 8

9

)−1

= 9. (2.69)

The metric changes by no more than a factor 9 over the size of a star. For neutron
stars, with R ∼ 10 km, the metric changes by a relative fraction ∼ 9×1 fm/R � 10−18

over the spacing of nucleons in the star. The change in the metric is therefore
negligible at distances spanning a large number of nucleons, and the error introduced
by solving the matter equations in flat spacetime should be negligible.

2.7 Metric functions

In some applications it is useful to have the metric functions g00(r) and g11(r).
The radial metric function, g11(r), is given by (2.55). In general, it is not possible
to obtain an expression for the time component of the metric, g00(r), because the
differential equation for ν(r) depends on the TOV solutions for p(r) and M(r).
Inserting the expression (2.55) for e2λ(r) in (2.57), it follows that

dν

dr
=

G[M(r) + 4πr3p(r)]
r[r − 2GM(r)]

. (2.70)

The metric function, g00 = e2ν(r), is continuous at the surface of the star. The
solution for ν(r) must therefore match the Schwarzschild solution (2.29) at r = R.
This boundary condition can be met only in hindsight, when the TOV equations
have been solved and the total mass of the star is known. However, as the differential
equation (2.70) is invariant with respect to a constant shift ν(r) → ν(r) + C, any
solution for ν(r) can be rescaled to match the boundary condition. A convenient
strategy is therefore to integrate (2.70) in parallel with the TOV equations, with an
arbitrary initial value for ν(r = 0), say zero. Once a solution is obtained, ν(r) is
rescaled to match the Schwarzschild solution at the surface,

ν(r) −→ ν(r) − ν(R) +
1
2

ln
[
1 − 2GM(r)

R

]
, r ≤ R. (2.71)

Using this method, there is no need to store the solutions for p(r) and M(r), and
no second integration pass is needed. In the following sections, I will describe some
physical applications of the metric functions.

2.8 Surface redshift

The frequency of light is affected by gravitational fields. When a compact star is
observed, the light reaching the instrument has escaped the gravitational potential
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generated by the mass of the star. It should therefore appear redshifted, as compared
to the frequency of the light emitted from the surface of the star. To obtain an
expression for the redshift, consider an ideal situation where the observer is located
at an infinite distance from the star. An atom at rest on the surface of the star emits
a photon in the radial direction, towards the location of the observer. Consider the
photon as a wave train, and the successive wave crests as spacetime events. The
coordinate time between two neighbouring wave crests is related to the invariant
line element by

dτe =
√

g00(R) dt, (2.72)

where the subscript ‘e’ indicates that this relation holds as the photon is emitted.
The photon then propagates according to the relation

dτ2 = g00(r)dt2 − g11(r)dr2 = 0. (2.73)

Here, the metric functions g00(r) and g11(r) are defined by (2.29) and (2.27). It
follows that

Δt =
∫ ∞

R
dt =

∫ ∞

R
dr

[
g11(r)
g00(r)

]1/2

, (2.74)

where Δt is the coordinate time needed for a wave crest to propagate from r = R
to r = ∞. Consequently, as the photon travels from the surface of the star towards
the observer, the coordinate time between two wave crests is preserved in the rest
frame of the compact star. An observer with a fixed position relative the star, i.e.,
with fixed coordinates r, θ and φ, will measure a proper time

dτo =
√

g00(∞) dt, (2.75)

which is the analogue of (2.72) at the location of the observer. Because the relation
between proper time and coordinate time is different at r = R and r = ∞, and
the distance in coordinate time between neighbouring wave crests is preserved, the
frequency of the wave changes as it propagates. The frequency is proportional to
the inverse of the proper time, so the ratio of the observed, ωo, and emitted, ωe,
frequencies is

ωo

ωe
=
[

g00(R)
g00(∞)

]1/2

=
√

1 − 2GM/R. (2.76)

Conventionally, the redshift, z, is defined as the relative difference between the
wavelength, λ, of observed and emitted light,

z ≡ λo − λe

λe
=

λo

λe
− 1 =

ωe

ωo
− 1 =

(
1 − 2GM

R

)−1/2

− 1. (2.77)

The redshift is a consequence of gravitational time dilation. Time moves slowly
in a strong gravitational field, as measured by a remote observer. It follows from the
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compactness limit (2.66) that the upper limit for the redshift of any static compact
star is

z <

(
1 − 8

9

)−1/2

− 1 = 2. (2.78)

Redshift measurements of neutron stars provide information about M/R. In com-
bination with other observational techniques used to deduce M and/or R, this in-
formation can be used to pinpoint the physical compact star sequence in the M −R
plane. In addition, high redshifts are difficult to explain with compact star mod-
els based on soft EsoS. A measurement of a star with high surface redshift would
therefore rule out some microscopic models. In particular, z � 0.5 could be difficult
to explain with hybrid star models, see the discussion on surface redshifts in Pa-
per V. For information about observations of surface redshifts, see [9] and references
therein.

2.9 Baryon number

In studies of the evolution of compact stars, such as the effects of cooling and
neutrino dissipation, it is necessary to have some invariant quantity that identifies
a particular star. The total baryon number of a star is such a quantity, because it
is conserved as long as there is no flow of baryons across the boundary, i.e., as long
as there are no accretion or evaporation of matter at the surface. The conserved
baryon number current, jμ, is related to the proper baryon number density, n, by

n(r) = uμ(r)jμ(r) =
√

g00(r) j0(r) = eν(r)j0(r), (2.79)

where the fluid four-velocity, uμ, is given by (2.46). The proper baryon number
density, i.e., the baryon number density in a local inertial frame, should be deduced
from the microscopic theory used to calculate the EoS. In absence of gravity, the
total conserved charge is obtained by integration of j0 over the volume of the space.
In a strong gravitational field, the ordinary volume element has to be replaced with
the invariant volume element,

√−g d4x, where g = det(gμν) is the determinant of
the metric. It follows from (2.6) that

√−g = eν(r)+λ(r)r2 sin θ. (2.80)

Consequently, the total baryon number, N , of a star can be obtained by an integral
over the volume, V , of the star at definite time,

N =
∫

V
d3x

√−gj0(r) = 4π

∫ R

0
dr eν(r)+λ(r)r2j0(r). (2.81)

With the expression for the proper baryon number density (2.79), this integral sim-
plifies to

N = 4π

∫ R

0
dr eλ(r)r2n(r) = 4π

∫ R

0
dr

[
1 − 2GM(r)

r

]−1/2

r2n(r), (2.82)
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where M(r) is defined by (2.53).
In general, it is the baryon current jμ that is conserved. While the derivation

above suggests that this implies that also the total baryon number, N , of a star
should be conserved, this could need a formal justification. To this end, the following
standard result for the relation between the covariant divergence and the ordinary
divergence of a vector field, Aμ, is needed

√−gAμ
;μ =

(√−gAμ
)
,μ

. (2.83)

This relation can be obtained from (2.9) and (2.11) through a cofactor expansion of
the determinant. Now, if Aμ is a conserved current, it follows that

Aμ
;μ = 0 =⇒ (√−gAμ

)
,μ

= 0. (2.84)

Separate the time component from the spatial components,(√−gA0
)
,0

= − (√−gAi
)
,i

, (2.85)

and integrate the result over the volume of the star at definite time,∫
V

d3x
(√−gA0

)
,0

= −
∫

V
d3x

(√−gAi
)
,i

. (2.86)

The integral on the right-hand side can be transformed into a surface integral with
Gauss’ theorem, ∫

V
d3x

(√−gAi
)
,i

=
∫

S

√−gA · dS, (2.87)

where S represents the surface of the star. If there is no three-current,
√−gA,

crossing the surface of the star, the right-hand side of (2.87) vanishes. Consequently,
the integral on the left-hand side of (2.86) vanishes,∫

V
d3x

(√−gA0
)
,0

= 0 =⇒ ∂

∂t

∫
V

d3x
√−gA0 = 0

=⇒
∫

V
d3x

√−gA0 = constant, (2.88)

which means that the total charge of the current Aμ is conserved.
The total baryon number of a star (2.82) is conserved as long as there are no ac-

cretion and evaporation of matter at the surface. As mentioned above, it is therefore
useful in calculations of compact star evolution. For example, in order to calculate
the changes of the mass and the radius of a star as it cools from one temperature,
T1, to a temperature T2 < T1, one can proceed in the following way. Two EsoS are
prepared, one for each temperature. The two compact star sequences corresponding
to these two EsoS are calculated, and for each temperature the baryon numbers, N ,
masses, M , and radii, R, are stored in a table. The result is obtained by comparing



26 Chapter 2. Theory of Compact Stars

the masses and radii in these two tables, for rows with equal baryon number. For
further information and more examples, see Paper III and Paper VII. See also the
discussion of thermal equilibrium in the next section. The baryon number can be
used also to estimate the gravitational binding energy of a star, since the differ-
ence between the gravitational mass, M , and the mass of an equivalent number of
neutrons, MA = Nmn, is essentially due to gravitational binding.

2.10 Equilibrium temperature

Thermodynamic potentials are defined in a local inertial frame for each matter el-
ement. How, then, are the thermodynamic equilibrium conditions for the matter
elements modified in the presence of a gravitational field? In Section 2.8, the red-
shift of photons emitted from the surface of a compact star is discussed. Due to
gravitational time dilation, which is a consequence of the radial dependence of the
metric function g00, two observers located at different distances from the surface
measure different frequencies for two identical photons emitted from the star. Now,
imagine that two parallel plates are placed at slightly different distances from the
surface of a compact star. The plates are heated up and then isolated from the
environment. What will the temperature of the two plates be when they are in
thermal equilibrium? The plates exchange energy mainly by emission of photons.
The photons emitted from the lower (upper) plate are redshifted (blueshifted) on
their journey towards the other plate. A vanishing net flow of energy in-between the
plates therefore requires that the lower plate has higher temperature than the upper
plate. As two systems are in thermal equilibrium only if the net flow of energy in-
between them vanishes, the plates must have different temperatures to be in thermal
equilibrium. The same applies to matter elements in the interior of a compact star,
because the metric varies over the radius of the star. In the following, I will derive
an expression for the equilibrium temperature distribution in a compact star.

As this discussion is limited to static stars, it is convenient to consider the
equilibrium condition in an external gravitational field, where the metric function
g00(r) = e2ν(r) is given by (2.70)-(2.71). The benefit of this strategy is that one does
not have to account for the change in the gravitational field caused by the transfer of
energy (or particles) between matter elements. This simplified model is equivalent
to an exact formulation if first-order variations are considered only. If second-order
variations are needed, e.g., in an investigation of the stability of the equilibrium dis-
tribution, it is not possible to formulate the equations in an external field. However,
as the goal here is to obtain an expression for the equilibrium temperature, T (r),
the external field formulation can be applied.

The energy, E, of a particle in a local inertial frame is related to its energy, E0,
in the rest frame of the compact star by

E0 =
√

g00(r) E = eν(r)E. (2.89)



27

If a particle moves in the gravitational field, it is the quantity E0 that is conserved.
The equilibrium condition can be formulated with a standard variational principle:
for a given entropy and particle number, the energy of the star should be a minimum.
If the energy in an infinitesimal volume of space changes, without any change in
the density of particles, n, the temperature is defined by T = ∂E/∂S|n, where S
is the entropy per particle. Denoting the proper volume of a fluid element with
dV = 4πeλ(r)r2dr, see (2.80), the total energy of all particles is∫

V
dV E0n =

∫
V

dV eν(r)En. (2.90)

This expression should be minimised subject to the additional constraint that the
total entropy of the star is constant,∫

V
dV Sn = constant =⇒ δ

∫
V

dV Sn = 0. (2.91)

Consequently, the equilibrium condition is (the variations of ν(r) and n vanishes)∫
V

dV n
(
eν(r)δE − ΛδS

)
=
∫

V
dV nδS

(
eν(r) ∂E

∂S
− Λ
)

=
∫

V
dV nδS

(
eν(r)T − Λ

)
= 0, (2.92)

where Λ is a Lagrange multiplier. It follows that

eν(r)T (r) =
√

g00(r)T (r) = Λ = constant. (2.93)

This expression can be applied in the following way. Consider a compact star
with central temperature T (0) that cools slowly by surface emission. If the cooling
rate is low and the thermal conductivity is sufficiently high, the matter elements
within the star are in thermal (quasi-) equilibrium. According to (2.93), the product
eν(r)T (r) should therefore be constant inside the star. This leads to an expression
for the temperature distribution,

T (r) = T (0)eν(0)−ν(r). (2.94)

Observe that this relation holds also when the function ν(r) is unknown up to a linear
transformation. It is therefore not necessary to apply the transformation rule (2.71)
before calculating the equilibrium temperature T (r). This simplifies the computa-
tional problem considerably, as T (r) can be computed in parallel with the integration
of the hydrostatic equations, and the correct EoS can be computed/looked up for
each integration step. For more information and further examples on how to model
finite temperatures in compact stars, see, e.g., [19, 20], Paper III and Paper VII.
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2.11 Limiting mass and stability

Some properties of the general-relativistic hydrostatic equations, (2.53) and (2.60),
are not present in the newtonian weak-field analogy, (2.2) and (2.3). In general
relativity, all forms of energy contributes to gravity, while in Newton’s theory, the
strength of the gravitational field depends only on the mass-density. The factor
(p + ε) on the right-hand side of (2.60) shows that in general relativity, pressure
does not only support a star against gravitational collapse, but it also contributes
to the strength of the gravitational force. Consequently, with increasing central
pressure, the gradient of the pressure, −dp/dr, increases. It is then possible, and this
is indeed the case, that for sufficiently high central pressures, the radius decreases
with increasing central pressure. The compact star sequence therefore has a maximal
mass for some critical value of the central pressure, which depends on the EoS. This
maximum mass is referred to as the ‘limiting mass’ of the compact star sequence.
Examples of this feature of the general relativistic hydrostatic equations can be
found in all appended papers, except Paper IV and Paper VI.

The solutions of the equations (2.53) and (2.60) represent stellar configurations
in hydrostatic equilibrium. However, equilibrium does not assure stability, because
it may correspond either to a maximum or to a minimum of the gravitational mass
(= E/c2) of the star. This is analogous with a classical rigid-body pendulum, which
has one stable equilibrium position (hanging down) and one unstable equilibrium
position (standing up). The details of the stability analysis for compact stars is
beyond the scope of this introduction. A pedagogical derivation of the stability
equations can be found in Chapter 26 of [8], and a formulation that is convenient
to use in practical calculations is provided in [21]. An application of the stability
equations can be found in Paper I. In principle, the stability equations are obtained
from an analysis of the radial eigenmode vibrations of stellar configurations. An
instability is characterised by an eigenmode amplitude that grows (exponentially)
in time. The eigenmode equation can be formulated as a Sturm-Liouville boundary
value problem. A necessary, but not sufficient, condition for stability is that the
gravitational mass is an increasing function of the central density,

∂M(ε)
∂ε

∣∣∣∣
r=0

> 0. (2.95)

A detailed analysis of the stability equations shows that a compact star sequence
can turn from stability to instability, or vice versa, only at values of the central
density where the equilibrium mass is stationary,

∂M(ε)
∂ε

∣∣∣∣
r=0

= 0. (2.96)

Consequently, the maximum mass configuration of a compact star sequence is at
the onset of instability. Stability may be restored at higher densities only if the
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EoS changes such that the condition (2.95) is satisfied, and the amplitudes of the
radial eigenmodes are well-behaved. White dwarf sequences4 become unstable at
the maximum mass configuration, and stability is restored only when the degeneracy
pressure of nuclei stabilises a new class of compact stars, the neutron stars. In some
particular models of the high-density equation of state, where, e.g., a transition
to strange quark matter causes a large discontinuity in the speed of sound, stable
stellar configurations with central densities higher than that of the maximum mass
neutron/hybrid star exist [22–25], see also Paper III and Paper VII. In Paper I it
is suggested that if quarks and leptons are composite particles, a stable sequence of
compact stars could exist at still higher density. This hypothesis is further discussed
in Paper II and Paper VI.

4A white dwarf sequence is not unique, because the EoS depends on the chemical composition
of the star. See, e.g., Chapter 3 in [5].





Chapter 3

Thermal Quantum Field Theory

Thermal quantum field theory (or thermal field theory, TFT for short) is exten-
sively used, e.g., in high-energy physics and astrophysics. It is an invaluable tool in
the development of models of high-density matter in compact stars. TFT is used
to calculate expectation values of physical observables of a quantum field theory
(QFT), e.g., pressures, energy densities and particle number densities. The models
of colour superconducting quark matter described in Paper III, Paper IV, Paper V,
and Paper VII were derived with TFT methods. In this chapter, I will introduce
some of the basic concepts needed to follow the discussions in these papers. There
are many textbooks on the subject, and a proper review is beyond the scope of
this thesis. The interested reader is therefore referred to the literature for further
information, e.g., [26], which I find particularly useful. Most concepts discussed in
this chapter originates from that book, except the Hubbard-Stratonovich transfor-
mations derived in Section 3.7. A number of different formulations of TFT exist,
e.g., the method of second quantisation, which is the customary approach to non-
relativistic many-body theory, the imaginary-time formalism, which I will adopt
here, and the real-time formalism, see, e.g., [27] for details about these different ap-
proaches. In the imaginary-time formalism (sometimes referred to as the Matsubara
formalism), expectation values of operators are essentially expressed as a sum of
“probability amplitudes” in imaginary time, t = 0 → iβ, by analytic continuation.
Here, β = (kBT )−1, kB is Boltzmann’s constant, and T is the temperature. An
advantage of this approach is that calculations can be carried out with the same
tools as in QFT, e.g., functional integrals and Feynman diagrams, with the differ-
ence that the time coordinate is defined on a compact interval. In momentum space,
this corresponds to a replacement of continuous frequencies with discrete, so-called
Matsubara frequencies. I will return to the details of this method in the subse-
quent sections. The units used in this chapter are such that � = c = kB = 1, see
Appendix A.1 for details.

31
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3.1 Second quantisation

One approach to nonrelativistic many-body theory is the method of second quantisa-
tion. Before continuing with an alternative approach, which provides the theoretical
framework for the quark matter models developed in this thesis, it is instructive to
consider an example of second quantisation. To this end, consider a system with one
fermionic degree of freedom. This system has two possible states, the vacuum state,
|0〉, and the occupied state, |1〉. This is due to the Pauli exclusion principle, which
forbids the occupation of a particle state by more than one fermion. By introducing
particle creation and annihilation operators, α† and α, these states transform as

α†|0〉 = |1〉, α†|1〉 = 0, α|1〉 = |0〉, α|0〉 = 0. (3.1)

The particle number operator is N̂ = α†α, because

N̂ |0〉 = α†α|0〉 = 0, N̂ |1〉 = α†α|1〉 = |1〉. (3.2)

It follows that the creation and annihilation operators satisfy the anticommutation
relation {α, α†} = 1. Neglecting the zero-point energy of the vacuum, which can be
done without loss of generality as long as the vacuum is not affected by a background
field, e.g., as in the Casimir effect, the hamiltonian is

H = ωN̂. (3.3)

Here ω = ω(p) is the dispersion relation, e.g., for a free relativistic particle ω =
(p2 + m2)

1
2 , where p and m are the momentum and mass of the particle. The grand

canonical partition function is

Z = Tr e−β(H−μN̂) =
1∑

n=0

〈n|e−β(H−μN̂)|n〉 =
1∑

n=0

〈n|e−β(ω−μ)N̂ |n〉

=
1∑

n=0

e−β(ω−μ)n = 1 + e−β(ω−μ), (3.4)

where μ is the fermion number chemical potential. The partition function is the
single most important function in thermodynamics. From it, all other standard
thermodynamic properties can be determined. For example, in the infinite-volume
limit, the pressure, particle number, entropy, and energy of the system are

P = T
∂ lnZ

∂V
, Ni = T

∂ lnZ

∂μi
,

S =
∂(T lnZ)

∂T
, E = −PV + TS + μiNi. (3.5)
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It follows from (3.4) that the mean number of fermions in the system is

N = T
∂

∂μ
lnZ =

1
eβ(ω−μ) + 1

. (3.6)

This is the Fermi-Dirac distribution function.
While second quantisation can be used also to solve complex problems, the

method of choice for most theorists nowadays is a functional integral representation
of the partition function, as many useful concepts and theoretical tools developed in
QFT can be carried over to this formulation. In the following, I will briefly introduce
the imaginary-time formalism and some techniques used in the appended papers.

3.2 Transition amplitude for bosons

As briefly mentioned at the beginning of this chapter, the partition function can be
obtained from a transition amplitude by a transformation of the time coordinate.
In this section, I will derive an expression for the transition amplitude for bosons.
This result can then be used to formulate a functional integral representation of the
partition function. To this end, consider a boson field operator φ̂(0,x) at time t = 0.
The eigenstates, |φ〉, and eigenvalues, φ(x), of the operator satisfy

φ̂(0,x)|φ〉 = φ(x)|φ〉. (3.7)

The eigenstates constitute an orthonormal basis for the space, i.e., the set of eigen-
states is both orthonormal and complete,∫

dφ(x) |φ〉〈φ| = 1, (3.8)
〈φa|φb〉 = δ (φa(x) − φb(x)) . (3.9)

In quantum mechanics, eigenstates of the position operator are related to eigenstates
of the momentum operator by

〈x|p〉 = eipx. (3.10)

Consequently, one can choose to work either in position space or in momentum
space. Analogously, in quantum field theory there is a conjugate momentum field
operator π̂(0,x), with eigenstates |π〉, and eigenvalues π(x). The completeness and
orthogonality conditions are ∫

dπ(x)
2π

|π〉〈π| = 1, (3.11)

〈πa|πb〉 = δ (πa(x) − πb(x)) , (3.12)

and the overlap is

〈φ|π〉 = exp
[
i

∫
d3xπ(x)φ(x)

]
. (3.13)
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Now, consider a system described by a hamiltonian H = H(π, φ), which is in a
state |φa〉 at time t = 0. After a time t = tf > 0, the system has evolved into a
new state |φb〉 = e−iHtf |φa〉. In general, the probability amplitude for the system
to evolve from a state |φa〉 to a state |φb〉 in a time tf is 〈φb|e−iHtf |φa〉. As I will
show later, the transition amplitude of interest for the derivation of the partition
function is 〈φa|e−iHtf |φa〉, i.e., the probability for the system to return to its initial
state after a time tf . One can calculate this amplitude by dividing the time interval
(0, tf ) into N intervals of equal duration Δt = tf/N , and inserting the identities
(3.8) and (3.11) in the following way

〈φa|e−iHtf |φa〉 = lim
N→∞

∫ ( N∏
i=1

dπidφi

2π

)

×〈φa|πN 〉〈πN |e−iHΔt|φN 〉
×〈φN |πN−1〉〈πN−1|e−iHΔt|φN−1〉
×〈φN−1|πN−2〉〈πN−2|e−iHΔt|φN−2〉
× . . .

×〈φ2|π1〉〈π1|e−iHΔt|φ1〉〈φ1|φa〉. (3.14)

Note that the expression on the right-hand side simplifies to a product of N exponen-
tial functions of the form exp(−iHΔt). After summing the exponents one obtains
the expression on the left-hand side. According to the orthogonality condition (3.9),
the last factor is

〈φ1|φa〉 = δ (φ1 − φa) , (3.15)

and the factors on the form 〈φi|πi−1〉 can be expressed using the overlap (3.13),

〈φi|πi−1〉 = exp
[
i

∫
d3xπi−1(x)φi(x)

]
. (3.16)

As usual, the hamiltonian can be expressed as an integral of the hamiltonian density,

H =
∫

d3xH(π, φ). (3.17)

Because N → ∞, and, consequently, Δt → 0, the other factors of (3.14) can be
expanded in the following way,

〈πi|e−iHΔt|φi〉 = 〈πi|1 − iHΔt + . . . |φi〉
= 〈πi|φi〉 [1 − iΔtHi + . . .] , (3.18)

where

〈πi|φi〉 = exp
[
−i

∫
d3xπi(x)φi(x)

]
, (3.19)

Hi =
∫

d3xH(πi(x), φi(x)). (3.20)
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Using (3.15)-(3.16), and (3.18), the amplitude (3.14) becomes

〈φa|e−iHtf |φa〉 = lim
N→∞

∫ ( N∏
i=1

dπidφi

2π

)
δ (φ1 − φa)

×exp
(

i

∫
d3xπ1φ2 + π2φ3 + . . . + πN−1φN + πNφa

)

×exp

⎛
⎝−i

∫
d3x

N∑
j=1

πjφj

⎞
⎠

×exp

[
−iΔt

∫
d3x

N∑
k=1

H(πk, φk)

]
. (3.21)

This expression simplifies to

〈φa|e−iHtf |φa〉 = lim
N→∞

∫ ( N∏
i=1

dπidφi

2π

)
δ (φ1 − φa)

×exp

⎧⎨
⎩iΔt

N∑
j=1

∫
d3x

[
πj

(φj+1 − φj)
Δt

−H(πj , φj)
]⎫⎬
⎭ , (3.22)

where it follows from (3.21) that φN+1 ≡ φa. This means that the field should return
to its initial state after a time tf , as requested, and the delta function assures that
φ1 = φa. In the continuum limit, N → ∞, the integrals in (3.22) turn into functional
integrals, because at each instant of time, the function values are integrated from
−∞ to +∞. Consequently, the amplitude is

〈φa|e−iHtf |φa〉 =
∫

Dπ

∫ φ(tf ,x)=φa(x)

φ(0,x)=φa(x)
Dφ

×exp
{

i

∫ tf

0
dt

∫
d3x

[
π(t,x)

∂φ(t,x)
∂t

−H(π(t,x), φ(t,x))
]}

, (3.23)

where Dπ and Dφ are functional integral measures. The integration over φ(t,x) is
constrained such that the field returns to its initial value after a time tf , while the
integration over π(t,x) is unrestricted. Note that π and φ in (3.23) are scalar fields,
so there are no operators left in this expression. Next, I will show how the partition
function for bosons can be obtained from this result.

3.3 Partition function for bosons

The general form of the grand canonical partition function is

Z = Tr e−β(H−μiN̂i) =
∫

dφa 〈φa|e−β(H−μiN̂i)|φa〉, (3.24)
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where N̂i are the number operators of the conserved charges, and μi are the cor-
responding chemical potentials. This is the generalisation of (3.4), introduced in
Section 3.1, to a system with a continuously infinite number of degrees of freedom.
The partition function can be expressed in the probability amplitude (3.23) by the
following substitutions: the time coordinate in (3.23) is replaced by an imaginary
“time” coordinate τ = it (a so-called Wick rotation1), which is integrated from 0 to
β, and the hamiltonian density is replaced with

H(π(t,x), φ(t,x)) −→ H(π(t,x), φ(t,x)) − μiNi(π(t,x), φ(t,x)), (3.25)

were Ni(π(t,x), φ(t,x)) are the conserved charge densities. The partition function
is then obtained by integration of the transformed amplitude over all initial states,
φa(x). The result is

Z =
∫

Dπ

∫
periodic

Dφ exp
{∫ β

0
dτ

∫
d3x

[
iπ

∂φ

∂τ
−H(π, φ) + μiNi(π, φ)

]}
. (3.26)

Here, periodic means that the functions, φ, should satisfy the condition φ(0,x) =
φ(β,x). There are no constraints on the integration over π functions.

3.4 Neutral scalar field

In order to see how the partition function (3.26) can be evaluated in practise, consider
the lagrangian density for a non-interacting neutral scalar field

L =
1
2
∂μφ∂μφ − 1

2
m2φ2. (3.27)

The conjugate momentum is

π =
∂L

∂(∂0φ)
=

∂φ

∂t
, (3.28)

and the standard relation between the lagrangian and hamiltonian densities is

H = π
∂φ

∂t
− L =

1
2

[
π2 + (∇φ)2 + m2φ2

]
. (3.29)

There is no conserved charge, because the mass term breaks translational invari-
ance. In order to evaluate the partition function, it is convenient to start with the

1 Under a rotation of the time coordinate in the complex plane by an angle of π/2, the Minkowski
metric is transformed to the Euclidean metric, and vice versa, because the invariant line element
differs only in the sign of the dt2 term.
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discretised version of (3.26), i.e., (3.22) with a modified φ integral. With (3.29) the
partition function then is

Z = lim
N→∞

(
N∏

i=1

∫ ∞

−∞
dπi

2π

∫
periodic

dφi

)
exp

{
Δτ

N∑
j=1

∫
d3x
[ iπj(φj+1 − φj)

Δτ

−1
2
(
π2

j + (∇φj)2 + m2φ2
j

) ]}
. (3.30)

By expanding the integral over spatial coordinates in the exponential, e.g., as (the
limit of) a Riemann sum, and changing the order of integration, the integrals over
conjugate momenta are gaussian and can be evaluated using the standard result∫ ∞

−∞
dx e−ax2+bx =

√
π

a
eb2/(4a). (3.31)

The gaussian integrals are on the form

1
2π

∫ ∞

−∞
dπj exp

[
−1

2
π2

j +
i(φj+1 − φj)

Δτ
πj

]
, (3.32)

so it follows from (3.31) that each integral gives rise to a factor

(2π)−
1
2 exp

[
−1

2

(
φj+1 − φj

Δτ

)2
]

. (3.33)

The partition function (3.30) can therefore be written

Z = N ′ lim
N→∞

(
N∏

i=1

∫
periodic

dφi

)
exp

{
Δτ

N∑
j=1

∫
d3x
[
− 1

2

(
φj+1 − φj

Δτ

)2

−1
2
(∇φj)2 − 1

2
m2φ2

j

]}
, (3.34)

where N ′ denotes the product of the constant factor in (3.33). This factor is irrele-
vant, because the multiplication of Z by any constant does not change the thermo-
dynamics. In the continuum limit, N → ∞, this expression becomes

Z = N ′
∫

periodic
Dφ exp

(∫ β

0
dτ

∫
d3x L

)
. (3.35)

This result holds also if interaction terms are present in the lagrangian, because such
terms depend on φ only and do not alter the derivation.
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The functional integral in (3.35) can be evaluated in the following way. Define

S =
∫ β

0
dτ

∫
d3x L = −1

2

∫ β

0
dτ

∫
d3x

[(
∂φ

∂τ

)2

+ (∇φ)2 + m2φ2

]
. (3.36)

Using the periodicity constraint on φ, this expression can be integrated by parts and
becomes

S =
1
2

∫ β

0
dτ

∫
d3x φ

(
∂2

∂τ2
+ ∇2 − m2

)
φ. (3.37)

Now, expand the field in a Fourier series

φ(τ,x) =
(

β

V

) 1
2

∞∑
n=−∞

∑
p

ei(p·x+ωnτ)φn(p), (3.38)

where the normalisation constant is chosen such that the Fourier amplitudes are di-
mensionless. The periodicity constraint, φ(0,x) = φ(β,x), requires that the Fourier
frequencies are chosen as

ωn =
2π

β
n = 2πnT. (Bosons) (3.39)

Since φ is a scalar (real-valued) field, the basis functions satisfy φ−n(−p) = φ∗
n(p).

With (3.38), the expression (3.37) then becomes

S = −β2

2

∑
n

∑
p

(
ω2

n + p2 + m2
) |φn(p)|2, (3.40)

where the volume in (3.38) is cancelled by the integration over spatial coordinates,
and there is an extra factor β coming from the integral over τ . The choice of
normalisation in (3.38) now makes sense. As usual the dispersion relation is

ω =
(
p2 + m2

)1/2
. (3.41)

The partition function (3.35) can be expressed in S, and the functional integral over
φ translates into an integral over the Fourier amplitudes2,

Z = N ′∏
n

∏
p

∫ ∞

−∞
d|φn(p)| exp

[
−β2

2
(
ω2

n + ω2
) |φn(p)|2

]
. (3.42)

2This is a standard method to evaluate functional integrals over periodic functions. For a
particular function φ, the Fourier amplitudes have fixed values, which are given by the inner products
of φ and the orthonormal basis functions. All functions on the compact interval can be accounted
for by integrating over all values and combinations of Fourier amplitudes.
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This is a gaussian integral, which can be evaluated using (3.31). The result is

Z = N ′∏
n

∏
p

[
2π

β2 (ω2
n + ω2)

] 1
2

. (3.43)

Neglecting an overall constant factor, which does not affect the thermodynamics,
the logarithm of the partition function is

lnZ = −1
2

∑
n

∑
p

ln
[
β2
(
ω2

n + ω2
)]

. (3.44)

This expression can be evaluated using a method analogous to that described in
Section 3.6, except that the boson Matsubara frequencies (3.39) should be used in
place of the fermion Matsubara frequencies. Omitting irrelevant constant terms, the
result is

lnZ = V

∫
d3p

(2π)3

[
−1

2
βω − ln

(
1 − e−βω

)]
, (3.45)

where the sum over momenta is approximated with an integral in the standard way.
The pressure, entropy and energy of the system is

P = T
∂ lnZ

∂V
− P0, (3.46)

S =
∂(T lnZ)

∂T
, (3.47)

E = −PV + TS. (3.48)

The expression (3.45) includes the zero-point energy. In order to get zero pressure
in vacuum, the corresponding pressure should be subtracted,

P0 = lim
T→0

T
∂ lnZ

∂V
=
∫

d3p

(2π)3
ω. (3.49)

There is no conserved charge. While this result is of little practical use itself, the
derivation leading from the lagrangian density of a scalar field (3.27) to the corre-
sponding partition function (3.45) illustrates a procedure that can be carried over
to more realistic models. For example, a complex boson field can be treated in a
similar way, and the physical consequences of that model is already interesting, as
it comprises a conserved charge that forms a Bose-Einstein condensate. More infor-
mation and further examples can be found in, e.g., [26]. This procedure can to some
extent be generalised also to fermions, but obviously the Pauli principle needs to be
accounted for. I will return to this issue in the next section.
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3.5 Partition function for fermions

Fermions are essential building blocks of compact stars. The Pauli principle for-
bids two fermions to occupy the same state. Consequently, at high densities par-
ticles are forced to occupy high-momentum states, and therefore generate a high
pressure, which counterbalances gravity. The lagrangian density for a system of
non-interacting fermions is essentially given by the Dirac equation

L = ψ̄ (i∂/ − m) ψ, (3.50)

where ψ̄ ≡ ψ†γ0, and ∂/ ≡ γμ∂μ = γμ∂/∂xμ. The Dirac matrices, γμ, are defined in
Appendix B.2. After expanding the derivative operator, the lagrangian reads

L = ψ†γ0

(
iγ0 ∂

∂t
+ iγ · ∇ − m

)
ψ. (3.51)

This expression has a global U(1) symmetry, as it is invariant with respect to a phase
shift ψ → e−iαψ. Consequently, according to Noether’s theorem3 there is a conserved
current. One can determine this current by letting α be an independent field, and
then solve the Euler-Lagrange equation for this field. Under the transformation
ψ → e−iα(t,x)ψ, the lagrangian becomes

L −→ L + ψ̄ [γμ∂μα(t,x)]ψ. (3.52)

The equation of motion for α is the Euler-Lagrange equation,

∂μ
∂L

∂[∂μα(t,x)]
− ∂L

∂α(t,x)
= 0, (3.53)

which yields
∂μψ̄γμψ = 0. (3.54)

The conservation law therefore is

∂μjμ = 0, (3.55)
jμ = ψ̄γμψ, (3.56)

where jμ is the conserved current. The total conserved charge is

Q =
∫

d3x j0 =
∫

d3xψ†γ0γ0ψ =
∫

d3xψ†ψ. (3.57)

3 Briefly, Noether’s theorem states that there is a conserved current for each continuous symmetry
of the local actions. The theorem was published by Noether in the early 20th century, and is a
central result in theoretical physics.
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Now the conserved charge of the system is known, and the derivation of the
partition function can be carried out in a similar way as for the scalar boson field.
The conjugate momentum of the field ψ is

Π =
∂L

∂(∂ψ/∂t)
= ψ†γ0iγ0 = iψ†. (3.58)

Consequently, ψ and ψ† are independent quantities that should be integrated sepa-
rately. The hamiltonian density is

H = Π
∂ψ

∂t
− L = ψ†

(
i
∂

∂t

)
ψ − L = ψ†γ0 (−iγ · ∇ + m) ψ. (3.59)

The partition function is obtained from the fundamental relation

Z = Tr e−β(H−μN̂), (3.60)

where the trace is evaluated by a procedure analogous to that leading up to (3.26).
The result is

Z =
∫

Diψ†Dψ exp
[∫ β

0
dτ

∫
d3x ψ†γ0

(
−γ0 ∂

∂τ
+ iγ · ∇ − m + μγ0

)
ψ

]
, (3.61)

where μ is the chemical potential of the conserved charge. Next, expand the field in
a Fourier series

ψα(τ,x) = V − 1
2

∑
n

∑
p

ei(p·x+ωnτ)ψ̃α; n(p), (3.62)

where the normalisation constant is chosen such that the Fourier amplitudes are
dimensionless. In general, the frequencies, ωn, have values nπT for functions defined
on the compact interval 0 ≤ τ ≤ β. The functional integral over φ in the partition
function for bosons (3.26) is restricted to periodic functions, φ(0,x) = φ(β,x). This
is a consequence of the equivalence between the partition function and an analytic
continuation of the probability amplitude for the system to return to its initial state
after a “time” β. A consequence of this periodicity is that only even frequencies are
accounted for in the Fourier expansion of a boson field. For fermions the situation
is somewhat different. As shown in Section 3.1, the Pauli principle implies that the
fermion operators are anticommuting objects. A consequence of this property (see,
e.g., [26] for details) is that the fermion field is antiperiodic,

ψ(0,x) = −ψ(β,x). (3.63)

It then follows from (3.62) that only odd frequencies should be summed over

ωn = (2n + 1)πT. (Fermions) (3.64)
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These are the Matsubara frequencies for fermions. The antiperiodicity of fermion
fields is not in contradiction with the derivation of the partition function, because
the sign of ψ is related only to an irrelevant constant factor of the partition function.
With (3.62), the partition function (3.61) can be written

Z =

[∏
n

∏
p

∏
α

∫
idψ̃†

α; n(p)dψ̃α; n(p)

]
eS , (3.65)

S =
∑

n

∑
p

iψ̃†
α; n(p)Dανψ̃ν; n(p), (3.66)

Dαν = −iβ
[
(−iωn + μ) − γ0γ · p − γ0m

]
. (3.67)

In order to evaluate these integrals it is essential to account for the anticommuting
character of the fermion fields. The integrals are therefore Berezin integrals [28] over
Grassman variables, and the standard result needed here is∫

idψ†
1dψ1 . . . idψ†

NdψN eiψ†
αDανψν = detD. (3.68)

Consequently,
Z = detD, (3.69)

where D is given by (3.67). With the mathematical identity ln detD = Tr lnD, the
logarithm of the partition function (3.69) can be written

lnZ = 2
∑

n

∑
p

ln
{
β2
[
(ωn + iμ)2 + ω2

]}
=
∑

n

∑
p

{
ln
[
β2
(
ω2

n + (ω − μ)2
)]

+ ln
[
β2
(
ω2

n + (ω + μ)2
)]}

. (3.70)

The sum over Matsubara frequencies, ωn, is calculated in Section 3.6. By using that
result and approximating the sum over momenta with an integral in the standard
way, the partition function simplifies to

lnZ = 2V

∫
d3p

(2π)3
{

βω + ln
[
1 + e−β(ω−μ)

]
+ ln

[
1 + e−β(ω+μ)

]}
. (3.71)

This result agrees with the result obtained by the method of second quantisation
in Section 3.1, but it includes also the zero-point energy and the contribution from
antifermions. The prefactor of 2 represents spin degeneracy. The pressure, fermion
number, entropy, and energy of the system can be calculated with

P = T
∂ lnZ

∂V
, Ni = T

∂ lnZ

∂μi
,

S =
∂(T lnZ)

∂T
, E = −PV + TS + μiNi,

(3.72)

presuming that the zero-point contribution to the pressure of vacuum is subtracted
in the proper way, see (3.49).
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3.6 Matsubara sums

The sum over fermion Matsubara frequencies in (3.70) is frequently encountered in
TFT, see, e.g., Paper III. It is on the form

∑
n

ln
(

ω2
n + ω2

T 2

)
, (3.73)

where ωn = (2n + 1)πT are the Matsubara frequencies for fermions. In order to
evaluate this sum, first rewrite the logarithm as an integral and change the order of
summation and integration,

∞∑
n=−∞

ln
(

ω2
n + ω2

T 2

)
=

∞∑
n=−∞

∫ ω2/T 2

1

d(θ2)
θ2 + (2n + 1)2π2

+ ln
[
1 + (2n + 1)2π2

]

=
∫ ω2/T 2

1

∞∑
n=−∞

d(θ2)
θ2 + (2n + 1)2π2

+
∞∑

n=−∞
ln
[
1 + (2n + 1)2π2

]
. (3.74)

The first sum in this expression can be evaluated with the standard residue summa-
tion formula ∞∑

n=−∞

1
(n − x)(n − y)

=
π [cot(πx) − cot(πy)]

y − x
. (3.75)

The result is

∞∑
n=−∞

1
θ2 + (2n + 1)2π2

=
1

4π2

∞∑
n=−∞

1
(n − π−iθ

2π )(n − π+iθ
2π )

=
1

4π2

π
[
cot
(

π−iθ
2

)− cot
(

π+iθ
2

)]
4iθ/π

=
1
2θ

tanh
(

θ

2

)
=

1
θ

(
1
2
− 1

eθ + 1

)
. (3.76)

Equations (3.74) and (3.76) yield

∞∑
n=−∞

ln
(

ω2
n + ω2

T 2

)
=
∫ ω2/T 2

1
d(θ2)

1
θ

(
1
2
− 1

eθ + 1

)
+

∞∑
n=−∞

ln
[
1 + (2n + 1)2π2

]

= −|ω|
T

+ 2 ln(1 + e|ω|/T ) + 1 − 2 ln(1 + e1) +
∞∑

n=−∞
ln
[
1 + (2n + 1)2π2

]

= −|ω|
T

+ 2 ln
[
e|ω|/T (1 + e−|ω|/T )

]
+ 1 − 2 ln(1 + e1) +

∞∑
n=−∞

ln
[
1 + (2n + 1)2π2

]

=
|ω|
T

+ 2 ln(1 + e−|ω|/T ) +

{
1 − 2 ln(1 + e1) +

∞∑
n=−∞

ln
[
1 + (2n + 1)2π2

]}
.(3.77)
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Terms independent of T and ω do not contribute to the thermodynamics and are
therefore omitted. The expression simplifies to

∞∑
n=−∞

ln
(

ω2
n + ω2

T 2

)
=

ω

T
+ 2 ln

(
1 + e−ω/T

)
, (3.78)

where I have used the fact that the expression on the left-hand side of (3.77) is an
even function of ω. In order to see that this holds also for the right-hand side of
(3.78), consider the following difference

f(T, ω) − f(T,−ω) =
2ω

T
+ 2 ln

(
1 + e−ω/T

)
− 2 ln

(
1 + eω/T

)
=

2ω

T
+ 2 ln

(
1 + e−ω/T

1 + eω/T

)
=

2ω

T
+ 2 ln

(
1 + e−ω/T

1 + eω/T
× 1 − e−ω/T

1 − e−ω/T

)

=
2ω

T
+ 2 ln

(
1 − e−2ω/T

eω/T − e−ω/T

)
=

2ω

T
+ 2 ln

(
1 − e−2ω/T

eω/T (1 − e−2ω/T )

)

=
2ω

T
+ 2 ln

(
e−ω/T

)
=

2ω

T
− 2ω

T
= 0. (3.79)

The lesson to learn here is that the Matsubara sum (3.78) is independent of the
sign of the dispersion relations, ω(p, . . .). In general, Matsubara sums can be more
complicated than (3.73) when particle interactions are taken into account. If an an-
alytical solution cannot be obtained, it is possible to evaluate the sum numerically if
the divergent terms can be subtracted. It is not possible to evaluate (3.73) directly
on a computer, due to the divergent sum on the right-hand side of (3.77). A solution
to this problem is to subtract a Matsubara sum that can be evaluated analytically,
such that the difference of the two sums is convergent. One can then recover the
original Matsubara sum by adding the analytical solution of the subtracted sum, ne-
glecting divergent terms. It is crucial to subtract a Matsubara sum that is “similar”
to the sum that should be computed, in order to get (rapid) convergence. A nice
heuristic example where this method has been used can be found in [29]. There is,
however, an alternative strategy that is more straightforward. I will return to this
issue in Chapter 5.

3.7 Hubbard-Stratonovich transformations

For interacting classical systems, it is customary to treat the interactions between
particles as an interaction between each particle and a potential generated by the
others. A well-known example is the mean-field approximation, where each particle
interacts with the average potential of the others. A general method to replace two-
body interactions with single bodies in an external field is the Hubbard-Stratonovich
(HS) transformation [30, 31]. In field theory, HS transformations reduce quartic
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(four-fermion) interaction terms to quadratic terms that are coupled to a collective
boson field, a so-called auxiliary field. However, unlike mean-field approximations,
HS transformations are mathematical identities that preserve the physics of the
original model. In this section I will derive two HS transformation rules that will
prove useful in Chapter 5, where interactions in quark matter are discussed.

To this end, consider the path integral over a charge-neutral boson field, φ,∫
Dφ exp

[
−1

2

∫ β

0
dτ

∫
d3x φDφ

]
= (det D)−

1
2 , (3.80)

where D is an operator in (τ , x) space. This formula follows from the product of
gaussian integrals∫ ∞

−∞
dx1 . . . dxne−

1
2
xαDανxν = (2π)n/2 (detD)−

1
2 . (3.81)

The path integral is invariant with respect to a scalar shift of the field. The boson
field can therefore be shifted with a scalar Dirac bilinear

φ −→ φ ± 2gψ̄Oψ, (3.82)

where O is an operator and g is a coupling constant. The sign of the shift is arbitrary.
With D = /(2g), (3.80) and (3.82) yields∫

Dφ exp
[
−1

2

∫ β

0
dτ

∫
d3x (φ ± 2gψ̄Oψ)

2g
(φ ± 2gψ̄Oψ)

]

= exp
[
−
∫ β

0
dτ

∫
d3x g(ψ̄Oψ)2

] ∫
Dφ exp

[∫ β

0
dτ

∫
d3x

(
−φ2

4g
∓ φψ̄Oψ

)]
= det( /2g)−

1
2 . (3.83)

Consequently, up to a thermodynamically irrelevant prefactor, N ′, a four-fermion
interaction, g(ψ̄Oψ)2, can be transformed according to

exp
[∫ β

0
dτ

∫
d3x g(ψ̄Oψ)2

]

= N ′
∫

Dφ exp
[∫ β

0
dτ

∫
d3x

(
−φ2

4g
± φψ̄Oψ

)]
. (3.84)

The auxiliary field, φ, represents collective modes generated by combinations of ψ
and ψ̄ in each space-time point. The four-fermion interaction is exactly transformed
into a boson mass term, −1

2m2φ2 where m = 1/
√

2g, and a local Yukawa coupling
of the bosons to the fermions, φψ̄Oψ. Since no information is lost in the trans-
formation, the expression on the right-hand side of (3.84) in general needs to be
simplified further before practical calculations can be carried out. One possibility is
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to use a mean-field approximation for the collective field, which will be utilised in
Chapter 5. In general, the Yukawa interaction can be expanded in a power series,
and the corrections to the fermion propagator can be worked out term by term.
The two lowest-order corrections are illustrated in Figure 3.1. The benefit of the

φ
φ

Figure 3.1: The two lowest-order corrections to the fermion propagator from the
Yukawa interaction with an auxiliary field, φ.

transformed theory with auxiliary fields is that some important dynamical features
can be revealed more readily than with the original fields. The four-fermion terms
are reduced to quadratic terms, which can be integrated out analytically. This pro-
cedure is called bosonisation. Because the fermion fields are integrated out exactly,
an infinite number of diagrams are summed even when the functional integrals over
auxiliary fields are approximated with a truncated power series. Consequently, the
transformed theory can be used to study certain non-perturbative phenomena, which
would require a summation of infinitely many terms in the original theory.

The transformation rule (3.84) is limited to scalar Dirac bilinears. Next, consider
a four-fermion interaction on the form

g(ψTOψ)†(ψTOψ). (3.85)

In this case a complex shift is needed to obtain the transformation rule. The starting
point is therefore a path integral over a complex (charged) boson field, Φ,∫

DΦ∗DΦ exp
[
−
∫ β

0
dτ

∫
d3x Φ∗DΦ

]
= (det D)−1. (3.86)

The fields are shifted according to,

Φ −→ Φ ± 2gψTOψ, (3.87)
Φ∗ −→ Φ∗ ± 2g(ψTOψ)†. (3.88)

It follows that∫
DΦ∗DΦ exp

{
−
∫ β

0
dτ

∫
d3x

[
Φ∗ ± 2g(ψTOψ)†

]
4g

(Φ ± 2gψTOψ)
}

= exp
[
−
∫ β

0
dτ

∫
d3x g(ψTOψ)†(ψTOψ)

]

×
∫

DΦ∗DΦ exp
{∫ β

0
dτ

∫
d3x

[
−|Φ|2

4g
∓ (ψTOψ)†

Φ
2
∓ Φ∗

2
(ψTOψ)

]}
= [det( /4g)−1]−1. (3.89)
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Consequently, up to an irrelevant prefactor, N ′, the interaction term (3.85) can be
transformed according to

exp
[∫ β

0
dτ

∫
d3x g(ψTOψ)†(ψTOψ)

]

= N ′
∫

DΦ∗DΦ exp

{∫ β

0
dτ

∫
d3x

[
−|Φ|2

4g
± (ψTOψ)†

Φ
2
± Φ∗

2
(ψTOψ)

]}
. (3.90)

These transformation rules are applied in the derivation of the model of colour
superconducting quark matter in Chapter 5.





Chapter 4

Quark Matter

It was suggested already in the 1960s that matter could be in the form of decon-
fined quarks in the core of neutron stars [32, 33], see also [34, 35]. In the 1970s,
rather soon after it became clear that hadrons consist of quarks and gluons, and
the asymptotic behaviour of the strong interaction had been understood [36, 37], it
was suggested that quarks should be deconfined at high densities and temperatures,
e.g., in neutron stars and in the early universe [38, 39]. A heuristic argument for the
deconfinement of quarks at high density or temperature follows from the asymptotic
behaviour of the strong interaction. Since the strong force becomes arbitrarily weak
as quarks are squeezed closer together, matter should behave as an ideal Fermi gas
of quarks at asymptotically high densities and/or temperatures. A phase transition
from the confined hadronic phase to a deconfined phase, a so-called quark-gluon
plasma (QGP), is therefore expected at sufficiently high temperatures, T , or baryon
number chemical potentials, μB. This is illustrated by the phase diagram in Fig-
ure 4.1.

The exploration of the phase structure of high density matter is one of the
most active fields of strong-interaction physics. In particular, the main motivation
for the study of dense matter in relativistic heavy-ion collisions is the prospect of
observing the QGP. Experiments at the CERN Super Proton Synchrotron (SPS)
and the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory
(BNL) have already provided important clues about this novel state of matter. It
was recently announced that a plasma-like state of nuclear matter with an extremely
low ratio of shear viscosity to entropy has been created and detected in experiments
at RHIC. With the approaching commission of the Large Hadron Collider (LHC) at
CERN, the definite answer whether QGP exists should be within reach in the near-
future. Observations of neutron stars with, e.g., the Chandra X-ray Observatory,
the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Rossi
X-ray Timing Explorer, and the X-ray Multi-Mirror Mission (XMM-Newton) also
produce new information that are used to improve the models of high-density matter.
For example, during the last few years such observations have provided information

49
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Figure 4.1: Conjectured phase diagram of strongly interacting matter. Since quarks
are asymptotically free, a phase transition from the hadronic phase, where quarks
are confined, to a deconfined quark-gluon plasma (QGP) is expected at high values
of the baryon number chemical potential, μB, and temperature, T . The critical
temperature of the phase transition has been estimated to ∼ 170 − 200 MeV with
lattice QCD-calculations, see [40, 41] and references therein. The energy per nucleon
in ordinary nuclear matter, e.g., in 56Fe, is ∼ 930 MeV. High-density colour super-
conducting phases are omitted in this figure, see Chapter 5 for further information.
This diagram resembles early quark-matter phase diagrams, e.g., as in [42].

about the mass spectrum of neutron stars, which put constraints on the compact-
star sequence and, consequently, on the equation of state of high-density matter. In
particular, the observations1 of neutron stars with masses around 2 M� are difficult
to explain with some exotic models, such as bare quark stars. For more information,

1The masses of neutron stars are deduced, e.g., from timing observations of radio binary pulsars
and observations of binaries containing an accreting neutron star, which emits x-rays. Observations
of pulsar Doppler phenomenon in binaries yield information about orbital sizes and periods, from
which the total mass of the binaries can be deduced. In some compact binaries, relativistic effects,
e.g., Shapiro delay and orbit shrinkage due to the gravitational radiation reaction can be used to
constrain each mass in the binary.
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see Paper V and references therein. In the following, I will introduce some basic
concepts of quarks and the quark matter state. The interested reader is referred to
the literature for further information, see, e.g., [12, 43–48] and references therein.

4.1 Quarks and gluons

Hadrons are composite particles, composed of quarks. Two important subclasses
of hadrons are the mesons and the baryons, which are composed of, respectively,
a quark-antiquark pair and three quarks, plus a “sea” of virtual quark-antiquark
pairs and gluons. Quarks are strongly interacting particles, which means that they
interact by mediating gluons. Quarks also interact by the electromagnetic, the
weak nuclear and the gravitational force, but these three forces are several orders
of magnitude weaker than the strong interaction at microscopic scales. Analogous
to the electric charge, which is associated with the electromagnetic force, there are
charges associated with the strong interaction, so-called colour charges. Like colour,
which can be decomposed into three distinct components, e.g., red, green and blue,
the charge of quarks can be described with three independent components. It is
customary to denote these charges with red (r), green (g) and blue (b). Colour
was originally introduced in order to reconcile early quark models of baryons with
the Pauli exclusion principle. An additional quantum number was needed in order
to explain how quarks can coexist inside the proton, in otherwise identical states.
Unlike the charge-neutral photons, gluons carry colour charge. In fact, a gluon has
both colour and anticolour (r̄, ḡ, b̄) charge. Naively, there would hence be nine
different possibilities (rr̄, rḡ, rb̄, gr̄, gḡ, gb̄, br̄, bḡ and bb̄) for the charge of a gluon.
The colour-neutral superposition, rr̄ gḡ bb̄, does not, however, correspond to a gluon.
So there are only 8 independent gluons. Technically, Quantum Chromodynamics has
an SU(3) gauge symmetry and the number of gluons is equal to the dimension of
this group, which for SU(N) is N2−1. Since gluons carry both colour and anticolour
charges, a quark that interacts strongly changes colour. Gluons interact also with
each other.

Free quarks and gluons have never been detected. It is believed that they are al-
ways confined in composite colour-neutral aggregates, such as mesons and baryons.
So far, six different types (“flavours”) of quarks have been identified in particle
physics experiments. The flavours are: down (d), up (u), strange (s), charm (c), bot-
tom (b) and top (t). The masses2 and the electric charges of the six different quarks

2 The notion of mass for quarks is complicated, as they are bound in hadrons. In the renormal-
isation of a quantum field theory, a subtraction scheme must be used to remove the divergences
occurring in the calculations of physical quantities. The u, d and s quark masses are estimates of
so-called “current” quark masses in a mass-independent subtraction scheme, such as the minimal
subtraction [49], or the modified minimal subtraction scheme [50, 51]. The c and b quark masses
are the “running” masses obtained with the latter subtraction scheme, and the t quark mass is from
measurements at the Tevatron at Fermi National Accelerator Laboratory (Fermilab). The current
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Table 4-1: Electric charge and approximate masses of quarks [52].

Quark flavour u d s c b t

Mass [MeV] 1.5-3 3-7 70-120 1160-1340 ∼ 4500 ∼ 175000

Electric charge [e] +2
3 −1

3 −1
3 +2

3 −1
3 +2

3

are presented in Table 4-1. The strength of the force mediated by gluons diminishes
with increasing “interaction energy”, i.e., for large exchanges of momentum. This
phenomenon is called asymptotic freedom and was theoretically discovered already
in the early 1970s [36, 37]. Since quarks are asymptotically free, perturbation the-
ory and effective models of the strong interaction can be applied at high densities.
This discovery was a key development toward the emergence of a standard model of
particle physics based on quantum field theory.

4.2 The strange quark matter hypothesis

The idea that strange quark matter (SQM) may be the ground state of strongly
interacting dense matter, rather than normal atomic nuclei (56Fe), was proposed
already in the early 1970s [39], and later on in [53]. The essence of the SQM hy-
pothesis is that the energy per baryon, i.e., three quarks, in three-flavour quark
matter may be smaller than the ∼ 930 MeV per baryon in nuclear matter. This
could render the SQM phase more stable than nuclear matter and atomic nuclei.
If correct, the SQM hypothesis would have implications of fundamental importance
for our understanding of the early universe and its evolution. When RHIC was com-
missioned, one of the potential “disaster scenarios” was that the heavy-ion collisions
would create a small droplet of SQM, which would devour the Earth [54]. The main
argument against that is the empirical fact that the Moon still exists, even though it
is constantly exposed to cosmic rays with extremely high energies. This conclusion
is not foolproof, however, because in contrast to cosmic-ray events the centre of mass
is fixed in space in a heavy-ion collision.

In contrast to nuclei, where quarks are confined to individual colour-neutral
nucleons, SQM presumably is an extended or even macroscopic piece of matter,
which is composed of deconfined u, d and s quarks. An essential point is that a
large fraction of s quarks (ns ∼ nu ∼ nd) might be necessary for a stable droplet

mass is lower than the “constituent” mass of the quarks. As an example, the mass of a neutron is
∼ 940 MeV, while the total current mass of the quarks is mu + 2 md � 20 MeV. The additional
mass of the neutron is mainly due to the energy of the motion of quarks and of the strong force
field.
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of SQM to form, because hypernuclei, i.e., nuclei that contain baryons with non-
zero strangeness (hyperons), have higher masses than ordinary nuclei of the same
mass number. This might explain why quarks are confined into hadrons in ordinary
matter, as subsequent weak decay processes cannot create sufficient amounts of long-
lived s quarks for stable SQM to form. It is also possible that SQM is stable only
for a sufficiently large number of quarks, as surface effects could make hadronic
states energetically favourable for smaller systems. In any case, three-flavour quark
matter inevitably has lower energy than two-flavour quark matter at sufficiently high
densities, due to the additional Fermi sea of the s quarks.

Neglecting the influence of leptons, for simplicity, electric neutrality requires that
two-flavour quark matter is composed of twice as many d quarks as u quarks, see
Table 4-1. For a relativistic, degenerate Fermi system, the number densities, ni, are
related to the chemical potentials, μi, by

ni ∝ giμ
3
i , (4.1)

where gi is the degeneracy factor. For quarks, two spin states and three colour states
for each flavour yield gi = 6. Hence, if nd = 2nu, the chemical potentials are related
by

μd = 21/3μu. (4.2)

If the chemical potential of the d quarks is higher than the mass of the s quark, the
system can lower its energy by transforming some of the d quarks into s quarks by
weak interactions,

s + u ↔ d + u. (4.3)

This process continues until all three flavours are in equilibrium with respect to
weak interactions. At asymptotically high densities, the number densities and Fermi
energies of all three flavours should hence be equal. Actually, at sufficiently high
densities, all six flavours of quarks should be present in quark matter due to weak
interactions. Neutron stars, however, become unstable before the chemical potential
reaches the c quark mass. Quarks more massive than the s quark are therefore
absent in compact stars. The massive flavours, c, b and t are relevant only for the
hot and dense plasma in the early universe, and in particle physics experiments. See,
e.g., [12, 55] for a discussion about the non-appearance of charm quarks in compact
stars.

4.3 Quantum chromodynamics

The properties of the strong interaction are, in principle, described by Quantum
Chromodynamics (QCD). The QCD lagrangian density is

L = q̄ α
i

(
iγμDμ

αβ − mi

)
qβ
i − 1

4
F a

μνF
μν
a , (4.4)
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where mi are the current masses of the quark fields, qα
i , which have six flavour (u, d,

s, c, b, t) and three colour (r, g, b) degrees of freedom, see Section 4.1. Here, {i, j,
k} are flavour indices, {α, β, γ} are colour indices, and {a, b, c, d, e} are free indices
or dummy indices to be summed over. The colour gauge-invariant derivative, Dμ,
is

Dμ
αβ = δαβ∂ μ − ig

[λa]αβ

2
Gμ

a , (4.5)

where Gμ
a are the eight gluon fields, a = 1, ..., 8, and λa are the Gell-Mann matrices,

see Appendix B.3. The gluon field-strength tensor, Fμν
a , is defined as

Fμν
a = ∂ μG ν

a − ∂νGμ
a − gfabcG

μ
b G ν

c , (4.6)

where g is the strong interaction coupling constant and fabc are the SU(3)c group
structure constants, see Appendix B.3. The QCD Lagrangian is invariant under
SU(3) transformations in colour space. The strong interactions conserve baryon
number, electric charge and quark flavour. Only the weak interactions allow for
flavour change. The colour current density, jμ

a , and the colour charge generators,
Qa, are

jμ
a = ∂νF

μν
a , (4.7)

Qa =
∫

d3x jμ
a . (4.8)

Since isolated quarks and gluons have never been observed, only aggregates of quarks
and gluons with zero net colour charge (colour singlets) should have finite energy.
A consequence of this is discussed in Section 5.6.

Due to the presence of the last term in (4.6), QCD is a non-Abelian gauge the-
ory, i.e., the gluon fields do not commute. The non-Abelian character of QCD has
a number of implications that make it difficult to obtain quantitative predictions
from the theory, e.g., the gluons have colour charge and interact with other gluons,
as with themselves (self-coupling). This can readily bee seen by expanding the last
term in (4.4). There is one term that is linear in the coupling constant, g, (a three-
point interaction) and one term that is quadratic in g (a four-point interaction). Due
to the complexity of the theory, one has to rely on either Monte Carlo calculations
on a lattice of spacetime coordinates [56, 57] or on effective models. Until recently,
the Monte Carlo approach has been restricted to zero chemical potential and was
therefore not suitable for studying the properties of dense matter. It has also been
necessary to extrapolate the results for large values of the u and d current quark
masses. Recently, progress has been made both in the case of finite chemical poten-
tials and realistic current-quark masses, see, e.g., [41] and references therein. It is
still necessary, however, to rely on non-perturbative effective models of QCD to in-
vestigate the properties of bulk matter at intermediate densities. Some examples are
the MIT bag model, which is introduced in the next section, Nambu–Jona-Lasinio
type models, which are discussed in the next chapter, the instanton liquid model
[58], and random matrix models, see, e.g., [59].
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4.4 The MIT bag model

The most widely used description of quark matter is the MIT bag model [60], which
originally was developed as an effective model of hadrons [61–63]. In this model,
hadrons consist of free, or weakly interacting quarks confined to a small region of
space, the “bag”, by an artificial vacuum pressure. Formally, the bag is stabilised by
a term Bημν in the energy-momentum tensor inside the bag, where B is the so-called
bag constant. It follows that the bag constant gives a positive contribution to the
energy density inside the bag, and a negative contribution to its pressure. This is
analogous to a non-trivial vacuum with a positive pressure B and a negative energy
density −B. The pressure of the vacuum is balanced by the pressure of the quarks
inside the bag, which are therefore confined. The bag constant is treated as a free
parameter of the model, which can be fitted, e.g., to the hadron spectrum. Such
estimates typically yield B

1
4 � 100 − 200 MeV, while a somewhat higher value is

obtained by a fit to QCD sum-rule results, or to the critical temperature obtained
with lattice calculations, Tc � 170−200 MeV. For three quark flavours and a strange
quark mass chosen as ms = 150 MeV, a bag constant of B

1
4 � 155 MeV yields an

energy per baryon that is less than that in the 56Fe nucleus, see Figure 1 in [60].

For macroscopic systems, such as a quark core in a neutron star, the exact
solutions of the Dirac equation within the bag can be replaced with plane-wave
solutions. The partition function for each fermion degree of freedom is then given
by (3.71)

lnZ = 2V

∫
p2dp

2π2

{
ln
[
1 + e−β(ω−μ)

]
+ ln

[
1 + e−β(ω+μ)

]}
, (4.9)

where the zero-point energy is omitted, and d3p → 4πp2dp. According to (3.72) the
pressure, P , number densities, nf , and energy density, ε, are

P = −B + T
∑

f

∑
c

∂ lnZ

∂V
, (4.10)

nf =
T

V

∑
c

∂ lnZ

∂μf
, (4.11)

ε = B +
∑

f

∑
c

(
−T

∂ lnZ

∂V
+

T

V

∂T lnZ

∂T
+ μfnf

)
. (4.12)

where the sums account for the colour, c, and flavour, f , degrees of freedom, and the
contributions from the bag constant have been added. With (4.9), these quantities
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can be written

P = −B + 6T
∑

f

∫
p2dp

2π2

{
ln
[
1 + e−β(ωf−μf )

]
+ ln

[
1 + e−β(ωf+μf )

]}
, (4.13)

ε = B + 6
∑

f

∫
p2dp

2π2

[
ωf

eβ(ωf−μf ) + 1
+

ωf

eβ(ωf+μf ) + 1

]
, (4.14)

nf = 6
∫

p2dp

2π2

[
1

eβ(ωf−μf ) + 1
− 1

eβ(ωf+μf ) + 1

]
, (4.15)

where the dispersion relations are ωf = (p2 + m2
f )

1
2 . The factor 6 corresponds

to 2spin × 3colour degrees of freedom. The number density is the integral of the
Fermi-Dirac distribution function for particles, minus the distribution function for
antiparticles.

Zero temperature

In the zero-temperature limit, the Fermi-Dirac distribution becomes a step function
at energy μf . In this limit the momentum integrals can be evaluated,

P = −B + 6
∑

f

1
24π2

[
μfpf

(
μ2

f − 5m2
f

2

)
+

3m4
f

2
ln
(

μf + pf

mf

)]
, (4.16)

ε = B + 6
∑

f

1
8π2

[
μfpf

(
μ2

f − m2
f

2

)
− m4

f

2
ln
(

μf + pf

mf

)]
, (4.17)

nf =
∑

f

p3
f

π2
. (4.18)

The Fermi momentum, pf , is related to the chemical potential by μf = (m2
f + p2

f )
1
2 .

Massless quark approximation

Analytic solutions can be obtained also in the limit of zero quark masses,

P = −B + 6
∑

f

(
7

360
π2T 4 +

1
12

T 2μ2
f +

1
24π2

μ4
f

)
, (4.19)

ε = 3P + 4B, (4.20)

nf = T 2μf +
μ3

f

π2
. (4.21)

The expression (4.19) is valid for any massless fermion if the bag constant is omitted
and the degeneracy factor is adjusted accordingly. In particular, it is useful in the
description of neutrinos, see Paper VII.
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Gluons

The contribution to the pressure and energy density from a massless Bose gas of
gluons can be obtained from (3.45) with a degeneracy factor of 2spin × 8SU(3),

P =
8π2

45
T 4, (4.22)

ε = 3P. (4.23)

While the gluon (like the photon) is a vector boson with spin 1, massless gauge
bosons have two spin states only, because gauge invariance requires that the polari-
sation is transverse. The number of gluons is given by the dimension of the SU(3)
group, which for SU(N) is N2 − 1. Consequently, the degeneracy factor of gluons is
16, as taken into account above.





Chapter 5

Colour Superconductivity

The idea that quarks could form Cooper pairs in dense QGP originates from the
mid-1970s [38]. However, except for a few investigations [64–66], this possibility did
not get much attention at that time. Nearly two decades later, non-perturbative
low-energy models of QCD were used to show that the diquark pairing gaps could
be of the order of 100 MeV [67–69]. This is much larger than predicted by the
earlier models. The investigation of the QCD phase diagram at high densities has
since gained momentum, and a rich phase structure has been identified [44–47, 70–
79]. The main reason for studying strongly interacting matter at low temperature
and high density is that these conditions exist naturally in neutron stars. For a
discussion of potential observable consequences of superconducting quark matter,
see, e.g., Paper III, Paper V, Paper VII, and references therein.

A qualitative argument for the formation of superconducting condensates in
dense quark matter follows directly from the asymptotic freedom of the strong force
[36, 37], and the pairing instability of weakly interacting Fermi systems [80]: For a
macroscopic system of non-interacting fermions at low temperature, T ∼ 0, all states
are occupied up to the Fermi momentum, pF , and nearly all other states are empty,
i.e., the occupied states form a Fermi sphere. The free energy cost, |E(�pF ) − μ|,
for creating a quark at the Fermi surface is zero. Consequently, the presence of
a weak attraction between the quarks will lower the free energy and render the
Fermi sphere unstable. According to the Bardeen-Cooper-Schrieffer (BCS) theory
[81, 82], a condensate of Cooper pairs will therefore form, which creates a gap in the
energy spectrum that forbids excitations with vanishing free energy. This is anal-
ogous to ordinary superconductors, except that quarks come in different flavours,
and have both colour and electric charge (thereby the name ‘colour superconductiv-
ity’). The existence of a pairing gap in the excitation spectrum of cold interacting
Fermi systems has recently been verified in experiments [83]. An illustration of the
conjectured phase diagram of strongly interacting matter is presented in Figure 5.1.
Some relevant astrophysical phenomena, and (existing and planned) particle physics
experiments are depicted also.

59
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Figure 5.1: Conjectured phase diagram of strongly interacting matter. Since quarks
are asymptotically free [36, 37], a phase transition from the hadronic phase, where
quarks are confined, to a deconfined quark-gluon plasma (QGP) is expected at high
baryon number chemical potentials, μB, and temperatures, T . The critical temper-
ature of the phase transition has been estimated to ∼ 170 − 200 MeV with lattice
QCD calculations, see [40, 41] and references therein. The energy per nucleon in
ordinary nuclear matter, e.g., in 56Fe, is ∼ 930 MeV. Asymptotic freedom suggests
that a Fermi surface of nearly free quarks should form at high density. Since a
Fermi surface is unstable with respect to formation of Cooper pairs in the presence
of a weak attractive force [80], QGP is expected to be a superconductor at low
temperature and high density. See the text for further information.

In the following, after a brief review of the theory of classical superconductivity,
I introduce the model of colour superconducting quark matter presented in Pa-
per III. The further developments in Paper IV, Paper V and Paper VII are rather
self-contained and are therefore not repeated here. For an introduction to supercon-
ducting quark matter, see also [84].

5.1 Introduction to classical superconductivity

At the beginning of the 20th century the Dutch physicist Onnes created liquid he-
lium, thereby reaching the nearest approach to zero temperature then achieved. A
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few years later, in 1911, he discovered that the electric resistance goes to zero when
mercury is cooled at about 4.2 K. Other metals, such as tin and lead showed a
similar behaviour. He found that the transition temperature of this new “supracon-
ducting” state was of the order of 1 − 10 K and that the width of the transition
was narrow, ∼ 10−5 K. By the early 1950s, experimentalists had shown that the
transition temperature is inversely proportional to the square root of the atomic
mass, the so-called isotope effect. Consequently, it was realised that the ions must
be dynamically involved in the transition. This led Fröhlich [85] and, independently,
Bardeen [86] to deduce that superconductivity was caused by a phonon-mediated
electron-electron interaction in the metal, i.e., interactions between the electrons
and the thermal vibrations of the crystal. A few years later, Cooper showed that
this interaction should lead to the formation of bound states (Cooper pairs) at the
Fermi surface [80] and in 1957 the first microscopic theory (later rewarded with the
physics Nobel Prize) of superconductivity was published by Bardeen, Cooper and
Schrieffer [81], the so-called BCS theory.

In this section, some basic microscopic aspects of superconductivity are dis-
cussed. Readers interested in the applications and the physical properties of su-
perconductors are referred to one of the classical books on the subject, e.g., [87].
For a detailed discussion on superconductivity in relativistic systems, see [66]. The
purpose of this section is merely to provide some theoretical background for the
discussion of colour superconductivity in subsequent sections.

Electron-phonon interactions

In order to understand the basic properties of the superconducting state, it is in-
structive to study the phonon-mediated interaction in some detail. The second-order
scattering process is illustrated by Figure 5.2. Using renormalisation group meth-
ods, it has been shown that the one-loop correction to this process is marginal and
higher-order processes are irrelevant [88]. Unlike electromagnetic radiation, there

ωq

k1

k′
1

k2

k′
2

Figure 5.2: Diagram of the second-order phonon-mediated electron-electron inter-
action in classical superconductors.

is a maximum frequency of phonons. The minimum wavelength of a phonon is ef-
fectively twice the distance, a, between ions in the crystal and the corresponding
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maximum frequency is the Debye frequency,

ωD =
vs

a
(6π2)1/3. (5.1)

Here, vs is the speed of sound, which can be estimated with the Bohm-Staver relation

v2
s =

Zm

3M
v2
f , (5.2)

where Z (M) is the charge number (mass) of the ions, m the electron mass, and vf

the Fermi velocity. In the ground state the electron density, ne, is related to the
Fermi momentum, pf , by

ne =
(pf/�)3

3π2
. (5.3)

The electron density depends on the charge of the ions and the lattice constant,
ne = Z/a3. The Fermi energy is

εf =
p2

f

2m
. (5.4)

It follows that the maximum phonon energy, �ωD, is related to the Fermi energy by

�ωD

εf
=

(
28/3

3
Z1/3m

M

)1/2

. (5.5)

Because m 	 M , the maximum phonon energy is several orders of magnitude
smaller than the Fermi energy. Phonon-mediated interactions therefore affect elec-
trons only in a thin shell in the vicinity of the Fermi surface. The momentum of
the electron pair is conserved in the scattering process, so the wave vectors sat-
isfy k1 + k2 = k′

1 + k′
2 = kCM . If the pair has a finite centre-of-mass momen-

tum, �kCM 
= 0, the overlap in phase space is significantly reduced, see Figure 5.3.
Consequently, the interaction is most likely for electrons with opposite momenta and
spin.

So far there is no information about the effect of the interaction. Is it repulsive
or attractive? In order to answer this question qualitatively, one can consider the
change in energy of a metal when the electrons interact with the phonons. If the
interaction is described by a term in the hamiltonian, V, the change in the energy
of the system can be estimated with second-order perturbation theory,

ΔE =
∑

i

|〈0|V|i〉|2
E0 − Ei

. (5.6)

Neglecting higher-order processes, the energy of an intermediate state, Ei, created
by emission of a phonon differs from that of the ground state, E0, by

Ei − E0 = εk′ + �ωq − εk. (5.7)
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k1

k′
1

k2
k′

2

k1 −k2

kCM

(a) (b)

Figure 5.3: Overlap in phase space for electrons scattered by the exchange of
phonons. a) The phonon-mediated interaction is restricted to a thin shell of energy
width �ωD in the vicinity of the Fermi surface. b) Electrons with a finite centre-
of-mass momentum, �kCM , have a significantly reduced overlap in phase space.
Consequently, the interaction is effective only if k1 � −k2.

There is one such intermediate state for every pair of occupied and unoccupied one-
electron levels in the unperturbed ground state. Denoting the matrix elements in
(5.6) gk,k′ , and accounting for both emission and absorption of phonons, the energy
difference is a sum over all pairs of occupied and unoccupied levels

ΔE =
∑
k,k′

nk(1 − nk′)
( |gk,k′ |2

εk − εk′ − �ωq
+

|gk,k′ |2
εk′ − εk − �ωq

)

=
∑
k,k′

nk(1 − nk′)|gk,k′ |2 −2�ωq

(�ωq)2 − (εk − εk′)2
, (5.8)

where nk and nk′ are occupation numbers. For a more rigorous discussion of the
electron-phonon interaction, see [88, 89], or the original paper by Fröhlich [85].

It follows from (5.8) that the phonon-mediated interaction is attractive when
|εk − εk′ | < �ωq. The major contribution to ΔE comes from phonons of maximum
energy, because the density of states increases with momentum. Consequently, the
phonon interaction is attractive within a thin shell, |εk − εk′ | � �ωD, in the vicinity
of the Fermi surface. The spread in momentum space is Δp ∼ �ωD/vf , and the
corresponding spatial spread can be estimated with (5.1), (5.2), and the quantum
uncertainty relation

Δx ∼ �

Δp
∼ vf

ωD
∼ a(6π2)−1/3

(
3M

Zm

)1/2

∼ a

√
M

m
. (5.9)

Thus, this is a long-range interaction. For |εk − εk′ | 	 �ωq, the interaction is inde-
pendent of the k direction. The wave function should therefore be symmetric. Since
the individual electrons have antisymmetric wave functions, the spin wavefunctions
should also be antisymmetric. Thus, the phonon-mediated attraction mainly affects
electrons with opposite momenta and spin, located in a thin shell in the vicinity of
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the Fermi surface. In addition, there is a repulsive Coulomb interaction, but it is
short-ranged due to screening and is therefore neglected here.

Cooper pairs

The existence of a phonon-mediated net attraction between electrons near the Fermi
surface does not imply that bound states should form, because in three dimensions,
two particles must interact with a certain minimum strength to form a bound state.
Since the interaction is rather weak, one could expect that this should not occur.
However, Cooper was the first to realise that due to the influence of the remaining
electrons on the interacting pair, a bound state will form [80]. Coopers calculation
showed that in the presence of a Fermi sphere, bound states (Cooper pairs) form at
the Fermi surface for any strength of the attractive interaction.

In order to understand why this is the case, consider two interacting electrons
that propagate above the Fermi sea. The electrons satisfy the Schrödinger equation

[H0(x1) + H0(x2) + V(x1,x2)] ψ(x1,x2) = Eψ(x1,x2). (5.10)

In absence of interactions, the spatial part of the wavefunction is a combination of
two plane waves, ψV=0 ∝ exp(ik1 · x1) exp(ik2 · x2). The interactions mainly affect
pairs of electrons with opposite spin and momenta, k2 = −k1, so if the coupling is
weak, the wavefunction can be approximated with a spin-singlet variational state on
the form

ψ(x1,x2) =
1√
2

(| ↑1〉 ⊗ | ↓2〉 − | ↑2〉 ⊗ | ↓1〉)
∑

|k|≥kf

gkeik·(x1−x2). (5.11)

The Schrödinger equation then yields∑
|k|≥kf

gk [2εk + V(x1 − x2)] eik·(x1−x2) = E
∑

|k|≥kf

gkeik·(x1−x2). (5.12)

The corresponding (Fourier-transformed) expression in k-space is∑
k′

gk′Ṽkk′ = (E − 2εk)gk, (5.13)

Ṽkk′ =
1
V

∫
d3xV(x)ei(k−k′)·x,

where V is the normalisation volume. The phonon-mediated interaction is attractive
only within a thin shell in the vicinity of the Fermi surface. The interaction can
therefore be modelled as constant within the shell

Ṽkk′ ≡
{

−λ, |εk − εf | ≤ �ωD, |εk′ − εf | ≤ �ωD,
0 otherwise.

(5.14)



65

The Schrödinger equation (5.13) then simplifies to

−λ
∑
k′

gk′ = (E − 2εk)gk =⇒

−λ
∑
k

1
E − 2εk

∑
k′

gk′ =
∑
k

gk =⇒

−λ
∑
k

1
E − 2εk

= 1. (5.15)

As is customary, the sum over k is approximated by an integral. If this integral
is independent of the direction of k, i.e., if the material is homogenous and there
are no external fields, it can be reformulated as a one-dimensional integral over the
density of states

∑
k

�
∫

d3k

(2π)3
�
∫ εf+�ωD

εf

dε ν(ε). (5.16)

The density of states is approximately constant over the integration interval, ν(ε) �
ν(εf ), because �ωD 	 εf . Equation (5.15) can therefore be written

λν(εf )
∫ εf+�ωD

εf

dε

2ε − E

=
λν(εf )

2
ln
(

E − 2εf − 2�ωD

E − 2εf

)
= 1. (5.17)

Hence, the energy of the electron pair is

E =
2εf

[
e

2
λν(εf ) − 1

]
− 2�ωD

e
2

λν(εf ) − 1
. (5.18)

In the weak-coupling limit, λν(εf ) 	 1, this simplifies to

E ∼ 2εf − 2�ωDe
− 2

λν(εf ) . (5.19)

This means that the energy of a electron-pair with k > kf is below 2εf , i.e., the con-
tribution to the energy from the attractive interaction outweighs the excess kinetic
energy. The pair is therefore bound for any strength of the interaction. Observe that
the binding energy in (5.18) is not analytic at λ = 0, i.e., it cannot be expressed in
a power series. Consequently, the energy of a Cooper pair is non-perturbative in λ.

The phonon-mediated interaction is effective at long range, and it mainly affects
pairs of electrons with opposite momenta. Unlike ordinary bound states, such as
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molecules, Cooper pairs are therefore not localised in the medium. Explicitly, the
spread of the wavefunction is given by

〈x2〉 =
∫

ddxx2|g(x)|2∫
ddx |g(x)|2 �

∑
k |∂kg�k

|2∑
k |gk|2 �

∫ εf+�ωD

εf

4�
2v2

fdε

(E − 2ε)4∫ εf+�ωD

εf

dε

(E − 2ε)2

, (5.20)

where g(x) ∝ ∑k gkexp(ik · x), ∂k = (∂εk/∂k)∂ε = �vf∂ε, and from the first step
in (5.15), gk ∝ (E − 2εk)−1. If the coupling is weak, λν(εf ) 	 1, it follows that

〈x2〉1/2 � e
2

λν(εf )

√
3

vf

ωD
. (5.21)

This expression is similar to the estimate for the range of the phonon interaction
(5.9), with an extra coupling-dependent factor. Indeed, vf/ωD ∼ a

√
M/m ∼ 103 Å,

so Cooper pairs are not localised objects. In fact, the size of a Cooper pair ex-
ceeds the interparticle distance by several orders of magnitude. Consequently, the
pairs overlap and a more rigorous theory of superconductivity should therefore take
collective effects into account.

BCS theory

As illustrated above, two independent electrons in the Fermi sea have higher energy
than a Cooper pair. The Fermi sea should therefore be unstable with respect to
the formation of Cooper pairs. Consequently, equilibrium requires that the Fermi
sea is modified such that the binding energy of an additional pair is zero. Indeed,
in the derivation of the binding energy of a pair, the presence of a Fermi surface
is inevitable. One could therefore suspect that if the Fermi surface is disturbed,
the binding energy of additional Cooper pairs could vanish. One year after Cooper
had published his paper on the pairing instability, Bardeen, Cooper and Schrieffer
published the first theory of superconductivity [81], the BCS theory, which was
formulated by the method of second quantisation, see Section 3.1 for an example.
The BCS hamiltonian is

HBCS =
∑
k

εk

(
a†k↑ak↑ + a†k↓ak↓

)
− λ

V

∑
kk′

a†k↑a
†
−k↓a−k′↓ak′↑, (5.22)

where the first sum accounts for the one-electron energies, and the second sum
accounts for the attractive (λ > 0) pairing interaction due to exchange of virtual
phonons. The interaction term corresponds to scattering of a pair of electrons (k ↑,
−k ↓) to (k′ ↑, −k′ ↓). Here, it is assumed that the interaction strength is constant
within a thin shell in the vicinity of the Fermi surface, as in (5.14). In the original
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BCS theory, an approximate solution was obtained with the help of a variational
ansatz for the wavefunction, and by minimising the energy with respect to the
variational parameter. The solution obtained is the ‘gap equation’

1 =
λ

2

∑
k

⎧⎨
⎩

tanh
[

β
2 (ε2

k + Δ2)
1
2

]
(ε2

k + Δ2)
1
2

⎫⎬
⎭ , (5.23)

where εk = �
2k2/(2m) − εf is the dispersion relation of non-interacting electrons,

Δ is the energy gap and β = 1/(kBT ). An alternative derivation of this result, with
the functional integral and HS transformation methods introduced in Chapter 3 is
provided in [90].

If the density of states, ν(ε), is approximated by its value at the Fermi energy,
ν(εf ), within a thin shell of width �ωD in the vicinity of the Fermi surface, the gap
equation can be written

1 =
λν(εf )

2

∫
�ωD

0

dε

E(ε)
tanh

[
βE(ε)

2

]
, (5.24)

where E(ε) = (ε2 +Δ2)
1
2 is the dispersion relation of Cooper pairs. Two interesting

limits can be deduced from this expression. In the limit T → 0, the hyperbolic
tangent is unity, and (5.24) simplifies to

1 =
λν(εf )

2
ln
[

2�ωD

Δ(T = 0)

]
=⇒ Δ(T = 0) = 2�ωDe

− 2
λν(εf ) . (5.25)

Observe that this result is consistent with the estimate of the Cooper pair energy
(5.19). The critical temperature, Tc, where the superconducting state is destroyed
by thermal excitations can be obtained from (5.24) in the limit Δ → 0. The result
is

1 =
λν(εf )

2

∫
�ωD

0

dε

ε
tanh

(
βε

2

)
=

λν(εf )
2

[
ln
(

2β�ωD

π

)
+ γ

]
=⇒ Tc =

eγ

πkB
2�ωDe

− 2
λν(εf ) =

eγ

πkB
Δ(T = 0), (5.26)

where γ � 0.577 is the Euler–Mascheroni constant, and the last equality follows
from (5.25). Consequently, in units where kB = 1, the critical temperature is

Tc � 0.57Δ(T = 0). (5.27)

This result applies not only to ordinary superconductors, it is a good estimate also
for the critical temperature of colour superconductors, see, e.g., Figure 3 in Paper IV.
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5.2 The Nambu–Jona-Lasinio model

The Nambu–Jona-Lasinio (NJL) model was originally developed by Nambu and
Jona-Lasinio in 1961 [91, 92] in order to explain the mass gap in the spectrum of
interacting nucleons (quarks were not invented at that time). Their idea was that
the gap could be explained analogously to the energy gap in the BCS theory of
superconductors, see the discussion in the previous section. In order to explain
the large nucleon mass in terms of (nearly) massless fermions, Nambu and Jona-
Lasinio introduced a Lagrangian for a nucleon field, ψ, with a point-like four-fermion
interaction,

L = ψ̄(i∂/ − m)ψ + g
[
(ψ̄ψ)2 + (ψ̄iγ5τψ)2

]
. (5.28)

Here, m is the bare mass of the nucleon, g is a coupling constant and τ is a Pauli
matrix acting in isospin space, see Appendix B.1. The self-energy induced by the
four-point interaction generates an effective mass of the nucleon, which can be higher
than the bare mass, even when m = 0. The NJL model has later been reinter-
preted as as schematic model of deconfined quarks, which incorporates the effect
of density and temperature dependent effective (“constituent”) quark masses in a
self-consistent way. For further information about NJL models of quark matter, see
[72]. The relation between NJL models and QCD is discussed in, e.g., [93, 94].

5.3 Lagrangian of three-flavour quark matter

The starting point in the derivation of the three-flavour model of colour supercon-
ducting1 quark matter presented in Paper III is an NJL-type lagrangian with a
quark-quark interaction term, Lqq,

Leff = q̄(i∂/ − m̂ + μ̂γ0)q + GS

8∑
a=0

[
(q̄τaq)2 + (q̄iγ5τaq)2

]
+ Lqq. (5.29)

Here, m̂ = diag(mu, md, ms) is the current-quark mass matrix in flavour space, and
μ̂ is the chemical potential matrix in colour and flavour space. The dimensionful
coupling constant, GS , is determined by a fit to low-energy results. For a = 1...8, τa

are the generators of SU(3), i.e., the Gell-Mann matrices, and τ0 =
√

2/3 × . The
quark fields, q, in flavour and colour space are

q = (ψur, ψug, ψub, ψdr, ψdg, ψdb, ψsr, ψsg, ψsb) , (5.30)

where each entry is a Dirac spinor, and q̄ ≡ q†γ0. This lagrangian can be obtained
from a generic local four-point interaction, g(q̄Oq)2, by Fierz transformations. For
further information, see, e.g., Appendix A in [72].

1Strictly speaking, NJL-type models describe colour superfluid quark matter, see [72], p. 80.
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The pseudoscalar terms, (q̄iγ5τaq)2, are essential for the chiral symmetry of the
lagrangian. However, calculations suggest that the pseudoscalar condensed phases
are separated from the superconducting phases by a first-order phase transition [79].
Also, instanton interactions favour the scalar interactions at high density [67, 68].
The pseudoscalar condensates are therefore omitted in the following, as they should
exist only at high temperature and do not affect the models of quark/hybrid stars
considered in this work, see Figure 14 and 15 in Paper VII. Furthermore, the sum
over a includes the following flavour-mixing terms,

(q̄τ1q)2 = (ψ̄uψd)2 + (ψ̄dψu)2 + ψ̄uψdψ̄dψu + ψ̄dψuψ̄uψd, (5.31)
(q̄τ2q)2 = −(ψ̄uψd)2 − (ψ̄dψu)2 + ψ̄uψdψ̄dψu + ψ̄dψuψ̄uψd, (5.32)
(q̄τ4q)2 = (ψ̄uψs)2 + (ψ̄sψu)2 + ψ̄uψsψ̄sψu + ψ̄sψuψ̄uψs, (5.33)
(q̄τ5q)2 = −(ψ̄uψs)2 − (ψ̄sψu)2 + ψ̄uψsψ̄sψu + ψ̄sψuψ̄uψs, (5.34)
(q̄τ6q)2 = (ψ̄dψs)2 + (ψ̄sψd)2 + ψ̄dψsψ̄sψd + ψ̄sψdψ̄dψs, (5.35)
(q̄τ7q)2 = −(ψ̄dψs)2 − (ψ̄sψd)2 + ψ̄dψsψ̄sψd + ψ̄sψdψ̄dψs, (5.36)

which are omitted also, as they violate flavour conservation. Here, the colour indices
of the quark fields have been omitted, because these terms are diagonal in colour
space.

The quark-quark term, Lqq, in (5.29) represents an effective interaction between
quarks, which should account for the most important attractive features of QCD
at high density. This attractive force gives rise to a Cooper pairing instability at
the Fermi surface, analogously to the instability caused by the attractive phonon
mediated interaction in ordinary superconductors, see Section 5.1. It is customary
to refer to the quark Cooper pairs as “diquarks”, even though it is clear that these
objects are not localised bound states. Originally, the concept of a diquark (a two-
quark system) comes from descriptions of hadron structure and hadron interactions,
see [95] and references therein, and the interpretation in that context is different.
Here, a diquark condensate is defined as an ensemble expectation value,

〈qTOq〉, (5.37)

where O is a local operator acting in the Dirac, flavour and colour spaces. Since
quarks are fermions and obey the Pauli principle, {ψa, ψb} = 0, the operator O must
be antisymmetric

qTOq = Oabqagb = −Oabqbga = −qTOT q. (5.38)

There are many possible operators that satisfy this condition, see [72]. However, the
most important diquark condensates are on the form

sab = 〈qT Cγ5τaλbq〉, (5.39)
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where C is the charge conjugation operator, see Appendix B, and λb (τa) are the
antisymmetric Gell-Mann matrices, λ2, λ5 and λ7, in colour (flavour) space. The
corresponding contribution to the lagrangian density is

Lqq = GD

∑
a=2,5,7

∑
b=2,5,7

(q̄iγ5τaλbCq̄T )(qT Ciγ5τaλb q), (5.40)

where GD is the coupling constant. This is the scalar colour-antitriplet channel,
which is the most attractive channel in one-gluon exchange and instanton-mediated
interactions. The symmetric Gell-Mann matrices correspond to a repulsive sex-
tet channel, and the corresponding condensates are known to be “weak”, i.e., the
sextet energy gap at the Fermi surface is relatively small as compared to the colour-
antitriplet gap [96–99]. These two interactions are depicted in Figure 5.4. While

qiα

qiα′

qjβ

qjβ′

= 3̄︸︷︷︸
attractive
(λ2, λ5, λ7)

+ 6︸︷︷︸
repulsive

( , λ1, λ3, λ4, λ6, λ8)

Figure 5.4: A diagrammatic representation of a perturbative QCD one-gluon ex-
change between two quarks with flavours (colours) i (α) and j (β). The antisym-
metric combinations correspond to attractive colour-antitriplet channels, while the
symmetric combinations are repulsive sextet channels.

small gaps affect the transport properties of quark matter and are essential in mod-
els of, e.g., hybrid-star cooling [19, 100, 101], to lowest order, the EoS depends on
the square of the gap and is therefore affected mainly by the antitriplet channel. As
the results presented in this thesis would be practically unaffected by the presence
of small gaps that do not significantly modify the EoS of high-density matter, only
the colour-antitriplet quark-quark channel is considered here.

In general, (5.39) is a 3 × 3 matrix with orthogonal rows and columns in colour
and flavour space. This matrix can be brought to triangular form by SU(3) rotations
in colour space and U(3) transformations in flavour space, so (5.39) has six non-zero
elements, out of which five can be chosen2 to be real [72]. Two phases can be rotated
away by diagonal SU(3) transformations in colour space, and the remaining three
phases are removed by U(3) transformations in flavour space. Observe that SU(3)-
flavour is explicitely broken by the unequal current quark masses, in particular

2In principle, one should average over the phases of the condensates when calculating the ex-
pectation values, which then would vanish. A condensate will arise due to some initial asymmetry,
which causes the system to condense in a particular “direction”. This is analogous to the magneti-
sation of the Ising model. Here, the direction can be chosen such that the diagonal condensates are
real.
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by the relatively large strange quark mass. Numerically it is found that the off-
diagonal elements vanish, so only the diagonal elements are considered here. Indeed,
a Ginzburg-Landau analysis shows that there are two ground states [72],

s22 
= 0 and sab = 0 if (a, b) 
= (2, 2), (5.41)
s22 = s55 = s77 
= 0 and sab = 0 if a 
= b. (5.42)

These are the two-flavour colour superconducting (2SC) phase and the colour-flavour
locked (CFL) phase. It has been shown that for three flavours, the ground state of
QCD at asymptotic densities is the CFL phase [98, 102]. For three degenerate
flavours, the same is true for NJL-type models. In the following sections, I will show
briefly how to derive a mean-field thermodynamic potential from the NJL lagrangian.
The additional interaction terms and details considered in the appended papers can
be treated in a similar way and are therefore omitted here.

5.4 Partition function and bosonisation

The NJL lagrangian described in the previous section is the starting point in the
derivation of the partition function and the effective potential of three-flavour colour
superconducting quark matter. The partition function can be formulated using the
results in Chapter 3. It follows from (3.61) that

Z(T, μ̂) =
∫

Diq†Dq exp

{∫ β

0
dτ

∫
d3x

[
q̄
(−γ0∂τ + iγ · ∇ − m̂ + μ̂γ0

)
q

+GS

∑
a=0,3,8

(q̄τaq)2 + GD

∑
A=2,5,7

(q̄iγ5τAλACq̄T )(qT iCγ5τAλAq)

]}
. (5.43)

The sum over a is∑
a=0,3,8

(q̄τaq)2 =
2
3

[
(ψ̄uψu)2 + (ψ̄dψd)2 + (ψ̄sψs)2

+2ψ̄uψuψ̄dψd + 2ψ̄uψuψ̄sψs + 2ψ̄dψdψ̄sψs

]
+(ψ̄uψu)2 + (ψ̄dψd)2 − 2ψ̄uψuψ̄dψd

+
1
3

[
(ψ̄uψu)2 + (ψ̄dψd)2 + 4(ψ̄sψs)2

+2ψ̄uψuψ̄dψd − 4ψ̄uψuψ̄sψs − 4ψ̄dψdψ̄sψs

]
= 2

[
(ψ̄uψu)2 + (ψ̄dψd)2 + (ψ̄sψs)2

]
, (5.44)

where the colour indices of the quark spinors are omitted, because these interaction
terms are diagonal in colour space. The four-fermion interactions in (5.43) can be
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transformed to quadratic terms with the help of

(
qT iCγ5τaλbq

)†
= q†λ†

bτ
†
aγ†

5C
†(−i)q∗

= q†λbτaγ5(−C)(−i)q∗

= q†λbτaγ5γ
0γ0Ciq∗

= q†λbτa(−γ0γ5)
[−C(γ0)T

]
iq∗

= q†γ0iγ5τaλbC(γ0)T q∗

= q̄iγ5τaλbCq̄T , (5.45)

and the HS transformation rules (3.84) and (3.90),

Z(T, μ̂) =
∫

Diq†DqDφu Dφd Dφs DΔ22 DΔ55 DΔ77 DΔ∗
22 DΔ∗

55 DΔ∗
77

×exp

{∫ β

0
dτ

∫
d3x

[
q̄
(−γ0∂τ + iγ · ∇ − m̂ + μ̂γ0

)
q

−φ2
u + φ2

d + φ2
s

8GS
− φuψ̄uψu c − φdψ̄dψd c − φsψ̄sψs c

+
∑

A=2,5,7

−|ΔAA|2
4GD

+
ΔAA

2
(q̄iγ5τAλACq̄T ) +

Δ∗
AA

2
(qT iCγ5τAλA q)

]}
. (5.46)

Here, φa and ΔAA are the auxiliary fields introduced by the HS transformations.
This expression can be simplified further with the renormalised quark masses,

M̂ = m̂ + diagf (φu, φd, φs) = diagf (mu + φu, md + φd, ms + φs). (5.47)

The partition function can then be written

Z(T, μ̂) =
∫

Diq†DqDφu Dφd Dφs DΔ22 DΔ55 DΔ77 DΔ∗
22 DΔ∗

55 DΔ∗
77

×exp

{∫ β

0
dτ

∫
d3x

[
q̄(−γ0∂τ + iγ · ∇ − M̂ + μ̂γ0)q −

∑
a=u, d, s

φ2
a

8GS
−
∑

A=2, 5, 7

|ΔAA|2
4GD

+
1
2

∑
A=2,5,7

ΔAA(q̄iγ5τAλACq̄T ) + Δ∗
AA(qT iCγ5τAλA q)

]}
. (5.48)

In order to evaluate the functional integrals over quark fields, one introduces
8-component Nambu-Gorkov spinors,

Ψ =
1√
2

[
q
q̄T

]
and Ψ̄ = Ψ†γ0 =

1√
2

[
q̄ qT

]
. (5.49)
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The free-particle (Dirac) term then separates into two terms, one for q̄ and q, and
one for qT and q̄T , each carrying a factor 1/2. The partition function becomes

Z(T, μ̂) =
∫

DiΨ†DΨDφu Dφd Dφs DΔ22 DΔ55 DΔ77 DΔ∗
22 DΔ∗

55 DΔ∗
77

×exp

[∫ β

0
dτ

∫
d3x

(
−
∑

a=u, d, s

φ2
a

8GS
−
∑

A=2, 5, 7

|ΔAA|2
4GD

+ Ψ̄S(τ, x)Ψ

)]
, (5.50)

S(τ, x) =

(−γ0∂τ + iγ · ∇ − M̂ + μ̂γ0 i
∑

A ΔAAγ5τAλAC

i
∑

A Δ∗
AACγ5τAλA −γ0∂τ + iγT · ∇ + M̂ − μ̂γ0

)
, (5.51)

where S(τ, x) is the inverse propagator of the Nambu-Gorkov fields. From here on,
the derivation is analogous to that in Chapter 3, except that the final result has to
be divided by a factor 2 to compensate for the double counting in the functional
integrals over the Nambu-Gorkov fields. First expand the Nambu-Gorkov spinors in
Fourier series

Ψα(τ,x) = V − 1
2

∑
n

∑
p

ei(p·x+ωnτ)Ψ̃α; n(p). (5.52)

The functional integrals over Nambu-Gorkov fields then simplify to a product of
integrals over the Fourier amplitudes, i.e., an expression analogous to (3.65), and
the inverse propagator in momentum space is

S(iωn,p) =

(−iωn − γ0γ · p − M̂γ0 + μ̂ i
∑

A ΔAAγ0γ5τAλAC

i
∑

A Δ∗
AACγ0γ5τAλA −iωn − γ0γT · p + M̂γ0 − μ̂

)
, (5.53)

where ωn are the fermion Matsubara frequencies (3.64). In order to evaluate the
fermion determinant (3.68), note that

S(iωn,p) = −iωn + D(p), (5.54)

D(p) =

( −γ0γ · p − M̂γ0 + μ̂ i
∑

A ΔAAγ0γ5τAλAC

i
∑

A Δ∗
AACγ0γ5τAλA −γ0γT · p + M̂γ0 − μ̂

)
. (5.55)

Then arrange the orthonormal eigenvectors of the hermitian matrix D(p) in the
columns of a matrix X. The identity (D.1) then gives

det S(iωn,p) = det [−iωn + D(p)] = det
[−iωn + X−1D(p)X

]
= det [−iωn + diag(λ1, λ2, λ3, . . . , λN )]
= (−iωn + λ1)(−iωn + λ2)(−iωn + λ3) . . . (−iωn + λN ), (5.56)

where λa are the eigenvalues of the hermitian matrix D(p). These eigenvalues appear
in ± pairs, thanks to the Nambu-Gorkov basis, and the determinant can therefore
be written

det S(iωn,p) =
N/2∏
a=1

(ω2
n + λ2

a), (5.57)
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where one eigenvalue from each ± pair is omitted, i.e., there are N/2 products.
Consequently, the partition function is

Z(T, μ̂) =
∫

Dφu Dφd Dφs DΔ22 DΔ55 DΔ77 DΔ∗
22 DΔ∗

55 DΔ∗
77

×
∏
n

∏
p

N/2∏
a=1

β2
(
ω2

n + λ2
a

)× exp

⎡
⎣−βV

⎛
⎝ ∑

b=u, d, s

φ2
b

8GS
+
∑

A=2, 5, 7

|ΔAA|2
4GD

⎞
⎠
⎤
⎦ , (5.58)

where λa are the positive (or negative) eigenvalues of the matrix (5.55), which is
identical to Eq. 13 in Paper III and the matrix in [103]. An explicit representation
of this matrix in colour and flavour space is provided in the Appendix of Paper III.
It is possible to derive other matrices D(p) that have the same eigenspectrum as
(5.55), e.g., with the use of

(q̄iγ5τAλACq̄T )(qT iCγ5τAλAq) = (qT Cγ5τAλAq)†(qT Cγ5τAλAq), (5.59)

a matrix without the imaginary factor i in the off-diagonal elements is obtained. If
the Nambu-Gorkov spinors are defined in a different way, a matrix where the charge
conjugation operators are absent in the off-diagonal elements can be obtained, see,
e.g., [72]. Observe that the quark fields are no longer present in the partition function
(5.58), only the sum over fermion Matsubara frequencies remains. This is a so-called
bosonised formulation of the partition function. In order to evaluate the functional
integrals over the auxiliary fields, it is necessary3 to make further approximations,
e.g., as in [104]. In the following, I will illustrate how to obtain the mean-field
approximation of the model, which is the method used in the appended papers.

5.5 Mean-field thermodynamic potential

The grand canonical thermodynamic potential is related to the partition function
obtained in the previous section by

Ωq(T, μ̂) = −T lnZ

V
. (5.60)

Here, the index q denotes that this is the contribution from quarks only, as leptons
have not yet been considered. In the mean-field (MF) approximation, the auxiliary
fields are fixed at the extremum of the potential. Consequently, for each auxiliary
field, φ, there is a gap equation on the form

∂

∂φ

T lnZ

V

∣∣∣∣
φ≡φMF

= 0. (5.61)

3Observe that the eigenvalues λa are functions of the auxiliary fields, as φa enters the renor-
malised masses (5.47) and ΔAA appears explicitly in the matrix (5.55).
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Using the fact that all ΔAA can be chosen to be real, see the discussion in Section 5.3,
and noting that

∂

∂φ
lnZ =

1
Z

∂Z

∂φ
, (5.62)

one gets that that

− 2φa

8GS
− 〈ψ̄aψa〉 = 0, (5.63)

−2ΔAA

4GD
+ 〈q̄iγ5τAλACq̄T 〉 = 0. (5.64)

The mean-field values of the fields therefore are

φa = −4GS〈ψ̄aψa〉, (5.65)
ΔAA = 2GD〈q̄iγ5τAλACq̄T 〉. (5.66)

This result has little practical use, however, because the values of all φa and ΔAA

have to be determined numerically at the global minimum of the potential, Ωq(T, μ̂).
With the expressions for the partition function (5.58) and the thermodynamic

potential (5.60), and the standard result for the Matsubara sum (3.78), the expres-
sion for the mean-field potential becomes

Ωq(T, μ̂) =
∑

a=u, d, s

φ2
a

8GS
+
∑

A=2, 5, 7

|ΔAA|2
4GD

−1
2

∫
d3p

(2π)3

N/2∑
b=1

[
λb + 2T ln

(
1 + e−λb/T

)]
. (5.67)

Here, a factor of 1/2 has been inserted to compensate for the double-counting in the
functional integrals over Nambu-Gorkov fields. There are 72 eigenvalues, because
N = 3flavour×3colour×4Dirac×2Nambu-Gorkov = 72. These eigenvalues, which represent
the quasiparticle dispersion relations, are obtained numerically from (5.55). The
thermodynamic potential should be minimised with respect to the gaps,

∂Ωq

∂φu
=

∂Ωq

∂φd
=

∂Ωq

∂φs
= 0, (5.68)

∂Ωq

∂Δ22
=

∂Ωq

∂Δ55
=

∂Ωq

∂Δ77
= 0. (5.69)

Observe that it is not sufficient to find a solution to these gap equations, because
unphysical local minima normally exist. Only the global minimum corresponds to a
physical equilibrium state. A useful method to solve the gap equations is described
in Appendix E and Appendix F. As τA in ΔAA combines two flavours for each value
of A, the diquark gaps can be denoted with flavour indices, e.g., ΔAA = Δud. This
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notation is used in some of the appended papers. It is essential that the vacuum
contribution to the potential is subtracted,

Ω0 ≡ Ωq(0, 0) =
φ2

0u + φ2
0d + φ2

0s

8GS
− 6
∑

i

∫
d3p

(2π)3

√
M2

i + p2, (5.70)

where φ0a are the self-consistent vacuum solutions for φa. In addition, the contri-
bution from leptons should be added to the potential. This is straightforward, and
the results are presented in Paper III and Paper VII.

5.6 Charge neutrality

Bulk matter in compact stars should be electric- and colour-charge neutral. Strictly
speaking, matter should be in a colour-singlet state, but the free energy cost for
projecting a colour-neutral system into the colour-singlet state is negligible in the
thermodynamic limit [105]. Therefore, only local colour neutrality is considered in
this work. There are in total four conserved charges, the electric charge and three
colour charges. The electric charge density, nQ, is

nQ =
2
3
nu − 1

3
nd − 1

3
ns − ne, (5.71)

where ne is the number density of electrons. The contribution from muons could
be included also, and the effect is significant for the existence of mixed phases, see
Paper VII. For the colour charges it is practical to introduce the following linear
combinations of charge densities [72]

n3 = nr − ng, (5.72)

n8 =
1√
3

(nr + ng − 2nb) , (5.73)

n = nr + ng + nb, (5.74)

where n is the total quark number density. The baryon number density is propor-
tional to the quark number density, n, so baryon number is also a conserved quantity.
The conserved charges in (5.71)-(5.74) have four associated chemical potentials, μQ,
μ3, μ8 and μ. The number densities are related to the chemical potentials by the
standard relation

na = −∂Ωq

∂μa
. (5.75)

The chemical potential matrix in colour and flavour space is

μ̂ = μ +
(

τ3

2
+

τ8

2
√

3

)
μQ + λ3μ3 + λ8μ8, (5.76)
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where λa (τa) are Gell-Mann generators in colour (flavour) space. The quark number
chemical potential, μ, is related to the baryon number chemical potential by μ =
μB/3. Matter is electric- and colour-charge neutral if

nQ = n3 = n8 = 0. (5.77)

Thus, according to (5.75), the charge neutrality conditions are

∂Ωq

∂μQ
=

∂Ωq

∂μ3
=

∂Ωq

∂μ8
= 0. (5.78)

These equations should be solved in parallel with the gap equations (5.68)-(5.69).
For further information about charge neutrality, see Paper VII. A useful method to
solve the charge neutrality equations is described in Appendix E and Appendix F.
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Appendix A

Units

A.1 Natural units

The speed of light in vacuum, c, and the reduced Planck constant, �, are frequently
encountered constants in high-energy physics. It is therefore convenient to choose
units such that these two constants are set to unity. In these so-called natural units,
length, time and mass are related by

c = 1 = 2.9979 × 108 m s−1, (A.1)
� = 1 = 1.0546 × 10−34 kg m2 s−1. (A.2)

Energy and mass are related by E = mc2, so these quantities have the same unit. If
the unit of energy is electron volt, 1 eV = 1.6022 × 10−19 J, and the unit of length
is femtometre, fm = 10−15 m, it follows that

�c = 197.33 MeV fm, (A.3)
� = 6.5821 × 10−22 MeV s. (A.4)

The following conversion factors are useful

1 GeV3 = 1.3015 × 102 fm−3, (A.5)
1 GeV4 = 1.3015 × 105 MeV fm−3, (A.6)
1 MeV fm−3 = 1.7827 × 1012 g cm−3. (A.7)

It is convenient to choose the unit of temperature such that Boltzmann’s constant
is set to unity,

kB = 1 = 8.6173 × 10−5 eV K−1. (A.8)

Temperatures can then be expressed in electron volt,

1 MeV = 1.1605 × 1010 K. (A.9)
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A.2 Gravitational units

For compact star calculations, it is convenient to choose units such that c = G = 1.
In these units, length, time and mass are related by

c = 1 = 2.9979 × 108 m s−1, (A.10)
G = 1 = 6.6742 × 10−11 m3 kg−1 s−2. (A.11)

It is customary to express all quantities in kilometres, km = 103 m. The following
conversion factors are useful

1 s = 2.9979 × 105 km, (A.12)
1 kg = 7.4237 × 10−31 km, (A.13)
1 g cm−3 = 7.4237 × 10−19 km−2. (A.14)

The total gravitational mass of a star is typically given in units of the solar mass,

1 M� = 1.9891 × 1030 kg = 1.4766 km. (A.15)

An amusing fact is that it is the product GM that is measured in celestial mechanics,
not the mass itself. The gravitational constant, G, is determined by experiments,
similar to that by Cavendish (who improved and conducted the experiment invented
by Michell). As the value of the gravitational constant is known only with a few
digits of precision, the mass of the sun is more accurately known in kilometres than
in kilogrammes!

A.3 Conversion factors

The properties of compact stars depend on both the microscopic physics of high-
density matter and the general relativistic hydrostatic (/dynamic) equations. As it
is customary to use natural units in microscopic calculations, and gravitational units
in calculations of the stellar structure, it is necessary to convert units in-between
these systems. The following conversion factor is useful

1 MeV fm−3 = 1.3234 × 10−6 km−2, (A.16)

because it can be used to convert both pressures and energy densities. Obviously,
great care has to be taken when converting units in-between these systems, as the
number of conditions (G = c = � = 1) is equal to the number of dimensions.



Appendix B

Matrices and Generators

B.1 Pauli matrices

The Pauli matrices, σa, are infinitesimal generators of SU(2), which typically are
used to describe the spin of non-relativistic fermions. In the standard basis

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (B.1)

These matrices satisfy the commutation and anticommutation relations

[σa, σb] = 2i εabc σc, (B.2)
{σa, σb} = 2δab, (B.3)

and are traceless and hermitian.

B.2 Dirac matrices

The Dirac matrices, γμ = (γ0, γ1, γ2, γ3), are defined by the anticommutation re-
lations {γμ, γν} = 2ημν , where ημν is the Minkowski metric. In the Weyl (/chiral)
basis, the Dirac matrices are

γ0 =
[

0
0

]
, γa =

[
0 σa

−σa 0

]
, (B.4)

where is the 2x2 identity matrix and σa are the Pauli matrices. In this represen-
tation, the chirality matrix is

γ5 ≡ γ5 ≡ iγ0γ1γ2γ3 =

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (B.5)
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and the charge conjugation matrix is

C = iγ2γ0 =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ . (B.6)

The following relations are useful

C−1 = C† = CT = −C, (B.7)
C−1γμC = −(γμ)T . (B.8)

B.3 Gell-Mann matrices

The Gell-Mann matrices, λa, are infinitesimal generators of SU(3),

λ1 =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ , λ2 =

⎡
⎣ 0 −i 0

i 0 0
0 0 0

⎤
⎦ ,

λ3 =

⎡
⎣ 1 0 0

0 −1 0
0 0 0

⎤
⎦ , λ4 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ ,

λ5 =

⎡
⎣ 0 0 −i

0 0 0
i 0 0

⎤
⎦ , λ6 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ ,

λ7 =

⎡
⎣ 0 0 0

0 0 −i
0 i 0

⎤
⎦ , λ8 = 1√

3

⎡
⎣ 1 0 0

0 1 0
0 0 −2

⎤
⎦ .

(B.9)

These satisfy the commutation relations,

[λa, λb] = ifabcλc, (B.10)

where fabc are the antisymmetric group structure constants. The Gell-Mann matri-
ces are used, e.g., to describe colour charge, in a similar way as the Pauli matrices are
used to describe spin and isospin. Like the Pauli matrices, the Gell-Mann matrices
are traceless and hermitian.



Appendix C

Thermodynamic Relations

The following is a list of useful relations frequently encountered in thermal field the-
ory. For more information, see Chapter 3. If variational parameters are introduced,
e.g., condensates, the equalities defined below hold at the extremum with respect to
variations of these parameters. For a system described by a hamiltonian, H, and a
set of conserved number operators, N̂i, the grand canonical partition function is

Z(μ, T, V ) = Tr e−β(H−μiN̂i). (C.1)

Here, μi are the chemical potentials conjugate to the conserved charges and β = 1/T
(in units where kB = 1). The number operators are hermitian and commute with H,
as well as with each other. In most modern applications, it is convenient to express
the partition function as a functional integral of the fields

Z(μ, T, V ) = N

∫
[φ] eS , (C.2)

where N is a normalisation factor and S is the action,

S =
∫ β

0
dτ

∫
d3xL. (C.3)

The grand canonical thermodynamic potential is

Ω(μ, T ) = −T lnZ

V
. (C.4)

The pressure, P , is related to the thermodynamic potential by

P (μ, T ) = −Ω(μ, T ), (C.5)

at the minimum of Ω with respect to any variational parameters. The entropy
density, s, and number densities, ni, are

s(μ, T ) =
∂P (μ, T )

∂T
, (C.6)

ni(μ, T ) =
∂P (μ, T )

∂μi
. (C.7)
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As the pressure in vacuum is zero, the thermodynamic potential should be nor-
malised such that P0 = −Ω(0, 0) = 0. The energy density, ε, then is

ε = Ts +
∑

i

μi ni − P. (C.8)



Appendix D

Determinants

Determinants occur naturally in thermal field theory, because the trace in the parti-
tion function (C.1) is typically evaluated from the identity Tr lnS = ln det S. The
following relations are useful

|a + A| =
∣∣a + B−1AB

∣∣ , (D.1)∣∣∣∣ A B
C D

∣∣∣∣ =
∣∣ A

∣∣ ∣∣ D − CA−1B
∣∣ , (D.2)

where A, B, C, and D are NxN matrices, |S| ≡ det S, a is a scalar, and is the
identity matrix. The first relation (D.1) follows from

|a + A| = |B−1B| |a + A| = |B−1| |B| |a + A| = |B−1| |a + A| |B|
= |B−1a B + B−1AB| = |a + B−1AB|, (D.3)

for any invertible matrix B. The block matrices in the second relation (D.2) should
be ordered wisely with the help of the identities∣∣∣∣ A B

C D

∣∣∣∣ =
∣∣∣∣ D C

B A

∣∣∣∣ = (−1)N

∣∣∣∣ B A
D C

∣∣∣∣ = (−1)N

∣∣∣∣ C D
A B

∣∣∣∣ . (D.4)

These relations can be used recursively to evaluate and simplify determinants. The
dimension of the operator is reduced by a factor two for each recursion. The trade-off
is that the inverse of one submatrix must be evaluated for each recursion (in numer-
ical applications) or that the matrix elements become more involved (in analytical
applications). The proof of (D.2) is straightforward. If A has an inverse, it follows
that [

0
−CA−1

] [
A B
C D

]
=
[

B
0 −CA−1B + D

] [
A 0
0

]
. (D.5)
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Cofactor expansion yields ∣∣∣∣ A 0
0

∣∣∣∣ =
∣∣ A

∣∣ , (D.6)∣∣∣∣ 0
−CA−1

∣∣∣∣ = 1, (D.7)∣∣∣∣ B
0 −CA−1B + D

∣∣∣∣ =
∣∣ D − CA−1B

∣∣ . (D.8)

Since det(AB) = det(A) det(B) it follows that∣∣∣∣ A B
C D

∣∣∣∣ = ∣∣ A
∣∣ ∣∣ D − CA−1B

∣∣ . (D.9)



Appendix E

Derivatives of the Potential

The thermodynamic potential is on the form

Ω(μ, T ) = Ω0 − γ

2

∫
d3p

(2π)3

N∑
i=1

[
λi(p, μ)

2
+ T ln

(
1 + e−λi(p,μ)/T

)]
, (E.1)

where λi(p, μ) are the eigenvalues of a hermitian matrix and γ = 72/N is the eigen-
value degeneracy factor, i.e., γ = 1 if all 72 degrees of freedom in flavour, colour,
Dirac, and Nambu-Gorkov space are summed over. Typically, some eigenvalues
are equal, or differ only in the sign, and can therefore be omitted if γ is adjusted
accordingly. The entropy density is

s = −∂Ω
∂T

=
γ

2

∫
d3p

(2π)3

N∑
i=1

[
ln
(
1 + e−λi(p,μ)/T

)
+

λi(p, μ)/T

1 + eλi(p,μ)/T

]
, (E.2)

and any number density, na, can be obtained from the formula

na = − ∂Ω
∂μa

=
γ

2

∫
d3p

(2π)3

N∑
i=1

∂λi

∂μa

[
1
2
− 1

1 + eλi(p,μ)/T

]
. (E.3)

The entropy density and number densities are needed to calculate the energy density,
ε = sT +

∑
a naμa + Ω, and the conserved charges that should be neutralised. The

gap equations are on a similar form,

0 =
∂Ω
∂Δb

=
∂Ω0

∂Δb
− γ

2

∫
d3p

(2π)3

N∑
i=1

∂λi

∂Δb

[
1
2
− 1

1 + eλi(p,μ)/T

]
, (E.4)

where Δb is a gap (or any other variational parameter). Consequently, all relevant
quantities that can be derived from the thermodynamic potential can be calculated
(integrated) in parallel. The derivatives of the eigenvalues are calculated with the
method described in the following appendix, and can be obtained practically at the
cost of computing the eigenvectors.
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Appendix F

Derivatives of Eigenvalues

Let A be an NxN hermitian matrix with eigenvalues λi and eigenvectors vi, where
i = 1...N . Let the elements of A be functions of a variable x. The derivatives of the
eigenvalues with respect to x are

∂λi

∂x
=

1

v†i vi

× v†i
∂A

∂x
vi. (F.1)

Proof: The eigenvalue equation is

(A − λI) v = 0. (F.2)

Since A is hermitian, it follows that

v† (A − λI) = 0. (F.3)

The derivative of the eigenvalue equation with respect to x is

∂

∂x
(Av − λv) =

∂A

∂x
v + (A − λI)

∂v

∂x
− ∂λ

∂x
v = 0. (F.4)

Multiply with v† from the left-hand side

v†
∂A

∂x
v + v† (A − λI)

∂v

∂x
− v†

∂λ

∂x
v = 0. (F.5)

The second term is zero, so the expression simplifies to

v†
∂A

∂x
v − v†

∂λ

∂x
v = 0, (F.6)

which can be written
∂λ

∂x
=

1
v†v

× v†
∂A

∂x
v. (F.7)
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Abstract

In the context of the standard model of particle physics, there is a definite upper limit to the density of stable compact stars.
However, if a more fundamental level of elementary particles exists, in the form of preons, stability may be re-established
beyond this limiting density. We show that a degenerate gas of interacting fermionic preons does allow for stable compact stars,
with densities far beyond that in neutron stars and quark stars. In keeping with tradition, we call these objects “preon stars”,
even though they are small and light compared to white dwarfs and neutron stars. We briefly note the potential importance of
preon stars in astrophysics, e.g., as a candidate for cold dark matter and sources of ultra-high energy cosmic rays, and a means
for observing them.
© 2005 Elsevier B.V. All rights reserved.

PACS: 12.60.Rc; 04.40.Dg; 97.60.-s; 95.35.+d

Keywords: Preons; Preon stars; Compact objects; Dark matter; Cosmic rays

1. Introduction

The three different types of compact objects tradi-
tionally considered in astrophysics are white dwarfs,
neutron stars (including quark and hybrid stars), and
black holes. The first two classes are supported by
Fermi pressure from their constituent particles. For
white dwarfs, electrons provide the pressure counter-
balancing gravity. In neutron stars, the neutrons play

E-mail addresses: c.johan.hansson@ltu.se (J. Hansson),
fredrik.sandin@ltu.se (F. Sandin).

this role. For black holes, the degeneracy pressure is
overcome by gravity and the object collapses indefi-
nitely, or at least to the Planck density.

The distinct classes of degenerate compact stars
originate directly from the properties of gravity, as was
made clear by a theorem of Wheeler and collabora-
tors in the mid 1960s [1]. The theorem states that for
the solutions to the stellar structure equations, whether
Newtonian or relativistic, there is a change in stabil-
ity of one radial mode of normal vibration whenever
the mass reaches a local maximum or minimum as a
function of central density. The theorem assures that
distinct classes of stars, such as white dwarfs and neu-

0370-2693/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2005.04.034
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tron stars, are separated in central density by a region
in which there are no stable configurations.

In the Standard Model of particle physics (SM), the
theory of the strong interaction between quarks and
gluons predicts that with increasing energy and den-
sity, the coupling between quarks asymptotically fades
away [2,3]. As a consequence of this “asymptotic free-
dom”, matter is expected to behave as a gas of free
fermions at sufficiently high densities. This puts a def-
inite upper limit to the density of stable compact stars,
since the solutions to the stellar equations end up in
a never-ending sequence of unstable configurations,
with increasing central density. Thus, in the light of
the standard model, the densest stars likely to exist are
neutron stars, quark stars or the potentially more dense
hybrid stars [4–6]. However, if there is a deeper layer
of constituents, below that of quarks and leptons, as-
ymptotic freedom will break down at sufficiently high
densities, as the quark matter phase dissolves into the
preon subconstituent phase.

There is a general consensus among the particle
physics community, that something new should appear
at an energy-scale of around one TeV. The possibilities
are, e.g., supersymmetric particles, new dimensions
and compositeness. In this Letter we consider “preon
models” [7,8], i.e., models in which quarks and lep-
tons, and sometimes some of the gauge bosons, are
composite particles built out of more elementary pre-
ons. If fermionic preons exist, it seems reasonable that
a new type of astrophysical compact object, a preon
star, could exist. The density in preon stars should far
exceed that inside neutron stars, since the density of
preon matter must be much higher than the density of
nuclear and deconfined quark matter. The sequence of
compact objects, in order of increasing compactness,
would thus be: white dwarfs, neutron stars, preon stars
and black holes.

2. Mass–radius relations

Assuming that a compact star is composed of non-
interacting fermions with mass mf , the non-general
relativistic (Chandrasekhar) expression for the maxi-
mum mass is [9,10]:

(1)M � 1

m2
f

(
h̄c

G

)3/2

.

This expression gives a correct order of magnitude es-
timate for the mass of a white dwarf and a neutron
star. For quark stars, this estimate cannot be used lit-
erally, since the mass of quarks cannot be defined in a
similar way as for electrons and neutrons. However,
making the simplifying assumption that quarks are
massless and subject to a ‘bag constant’, a maximum
mass relation can be derived [11]. The bag constant is
a phenomenological parameter. It represents the strong
interactions that, in addition to the quark momenta,
contribute mass–energy to deconfined quark matter,
i.e., in the same way as the bag constant for ordinary
hadrons [12]. The result in [11] is somewhat similar
to the Chandrasekhar expression, but the role of the
fermion mass is replaced by the bag constant B:

(2)M = 16πBR3

3c2
,

(3)R = 3c2

16
√

πGB
.

For preon stars, one can naively insert a preon
mass of mf � 1 TeV/c2 in Eq. (1) to obtain a preon
star mass of approximately one Earth mass (M⊕ �
6 × 1024 kg). However, the energy scale of one TeV
should rather be interpreted as a length scale, since
it originates from the fact that in particle physics ex-
periments, no substructure has been found down to a
scale of a few hundred GeV (h̄c/GeV � 10−18 m).
Since preons must be able to give light particles, e.g.,
neutrinos and electrons, the “bare” preon mass pre-
sumably is fairly small and a large fraction of the
mass–energy should be due to interactions. This is
the case for deconfined quark matter, where the bag
constant contributes more than 10% of the energy den-
sity. Guided by this observation, and lacking a quan-
titative theory for preon interactions, we assume that
the mass–energy contribution from preon interactions
can be accounted for by a bag constant. We estimate
the order of magnitude for the preon bag constant
by fitting it to the minimum density of a composite
electron, with mass me = 511 keV/c2 and “radius”
Re � h̄c/TeV � 10−19 m. The bag-energy is roughly
4B〈V 〉 [12], where 〈V 〉 is the time-averaged volume
of the bag (electron), so the bag constant is:

B � E

4〈V 〉 � 3 × 511 keV

16π(10−19 m)3
� 104 TeV/fm3

(4)�⇒ B1/4 � 10 GeV.
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Fig. 1. The maximum mass and corresponding central density ρc of a preon star vs. the bag constant B . The solid lines represent the general
relativistic OV solutions, while the dashed line represents the Newtonian (Chandrasekhar) estimate. Despite the high central density, the mass
of these objects is below the Schwarzschild limit, as is always the case for static solutions to the stellar equations. M⊕ � 6 × 1024 kg is the
Earth mass.

Fig. 2. The maximum radius and the corresponding first three eigenmode oscillation frequencies (f0, f1, f2) vs. the bag constant. The solid
line in the left-hand picture is the “apparent” radius, R∞ = R/

√
1 − 2GM/Rc2, as seen by a distant observer. The dashed line represents the

general relativistic coordinate radius obtained from the OV solution, while the dotted line represents the Newtonian (Chandrasekhar) estimate.
Since the fundamental mode f0 is real (ω2

0 > 0), preon stars with mass below the maximum are stable, for each value of B .

Inserting this value of B in Eqs. (2), (3), we obtain an
estimate for the maximum mass, Mmax � 102 M⊕, and
radius, Rmax � 1 m, of a preon star.

Since B1/4 � 10 GeV only is an order of magnitude
estimate for the minimum value of B , in the following,
we consider the bag constant as a free parameter of the
model, with a lower limit of B1/4 = 10 GeV and an
upper limit chosen as B1/4 = 1 TeV. The latter value
corresponds to an electron “radius” of h̄c/103 TeV �
10−22 m. In Figs. 1 and 2 the (Chandrasekhar) maxi-
mum mass and radius of a preon star are plotted as a
function of the bag constant.

Due to the extreme density of preon stars, a general
relativistic treatment is necessary. This is especially
important for the analysis of stability when a preon star
is subject to small radial vibrations. In this introduc-
tory article we will neglect the effects of rotation on
the composition. Thus, we can use the Oppenheimer–
Volkoff (OV) equations [13] for hydrostatic, spheri-
cally symmetric equilibrium:

(5)
dp

dr
= −G(p + ρc2)(mc2 + 4πr3p)

r(rc4 − 2Gmc2)
,
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(6)
dm

dr
= 4πr2ρ.

Here p is the pressure, ρ the total density and m =
m(r) the mass within the radial coordinate r . The to-
tal mass of a preon star is M = m(R), where R is the
coordinate radius of the star. Combined with an equa-
tion of state (EoS), p = p(ρ), obtained from some
microscopic theory, the OV solutions give the possi-
ble equilibrium states of preon stars.

Since no theory for the interaction between preons
yet exists, we make a simple assumption for the EoS.
The EoS for a gas of massless fermions is ρc2 = 3p

(see, e.g., [14]), independently of the degeneracy fac-
tor of the fermions. By adding a bag constant B , one
obtains ρc2 = 3p + 4B . This is the EoS that we have
used when solving the OV equations. The obtained
(OV) maximum mass and radius configurations are
also plotted in Figs. 1 and 2.

3. Stability analysis

A necessary, but not sufficient, condition for stabil-
ity of a compact star is that the total mass is an increas-
ing function of the central density dM/dρc > 0 [14].
This condition implies that a slight compression or ex-
pansion of a star will result in a less favourable state,
with higher total energy. Obviously, this is a neces-
sary condition for a stable equilibrium configuration.
Equally important, a star must be stable when subject
to radial oscillations. Otherwise, any small perturba-
tion would bring about a collapse of the star.

The equations for the analysis of such radial modes
of oscillation are due to Chandrasekhar [15]. An
overview of the theory, and some applications, can be
found in [16]. For clarity, we reproduce some of the
important points. Starting with the metric of a spheri-
cally symmetric equilibrium stellar model

ds2 = −e2ν(r) dt2 + e2λ(r) dr2

(7)+ r2(dθ2 + sin2(θ) dφ2),
and the energy–momentum tensor of a perfect fluid,
Tμν = (ρ + p)uμuν + pgμν , the equation governing
radial adiabatic oscillations can be derived from Ein-
stein’s equation. By making an ansatz for the time de-
pendence of the radial displacement of fluid elements

of the form:

(8)δr(r, t) = r−2eν(r)ζ(r)eiωt ,

the equation simplifies to a Sturm–Liouville eigen-
value equation for the eigenmodes [15,16]:

(9)
d

dr

(
P

dζ

dr

)
+

(
Q + ω2W

)
ζ = 0.

The coefficients P , Q and W are [16] (in geometric
units where G = c = 1):

(10)P = Γ r−2peλ(r)+3ν(r),

Q = eλ(r)+3ν(r)

[
(p + ρ)−1r−2

(
dp

dr

)2

(11)− 4r−3 dp

dr
− 8πr−2p(p + ρ)e2λ(r)

]
,

(12)W = (p + ρ)r−2e3λ(r)+ν(r),

where the adiabatic index Γ is:

(13)Γ = p + ρ

p

(
∂p

∂ρ

)
S

.

The boundary conditions for ζ(r) are that ζ(r)/r3 is
finite or zero as r → 0, and that the Lagrangian varia-
tion of the pressure,

(14)p = −Γpeν

r2

dζ

dr
,

vanishes at the surface of the star.
A catalogue of various numerical methods for the

solution of Eq. (9) can be found in [17]. In principle,
we first solve the OV equations, thereby obtaining the
metric functions λ(r) and ν(r), as well as p(r), ρ(r)

and m(r). Then, the metric functions λ(r) and ν(r)

must be corrected for, so that they match the Schwarz-
schild metric at the surface of the star (see, e.g., [14]).
Once these quantities are known, Eq. (9) can be solved
for ζ(r) and ω2 by a method commonly known as the
“shooting” method. One starts with an initial guess on
ω2, and integrates Eq. (9) from r = 0 to the surface
of the star. At this point ζ(r) is known, and p can
be calculated. The number of nodes of ζ(r) is a non-
decreasing function of ω2 (due to Sturm’s oscillation
theorem). Thus, one can continue making educated
guesses for ω2, until the correct boundary condition
(p = 0) and number of nodes are obtained. This
method is simple to use when only a few eigenmodes
are needed.
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Fig. 3. The mass and the first three eigenmode oscillation frequencies (f0, f1, f2) vs. the central density ρc of preon stars. Here, a fixed value
of B1/4 = 100 GeV has been used. For the maximum mass configuration, the fundamental mode f0 has zero frequency, indicating the onset of
instability. Preon stars with mass and density below the maximum mass configuration of this sequence are stable.

Due to the time dependence in Eq. (8), a neces-
sary (and sufficient) condition for stability is that all
ω2

i are positive. Since ω2
i are eigenvalues of a Sturm–

Liouville equation, and governed by Sturm’s oscilla-
tion theorem, it is sufficient to prove that the funda-
mental mode, ω2

0, is greater than zero for a star to be
stable. In Fig. 3 the first three oscillation frequencies,
fi = ωi/2π , for various stellar configurations with
B1/4 = 100 GeV are plotted. In agreement with the
turning point theorem of Wheeler et al. [1], the onset
of instability is the point of maximum mass, as ω2

0 be-
comes negative for higher central densities. Thus, for
this value of the bag constant, preon stars are stable up
to the maximum mass configuration. In order to see
if the same is true for other values of B , we plot the
first three oscillation frequencies as a function of B ,
choosing the maximum radius configuration for each
B . The result can be found in Fig. 2. Indeed, the pre-
vious result is confirmed; all configurations up to the
maximum mass are stable.

The eigenmode frequencies for radial oscillations
of preon stars are about six orders of magnitude higher
than for neutron stars. This result can also be obtained
by making a simple estimate for the frequency of the
fundamental mode. The radius of a preon star is a
factor of ∼ 105 smaller than neutron stars. Hence, if
the speed of sound is similar in preon stars and neu-
tron stars, the frequency would increase by a factor of
∼ 105, giving GHz frequencies. If the speed of sound
is higher in preon stars, say approaching the speed of

light, the maximum frequency is ∼108 m s−1/0.1 m �
1 GHz. Thus, in either case, GHz oscillation frequen-
cies are expected for preon stars.

4. Potential astrophysical consequences and
detection

If preon stars do exist, and are as small as 10−1–
10−4 m, it is plausible that primordial preon stars (or
“nuggets”) formed from density fluctuations in the
early universe. As this material did not take part in
the ensuing nucleosynthesis, the abundance of preon
nuggets is not constrained by the hot big bang model
bounds on baryonic matter. Also, preon nuggets are
immune to Hawking radiation [18] that rapidly evapo-
rates small primordial black holes, making it possible
for preon nuggets to survive to our epoch. They can
therefore serve as the mysterious dark matter needed
in many dynamical contexts in astrophysics and cos-
mology [19,20].

Preon stars born out of the collapse of massive or-
dinary stars [21] cannot contribute much to cosmolog-
ical dark matter, as that material originally is bary-
onic and thus constrained by big bang nucleosynthe-
sis. However, they could contribute to the dark mat-
ter in galaxies. Roughly 4% of the total mass of the
universe is in baryonic form [22], but only 0.5% is
observed as visible baryons [23]. Assuming, for sim-
plicity, that all dark matter ρDM = 10−25 g/cm3 in
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spiral galaxies, e.g., our own Milky Way, is in the
form of preon stars with mass 1024 kg, the number
density of preon stars is of the order of 104 per cu-
bic parsec (1 pc � 3.1 × 1016 m). This translates into
one preon star per 106 solar system volumes. However,
even though it is not ruled out a priori, the possibility
to form a very small and light preon star in the collapse
of a large massive star remains to be more carefully
investigated. In any case, preon nuggets formed in the
primordial density fluctuations could account for the
dark matter in galaxies. The existence of such objects
can in principle be tested by gravitational microlens-
ing experiments.

Today there is no known mechanism for the ac-
celeration of cosmic rays with energies above ∼ 1017

eV. These so-called ultra-high energy cosmic rays
[24] (UHE CR) are rare, but have been observed
with energies approaching 1021 eV. The sources of
UHE CR must, cosmologically speaking, be nearby
(� 50 Mpc � 150 million light years) due to the GZK-
cutoff energy ∼ 1019 eV [25,26], since the cosmic
microwave background is no longer transparent to cos-
mic rays at such high energies. This requirement is
very puzzling, as there are no known sources capable
of accelerating UHE CR within this distance. Preon
stars open up a new possibility. It is known that neu-
tron stars, in the form of pulsars, can be a dominant
source of galactic cosmic rays [27], but cannot explain
UHE CR. If for preon stars we assume, as in models of
neutron stars, that the magnetic flux of the parent star
is (more or less) frozen-in during collapse, induced
electric fields more than sufficient for the accelera-
tion of UHE CR become possible. As an example,
assume that the collapse of a massive star is slightly
too powerful for the core to stabilize as a 10 ms pulsar
with radius 10 km, mass 1.4M� (M� � 2 × 1030 kg
is the mass of our sun) and magnetic field 108 T,
and instead collapses to a preon star state with ra-
dius 1 m and mass 102M⊕. An upper limit estimate
of the induced electric field of the remaining “preon
star pulsar” yields ∼ 1034 V/m, which is more than
enough for the acceleration of UHE CR. Also, such
strong electric fields are beyond the limit where the
quantum electrodynamic vacuum is expected to break
down, |E| > 1018 V/m, and spontaneously start pair-
producing particles [28]. This could provide an intrin-
sic source of charged particles that are accelerated by
the electric field, giving UHE CR. With cosmic ray

detectors, like the new Pierre Auger Observatory [29],
this could provide means for locating and observing
preon stars.

5. Conclusions

In this Letter we argue that if there is a deeper layer
of fermionic constituents, so-called preons, below that
of quarks and leptons, a new class of stable compact
stars could exist. Since no detailed theory yet exists
for the interaction between preons, we assume that
the mass–energy contribution from preon interactions
can be accounted for by a ‘bag constant’. By fitting
the bag constant to the energy density of a compos-
ite electron, the maximum mass for preon stars can be
estimated to ∼ 102M⊕ (M⊕ � 6 × 1024 kg being the
Earth mass), and their maximum radius to ∼ 1 m. The
central density is at least of the order of 1023 g/cm3.
Preon stars could have formed by primordial density
fluctuations in the early universe, and in the collapse
of massive stars. We have briefly noted their poten-
tial importance for dark matter and ultra-high energy
cosmic rays, connections that also could be used to
observe them. This might provide alternative means
for constraining and testing different preon models, in
addition to direct tests [8] performed at particle accel-
erators.
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Abstract. In the context of the standard model of particle physics, there is a definite upper limit to the
density of stable compact stars. However, if there is a deeper layer of constituents, below that of quarks
and leptons, stability may be re-established far beyond this limiting density and a new class of compact
stars could exist. These objects would cause gravitational lensing of gamma-ray bursts and white dwarfs,
which might be observable as line features in the spectrum. Such observations could provide means for
obtaining new clues about the fundamental particles and the nature of cold dark matter.
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1 Introduction

The different types of compact objects traditionally con-
sidered in astrophysics are white dwarfs, neutron stars
(including quark and hybrid stars), and black holes. The
first two classes are supported by Fermi degeneracy pres-
sure from their constituent particles. For white dwarfs,
electrons provide the pressure counterbalancing gravity.
In neutron stars, the neutrons play this role. For black
holes, the degeneracy pressure is overcome by gravity and
the object collapses to a singularity, or at least to the
Planck scale (ρ ∼ 1093 g/cm3). For a recent review of
neutron stars, hybrid stars, and quark stars, see, e.g., [1]
and references therein.

The distinct classes of degenerate compact stars orig-
inate directly from the properties of gravity, as was made
clear by a theorem of Wheeler and collaborators in the
mid 1960s [2]. This theorem states that for the solutions
to the stellar structure equations, whether Newtonian or
relativistic, there is a change in stability of one radial mode
of vibration whenever the mass reaches a local maximum
or minimum as a function of the central density. The the-
orem assures that distinct classes of stars, such as white
dwarfs and neutron stars, are separated in central density
by a region in which there are no stable configurations.

In the standard model of quarks and leptons (SM),
the theory of the strong interaction between quarks and
gluons predicts that with increasing energy and density,
the coupling between quarks asymptotically fades away [3,
4]. As a consequence of this so-called asymptotic freedom,
matter is expected to behave as a gas of free fermions at
sufficiently high densities. This puts a definite upper limit
to the density of stable compact stars, since the solutions
to the stellar equations end up in a never-ending sequence

of unstable configurations, with increasing central density.
Thus, in the light of the standard model, the densest stars
likely to exist are neutron stars, quark stars, or the slightly
more dense hybrid stars [5–7]. However, if there is a deeper
layer of constituents, below that of quarks and leptons, the
possibility of a new class of compact stars opens up [8].

Though being a quantitatively successful theory, the
SM consists of a large number of exogenous ad hoc rules
and parameters, which were introduced solely to fit the ex-
perimental data. The SM provides no explanation for the
deeper meaning of these rules. At a closer look, however,
the SM seems to be full of hints to its deeper background.
By considering these rules from a historical point of view,
a “simple” and appealing explanation is compositeness [9],
i.e., that the quarks, leptons, and gauge bosons are com-
posite particles, built out of more elementary preons [10].
Preons provide natural explanations for the particle fam-
ilies of the SM and phenomena such as neutrino oscilla-
tions, mixing of the weak gauge bosons, and quarks of
different flavour.

Over the last decades, many papers have been written
about preons, but so far there are no direct evidence for
(or against!) their existence. In the late 1970s, a number
of consistency conditions were formulated by ’t Hooft [11].
In the same work, a vector-like non-Abelian SU(3) gauge
group was considered, but no solution to the consistency
conditions was found. Later, it was shown that with an-
other choice for the gauge group and the flavour structure
of preons, e.g., three different preon flavours, the consis-
tency conditions are satisfied [12]. For a more detailed
discussion of preon models, see [9, 10, 13] and references
therein.

mailto:sandin@ltu.se
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Not all clues favour preon models, but the existence
of preons is still an open question and, as a consequence,
so is the question whether a new class of compact stars
exists or not. This paper is based on the ideas and results
presented in [8]. Assuming that quarks and leptons are
composite particles, built out of more elementary preons,
I will:

I. Give an estimate for the mass and radius of stars
composed of preons.

II. Show that for some particular equations of state, sta-
ble solutions to the general relativistic stellar equa-
tions do exist, with densities far beyond the maxi-
mum density in stars composed of quarks and lep-
tons.

III. Briefly discuss some potential astrophysical conse-
quences and how these objects could be observed.
Herein lies the potential importance of this qualita-
tive speculation, since these objects are candidates
for cold dark matter and could be found as, e.g., grav-
itational “femtolenses”.

2 The maximum density prophecy

In order to explain why there is a maximum density for
stars composed of quarks and leptons, or any other com-
posite particle composed of these two species, e.g., nucle-
ons and 56Fe, some basic knowledge about the theory of
compact stars is needed. In the following, I give a short
introduction and a summary of the main points.

Due to the high density and large mass of compact
stars, a general relativistic treatment of the equilibrium
configurations is necessary. This is especially important
for the analysis of stability when a star is subject to ra-
dial oscillations. Such oscillations are inevitably excited to
some extent, and for a star to be stable the amplitude of
the oscillations must not grow spontaneously with time.
The starting point for a general relativistic consideration
of compact stars is the Oppenheimer-Volkoff (OV) equa-
tions [14] for hydrostatic, spherically symmetric equilib-
rium:

dp

dr
= −G

(
p + ρc2

) (
mc2 + 4πr3p

)
r (rc4 − 2Gmc2)

, (1)

dm

dr
= 4πr2ρ. (2)

Here p is the pressure, ρ the density and m = m(r) the
mass within the radial coordinate r. The total mass of the
star is:

M = 4π

∫ R

0
r2ρ dr, (3)

where R is the coordinate radius of the star. Combined
with an equation of state (EOS), p = p(ρ), obtained from
some microscopic (quantum field) theory, the OV solu-
tions give the possible equilibrium states of spherically
symmetric stars.

As an example, I show two sequences of compact star
configurations. One is composed of nuclear matter (neu-
tron stars) and the other of a deconfined quark matter
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Fig. 1. Two sequences of compact stars obtained by solving
the OV equations. The hybrid stars have a core of unpaired
quarks and the nuclear matter crust extends down to 1% of the
nuclear saturation density. The neutron star sequence is stable
up to the maximum mass configuration (I). For this particular
equation of state, this configuration has the highest possible
(central) density, as stars more massive and dense than this
are unstable and collapse into black holes. The stable hybrid
star sequence terminates at II. M� � 2 × 1030 kg is the solar
mass

core with a nuclear matter crust (hybrid stars), see Fig. 1.
These configurations were obtained by solving the OV
equations (1)–(2) numerically. The low-density part of the
nuclear matter EOS was extracted from [15] and the high-
density part comes from [16]. For the deconfined quark
matter phase an unpaired massless quark approximation,
ρc2 = 3p + 4B, was used. The “bag pressure”, B, was fit-
ted such that the transition from quark matter to nuclear
matter occurs at 1% of the nuclear saturation density,
n0 ∼ 0.16 fm−3. The density where cold nuclear matter
decompose into quark matter is unknown, so the transi-
tion density used here serves as an example only.

The composition of matter at neutron star densities is
an open question and many different models for the EOS
exist, e.g., EOSs for nuclear matter, matter with hyper-
ons, and superconducting quark matter. Regardless of the
specific model, the maximum mass and corresponding ra-
dius are roughly a few solar masses, M� � 2 × 1030 kg,
and 10 km. No substantially more dense configurations
composed of quarks and leptons are possible. The motiva-
tion goes roughly like this: At white dwarf densities, the
nucleons occupy nuclei that contribute little to the pres-
sure, and electrons provide the pressure counterbalancing
gravity. With increasing density, the pressure rises and
the electrons become more energetic. Eventually, the elec-
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trons are captured by protons and the pressure drops. As a
consequence, the white dwarf sequence becomes unstable
and terminates. At roughly six to seven orders of mag-
nitude higher density than in the maximum-mass white
dwarf, nuclei dissolve and the Fermi pressure of nucleons
(in nuclear matter) and quarks (in quark matter) stabilize
the next sequence of stable stars. The maximum mass of
this sequence is a few solar masses, for all compositions
(nuclear matter, quark matter, hyperons etc.). The rea-
son why this is the limiting mass of stable compact stars,
composed of quarks and leptons, is simply that there is no
particle that may stabilize another sequence of stars. Each
quark flavour is accompanied by an extra Fermi sea that
relieves the growth of pressure and quark Fermi pressure
is only won at the expense of pressure from other species.
Also, the chemical potential is lower than the charm mass,
so quarks heavier than the strange quark do not appear
in stable stars [17,18].

Hence, beyond the very rich and beautiful landscape of
structures composed of quarks and leptons, at 1016 g/cm3,
there is again a desert of instability, just like there are no
stable stellar configurations in-between white dwarfs and
neutron stars. The question is now if the desert ends before
the Planck scale.

3 Compact stars beyond the desert

A definite upper limit to the density of any spherically
symmetric star can be obtained from the Schwarzschild
radius,

R = 2GM/c2, (4)

since any object more dense than this would collapse into
a black hole. By using the expression for the Schwarzschild
radius and the relations:

M ∼ mA, (5)

R ∼ d0A
1/3, (6)

where A is the number of constituent particles, m their
mass, and d0 the distance between adjacent particles, an
order of magnitude estimate for the maximum mass and
radius of the corresponding class of compact stars can be
calculated. For a neutron star composed of nucleons of
mass mn � 939 MeV/c2 and size dn � 0.5×10−15 m, (4)–
(6) give A ∼ 3 × 1057 baryons, R ∼ 7 km, and M ∼
5 × 1030 kg ∼ 2.5 M�. In reality, a somewhat larger ra-
dius and smaller mass are expected, since the density is
non-uniform in the star, say R ∼ 10 km and M ∼ 2 M�.
In any case, the correct order of magnitude for the maxi-
mum mass and corresponding radius of a neutron star is
obtained. The average density is ρ̄ � 1015 g/cm3.

Since the Schwarzschild limit is almost reached already
for the most massive neutron stars, it is reasonable to
assume that this should be the case also for a more dense
class of compact stars. Then, in order to provide similar
estimates for the mass and radius of a star composed of
preons, something must be known about the mass and
“size” of preons. Before trying to achieve this, it should

be emphasized that we know nothing about preons, not
even if they exist. So whatever method used, the result is
a speculative order of magnitude estimate. But as I will
show, it is still possible to reach some qualitative results.

Guided by the observation that the density of nuclear
matter is roughly of the same order of magnitude as for de-
confined quark matter, I assume that the density of preon
matter is roughly of the same order of magnitude as for
a closely spaced lattice of some “fundamental” particle of
the SM. In this case the problem is simplified to finding
a fundamental SM particle, with known mass and maxi-
mum spatial extension. The simplest and least ambiguous
choice seems to be the electron, since the mass of an elec-
tron is well known, and from scattering experiments it is
known that electrons do not have any visible substructure
down to a scale of ∼ �c/TeV ∼ 10−19 m. Using the elec-
tron mass, me � 511 keV/c2, and an upper estimate for
its radius, re ∼ 10−19 m, the maximum mass and radius
of a star composed of preons is found to be of the order
M ∼ 102 M⊕ and R ∼ 1 m. Here M⊕ � 6 × 1024 kg is
the mass of the Earth. The average density is of the order
∼ 1023 g/cm3.

This crude estimate gives metre-sized objects that are
a hundred times more massive than the Earth. Now, I will
try to be a bit more specific. Especially, it would be inter-
esting to see whether such objects could be stable or not.
In order to do this, I extrapolate an effective model for
hadrons, the so-called MIT bag model [19]. In its simplest
form the MIT bag is a gas of massless fermions (partons),
enclosed in a region of space (the bag) subject to an ex-
ternal pressure B (the bag constant). The EOS for a gas
of massless fermions is ρc2 = 3p and by including B one
obtains:

ρc2 = 3p + 4B. (7)

This result does not depend on the degeneracy factor,
i.e., the number of fermion species, spin, etc. For a single
hadron the pressure is practically zero, so that ρc2 = 4B
and the total energy, E, of a hadron is [19]:

E = 4B〈V 〉, (8)

where 〈V 〉 is the time-averaged volume of the bag. Hence,
the bag pressure, B, must be of the order of 1 GeV/fm3 for
hadrons. This is in agreement with experiments and other
independent methods of calculating light-quark hadronic
masses; most of the mass-energy is not due to the “bare
mass” of the constituents, but the confining interactions.

The MIT bag model is frequently used for the de-
scription of deconfined quark matter and applications to
compact stars. Its usefulness in this regime originates in
asymptotic freedom, simplicity and the possibility to in-
clude pertubative corrections. The bag pressure, B, is in-
troduced in order to confine partons, it is a phenomenolog-
ical parametrization of the strong interactions that confine
quarks into hadrons. These interactions are present also
in deconfined quark matter, so the “bag model” should be
applicable also in this regime. However, the value of the
bag pressure is different, since the density is higher and the
interactions weaker. Thus, the so-called bag constant, B,
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is not really a constant, but a density dependent parame-
ter. For strange quark matter, the bag constant is roughly
B1/4 ∼ 150 MeV/(�c)3/4 [20] and the corresponding con-
tribution to the energy density is 4B ∼ 260 MeV/fm3.
This means that a considerable fraction of the density in
quark matter, roughly 1015 g/cm3, is due to the bag con-
stant, i.e., interactions.

Now, the fundamental assumption here is that preons
exist and are fermions. Since preons constitute light par-
ticles, such as neutrinos and electrons, the “bare” preon
mass should be fairly small. Then a massless fermion ap-
proximation, ρc2 = 3p, can be used. This EOS does not
allow for stable super-dense stars, however, so something
more is needed. And that ‘something’ is dynamics, the
preon interactions that give mass-energy to the particles of
the SM. The question is how, since there is so far no quan-
titative model for preon interactions. Indeed, a fundamen-
tal problem in preon models is to find a suitable dynam-
ics, capable of binding preons into fermions with masses
essentially negligible with respect to their inverse radius.
With this in mind, the principle of parsimony (“Occam’s
razor”) seems to be the only guidance.

A simple solution is to include the dynamics in terms of
a bag constant [8], which roughly reproduces the minimum
energy density of an electron,

B =
E

4〈V 〉 ∼ 3 × 511 keV
16π(10−19 m)3

∼ 104 TeV/fm3

=⇒ B1/4 ∼ 10 GeV/(�c)3/4. (9)

The very high density contribution from the bag constant,
4B/c2 ∼ 105 TeV c−2fm−3 ∼ 1023 g/cm3, might seem a
bit peculiar. But then it should be kept in mind that the
density contribution from the bag constant in deconfined
quark matter is ∼ 1015 g/cm3, which is a large fraction
of the maximum density in any type of star composed of
quark matter. So the high density is not that peculiar. On
the contrary, if something is to be expected, it should be
that B is much higher for preon matter than for quark
matter, since a “preon bag” is smaller and more dense
than a hadron. In the following, for simplicity, I put �c = 1
for the bag constant and express B1/4 in eV.

The density introduced by the bag constant is of the
same order of magnitude as the density used in the mass-
radius estimate above. The improvement here is the tran-
sition to a proper EOS for fermions; the possibility to
apply the EOS in a general relativistic framework, for the
analysis of mass-radius relations and stability. In addition
to the general relativistic analysis, the mass and radius
can be estimated from first principles as a function of the
bag constant [21]. The result is somewhat similar to the
original Chandrasekhar limit, but the role of the fermion
mass is replaced by the bag constant, B,

M =
16π

3c2 BR3, (10)

R =
3c2

16
√

πGB
. (11)

Inserting B1/4 ∼ 10 GeV in (10)–(11) an estimate for
the (maximum) mass M � 102 M⊕ and radius R ∼ 1 m
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Fig. 2. The maximum mass of preon stars vs. the bag con-
stant B. The solid line represents the general relativistic OV so-
lutions, while the dashed line represents the Newtonian (Chan-
drasekhar) estimate. Despite the high central density, the mass
of these objects is below the Schwarzschild limit, as is al-
ways the case for static solutions to the stellar equations.
M⊕ � 6 × 1024 kg is the Earth mass

of a preon star is obtained. This is consistent with the
somewhat simpler mass-radius estimate given above.

Since B1/4 ∼ 10 GeV is only an order of magnitude
estimate for the lower limit, the bag constant is consid-
ered as a free parameter of the model, constrained by a
lower limit of B1/4 = 10 GeV and an upper limit chosen
as B1/4 = 1 TeV. The latter value corresponds to a spa-
tial extension of the electron of the order ∼ �c/103 TeV ∼
10−22 m. In Figs. 2 and 3 the maximum mass and radius of
a preon star are plotted as a function of the bag constant.

A necessary (but not sufficient) condition for stability
of a compact star is that the total mass is an increas-
ing function of the central density, dM/dρc > 0. This con-
dition is a consequence of a generic microscopic relation
known as Le Chatelier’s principle. Roughly, this condition
implies that a slight compression or expansion of a star
will result in a less favourable state, with higher total en-
ergy. Obviously, this is a necessary condition for a stable
equilibrium configuration. Equally important, a star must
be stable when subject to (small) radial oscillations, in the
sense that the amplitude of the oscillations must not grow
spontaneously with time. Otherwise a small perturbation
would bring about a collapse of the star.

The equation for the analysis of such radial modes of
oscillation is due to Chandrasekhar [22]. An overview of
the theory, and some applications, can be found in [23].
A catalogue of various numerical methods for solving the
original set of equations can be found in [24]. However,
a far more practical form of the oscillation equations has
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Fig. 3. The maximum radius of preon stars vs. the bag
constant. The solid line is the “apparent” radius, R∞ =
R/

√
1 − 2GM/Rc2, as seen by a distant observer. The dashed

line represents the general relativistic coordinate radius ob-
tained from the OV solution. The dotted line represents the
Newtonian (Chandrasekhar) estimate

been derived by Gondek et al. [25]. The details of the
stability analysis can be found in [8]. Here I summarise
only the main points.

Assuming a time dependence of the radial displace-
ment of fluid elements of the form eiωt, the equation gov-
erning the radial oscillations is a Sturm-Liouville eigen-
value equation for ω2. A necessary and sufficient condi-
tion for stability is that all ω2

i are positive, since imagi-
nary frequencies give exponentially increasing amplitudes.
Furthermore, since ω2

i are eigenvalues of a Sturm-Liouville
equation, it turns out that it is sufficient to prove that the
fundamental (nodeless) mode, ω2

0 , is positive for a star
to be stable. In Fig. 4, the first three oscillation frequen-
cies, fi = ωi/2π, for various stellar configurations with
B1/4 = 100 GeV are plotted. In agreement with the theo-
rem of Wheeler et al. [2] the onset of instability is the point
of maximum mass, as ω2

0 becomes negative for higher cen-
tral densities. Thus, for B1/4 = 100 GeV, preon stars are
stable up to the maximum mass configuration. The same
is true for other values of B [8].

Despite the large uncertainty regarding preon inter-
actions, here manifested as a large uncertainty in the bag
constant, preon stars should have central densities beyond
∼ 1023 g/cm3. This makes preon stars fundamentally dif-
ferent from the traditional types of compact stars, since
such high densities implies that the stars must be very
small and light in order to be stable, see Fig. 5.
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Fig. 4. The mass and the first three eigenmode oscillation
frequencies (f0, f1, f2) vs. the central density of preon stars.
Here, a fixed value of B1/4 = 100 GeV has been used. For the
maximum mass configuration (I) the fundamental (nodeless)
mode, f0, has zero frequency, indicating the onset of instability.
Preon stars with densities below the density of the maximum
mass configuration are stable

4 Formation and detection

The list of possible connections between the properties of
the fundamental particles and the large scale structures
in the universe is long. However, beyond a density of ∼
1023 g/cm3, not much has been proposed, since there are
strong arguments against the existence of stable objects
beyond ρ ∼ 1016 g/cm3. That is, if quarks and leptons are
fundamental entities.

If preons exist and objects composed of preon mat-
ter as small and light as suggested here are stable, den-
sity fluctuations in the early universe might have pro-
duced primordial preon stars (or “nuggets”). As this ma-



F. Sandin: Compact stars in the standard model – and beyond

10
6

10
9

10
12

10
15

10
18

10
21

10
24

10
27

Central density  [g/cm
3
]

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

R
ad

iu
s 

 [m
]

White dwarfs

Neutron stars

Preon stars

I

II

III

Fig. 5. The different types of compact stars traditionally con-
sidered in astrophysics are white dwarfs and neutron stars (in-
cluding quark and hybrid stars). In white dwarfs, electrons
provide the Fermi pressure counterbalancing gravity. In neu-
tron stars, the neutrons (quarks, hyperons etc.) play this role.
If quarks and leptons are composite particles, a new class of
compact stars (preon stars) could exist. The minimum density
(I) of preon stars is roughly given by the minimum density of
leptons and quarks. The minimum size (II) for a given central
density is due to the Schwarzschild radius (actually 4/3 of it)
and a maximum size (III) exists due to instability

terial did not take part in the ensuing nucleosynthesis, the
abundance of preon nuggets is not constrained by the hot
big bang model bounds on baryonic matter. Also, preon
nuggets are immune to Hawking radiation [26] that rapidly
evaporates small primordial black holes, making it possi-
ble for them to survive to our epoch. They can therefore
serve as the mysterious dark matter needed in many dy-
namical contexts in astrophysics and cosmology [27, 28].
The idea that preons could be connected to dark mat-
ter is already recognized in the literature [29,30], but the
picture presented here is rather different.

The Friedmann equation for the early universe is:

H2(t) =
8πGρ

3
, (12)

where ρc2 ∼ T 4 in the radiation-dominated era (Boltz-
mann’s law). When including the number of internal de-
grees of freedom, geff , an expression for the Hubble pa-
rameter, H, in units where � = c = kB = 1, is [31]:

H � 1.66
√

geff
T 2

mpl
. (13)

Here T is the temperature in eV, geff the effective num-
ber of degrees of freedom and mpl � 1.2 × 1019 GeV the

Planck mass. For the SM, the fermions, and the gauge and
Higgs bosons give geff(T = 1 TeV) = 106.75. In the preon
phase, this number should be smaller, say geff ∼ 10 for
simplicity. Then the Hubble radius at a temperature of
1 TeV is H−1 ∼ 1 mm and the mass within the Horizon
(a causally connected region) is ρH−3 ∼ 10−1 M⊕. This
is the maximum mass of any structure that could have
been formed in this early epoch. Hence, the maximum
mass within causally connected regions, at the minimum
temperature when deconfined preon matter might have
formed preon nuggets (and the particles of the SM), is of
the correct order of magnitude for stable configurations.

A potential problem is that the Jeans length, which
defines the minimum length scale of regions that can con-
tract gravitationally, was roughly of the same order of
magnitude as the Hubble radius at that temperature. The
Jeans length, λJ , is [31]:

λJ = vs

√
π

Gρ0
, (14)

where vs is the speed of sound and ρ0 the average back-
ground density. For a relativistic fluid with EOS ρc2 =
3p+4B the speed of sound is vs = c/

√
3 and λJ ∼ 1 mm ∼

H−1. However, considering the high level of approxima-
tion used here, this is not yet a serious problem. It merely
shows that the numbers are in the correct intervals.

But, perhaps it will be the other way around. Af-
ter all, Popper’s idea that we make progress by falsify-
ing theories is not always true. By utilizing gamma-ray
bursts (GRB) or white dwarfs in the large magellanic
cloud as light sources, gravitational lenses with very small
masses might be observable as diffraction line features in
the spectrum [32–35]. For a lens of mass 10−16 M� ≤ M ≤
10−11 M� the angular separation of images would be in
the femto-arcsec range (“femtolensing”). For more mas-
sive lenses, M ≤ 10−7 M�, the angular separation is in
the pico-arcsec range (“picolensing”). The mass within the
Hubble radius at T = 1 TeV is ∼ 10−1 M⊕ ∼ 10−7 M�.
This roughly defines the maximum mass of preon nuggets
that could be abundant enough to be observed as grav-
itational lenses. Hence, preon nuggets fall in the correct
mass range for picolensing and femtolensing.

In Fig. 6, the magnification of a distant point light
source due to gravitational lensing by an intermediate
preon nugget is plotted as a function of the dimension-
less frequency:

ν =
ν̃(1 + zL)2GM

c3 , (15)

where M (zL) is the mass (redshift) of the lens and ν̃
the frequency of light. This result was calculated with a
physical-optics model, as described in [34]. In principle,
the time dependent amplitude due to a single light pulse
from the source was calculated and then the power spec-
trum was obtained by a Fourier transform of the ampli-
tude. The magnification is normalized to a unit flux in
the absence of a lens, i.e., the flux entering the detector
is obtained by multiplying the magnification with the flux
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Fig. 6. |ψ|2, the magnification of a distant point light source
vs. the dimensionless frequency, ν = ν̃(1 + zL)2GM/c3, due
to gravitational lensing by an intermediate preon star (or
“nugget”). The flux entering the detector is obtained by mul-
tiplying the magnification, |ψ|2, with the flux in the absence
of a lens. For a 10−6 M⊕ preon star located in the halo of our
galaxy, ν = 1 corresponds to a photon energy of 0.14 keV. See
the text for further details

in the absence of a lens. The shape of the magnification
function depends on the relative position of the source and
the lens. Here the source is slightly off-axis, corresponding
to θ = 0.2 in [34].

As mentioned in [8], preon stars might also form in
the collapse of ordinary massive stars, if the collapse is
slightly too powerful for the core to stabilize as a neu-
tron star, but not sufficiently violent for the formation of
a black hole. Due to the potentially very large magnetic
field and rapid rotation of preon stars formed in this way,
the astrophysical consequences could be important, e.g.,
for acceleration of ultra-high energy (UHE) cosmic rays.
However, the possibility to expel such a large fraction of
the mass of the progenitor star needs to be better under-
stood. What should be noted here is merely a potential
connection to UHE cosmic rays, which might provide a
second means for locating and observing preon stars.

5 Conclusions

If there is a deeper layer of fermionic constituents (pre-
ons), below that of quarks and leptons, a new class of
stable compact stars could exist. By fitting a simple equa-
tion of state for fermions to the minimum energy density
of an electron, the maximum mass for stars composed of
preons can be estimated to ∼ 102 Earth masses and the
maximum radius to ∼ 1 m. The minimum central density
is of the order of ∼ 1023 g/cm3. Preon stars (or “nuggets”)

with a maximum mass of ∼ 10−1 Earth masses and ra-
dius ∼ 10−3 m could have been formed by the primor-
dial density fluctuations in the early universe. By utilizing
gamma-ray bursts, or white dwarfs in the large magellanic
cloud as light sources, an intermediate preon star would
produce diffraction lines in the spectrum, which might be
observable. Due to the need for observational clues in the
cold dark matter sector, this could prove compositeness
plausible without much dedicated effort. This approach
might complement direct tests of preon models at particle
accelerators, especially at high energies, since preon stars
might be observable even if the energy scale of preon inter-
actions is far beyond reach of any existing or near future
particle accelerator.
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Phase diagram of three-flavor quark matter under compact star constraints
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The phase diagram of three-flavor quark matter under compact star constraints is investigated within a
Nambu–Jona-Lasinio model. Global color and electric charge neutrality is imposed for �-equilibrated
superconducting quark matter. The constituent quark masses and the diquark condensates are determined
self-consistently in the plane of temperature and quark chemical potential. Both strong and intermediate
diquark coupling strengths are considered. We show that in both cases, gapless superconducting phases do
not occur at temperatures relevant for compact star evolution, i.e., below T � 50 MeV. The stability and
structure of isothermal quark star configurations are evaluated. For intermediate coupling, quark stars are
composed of a mixed phase of normal (NQ) and two-flavor superconducting (2SC) quark matter up to a
maximum mass of 1:21 M�. At higher central densities, a phase transition to the three-flavor color flavor
locked (CFL) phase occurs and the configurations become unstable. For the strong diquark coupling we
find stable stars in the 2SC phase, with masses up to 1:33 M�. A second family of more compact
configurations (twins) with a CFL quark matter core and a 2SC shell is also found to be stable. The twins
have masses in the range 1:30 . . . 1:33 M�. We consider also hot isothermal configurations at temperature
T � 40 MeV. When the hot maximum mass configuration cools down, due to emission of photons and
neutrinos, a mass defect of 0:1 M� occurs and two final state configurations are possible.
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I. INTRODUCTION

Theoretical investigations of the QCD phase diagram at
high densities have recently gained momentum due to
results of nonperturbative low-energy QCD models [1–3]
of color superconductivity in quark matter [4,5]. These
models predict that the diquark pairing condensates are
of the order of 100 MeV and a remarkably rich phase
structure has been identified [6–9]. The main motivation
for studying the low-temperature domain of the QCD
phase diagram is its possible relevance for the physics of
compact stars [10–12]. Observable effects of color super-
conducting phases in compact stars are expected, e.g., in
the cooling behavior [13–18], magnetic field evolution
[19–22], and in burst-type phenomena [23–27].

The most prominent color superconducting phases with
large diquark pairing gaps are the two-flavor scalar diquark
condensate (2SC) and the color-flavor locking (CFL) con-
densate. The latter requires approximate SU(3) flavor sym-
metry and occurs therefore only at rather large quark
chemical potentials, �q > 430–500 MeV, of the order of
the dynamically generated strange quark mass Ms, whereas
the 2SC phase can appear already at the chiral restoration

transition for �q > 330–350 MeV [28–31]. Note that the
quark chemical potential in the center of a typical compact
star is expected to not exceed a value of �500 MeV, so
that the volume fraction of a strange quark matter phase
will be insufficient to entail observable consequences.
However, when the strange quark mass is considered not
dynamically, but as a free parameter independent of the
thermodynamical conditions, it has been shown that for not
too large Ms the CFL phase dominates over the 2SC phase
[32,33]. Studies of the QCD phase diagram have recently
been extended to the discussion of gapless CFL (gCFL)
phases for fixed Ms in [34–36] and for dynamical Ms at
zero temperature in [31]. The gapless phases occur when
the asymmetry between Fermi levels of different flavors is
large enough to allow for zero energy excitations while a
nonvanishing diquark condensate exists. They have been
found first for the 2SC phase (g2SC) within a dynamical
chiral quark model [37,38].

Any scenario for compact star evolution that is based on
the occurrence of quark matter relies on the assumptions
about the properties of this phase. It is therefore of prior
importance to obtain a phase diagram of three-flavor quark
matter under compact star constraints with self-
consistently determined dynamical quark masses. In the
present paper we will employ the Nambu–Jona-Lasinio
(NJL) model to delineate the different quark matter phases
in the plane of temperature and chemical potential. We also
address the question whether CFL quark matter and gap-
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less phases are likely to play a role in compact star
interiors.

II. MODEL

In this paper, we consider an NJL model with quark-
antiquark interactions in the color singlet scalar/pseudo-
scalar channel, and quark-quark interactions in the scalar
color antitriplet channel. We neglect the less attractive
interaction channels, e.g., the isospin-singlet channel,
which could allow for weak spin-1 condensates. Such
condensates allow for gapless excitations at low tempera-
tures and could be important for the cooling behavior of
compact stars. However, the coupling strengths in these
channels are poorly known and we therefore neglect them
here. The Lagrangian density is given by

L � �qi��i@6 �ij��� �M0
ij��� ��ij;���0�qj�

�GS

X8
a�0

	� �q�afq�2 � � �qi�5�
a
fq�2


�GD

X
k;�

	� �qi��ijk����qCj��� �qCi0�0�i0j0k��0�0�qj0�0 �

� � �qi�i�5�ijk����q
C
j��� �qCi0�0i�5�i0j0k��0�0�qj0�0 �
;

(1)

where M0
ij � diag�m0

u; m
0
d; m

0
s� is the current quark mass

matrix in flavor space and �ij;�� is the chemical potential
matrix in color and flavor space. Due to strong and weak
interactions, the various chemical potentials are not inde-
pendent. In the superconducting phases a U�1� gauge
symmetry remains unbroken [39], and the associated
charge is a linear combination of the electric charge, Q,
and two orthogonal generators of the unbroken SU�2�c
symmetry. Hence, there are in total four independent
chemical potentials

�ij;�� � ���ij �Q�Q���� � �T3�3 � T8�8��ij; (2)

where Q � diag�2=3;�1=3;�1=3� is the electric charge
in flavor space, and T3 � diag�1;�1; 0� and T8 �
diag�1= ���

3
p

; 1=
���
3

p
;�2=

���
3

p � are the generators in color
space. The quark number chemical potential, �, is related
to the baryon chemical potential by � � �B=3. The quark
fields in color, flavor, and Dirac spaces are denoted by qi�
and �qi� � qyi��0. �af are Gell-Mann matrices acting in
flavor space. Charge conjugated quark fields are denoted
by qC � C �qT and �qC � qTC, where C � i�2�0 is the
Dirac charge conjugation matrix. The indices �, �, and
� represent colors (r � 1, g � 2 and b � 3), while i, j,
and k represent flavors (u � 1, d � 2, and s � 3). GS and
GD are dimensionful coupling constants that must be de-
termined by experiments.

Typically, three-flavor NJL models use a ’t Hooft deter-
minant interaction that induces a UA�1� symmetry breaking
in the pseudoscalar isoscalar meson sector, which can be

adjusted such that the 	–	0 mass difference is described.
This realization of the UA�1� breaking leads to the impor-
tant consequence that the quark condensates of different
flavor sectors get coupled. The dynamically generated
strange quark mass contains a contribution from the chiral
condensates of the light flavors. There is, however, another
possible realization of the UA�1� symmetry breaking that
does not arise on the mean-field level, but only for the
mesonic fluctuations in the pseudoscalar isoscalar channel.
This is due to the coupling to the nonperturbative gluon
sector via the triangle anomaly, see, e.g., [40–42]. This
realization of the 	–	0 mass difference gives no contribu-
tion to the quark thermodynamics at the mean-field level,
which we will follow in this paper. Up to now it is not
known, which of the two UA�1� breaking mechanisms that
is the dominant one in nature. In the present exploratory
study of the mean-field thermodynamics of three-flavor
quark matter, we will take the point of view that the
’t Hooft term might be subdominant and can be disre-
garded. One possible way to disentangle both mechanisms
is due to their different response to chiral symmetry resto-
ration at finite temperatures and densities. While in heavy-
ion collisions only the finite temperature aspect can be
systematically studied [43], the state of matter in neutron
star interiors may be suitable to probe the UA�1� symmetry
restoration and its possible implications for the quark
matter phase diagram at high densities and low tempera-
tures. A comparison of the results presented in this work
with the alternative treatment of the phase diagram of
three-flavor quark matter including the ’t Hooft determi-
nant term, see [44], may therefore be instructive.

The mean-field Lagrangian is

LMF � �qi�	i@6 �ij��� � �M0
ij � 4GSh �qi�qj�i�ij����

��ij;���0
qj� � 2GS

X
i

h �qiqii2 �
X
k;�

j�k�j2
4GD

� 1

2
�qi��̂ij;��q

C
j� � 1

2
�qCi��̂

y
ij;��qj�; (3)

�̂ ij;�� � 2GDi�5�����ijkh �qi0�0i�5��0�0��i0j0kqCj0�0 i
� i�5�����ijk�k�: (4)

We define the chiral gaps


i � �4GSh �qiqii; (5)

and the diquark gaps

�k� � 2GDh �qi�i�5�����ijkq
C
j�i: (6)

The chiral condensates contribute to the dynamical
masses of the quarks and the constituent quark mass matrix
in flavor space is M � diag�m0

u �
u;m
0
d �
d;m

0
s �


s�, where m0
i are the current quark masses. For finite

current quark masses the U�3�L �U�3�R symmetry of
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the Lagrangian is spontaneously broken and only approxi-
mately restored at high densities.

The diquark gaps, �k�, are antisymmetric in flavor and
color, e.g., the condensate corresponding to �ur is created
by green down and blue strange quarks. Because of this
property, the diquark gaps can be denoted with the flavor
indices of the interacting quarks

�ur � �ds; �dg � �us; �sb � �ud: (7)

After reformulating the mean-field lagrangian in 8-
component Nambu-Gorkov spinors [45,46] and perform-
ing the functional integrals over Grassman variables [47]
we obtain the thermodynamic potential

��T;�� � 
2
u �
2

d �
2
s

8GS
� j�udj2 � j�usj2 � j�dsj2

4GD

� T
X
n

Z d3p

�2��3
1

2
Tr ln

�
1

T
S�1�i!n; ~p�

�
��e ��0: (8)

Here S�1�p� is the inverse propagator of the quark fields at
four momentum p � �i!n; ~p�,

S�1�i!n; ~p� � p6 �M���0 �̂
�̂y p6 �M���0

" #
; (9)

and !n � �2n� 1��T are the Matsubara frequencies for
fermions. The thermodynamic potential of ultrarelativistic
electrons,

�e � � 1

12�2 �
4
Q � 1

6
�2

QT
2 � 7

180
�2T4; (10)

has been added to the potential, and the vacuum contribu-
tion,

�0 � ��0; 0�

� 
2
0u �
2

0d �
2
0s

8GS
� 2Nc

X
i

Z d3p

�2��3
�������������������
M2

i � p2
q

;

(11)

has been subtracted in order to get zero pressure in vacuum.
Using the identity Trln�D� � lndet�D� and evaluating the
determinant (see Appendix A), we obtain

lndet
�
1

T
S�1�i!n; ~p�

�
� 2

X18
a�1

ln
�
!2

n � �a� ~p�2
T2

�
: (12)

The quasiparticle dispersion relations, �a� ~p�, are the ei-
genvalues of the Hermitian matrix,

M � ��0 ~� � ~p��0M�� �0�̂C
�0C�̂y ��0 ~�T � ~p��0M��

" #
;

(13)

in color, flavor, and Nambu-Gorkov space. This result is in
agreement with [33,44]. Finally, the Matsubara sum can be
evaluated on closed form [47],

T
X
n

ln
�
!2

n � �2
a

T2

�
� �a � 2T ln�1� e��a=T�; (14)

leading to an expression for the thermodynamic potential
on the form

��T;�� � 
2
u �
2

d �
2
s

8GS
� j�udj2 � j�usj2 � j�dsj2

4GD

�
Z d3p

�2��3
X18
a�1

��a � 2T ln�1� e��a=T��

��e ��0: (15)

It should be noted that (14) is an even function of �a, so the
signs of the quasiparticle dispersion relations are arbitrary.
In this paper, we assume that there are no trapped neutri-
nos. This approximation is valid for quark matter in neu-
tron stars, after the short period of deleptonization is over.

Equations (10), (11), (13), and (15) form a consistent
thermodynamic model of superconducting quark matter.
The independent variables are � and T. The gaps, 
i, and
�ij, are variational order parameters that should be deter-
mined by minimization of the grand canonical thermody-
namical potential, �. Also, quark matter should be locally
color and electric charge neutral, so at the physical minima
of the thermodynamic potential the corresponding number
densities should be zero

nQ � � @�
@�Q

� 0; (16)

n8 � � @�
@�3

� 0; (17)

n3 � � @�
@�8

� 0: (18)

The pressure, P, is related to the thermodynamic potential
by P � �� at the global minima of �. The quark density,
entropy and energy density are then obtained as derivatives
of the thermodynamical potential with respect to �, T and
1=T, respectively.

III. RESULTS

The numerical solutions to be reported in this Section
are obtained with the following set of model parameters,
taken from Table 5.2 of Ref. [8] for vanishing ’t Hooft
interaction,

m0
u;d � 5:5 MeV; (19)
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m0
s � 112:0 MeV; (20)

GS�
2 � 2:319; (21)

� � 602:3 MeV: (22)

With these parameters, the following low-energy QCD
observables can be reproduced: m� � 135 MeV, mK �
497:7 MeV, f� � 92:4 MeV. The value of the diquark
coupling strength GD � 	GS is considered as a free pa-
rameter of the model. Here we present results for 	 � 0:75
(intermediate coupling) and 	 � 1:0 (strong coupling).

A. Quark masses and pairing gaps at zero temperature

The dynamically generated quark masses and the di-
quark pairing gaps are determined self-consistently at the
absolute minima of the thermodynamic potential, in the
plane of temperature and quark chemical potential. This is
done for both the strong and the intermediate diquark
coupling strengths. In Figs. 1 and 2 we show the depen-
dence of masses and gaps on the quark chemical potential
at T � 0 for 	 � 0:75 and 	 � 1:0, respectively. A char-
acteristic feature of this dynamical quark model is that the
critical quark chemical potentials where light and strange
quark masses jump from their constituent mass values
down to almost their current mass values do not coincide.
With increasing chemical potential the system undergoes a
sequence of two transitions: (1) vacuum ! two-flavor
quark matter, (2) two-flavor ! three-flavor quark matter.
The intermediate two-flavor quark matter phase occurs
within an interval of chemical potentials typical for com-
pact star interiors. While at intermediate coupling the
asymmetry between the up and down quark chemical

potentials leads to a mixed NQ-2SC phase below tempera-
tures of 20–30 MeV, at strong coupling the pure 2SC phase
extends down to T � 0. Simultaneously, the limiting
chemical potentials of the two-flavor quark matter region
are lowered by about 40 MeV. Three-flavor quark matter is
always in the CFL phase where all quarks are paired. The
robustness of the 2SC condensate under compact star con-
straints, with respect to changes of the coupling strength, as
well as to a softening of the momentum cutoff by a form
factor, has recently been investigated with a different pa-
rametrization [48]. The results at low temperatures are
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FIG. 1 (color online). Gaps and dynamical quark masses as
functions of � at T � 0 for intermediate diquark coupling, 	 �
0:75.
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FIG. 2 (color online). Gaps and dynamical quark masses as
functions of � at T � 0 for strong diquark coupling, 	 � 1.

300 350 400 450 500 550 600
μ [MeV]

-250

-200

-150

-100

-50

0

μ Q
, μ

8 [
M

eV
] μ

Q, η=0.75
μ

8, η=0.75
μ

Q, η=1
μ

8, η=1
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similar: for 	 � 0:75 and the NJL form factor the 2SC
condensate does not occur for moderate chemical poten-
tials, while for 	 � 1:0 it occurs simultaneously with
chiral symmetry restoration. Figure 3 shows the corre-
sponding dependences of the chemical potentials conju-
gate to electric (�Q) and color (�8) charges.

B. Dispersion relations and gapless phases

In Fig. 4 we show the quasiparticle dispersion relations
of different excitations at two points in the phase diagram:
(I) the CFL phase (left panel), where there is a finite energy
gap for all dispersion relations; (II) the gCFL phase (right
panel), where the energy spectrum is shifted due to the
assymetry in the chemical potentials, such that the CFL
gap is zero and (gapless) excitations with zero energy are
possible. A necessary condition for the occurrence of gap-
less superconducting phases is that the chemical potential
difference of the quark species to be paired equals or
exceeds the corresponding pairing gap. In the present
model, this phenomenon occurs only at rather high tem-
peratures, where the condensates are diminished by ther-
mal fluctuations. A smaller diquark coupling constant, as
in Ref. [44], would lead to a smaller pairing gap and could
therefore entail the occurrence of gapless phases even at
zero temperature.

C. Phase diagram

The thermodynamical state of the system is character-
ized by the values of the order parameters and their depen-
dence on T and �. Here we illustrate this dependency in a
phase diagram. We identify the following phases:

(1) NQ: �ud � �us � �ds � 0;
(2) NQ-2SC: �ud � 0, �us � �ds � 0, 0<2SC<1;
(3) 2SC: �ud � 0, �us � �ds � 0;
(4) uSC: �ud � 0, �us � 0, �ds � 0;
(5) CFL: �ud � 0, �ds � 0, �us � 0;

and their gapless versions. The resulting phase diagrams
for intermediate and strong coupling are given in Figs. 5
and 6, respectively, and constitute the main result of this
work, which is summarized in the following statements:

(a) Gapless phases occur only at high temperatures,
above 50 MeV (intermediate coupling) or 80 MeV
(strong coupling).

(b) CFL phases occur only at rather high chemical
potential, well above the chiral restoration transi-
tion, i.e., above 462 MeV (intermediate coupling) or
419 MeV (strong coupling).

(c) Two-flavor quark matter for intermediate coupling
is at low temperatures (T < 20–30 MeV) in a mixed
NQ-2SC phase, at high temperatures in the pure
2SC phase.
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FIG. 4 (color online). Quark-quark quasiparticle dispersion
relations. For 	 � 0:75, T � 0, and � � 465 MeV (left panel)
there is a forbidden energy band above the Fermi surface. All
dispersion relations are gapped at this point in the �� T plane,
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quasiparticles for 	 � 0:75, T � 59 MeV, and � � 500 MeV
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(d) Two-flavor quark matter for strong coupling is in the
2SC phase with rather high critical temperatures of
�100 MeV.

(e) The critical endpoint of first-order chiral phase tran-
sitions is at�T;�� � �65 MeV; 328 MeV� for inter-
mediate coupling and at (82 MeV, 307 MeV) for
strong coupling.

D. Quark matter equation of state

The various phases of quark matter presented in the
previous section have been identified by minimizing the
thermodynamic potential, �, in the order parameters, �ij

and 
i. For a homogenous system, the pressure is P �
��min, see Fig. 7, where the �-dependence of �min is
shown at T � 0 for the different competing phases. The
lowest value of �min corresponds to the negative value of
the physical pressure. The intersection of two curves cor-
responds to a first-order phase transition. All other thermo-
dynamic quantities can be obtained from the
thermodynamic potential by derivatives. At intermediate
coupling, we have a first-order transition from the NQ-2SC
phase to the CFL phase, whereas at strong coupling the
first-order transition is from the 2SC phase to the CFL
phase, with a lower critical energy density. In Fig. 8 the
equation of state for cold three-flavor quark matter is given
in a form suitable for the investigation of the hydrody-
namic stability of gravitating compact objects, so-called
quark stars. This is the topic of the next Subsection.

E. Quark star configurations

The properties of spherically symmetric, static configu-
rations of dense matter can be calculated with the well-

known Tolman-Oppenheimer-Volkoff equations for hydro-
static equilibrium of self-gravitating matter, see also [49],

dP�r�
dr

� �	"�r� � P�r�
	m�r� � 4�r3P�r�

r	r� 2m�r�
 : (23)
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Here "�r� is the energy density and P�r� the pressure at
distance r from the center of the star. The mass enclosed in
a sphere with radius r is defined by

m�r� � 4�
Z r

0
"�r0�r02dr0: (24)

These equations are solved for given central baryon
number densities, nB�r � 0�, thereby defining a sequence
of quark star configurations. For the generalization to finite
temperature configurations, see [50]. Hot quark stars have
been discussed, e.g., in [25,26,51–53]. In Fig. 9 we show
the stable configurations of quark stars for the three-flavor
quark matter equation of state described above. The ob-
tained mass-radius relations allow for very compact self-
bound objects, with a maximum radius that is less than
10 km. For intermediate diquark coupling, 	 � 0:75, sta-
ble stars consist of a NQ-2SC mixed phase with a maxi-
mum mass of 1:21 M�. With increasing density, a phase
transition to the CFL phase renders the sequence unstable.

For the strong diquark coupling, 	 � 1, quark matter is
in the 2SC phase at low densities and the corresponding
sequence of quark stars is stable up to a maximum mass
of 1:33 M�. The phase transition to CFL quark matter
entails an instability that leads to a third family of stable
stars, with masses in-between 1.30 and 1:33 M�. For non-
accreting compact stars the baryon number is an invariant
during the cooling evolution. By comparing the masses of
cold and hot isothermal configurations of quark stars of
equal baryon number, the maximum mass defect (energy
release due to cooling) can be calculated. The result for the
strong diquark coupling, 	 � 1, is shown if Fig. 10. For
an initial temperature of 40 MeV and a given baryon
number of N � 1:46 N�, the initial mass is M �
1:41 M�. By cooling this object down to T � 0, a mass
defect of �M � 0:1 M� occurs. For the chosen baryon
number, N � 1:46 N�, there are two possible T � 0 con-
figurations (twins). A hot star could thus evolve into the
more compact mass-equivalent (twin) final state, if a fluc-
tuation triggers the transition to a CFL phase in the core of
the star. The structures of these two twin configurations
are given in Fig. 11. The energy release of 0:1 M� is of
the same order of magnitude as the energy release in
supernova explosions and gamma-ray bursts. Disre-
garding the possible influence of a hadronic shell and the
details regarding the heat transport, the cooling induced
first-order phase transition to the CFL phase could serve as
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FIG. 9 (color online). Sequences of cold quark stars for the
three-flavor quark matter equation of state described in the text.
The rising branches in the mass-central density relation (left
panel) indicate stable compact object configurations. The mass-
radius relations (right panel) show that the three-flavor quark
matter described in this paper leads to very compact self-bound
objects. For intermediate diquark coupling, 	 � 0:75, stable
stars consist of a mixed phase of NQ-2SC matter with a maxi-
mum mass of 1:21 M� (dashed line). At higher densities a phase
transition to CFL quark matter occurs, which entails a collapse
of the star. For strong coupling, 	 � 1, the low-density quark
matter is in the 2SC phase and corresponding quark stars are
stable up to a maximum mass of 1:33 M� (solid line). The phase
transition to CFL quark matter entails an instability, which at
T � 0 leads to a third family of stable stars for central densities
above 9n0 and a mass twin window of 1:30–1:33 M�.
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a candidate process for the puzzling engine of these ener-
getic phenomena [25,26,53].

IV. CONCLUSIONS

We have investigated the phase diagram of three-flavor
quark matter within an NJL model under compact star
constraints. Local color and electric charge neutrality is
imposed for �-equilibrated superconducting quark matter.
The constituent quark masses are self-consistently deter-
mined. The model refrains from adopting the ’t Hooft
determinant interaction in the mean-field Lagrangian as a
realization of the UA�1� symmetry breaking. Instead, it is
assumed that the 	� 	0 mass difference originates from
an anomalous coupling of the pseudoscalar isosinglet fluc-
tuation to the nonperturbative gluon sector, which gives no
contribution to the quark thermodynamics at the mean-
field level. The resulting parametrization of this SUf�3�
NJL model results in a stronger coupling than NJL models
with a ’t Hooft term and thus in different phase diagrams,
cf. Ref. [44]. The diquark condensates are determined self-
consistently by minimization of the grand canonical ther-
modynamic potential. The various condensates are order
parameters that characterize the different phases in the
plane of temperature and quark chemical potential. These
phases are in particular the NQ-2SC mixed phase, the 2SC,
uSC, and CFL phases, as well as the corresponding gapless
phases. We have investigated strong and intermediate di-

quark coupling strengths. It is shown that in both cases
gapless superconducting phases do not occur at tempera-
tures relevant for compact star evolution, i.e., below
�50 MeV. Three-flavor quark matter phases, e.g., the
CFL phase, occur only at rather large chemical potential,
so the existence of such phases in stable compact stars is
questionable. The stability and structure of isothermal
quark star configurations are evaluated. For the strong
diquark coupling, 2SC stars are stable up to a maximum
mass of 1:33 M�. A second family of more compact stars
(twins) with a CFL quark matter core and masses in
between 1.30 and 1:33 M� are found to be stable. For
intermediate coupling, the quark stars are composed of a
mixed NQ-2SC phase up to a maximum mass of 1:21 M�,
where a phase transition to the CFL phase occurs and the
configurations become unstable. When the isothermal star
configuration with an initial temperature of 40 MeV cools
under conservation of baryon number, the mass defect is
0:1 M� for the strong diquark coupling. It is important to
investigate the robustness of these statements, in particular,
by including nonlocal form factors [30,54,55] and by going
beyond the mean-field level by including the effects of a
hadronic medium on the quark condensates. Finally, any
statement concerning the occurrence and stability of quark
matter in compact stars shall include an investigation of the
influence of a hadronic shell [56–58] on the solutions of
the equations of compact star structure.
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APPENDIX: DISPERSION RELATIONS

The dispersion relations of the quasiparticles that appear
in the expression for the thermodynamic potential (15) are
the eigenvalues of the Nambu-Gorkov matrix (13). For
each color and flavor combination of the eight component
Nambu-Gorkov spinors, there is a corresponding 8� 8
entry in this matrix. For three flavors and three colors
(13) is a 72� 72 matrix. The explicit form of this matrix
can be represented by a table, where the rows and columns
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FIG. 11 (color online). Structure of two quark star (QS) con-
figurations with M � 1:31 M� (mass twins) for the three-flavor
quark matter equation of state described in the text in the case of
strong coupling (	 � 1). The low-density twin has a radius of
9 km and is a homogeneous 2SC quark star, the high-density
twin is more compact with a radius of 8 km and consists of a
CFL quark matter core with 4.65 km radius and a 2SC quark
matter shell.
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denote the flavor and color degrees of freedom

qur qug qub qdr qdg qdb qsr qsg qsb q†
ur q†

ug q†
ub q†

dr q†
dg q†

db q†
sr q†

sg q†
sb

q†
ur A ur 0 0 0 0 0 0 0 0 0 0 0 0 Dud 0 0 0 Dus

q†
ug 0 A ug 0 0 0 0 0 0 0 0 0 0 − Dud 0 0 0 0 0

q†
ub 0 0 A ub 0 0 0 0 0 0 0 0 0 0 0 0 − Dus 0 0

q†
dr 0 0 0 A dr 0 0 0 0 0 0 − Dud 0 0 0 0 0 0 0

q†
dg 0 0 0 0 A dg 0 0 0 0 Dud 0 0 0 0 0 0 0 Dds

q†
db 0 0 0 0 0 A db 0 0 0 0 0 0 0 0 0 0 − Dds 0

q†
sr 0 0 0 0 0 0 A sr 0 0 0 0 − Dus 0 0 0 0 0 0

q†
sg 0 0 0 0 0 0 0 A sg 0 0 0 0 0 0 − Dds 0 0 0

q†
sb 0 0 0 0 0 0 0 0 A sb Dus 0 0 0 Dds 0 0 0 0

qur 0 0 0 0 D †
ud 0 0 0 D †

us B ur 0 0 0 0 0 0 0 0

qug 0 0 0 − D †
ud 0 0 0 0 0 0 B ug 0 0 0 0 0 0 0

qub 0 0 0 0 0 0 − D †
us 0 0 0 0 B ub 0 0 0 0 0 0

qdr 0 − D †
ud 0 0 0 0 0 0 0 0 0 0 B dr 0 0 0 0 0

qdg D †
ud 0 0 0 0 0 0 0 D †

ds 0 0 0 0 B dg 0 0 0 0

qdb 0 0 0 0 0 0 0 − D †
ds 0 0 0 0 0 0 B db 0 0 0

qsr 0 0 − D †
us 0 0 0 0 0 0 0 0 0 0 0 0 B sr 0 0

qsg 0 0 0 0 0 − D †
ds 0 0 0 0 0 0 0 0 0 0 B sg 0

qsb D †
us 0 0 0 D †

ds 0 0 0 0 0 0 0 0 0 0 0 0 B sb

. (A1)

Each entry is a 4� 4 Hermitian matrix in Dirac space. The
diagonal submatrices are

Ai� �
p��i� 0 �Mi 0

0 �p��i� 0 �Mi

�Mi 0 �p��i� 0
0 �Mi 0 p��i�

26664
37775;

(A2)

Bj� �
�p��j� 0 Mj 0

0 p��j� 0 Mj

Mj 0 p��j� 0
0 Mj 0 �p��j�

26664
37775;

(A3)

whereas the off-diagonal blocks are given by

Dij �
0 0 0 i�ij

0 0 �i�ij 0
0 i�ij 0 0

�i�ij 0 0 0

2
6664

3
7775: (A4)

The eigenvalues of (A1) are the quasiparticle energies,
�a, that enter the thermodynamic potential (15), i.e., the 72
dispersion relations of the various quark-quark and
antiquark-antiquark excitations. These eigenvalues can be
calculated using a standard numerical library. However, in
order to reduce the computational cost, the matrix can be
decomposed into a block-diagonal matrix by elementary
row and column operations.
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qur qdg qsb q†
ur q†

dg q†
sb qug q†

dr qdr q†
ug qub q†

sr qsr q†
ub qdb q†

sg qsg q†
db

q†
ur A ur 0 0 0 Dud Dus 0 0 0 0 0 0 0 0 0 0 0 0

q†
dg 0 A dg 0 Dud 0 Dds 0 0 0 0 0 0 0 0 0 0 0 0

q†
sb 0 0 A sb Dus Dds 0 0 0 0 0 0 0 0 0 0 0 0 0

qur 0 D †
ud D †

us B ur 0 0 0 0 0 0 0 0 0 0 0 0 0 0

qdg D †
ud 0 D †

ds 0 B dg 0 0 0 0 0 0 0 0 0 0 0 0 0

qsb D †
us D †

ds 0 0 0 B sb 0 0 0 0 0 0 0 0 0 0 0 0

q†
ug 0 0 0 0 0 0 A ug − Dud 0 0 0 0 0 0 0 0 0 0

qdr 0 0 0 0 0 0 − D †
ud B dr 0 0 0 0 0 0 0 0 0 0

q†
dr 0 0 0 0 0 0 0 0 A dr − Dud 0 0 0 0 0 0 0 0

qug 0 0 0 0 0 0 0 0 − D †
ud B ug 0 0 0 0 0 0 0 0

q†
ub 0 0 0 0 0 0 0 0 0 0 A ub − Dus 0 0 0 0 0 0

qsr 0 0 0 0 0 0 0 0 0 0 − D †
us B sr 0 0 0 0 0 0

q†
sr 0 0 0 0 0 0 0 0 0 0 0 0 A sr − Dus 0 0 0 0

qub 0 0 0 0 0 0 0 0 0 0 0 0 − D †
us B ub 0 0 0 0

q†
db 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A db − Dds 0 0

qsg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − D †
ds B sg 0 0

q†
sg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A sg − Dds

qdb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − D †
ds B db

(A5)

This matrix has one 24� 24 and six 8� 8 independent submatrices. Expressing these submatrices explicitly, using
(A2)–(A4), the 24� 24 matrix can be decomposed into two independent 12� 12 submatrices by elementary row and
column operations. Similarly, the six 8� 8 matrices can be transformed into 12 independent 4� 4 submatrices. There is a
two-fold degeneracy due to the Nambu-Gorkov basis, each matrix appears both as M and My, so there are only one
independent 12� 12 matrix and six 4� 4 matrices. The 12� 12 matrix is

M 12�
p��ur 0 0 �Mu 0 0 0 i�ud i�us 0 0 0

0 p��dg 0 0 �Md 0 i�ud 0 i�ds 0 0 0

0 0 p��sb 0 0 �Ms i�us i�ds 0 0 0 0

�Mu 0 0 �p��ur 0 0 0 0 0 0 i�ud i�us

0 �Md 0 0 �p��dg 0 0 0 0 i�ud 0 i�ds

0 0 �Ms 0 0 �p��sb 0 0 0 i�us i�ds 0

0 �i�ud �i�us 0 0 0 �p��ur 0 0 Mu 0 0

�i�ud 0 �i�ds 0 0 0 0 �p��dg 0 0 Md 0

�i�us �i�ds 0 0 0 0 0 0 �p��sb 0 0 Ms

0 0 0 0 �i�ud �i�us Mu 0 0 p��ur 0 0

0 0 0 �i�ud 0 �i�ds 0 Md 0 0 p��dg 0

0 0 0 �i�us �i�ds 0 0 0 Ms 0 0 p��sb

26666666666666666666666666666664

37777777777777777777777777777775

;

(A6)
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and the 4� 4 matrices are

M 4 �
p��i� �i�ij �Mi 0
i�ij �p��j� 0 Mj
�Mi 0 �p��i� �i�ij
0 Mj i�ij p��j�

2
6664

3
7775;

(A7)

for spinor products ug� dr, ub� sr, db� sg, dr� ug,
sr� ub, and sg� db, respectively.

The eigenvalues of the 12� 12 matrix appear in 
pairs. For the 4� 4 matrices, the dispersion relations of
the i�� j� and j�� i� quasiparticles have the same

magnitude but opposite signs. Thus, there are in general
nine independent dispersion relations for quark-quark ex-
citations and nine for antiquark-antiquark excitations. Each
dispersion relation is two-fold degenerate due to the
Nambu-Gorkov basis and two-fold ‘‘degenerate’’ due to
the  pairs. The eigenvalues of (A6) must be calculated
numerically. The eigenvalues of (A7) can be obtained
analytically by solving for the roots of the quartic charac-
teristic polynomial,

�4 � a3�3 � a2�2 � a1�� a0 � 0; (A8)

where

a0 � P4 � �M2
i �M2

j � 2�2
ij ��2

i� ��2
j��P2 � ��i��j� �MiMj ��2

ij ��i�Mj ��j�Mi�
� ��i��j� �MiMj ��2

ij ��i�Mj ��j�Mi�;
a1 � 2��i� ��j��P2 � 2�2

ij��i� ��j�� � 2��i�M
2
j ��j�M

2
i ��2

i��j� ��2
j��i��;

a2 � �2
i� ��2

j� � 2P2 �M2
i �M2

j � 2�2
ij � 4�i��j�;

a3 � �2��i� ��j��:

In the limit when Mi � Mj � M, which is approxi-
mately valid for the ug� dr and dr� ug quasiparticles,
the four solutions are

� � �i� ��j�

2


�������������������������������������������������������i� ��j�

2
 E

�
2 ��2

ij

s
; (A9)

where E � �������������������
p2 �M2

p
. This result is in agreement with

[44]. More generally, the solutions of the quartic equation
can be found in textbooks, see, e.g., [59]. In this work the
eigenvalues of the 4� 4 matrices were calculated with the
exact solutions of the quartic equation and the eigenvalues
of the 12� 12 matrix were calculated with LAPACK. The

momentum integral in (15) was calculated with a Gaussian
quadrature. The minimization of the thermodynamic po-
tential was performed with conjugate gradient methods,
choosing the initial values of the variational parameters
carefully, and then comparing the free energies of the
various minima. The color and electric charges were neu-
tralized with a globally convergent Newton-Raphson
method in multidimensions.

Gapless quasiparticle excitations are characterized by a
nonzero gap, �ij, and a corresponding dispersion relation
that is zero for at least one value of the quasiparticle
momentum, i.e., the dispersion relation reaches the Fermi
surface and there is no forbidden energy band.
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Condition for gapless color-antitriplet excitations in Nambu–Jona-Lasinio models
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We present an exact condition for the existence of gapless quasiparticle excitations in Nambu–Jona-Lasinio
models of color superconducting quark matter with a quark-quark interaction in the scalar color-antitriplet
channel. The condition can be represented by a rotated ellipse in the plane of mass and chemical potential
differences for the paired quark fields.
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I. INTRODUCTION

At high baryon density and low temperature, matter is
believed to be in a color superconducting state, which is
characterized by condensates of quark Cooper pairs [1–4].
A superconducting phase typically has an energy gap in the
density of states, which corresponds to the lowest excitation
energy of a quasiparticle pair. However, if the difference
between the Fermi momenta of the paired quarks is sufficiently
large, gapless quasiparticle excitations could exist [5–8]. The
presence of gapless phases could have observable conse-
quences, e.g., the high specific heat and neutrino emissivity
could affect the cooling behavior of compact stars [9]. It has
been found, however, that gapless phases might suffer from a
chromomagnetic instability [10–15], and it is currently unclear
whether gapless phases appear at temperatures relevant for
compact star evolution [8,15–17]. It is therefore important to
improve the understanding of gapless phases. In this paper
we derive an exact condition for the existence of gapless
excitations in the frequently used Nambu–Jona-Lasinio (NJL)
model of color superconducting quark matter. A qualitatively
useful graphical representation of the condition and some
well-known approximations are also presented.

II. MODEL

The most dense environment where quark matter is ex-
pected to exist is in the core of neutron stars, which are subject
to a gravitational instability that limits the maximum density
to ∼1015 g/cm3 [18]. This corresponds to a maximum quark-
number chemical potential of μ ∼ 500 MeV and a maximum
baryon number density of nB ∼ 10 n0, where n0 = 0.17 fm−3

is the baryon number density in nuclear matter. Since the charm
quark mass is higher than the maximum chemical potential,
it is sufficient to consider up (u), down (d), and strange (s)
quarks. The quark spinors are

qT = (ψur, ψug, ψub, ψdr , ψdg, ψdb, ψsr , ψsg, ψsb), (1)

where r, g, and b represent red, green, and blue colors. The NJL
model of superconducting quark matter is based on effective
pointlike four-fermion interactions and is described in, e.g.,
Refs. [15–17,19]. Here we repeat some of the essential points.

The Lagrangian density is

Leff = q̄(i∂/ − m̂ + μ̂γ 0)q + Lq̄q + Lqq, (2)

where m̂ = diagf (mu, md, ms) is the current quark mass
matrix in flavor space.Lq̄q andLqq are the effective interaction
terms, which are used at mean-field level in the Hartree
approximation. Explicitly,

Lq̄q = GS

8∑
a=0

[(q̄τaq)2 + (q̄iγ5τaq)2]

−K{detf [q̄(1 + γ5)q] + detf [q̄(1 − γ5)q]}, (3)

Lqq = GD

∑
a,b=2,5,7

(q̄iγ5τaλbCq̄T )(qT Ciγ5τaλb q), (4)

where τa and λb are the antisymmetric Gell-Mann matrices
acting in, respectively, flavor and color space. GS,K, and
GD are coupling constants that must be determined by
experiments.

The quark-quark interaction term Lqq gives rise to super-
conducting condensates, sab = 〈qT Cγ5τaλbq〉, which break
SU(3)c and U(1) symmetry. The symmetries of L correspond
to a conserved chromoelectromagnetic charge. The associated
chemical potential is [19]

μ̂ = μ + μQ

(
τ3

2
+ τ8

2
√

3

)
+ μ3λ3 + μ8λ8. (5)

Here, μ is the quark-number chemical potential, μQ is the
positive electric-charge chemical potential, and μ3 and μ8 are
color-charge chemical potentials. By linearizing Eq. (2) in the
quark-quark (diquark) gaps, ab = 2GDsab, and the quark-
antiquark (chiral) gaps, φi = −4GS〈q̄iqi〉, one can obtain a
grand canonical thermodynamic potential by standard methods
[15–17,19]:

�(T ,μ) = φ2
u + φ2

d + φ2
s

8GS

+ Kφuφdφs

16G3
S

+ 2
ud + 2

us + 2
ds

4GD

−
∫

d3p

(2π )3

18∑
n=1

[En + 2T ln(1 + e−En/T )]

+�lep − �0. (6)

Here, En(p, μ; μQ,μ3, μ8, φu, φd, φs, ud,us,ds) are
the quasiparticle dispersion relations, �lep is the contribution
from leptons (e.g., electrons, muons, and the corresponding
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neutrino flavors), and �0 is the vacuum, i.e., �(0, 0) = 0. It
should be noted that Eq. (6) is an even function of En, so the
signs of the dispersion relations are arbitrary. We therefore
follow the standard convention that all states below the Fermi
surface (En < 0) are occupied, and only positive-energy states
are considered. In Eq. (6) the diquark gaps are denoted with
flavor indices. One can readily do this by considering the color
and flavor structure of the Gell-Mann matrices

ud ≡ 22 (u-d, r-g pairing), (7)
us ≡ 55 (u-s, r-b pairing), (8)
ds ≡ 77 (d-s, g-b pairing), (9)

and ab = 0 if a �= b [19]. The chiral gaps and the diquark
gaps are variational parameters that are determined by mini-
mization of Eq. (6). The constituent quark masses are

Mi = mi + φi + K

8G2
S

φjφk, (10)

where (i, j, k) is any permutation of (u, d, s).
In QCD, a color superconducting ground state is auto-

matically color neutral because of the generation of gluon
condensates in one or more of the eight components of
the gluon field. In NJL models there are no gauge fields
that neutralize the color charge dynamically, because the
gluons have been replaced with effective pointlike quark-
antiquark [Eq. (3)] and quark-quark [Eq. (4)] interactions.
One must therefore enforce color neutrality by solving for
the charge chemical potentials μQ,μ3, and μ8 such that the
corresponding charge densities na = 〈ψ†Taψ〉 = −∂�/∂μa

are zero [20].
The values of the gaps and the (charge) chemical potentials

depend on the coupling constants (GS,K, and GD), the
current quark masses (mu,md, and ms), and the regularization
method. These input parameters are fitted to low-density
hadronic results and are therefore only approximately known.
In addition, approximations are frequently used to simplify the
evaluation of Eq. (6). In this context it would be useful to have
a mathematically exact condition for the appearance of gapless
quasiparticle dispersion relations, without reference to specific
input parameters and further assumptions. This condition is
presented below.

III. GAPLESS CONDITIONS

The dispersion relations En are eigenvalues of six 4 × 4
matrices and one 12 × 12 matrix [15–17]. Disregarding the
signs, three 4 × 4 matrices and 6 of the 12 eigenvalues of
the 12 × 12 matrix remain (3 × 4 + 6 = 18). The 12 × 12
matrix corresponds to ur-dg-sb pairing, and the three 4 × 4
matrices correspond to ug-dr, ub-sr , and db-sg pairing. There
are strong indications that the ur-dg-sb modes are never
gapless, because the Fermi momenta of these three species
are approximately equal [8], and no such gapless modes have
been found in numerical evaluations [15–17]. A proof has
turned out to be difficult to obtain because of the complexity
of the characteristic polynomial of the 12 × 12 matrix. We
therefore leave this analysis to a future publication. Here the
4 × 4 matrices are considered. The characteristic polynomials

of these matrices can be written as

E4
n + a3E

3
n + a2E

2
n + a1En + a0. (11)

The a0 coefficient of the polynomial is [17]

a0 = p4 + (
M2

i + M2
j + 22

ij − μ2
iα − μ2

jβ

)
+p2

(
μiαμjβ + MiMj + 2

ij + μiαMj + μjβMi

)
× (

μiαμjβ + MiMj + 2
ij − μiαMj − μjβMi

)
, (12)

for quark flavors (i, j ) and colors (α, β). The chemical
potential μiα for a quark field with flavor i and color α can be
extracted from Eq. (5) (μ̂ is diagonal in color and flavor space).
A gapless dispersion relation is characterized by En(p) = 0
for some real value(s) of p when ij �= 0. This requires that
a0(p) = 0 have at least one real root. The solutions are

p2 = μ̄2 + δμ2 − M̄2 − δM2 − 2

± 2
√

(μ̄δμ − M̄δM)2 − 2(μ̄2 − δM2). (13)

Here we have introduced the quantities

M̄ = (Mi + Mj )/2, δM = (Mi − Mj )/2, (14)

μ̄ = (μiα + μjβ)/2, δμ = (μiα − μjβ)/2, (15)

and  = ij . The indices in Eq. (12) can be omitted without
ambiguity, since we are dealing with two-species pairing.
Observe that the masses and chemical potentials of the paired
quark fields are M̄ ± δM and μ̄ ± δμ. A real square root in
Eq. (13) requires that

 � g ≡ |μ̄δμ − M̄δM|√
μ̄2 − δM2

, (16)

and a positive solution for p2 requires that

M̄2 + δM2 + 2 − μ̄2 − δμ2

� 2
√

(μ̄δμ − M̄δM)2 − 2(μ̄2 − δM2). (17)

Inequality (16) can be represented with a rotated ellipse in
the δM-δμ plane, as in Fig. 1. The interior region of the ellipse
violates inequality (16) and hence represents gapped modes.
Outside the ellipse the square root in inequality (17) is real, and
inequality (17) is obviously satisfied as long as the left-hand
side is negative. A negative left-hand side of inequality (17)
is represented by the region in between the two branches of
the hyperbola, μ̄2 + δμ2 = M̄2 + δM2 + 2, in Fig. 1. For a
positive left-hand side, which corresponds to the two regions
on the left- and right-hand sides of the hyperbola, inequality
(17) can be squared, and four coupled inequalities linear in
δM and δμ are obtained. These correspond to tangent lines of
the ellipse. The hatched areas enclosed by the tangent lines,
the hyperbola and the ellipse violate inequality (17) and hence
represent gapped modes. For each tangent line the intersection
with the hyperbola coincides with the point on the ellipse.
Inequality (17) is relevant if δM/μ̄ ∼ 1 − 2(μ̄ − M̄)−2/2,
which is not the case for realistic values of the masses and
chemical potentials. This is explicitely demonstrated by the
examples in Fig. 2. Inequality (16) is therefore the relevant
condition for gapless modes. In achieving this result, no further
approximations other than those leading up to Eq. (6) were
made.
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FIG. 1. (Color online) Graphical representation of gapless in-
equalities (16) and (17). For clarity only the first quadrant is shown.
The third quadrant is a reflection of the first quadrant in the origin.
In this figure an unreasonably large value of M̄ has been used to
emphasize the role of the tangent lines. Qualitatively, the gapped
region can be represented by the rotated ellipse; see the text. The
values of δμ and δM can be represented by a point in the δM-δμ
plane. If this point is enclosed by the hatched area, the dispersion
relations are gapped. Otherwise a gapless dispersion relation exists.
Here δMc = μ̄/(1 + M̄2/2)1/2 and ξ± = [2 + (μ̄ ± M̄)2]1/2.

For the two-flavor color superconducting phase, which
is characterised by ud �= 0 and us = ds = μ3 = 0, one
can use the fact that δM � δμ and M � μ, so the gapless
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FIG. 2. (Color online) Graphical representation of gapless condi-
tions (16) and (17) for some of the quasiparticle dispersion relations
represented in Fig. 4. The values of δM and δμ are represented
by bold points. If the center of a point is enclosed by an ellipse,
the corresponding quasiparticle has gapped dispersion relations;
otherwise a gapless dispersion relation exists.
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FIG. 3. (Color online) Diquark gaps vs. the temperature at μ =
500 MeV and η = 0.75. g

ij is the threshold for gapless quasiparticle
dispersion relations (16), i.e., gapless modes exist iff ij � 
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ij . The
critical points where gapless db-sg, ub-sr , and ug-dr quasiparticles
appear are denoted by, respectively, A, B, and C. The BCS result
for the critical temperature of a superconducting condensate, T ∼
0.57 (T = 0), is indicated in the plot. This figure represents a cross
section of Fig. 5 in Ref. [17].

condition [Eq. (16)] is approximately

ud <∼ |δμ| = −μQ. (18)

For the three-flavor color-flavor-locked phase, which is charac-
terized by ij �= 0 and M̄ ∼ δM ∼ Ms/2, a series expansion
of inequality (16) to first order in M2

s /μ̄ yields

is <∼ |δμ| +
[

sign(δμ)

4
+ |δμ|

8μ̄

]
M2

s

μ̄
, (19)
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FIG. 4. (Color online) Dispersion relations at μ = 500 MeV and
η = 0.75 for four different temperatures. Gapless modes are denoted
by the thick curves. Gapped modes and modes of unpaired quarks are
denoted by the thin curves. Compare with Fig. 3.
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where δμ = (μiα − μsβ )/2. These well-known approximate
results are instructive at the qualitative level, but should not be
used mechanically; see the discussion below.

IV. NUMERICAL EXAMPLE

Next we present a numerical example and therefore con-
strain the discussion to a specific parametrization of the model,
as in Ref. [17]. The momentum integral is regularized with a
cutoff, � = 602.3 MeV. The coupling constants are GS�

2 =
2.319,GD/GS ≡ η = 0.75, and K = 0. The current quark
masses are mu = md = 5.5 MeV and ms = 112 MeV. By the
insertion of these parameters into the thermodynamic potential
(6), the gaps (φu, φd, φs, ud,us,ds) can be determined
by minimization of the free energy, while simultaneously
neutralizing all charge densities with μQ,μ3, and μ8. In
Fig. 3 the diquark gaps ij and the gapless thresholds
[inequality (16)], 

g

ij are plotted versus the temperature for
a fixed value of the quark-number chemical potential, μ =
500 MeV. In Fig. 4 the quark-quark quasiparticle dispersion
relations are plotted for four different temperatures represented
in Fig. 3. Observe that gapless dispersion relations exist iff
ij � 

g

ij . Figure 2 shows the graphical representation of
the gapless condition for some quasiparticles represented in
Fig. 4, see Fig. 1 for further information.

V. CONCLUSIONS

We find that the difference between approximate results
(18) and (19) and exact gapless condition (16) is typically
below 5% in the plane of temperature and quark-number
chemical potential. However, even a small error in 

g

ij

could lead to qualitatively incorrect conclusions if ij (T ∼
0) ∼ 

g

ij , because ij (T ) are roughly constant at the low
temperatures relevant for compact star evolution. The exact
condition for gapless quasiparticle excitations presented here
[Eq. (16)], which is the main result of this paper, is a safe
alternative to the approximative results. Moreover, Fig. 1 is
an accurate qualitative picture of the prerequisites for gapless
color-antitriplet excitations in NJL models.
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[16] S. B. Rüster, V. Werth, M. Buballa, I. A. Shovkovy, and

D. H. Rischke, Phys. Rev. D 72, 034004 (2005).
[17] D. Blaschke, S. Fredriksson, H. Grigorian, A. M. Öztaş, and
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Abstract

We present a hybrid equation of state (EoS) for dense matter that satisfies phe-
nomenological constraints from modern compact star (CS) observations which in-
dicate high maximum masses (M ∼ 2M�) and large radii (R > 12 km). The corre-
sponding isospin symmetric EoS is consistent with flow data analyses of heavy-ion
collisions and a deconfinement transition at ∼ 0.55 fm−3. The quark matter phase
is described by a 3-flavor Nambu–Jona-Lasinio model that accounts for scalar di-
quark condensation and vector meson interactions while the nuclear matter phase
is obtained within the Dirac-Brueckner-Hartree-Fock (DBHF) approach using the
Bonn-A potential. We demonstrate that both pure neutron stars and neutron stars
with quark matter cores (QCSs) are consistent with modern CS observations. Hy-
brid star configurations with a CFL quark core are unstable.
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1 Introduction

Recently, new observational limits for the mass and the mass-radius relation-
ship of compact stars have been obtained which provide stringent constraints
on the equation of state of strongly interacting matter at high densities, see [1]
and references therein. In particular, the high mass of M = 2.1 ± 0.2 M� for
the pulsar J0751+1807 in a neutron star - white dwarf binary system [2] and
the large radius of R > 12 km for the isolated neutron star RX J1856.5-3754
(shorthand: RX J1856) [3] point to a stiff equation of state at high densities.
Measurements of high masses are also reported for compact stars in low-mass
X-ray binaries (LMXBs) as, e.g., M = 2.0±0.1 M� for the compact object in
4U 1636-536 [4]. For another LMXB, EXO 0748-676, constraints for the mass
M ≥ 2.10 ± 0.28 M� and the radius R ≥ 13.8 ± 0.18 km have been reported
[5]. The status of these data is, however, unclear since the observation of a
gravitational redshift z = 0.35 in the X-ray burst spectra [6] could not be
confirmed thereafter despite numerous attempts [7]. We exclude possible con-
straints from LMXBs from the discussion in the present paper as their status
is not settled and they would not tighten the mass and mass-radius limits
provided by J0751+1807 and RX J1856, respectively. It has been argued [3,5]
that deconfined quark matter cannot exist in the centers of compact stars with
masses and radii as reported for these objects. In view of recent works on the
quark matter EoS, however, this claim appears to be premature [8].

In the present paper, we demonstrate that the present-day knowledge of hy-
drodynamical properties of dense matter allows to construct hybrid EsoS with
a critical density of the deconfinement phase transition low enough to allow
for extended quark matter cores and stiff enough to comply with the new mass
measurements of compact stars. It has been shown recently by Alford et al. [9]
that hybrid stars can masquerade as neutron stars once the parameters of a
generic phenomenological quark matter EoS have been chosen appropriately.
While in [9] the APR EoS [10] for the hadronic phase has been used, we base
our investigation on a nuclear EoS obtained from the ab initio DBHF ap-
proach using the Bonn A potential [11,12] which results in star configurations
with larger radii and masses. The DBHF EoS is soft at moderate densities
(compressibility K=230 MeV) [11,13] but tends to become stiffer at high den-
sities. At densities up to 2-3 times nuclear saturation density it is in agreement
with constraints from heavy ion collisions based on collective flow [14,15] and
kaon production [16]. However, at higher densities this EoS seems to be too
repulsive concernig the flow constraint. As we will show in the present paper,
the problems of this EoS with an early onset of the nuclear direct Urca (DU)
process and a violation of the flow constraint for heavy-ion collisions at high
densities can be solved by adopting a phase transition to quark matter.

We have no first principle information from QCD about the quark matter EoS
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in the nonperturbative domain close to the chiral/ deconfinement transition at
zero temperature and finite density which would be required for an ab-initio
study of the problem whether deconfined quark matter can exist in neutron
stars or not. Therefore it is desireable to develop microscopic approaches to
the quark matter EoS on the basis of effective models implementing, as far
as possible, QCD symmetries into the model Lagrangian. The Lagrangian
of the Nambu–Jona-Lasinio (NJL) type models has chiral symmetry which
is dynamically broken in the nonperturbative vacuum and restored at finite
temperatures in accordance with lattice QCD simulations. Therefore, the ap-
plication of the NJL model to finite densities where presently no reliable lattice
QCD simulations exist, can be regarded as state-of-the-art for present dense
quark matter studies, see [18] and references therein.

In contrast to Ref. [9] we base our investigation on a three-flavor chiral quark
model with selfconsistently determined quark masses and pairing gaps [19]
similar to the parallel developments in Refs. [20,21]. This approach has the
advantage that it allows, e.g., to distinguish two- and three-flavor phases in
quark matter (for a first discussion, see [22]) and to allow conclusions about
the presence of gapless phases at zero temperature as a function of the coupling
strengths in the current-current-type interaction of the model Lagrangian [23].
Moreover, we will investigate the question of the stability of neutron stars
with a color superconducting quark matter core in the celebrated CFL phase,
for which a number of phenomenological applications have been studied, in
particular the cooling problem [24,25,26,27], gamma-ray bursts [28,29], and
superbursts [30]. We will confirm in this work the earlier result by Buballa et
al. [31] that a CFL quark matter core renders the hybrid star unstable.

Here we generalize the model [19] by including an isoscalar vector meson
current which, similar to the Walecka model for nuclear matter, leads to a
stiffening of the quark matter EoS. Increasing the scalar diquark coupling
constant leads to a lowering of the phase transition density. It is the aim
of the present work to determine the unknown coupling strengths in both
these channels such that an optimal hybrid star EoS is obtained. It fulfills all
recently developed constraints from modern compact star observations [1,5]
while providing sufficient softness of the isospin-symmetric limit of this EoS
as required from the analysis of heavy-ion collision transverse flow data [14,15]
and K+ production data [16].

2 Equation of state

The thermodynamics of the deconfined quark matter phase is described within
a three-flavor quark model of Nambu–Jona-Lasinio (NJL) type. The path-
integral representation of the partition function is given by
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Z(T, μ̂)=
∫
Dq̄Dq exp

⎧⎪⎨
⎪⎩

β∫
0

dτ
∫

d3x
[
q̄
(
i∂/ − m̂ + μ̂γ0

)
q + Lint

]⎫⎪⎬
⎪⎭ , (1)

Lint = GS

[ ∑
a=0,3,8

(q̄τaq)
2 − ηV (q̄γ0q)2

+ηD

∑
A=2,5,7

(q̄iγ5τAλACq̄T )(qT iCγ5τAλAq),

]
, (2)

where μ̂ and m̂ = diagf (mu, md, ms) are the diagonal chemical potential and

current quark mass matrices. For a = 0, τ0 = (2/3)1/21f , otherwise τa and
λa are Gell-Mann matrices acting in flavor and color spaces, respectively.
C = iγ2γ0 is the charge conjugation operator and q̄ = q†γ0. GS, ηV , and
ηD determine the coupling strengths of the interactions.

The interaction terms represent current-current interactions in the color sin-
glet scalar and vector meson channels, and the scalar color antitriplet diquark
channel. In the choice of the four-fermion interaction channels we have omitted
the pseudoscalar quark-antiquark terms, which should be present in a chirally
symmetric Lagrangian. These terms do not contribute to the thermodynamic
properties of the deconfined quark matter phase at the mean-field (Hartree)
level [32] to which we restrict the discussion in the present paper. The Lorentz
three-current, ν ∈ {1, 2, 3} : (q̄γνq)2, vanishes in the static ground state
of matter and is therefore omitted. The model is similar to the models in
[19,20,21], except that we include also the isoscalar vector meson channel. We
follow the argument given in [19], that the UA(1) symmetry breaking in the
pseudoscalar isoscalar meson sector is dominated by quantum fluctuations and
no ’t Hooft determinant interaction needs to be adopted for its realization.

After bosonization using Hubbard-Stratonovich transformations, we obtain an
exact transformation of the original partition function (1). The transformed
expression constitutes the starting point for powerful approximations, defined
as truncations of the Taylor expanded action functional to different orders
in the collective boson fields. In the following, we use the mean-field (MF)
approximation. This means that the bosonic functional integrals are omitted
and the collective fields are fixed at the extremum of the action. The corre-
sponding mean-field thermodynamic potential, from which all thermodynamic
quantities can be derived, is given by

ΩMF (T, μ)=−
1

βV
ln ZMF (T, μ)

=
1

8GS

⎡
⎣ ∑

i=u,d,s

(m∗
i − mi)

2 −
2

ηV
(2ω2

0 + φ2
0) +

2

ηD

∑
A=2,5,7

|ΔAA|
2

⎤
⎦
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−
∫

d3p

(2π)3

18∑
a=1

[
Ea + 2T ln

(
1 + e−Ea/T

)]
+ Ωl − Ω0 . (3)

Here, Ωl is the thermodynamic potential for electrons and muons, and Ω0 is
a divergent term that is subtracted in order to get zero pressure and energy
density in vacuum (T = μ = 0). The quasiparticle dispersion relations, Ea(p),
are the eigenvalues of the Hermitian matrix

M =

⎡
⎢⎣−�γ · �p − m̂∗ + γ0μ̂∗ γ5τAλAΔAA

−γ5τAλAΔ∗
AA −�γT · �p + m̂∗ − γ0μ̂∗

⎤
⎥⎦ , (4)

in color, flavor, Dirac, and Nambu-Gorkov space. Here, ΔAA are the diquark
gaps. m̂∗ is the diagonal renormalized mass matrix and μ̂∗ the renormal-
ized chemical potential matrix, μ̂∗ = diagf(μu − GSηV ω0, μd − GSηV ω0, μs −
GSηV φ0). The gaps and the renormalized masses are determined by mini-
mization of the mean-field thermodynamic potential (3), subject to charge
neutrality constraints which depend on the application we consider. In the
(approximately) isospin symmetric situation of a heavy-ion collision, the color
charges are neutralized, while the electric charge in general is non-zero. For
matter in β-equilibrium, also the electric charge is neutralized. For further
details, see [19,20,21].

We consider ηD as a free parameter of the quark matter model, to be tuned
with the present phenomenological constraints on the high-density EoS. Sim-
ilarly, the relation between the coupling in the scalar and vector meson chan-
nels, ηV , is considered as a free parameter of the model. The remaining degrees
of freedom are fixed according to the NJL model parameterization in Table I
of [33], where a fit to low-energy phenomenological results has been made.

A consistent relativistic approach to the quark hadron phase transition where
the hadrons appear as bound states of quarks is not yet developed. First steps
in the direction of such a unified approach to quark-hadron matter have been
accomplished within the NJL model in [34]. In this paper, however, the role
of quark exchange interactions between hadrons (Pauli principle on the quark
level) has yet been disregarded. As has been demonstrated within a nonrela-
tivistic potential model approach, these contributions may be essential for a
proper understanding of the short-range repulsion [35] as well as the asym-
metry energy at high-densities [36]. In the present work we apply a so-called
two-phase description where the nuclear matter phase is described within the
relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach considered in [1]
and the transition to the quark matter phase is obtained by a Maxwell con-
struction. The critical chemical potential of the phase transition is obtained
from the equality of hadronic and quark matter pressures. A discussion of
the reliability of the Maxwell construction for the case of a set of conserved
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charges is discussed in [37].
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Fig. 1. Pressure vs. density of the isospin symmetric EoS for different values of the
relative coupling strengths ηD and ηV . The behaviour of elliptic flow in heavy-ion
collisions is related to the EoS of isospin symmetric matter. The upper and lower
limits for the stiffness deduced from such analyses are indicated in the figure (shaded
region). The quark matter EoS favored by the flow constraint has a vector coupling
ηV = 0.50 and a diquark coupling between ηD = 1.02 (blue solid line) and ηD = 1.03
(black fat solid line); results for four intermediate values ηD = 1.022 . . . 1.028 are
also shown (thin solid lines).

The baryon density as derivative of the pressure with respect to the bary-
ochemical potential exhibits a jump at the phase transition, as shown for
isospin-symmetric matter in Fig. 1. As can be seen in that Figure, a slight
variation of the quark matter model parameters ηD and ηV results in consid-
erable changes of the critical density for the phase transition and the behaviour
of the pressure (stiffness) at high densities. There appears the problem of a
proper choice of these parameters which we suggest to solve by applying the
flow constraint [14] to symmetric matter, shown as the hatched area in Fig.1.
At first we fix the vector coupling by demanding that the high density behavior
of the hybrid EoS should be as stiff as possible but still in accordance with the
flow constraint. We obtain ηV = 0.50, independent of the choice of the scalar
diquark coupling. The latter we want to determine such that the problem of
the violation of the flow constraint for the DBHF EoS in symmetric nuclear
matter at high densities is resolved by the phase transition to quark matter.
The optimal choice for ηD is thus between 1.02 and 1.03. In the following we
will investigate the compatibility of the now defined hybrid star equation of

6



state with CS constraints.

3 Astrophysical constraints on the high-density EoS

Recently, observations of compact objects have resulted in new limits for
masses and radii which put stringent constraints on the high-density behaviour
of the nuclear matter EoS, see [1].

Particularly demanding data come from the pulsar PSR J0751+1807 with a
lower mass limit of M ≥ 1.9 M� [2], and the isolated compact star RX J1856
with a mass-radius relationship supporting a radius exceeding 13.5 km for
typical masses below 1.4 M� or masses above 1.9 M� for stars with radii
R ≤ 12 km [3]. In Fig.2 we display these constraints together with lines of
constant gravitational redshift.

The above constraints have to be explained by any reliable CS EoS, i.e. the
mass radius relation resulting from a corresponding solution of the Tolman-
Oppenheimer-Volkoff equations has to touch each of the regions shown in
Fig. 2. This is well fulfilled for the purely hadronic DBHF EoS.

It is widely assumed that if quark matter would exist in CSs, the maximum
mass would be significantly lower than for nuclear matter stars (NMS). This
argumentation has been used to claim that quark matter in neutron stars is
in contradiction with observations [5].

As we will show in this work, large hybrid star masses can be obtained for
sufficiently stiff quark matter EsoS. In this case, the corresponding hybrid
(NJL+DBHF) QCS sequence is not necessarily ruled out by phenomenology.
The stiffness of the quark matter EoS can be significantly increased when the
vector meson interaction of the NJL model introduced in Section 2 is active.
The maximum value of the vector coupling which is still in accordance with
the upper limit extrapolation of the flow constraint, ηV = 0.50, see Fig. 1,
allows a maximum mass of 2.1 M�. With this choice the constraints from
PSR J0751+1807 and RX J1856 displayed in Fig. 2 can be fulfilled.

The maximum mass is rather inert to changes of the diquark coupling ηD

whereas the critical mass for the occurrence of a quark matter core gets sig-
nificantly lowered by increasing the value of ηD. For example, the choice of ηD

in the range 1.02 − 1.03 corresponds to critical star masses from 1.35 M� to
1.0 M�, see Fig. 2.

Another robust statement from our studies of the hybrid EoS is that the
occurrence of a CFL quark matter core renders the compact star unstable.

7



This confirms an earlier findings by Baldo et al. [17] and Buballa et al.[31] for
slightly different hybrid EsoS.

An additional test to the mass-radius relation could be provided by a measure-
ment of the gravitational redshift. We note that the redshift z=0.35 found for
EXO 0748-676 [6], which could not be confirmed by further measurements [7],
would be in accordance with both NMS and QCS interpretations. A measure-
ment of z ≥ 0.5 could not be accommodated with the QCS model suggested
here, while the NMS would not be invalidated by redshift measurements up
to z = 0.6.
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Fig. 2. Mass - radius relationship for CS sequences corresponding to a nuclear
matter EoS (DBHF) and different hybrid star EsoS (DBHF+NJL), see text. Indi-
cated are also the constraint on the mass from the pulsar J0751+1807 [2] and on
the mass-radius relationship from the isolated neutron star RX J1856 [3] Present
constraints on the mass-radius relation of CSs do not rule out hybrid stars. The dot-
ted lines indicate the gravitational redshift, z = (1 − 2GM/R)−1/2 − 1, of photons
emitted from the compact star surface.

Next we want to discuss the question whether measurements of the moment of
inertia (MoI) I might serve as a tool to distinguish pure NMS from QCS mod-
els. Due to the discovery of the relativistic double pulsar PSR J0737+3039 a
measurement of the MoI became a possibility and has been recently discussed
as another constraint on the EoS of compact stars, assuming that future mea-
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J0737+3039 A+B and the pulsar J0751+1807. We also show anticipated data points
with error bars corresponding to a measurement with a 1 σ level of 10%.

surements will exhibit an error of only about 10% [47,48]. In our calculations
we follow the definition of the MoI given in Ref. [46] and show the results for
the EsoS of the present paper in Fig. 3. Due to the fact that the mass 1.338
M� of PSR J0737+3039 A is in the vicinity of the suggested critical mass
region, the quark matter core is small and the expected MoI of the hybrid
star will be practically indistinguishable from that of a pure hadronic one.
The situation would improve if the MoI could be measured for more massive
objects because the difference in the MoI of both alternative models for masses
as high as 2 M� could reach the 10% accuracy level.

Finally we would like to discuss the question whether there are observables
suited to distinguish between pure neutron stars and those with a quark matter
interior. As we have seen in the previous results, the hydrodynamic behavior of
the hybrid star EoS has to be rather similar to that of pure hadronic matter
in order to allow for sufficiently large masses. If so, the moment of inertia
and other mechanical properties of the resulting stars will turn out to be
indistinguishable to the level of a few percent. A different situation might
occur for CS cooling where the transport properties and thus the excitation
spectra of the dense matter play the essential role. As an example, pairing

9



gaps of the order of an MeV or below will not affect the thermodynamics but
are sufficiently large to influence on neutrino cooling processes. Let us discuss
the example of the direct Urca (DU) process.

If the DU process would occur in hadronic matter, it would give rise to a
fast cooling and result in a strong sensitivity to slightest mass changes of the
corresponding compact object. Therefore, it should not occur in CSs with
masses below 1.5 M�, as this would provide a cooling rate that is inconsistent
with CS population syntheses [38,39]. If on the other hand the DU process
does not occur in a hadronic star, one would require that young, fast coolers
such as Vela and 3C58 should have a rather large mass, again in contradiction
with the present population syntheses.

A possible resolution to this hadronic cooling problem could be a phase transi-
tion to quark matter with moderately enhanced cooling. This has been demon-
strated for hybrid stars with a 2SC+X quark matter phase [40] which is in
accordance with all presently known cooling constraints [39]. The physical na-
ture of the hypothetical X-gap is, however, not yet clarified. A discussion of
this issue can be found in Refs. [41,42].

For the DBHF EoS the DU threshold is at nDU = 0.375 fm−3 corresponding
to a CS mass of MDU = 1.26 M�, see Fig. 4. The hybrid EoS presented in
this work has a critical density for the quark matter phase transition which is
below nDU provided a value ηD ≥ 1.024 is chosen.

Thus for the parameter values ηV = 0.50 and ηD
>
∼ 1.024 the present EoS

for hybrid star matter fulfills all modern observational constraints discussed
above.

4 Summary

We have investigated the compatibility of present constraints on the high
density EoS with the concept of CSs possessing a QM core. The hadronic
part of the EoS was taken from the DBHF approach, while the QM EoS is
provided by a chiral NJL-type quark model with current-current interactions
in the color singlet (isoscalar) scalar and vector meson channels as well as in
the color antitriplet scalar diquark channels. The finite vector meson coupling
enables us to describe large hybrid star masses by stiffening the QM EoS,
whereas the chosen value for the diquark coupling ensures a sufficiently early
phase transition to QM in order to avoid the activation of DU cooling within
the hadronic shell of the hybrid star. Since the high density QM part of the EoS
is softer than the corresponding pure hadronic EoS also the flow constraint is
fulfilled in this scenario. We discussed the possibility to distinguish between
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pure NSs and hybrid stars by hypothetical data from successful measurements
of the MoI for stars of a given mass. It turned out, that this would be possible
for rather massive objects (M ≈ 2.0 M�) provided the standard deviation of
the measurements is less than 10%, as expected for PSR J0737+3039 A.

As our main result we conclude that no present phenomenological finding bears

a strong argument against the presence of a QM core inside NSs. Moreover,
we demonstrated that problems with cooling and flow which appear as weak
points of a purely hadronic EoS at large densities can be resolved in a natural
way when a transition to QM occurs at not too large densities.

The most common argument against the presence of QM in CSs, resulting
from the prejudice of the softness of QM EsoS, is no longer valid if we account
for a vector meson interaction channel which stiffens the EoS. The earlier
finding that CFL quark matter cannot be found in stable hybrid stars has
been reconfirmed and appears thus as a severe constraint for phenomenological
scenarios of compact star evolution.

However, there is a discrepancy between the phenomenologically deduced val-
ues of the coupling constants (ηD, ηV )phen = (1.024, 0.5) and those expected
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from the Fierz rearrangement argument (ηD, ηV )Fierz = (0.75, 0.5). It is neces-
sary to repeat the present study for more realistic microscopic approaches to
the QCD EoS taking into account, e.g., that QCD interactions are nonlocal
and momentum-dependent. One possible strategy could consist in the appli-
cation of nonlocal, separable models [49,50] which can be generalized to use
covariant formfactors [51,52] to be adjusted such that Lattice QCD results on
the momentum dependence of the quark selfenergies [53] could be reproduced.
Moreover, one should go beyond the mean-field level of description and treat
hadrons as bound states of quarks. This would allow to model the hadron-to-
quark-matter phase transition in a more consistent way as the dissolution of
hadronic bound states into correlations in the continuum of quark matter.
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J.M. Cordes, Astrophys. J. 634, 1242 (2005).
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The observational legacy of preon stars – probing new physics beyond the LHC

F. Sandin and J. Hansson

Department of Physics, Lule̊a University of Technology, SE-97187 Lule̊a, Sweden∗

We discuss possible ways to observationally detect the superdense cosmic objects composed

of hypothetical sub-constituent fermions beneath the quark/lepton level, recently proposed

by us. The characteristic mass and size of such objects depend on the compositeness scale,

and their huge density cannot arise within a context of quarks and leptons alone. Their

eventual observation would therefore be a direct vindication of physics beyond the standard

model of particle physics, possibly far beyond the reach of the Large Hadron Collider (LHC),

in a relatively simple and inexpensive manner. If relic objects of this type exist, they can

possibly be detected by present and future x-ray observatories, high-frequency gravitational

wave detectors, and seismological detectors. To have a realistic detection rate, i.e., to be

observable, they must necessarily constitute a significant fraction of cold dark matter.

PACS numbers: 12.60.Rc, 04.40.Dg, 95.35.+d

I. INTRODUCTION

It is often assumed that cold dark matter (CDM) is some “exotic” type of weakly interacting

elementary particles, primordial relics created in the early universe, not yet detected in particle

accelerator experiments. This hypothesis works well in cosmology, but both astrophysical ob-

servations, and discrepancies between simulations and observations of galaxies suggest that such

a picture may be oversimplified. For example, simulated density profiles of CDM halos are too

cuspy, more dwarf galaxies should have been observed because the number of halos is expected to

be inversely proportional to the mass, and hydrodynamic simulations produce galaxy disks that

are too small, with too low angular momenta [1]. Moreover, there is a close relation between the

rotation curve shape and luminosity distribution in spiral galaxies, indicating that CDM couples

to luminous matter [2], and the core density in spiral galaxies is roughly constant, scaling with the

size of the core [3], in conflict with predictions from such models. Further information and more

examples can be found in [4] and references therein.

Considering the complexity of galaxies and the overall success of the traditional view [5], i.e.,

∗Electronic address: Fredrik.Sandin@ltu.se

mailto:Sandin@ltu.se
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that CDM is composed of stable weakly interacting (massive) particles (WIMPs), there are no truly

compelling reasons to abandon it. It is sensible, however, to also explore alternative possibilities. In

particular, since there are indications that CDM couples to baryons, parsimony (“Occam’s razor”)

suggests that it could be a novel state of “ordinary” matter, which decoupled from the radiation

in the early universe before the onset of primordial nucleosynthesis. Any structure created at such

an early epoch would necessarily have a low characteristic mass and could therefore have remained

unnoticed.

The spirit of this idea is not new. Already in the 1980s it was suggested that lumps of stable

quark matter, so-called quark nuggets, could have formed in the early universe [6]. Should they

exist, such objects contribute to CDM and if they were produced in abundance they could explain

some observations that are inconsistent with the traditional view [4]. No observation precludes

the possibility that such objects compose the bulk of CDM, provided that the mass of the objects

does not exceed ∼ 1023 kg [4, 7]. This idea has a natural extension to particle scales beneath

the quark/lepton level. Sub-quark particles (hereafter called preons) are motivated in part by the

existence of three fermion generations, and other unexplained relations in the standard model of

particle physics (SM), which indicate that quarks and leptons could well be composite. Detailed

motivations can be found in, e.g., [8] and references therein. If preons exist, stable compact objects

(“preon stars”) with densities at least ten orders of magnitude higher than in quark nuggets/stars

could exist [9, 10]. See also [11] and [12, 13]. While the microscopic motivation for such objects is

still somewhat schematic, and the possibility that they formed in the early universe uncertain, it is

by no means impossible [11, 14]. As the consequences of their eventual existence are very interesting

and far-reaching, an investigation of their phenomenology seems well-motivated. In the present

paper, we briefly discuss some possibilities to observe compact preon dark matter (CPDM), i.e.,

relic preon stars/nuggets, and how the quark compositeness scale may be linked to astrophysical

data. A different scenario where dark matter is related to preons has been suggested in [15].

II. PROPERTIES AND FORMATION

In the mid 1960s it was shown that for solutions to the stellar structure equations, whether

Newtonian or relativistic, there is a change in stability whenever the mass reaches an extremum as

a function of the central density [16]. The instability in-between white dwarfs and neutron stars,

which spans several orders of magnitude of central densities, is an example of this property. Con-

sequently, beyond the density of the maximum mass neutron (or quark/hybrid) star, ∼ 1016 g/cm3
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[17], configurations are unstable. The order of magnitude for this limiting density is valid also for a

hypothetical third class of compact stars [18, 19, 20] and for stars composed of exotic hadron/quark

condensates. The instability is therefore generally assumed not to end before the Planck scale, if at

all. This assumption, however, is valid only in the context of the SM, where quarks and leptons are

elementary. If there is at least one deeper layer of constituents, beneath the particles of the SM, a

corresponding class of stable compact objects could exist [9, 10, 11]. The density of such objects

cannot be explained within the context of the SM. This “window of opportunity” to new physics is

our main motivation for investigating means to observe them. In the following, we briefly describe

the relation between the compositeness scale and the properties of such objects.

The characteristic density, size, and mass of a compact object depend on the strength of the

interactions between the constituent particles, see, e.g., [21]. Qualitatively, the relation between

these quantities can be obtained in a simple way. Under the assumption that the equation of

state of matter is everywhere causal it follows that the radius, R, of a stable compact object

must exceed 4/3 of its Schwarzschild radius, RS = 2GM/c2, where M is the mass of the object

(without the assumption of causality the factor is not 4/3 but 9/8), a result that follows from the

general relativistic stellar structure equations. Simplifying the density to be constant within the

object, this leads to an order of magnitude estimate for the relation between the density, ρ, and

the mass/radius of the maximum mass configuration

M ∼
9c3

64

√
2

πG3ρ
, (1)

R ∼
3c
8

√
2

πGρ
. (2)

For neutron stars with ρ ∼ 1015 g/cm3, this estimate yields M ∼ 3 M� and R ∼ 10 km, correct

order of magnitudes for neutron stars. We assume that the SM is reliable at least up to densities

above the onset of the heaviest quark (top), which is of the order ∼ 1027 g/cm3 for a charge-

neutral fermion gas of six massive quarks and three massive leptons with an MIT bag constant

chosen around the traditional value, B1/4 ∼ 150 MeV. The large mass of the top has been assumed

to be a consequence of weak binding between preons, see, e.g., [22]. The phase where preons in

the top quark can become deconfined should then have a characteristic density

ρ ∼
mt

4/3π(�c/Λ)3
� 9.5 × 1027 g/cm3

(
Λ

TeV

)3

, (3)

where mt is the mass of the top quark, �c/Λ its “size”, and Λ is expected to be of the order of the

binding force scale parameter, i.e., Λ gives the compositeness energy scale. Inserting this estimate
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in the expressions for the mass and radius of the maximum mass configuration we obtain

M ∼
3
32

√
6�3c9

G3Λ3mt
� 2 × 1024 kg

(
TeV
Λ

)3/2

, (4)

R ∼
1
4

√
6�3c5

GΛ3mt
� 3 × 10−3 m

(
TeV
Λ

)3/2

. (5)

Other estimates provided in [9, 10, 11] yield slightly different but qualitatively similar results.

CPDM objects could have been created in a first-order phase transition in the early universe

[10, 11], by a mechanism similar to that described in [6]. Under rather general assumptions, this

scenario requires that the number of microscopic degrees of freedom is higher during the preon

era than during the QCD/quark era [14]. This, perhaps counter-intuitive condition is satisfied by

some preon models and can be motivated by the simplicity of the representations and the group

structure, rather than an economic number of preons. We do not further speculate about the

details of the hypothetical phase transition and the process of CPDM formation, as the main aim

here is to explore the possibility to detect such objects, if they exist. We therefore assume that

there was a first-order transition from a preon phase to the quark/lepton phase, and that stable

preon bubbles formed. What would the characteristic mass of such bubbles be? The density of the

radiation background is

ρR � geff
π2

30
(kBT )4

�3c5
, (6)

where geff is the effective number of microscopic degrees of freedom at temperature T . Inserting (6)

in Friedmann’s equations for a flat universe (the curvature contribution anyway being negligible

at early times) we get an expression for the Hubble expansion parameter

H �

[
8π3G

90�3c5
geff

]1/2

(kBT )2. (7)

The maximum size of bubbles is limited by the event horizon, i.e., the Hubble radius, c/H, at the

temperature of the phase transition, T � Λ/kB . The corresponding maximum mass of a preon

bubble is

MH �
4π
3

( c

H

)3
ρR � 1.0 × 1024 kg g

−1/2
eff

(
TeV
Λ

)2

, (8)

which is less than the maximum mass for stable objects (4). From an observational point of

view, MH is then the maximal mass of CPDM objects, because the number of coalescence events

during the lifetime of the universe is negligible, e.g., from (15). In reality, a typical preon bubble

could be much smaller than a Hubble radius, depending on the unknown properties of the preon
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phase. See [6] for a discussion about formation and evolution of quark bubbles in the QCD

phase transition, and [11] for an analogous discussion about preon bubbles. For example, in

the QCD phase transition the bubbles should be smaller than the Hubble radius by a factor

of at least ln[(�c5/G)1/2/(kBTQCD)]/4 [23], which is about one order of magnitude for TQCD ∼

150 MeV. Except mergers, which in any case should be relatively few and can be neglected from

an observational point of view, the mass of CPDM objects should lie in the range 0 ≤ M < MH .

It seems likely that M � MH , but a more precise estimate would require further assumptions

about the nature of preons and their interactions, which are beyond scope of the present paper.

In Fig. 1 the estimates for the theoretical maximum mass (4) and the Hubble mass, MH (8), are

plotted vs. the compositeness scale, Λ. Included in the plot are also the constraints on the mass

of compact CDM from gravitational lensing searches, see the next Section. The Large Hadron

Collider (LHC) should allow exploration of compositeness scales up to about Λ ∼ 40 TeV, see [24],

where future luminosity upgrades of LHC are also discussed.

III. GRAVITATIONAL LENSING

Gravitational lensing is today a well established field of astronomy, with a variety of astro-

physical and cosmological applications. Among the many interesting lensing phenomena, there is

a possibility to observe low-mass lenses by measuring interference effects between lensed images

of narrow astrophysical sources. For lenses with masses in the range ∼ 1014 kg < M < 1017 kg,

the time delay induced by the lens would be comparable to the oscillation period of a gamma-ray.

It has therefore been suggested [25] that lenses with masses in this range could be observed by

gravitational lensing of gamma-ray bursts (GRBs). Because the separation of the images would

be in the femto-arcsecond range for lenses and sources at cosmological distances, this phenomenon

is called “femtolensing”. Femtolenses would produce a characteristic pattern in the spectrum of

GRBs [26], which is stable on time scales of 1 s, but might slowly drift on time scales of 10 s due

to the relative motion of the lens and source.

No evidence for the existence of femtolenses presently exist, but a number of GRB spectra,

see [27] and references therein, have significant features that yet remain to be explained and are

similar [28] to those in a femtolensing model spectrum. In particular, the GRB detector aboard

the Ginga spacecraft recorded “absorption” features with credible significance near 20 and 40 keV,

especially for the burst GRB 880205 [29] and somewhat less convincingly in the burst GRB 870303

[30]. These features were originally interpreted as evidence for cyclotron scattering of electrons in
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FIG. 1: Constraints on the mass of compact preon dark matter (CPDM) objects vs. the compositeness

energy scale, Λ, which is related to the length-scale of a composite top quark by �c/Λ. The maximum mass,

MH(Λ, geff), of objects formed in the early universe is the mass within the horizon at the time of the preon

phase transition, where geff is the effective number of degrees of freedom in the preon phase. The relative

number of mergers, which could have masses higher than MH , should be negligible at the present age of the

universe. The LHC will probe compositeness scales up to about 40 TeV. The maximal mass of unobserved

compact dark matter objects is ∼ 1023 kg and femtolensing searches rule out ∼ 1014 < M < 1015 kg. No

observational technique can presently resolve objects with masses below 1014 kg. See the text for details.

a strong magnetic field and, as a consequence, a galactic origin of some GRBs, see, e.g., [27, 31].

More recent observations (afterglows, supernova-GRB connection, etc.) and theoretical models of

GRBs falsify this explanation, in particular because these were long GRBs, known to occur at

cosmological distances. The origin of the features observed with Ginga is therefore an unsolved

mystery. Similar features in the spectra of GRBs have been detected in a number of other missions,

notably at 11 and 35 keV in GRB 890306 by Lilas [32], and at 50 and 70 keV in the two peaks

of GRB 780325 by HEAO A-4 [33]. Similar features have been detected also by the BATSE
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spectroscopy detectors, see [34] and references therein.

For more massive lenses, the energy-dependent spectra from a single GRB detector provide no

useful information. Instead, the spatial interference effect needs to be measured. Two spacecrafts

separated by a distance that exceeds the radius of the Einstein ring of the lens, RE ∼
√

GM/(Hc) ∼

107m ×
√

M/(1015 kg), could detect lenses with masses in the range ∼ 1015 kg < M < 1023 kg

[35]. No present result limits the amount of CPDM with masses in this range [36]. Consequently,

refined femto- and picolensing searches could be used to detect CPDM with masses in the range

1014 kg < M < 1023 kg. A large abundance of CPDM with M > 1023 kg is, however, not consistent

with observations [7]. This does not preclude the possibility that a small fraction of CDM is in that

form, but since the corresponding compositeness scale is within reach of the LHC, see Fig. 1, there

is no reason to discuss that possibility here. In the following, we briefly discuss the femtolensing

effect on the spectrum of GRBs.

The magnification functions for point and extended sources have been derived in [26]. These

functions are not trivial to obtain and have to be calculated numerically. We have therefore provided

an on-line tool [37] for calculation of femtolensing magnification functions and model GRB spectra,

which implements the model in [26] with some extensions. The magnification function depends on

four parameters, the mass and redshift of the lens, the angular separation of the source and lens,

and the angular width of the source. The width of the lens is neglected, because it has practically

no effect as long as the lenses are smaller than their Einstein ring. We denote the angular diameter

distances of the lens and the source from the observer, and of the source from the lens with dL,

dS , and dLS , respectively. The distance, rs, between the source and the optical axis is measured

in the dimensionless quantity

rs =

√
ξ2 + η2

dsθE
, (9)

where θE =
√

4GMdLS/(c2dLdS) is the angular radius of the Einstein ring and (ξ, η) are the

Cartesian coordinates of the source in the source plane. The dimensionless width of the source, σs,

is defined analogous to rs, i.e., the actual width is divided by dsθE. Some femtolensing spectra are

plotted in Fig. 2, for three different widths of a GRB, which is assumed to have a fixed position

relative to the optical axis, rs = 0.5. The model spectrum of the GRB is a assumed to be a power

law, with an exponent of −1. The energy scale depends on the redshift, z, and mass, M , of the

lens according to

E0 =
hc3

4πGM(1 + z)
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FIG. 2: Femtolensing of a gamma-ray burst (GRB) with model spectrum (E/E0)−1, for three different

widths of the source, σs. The GRB has a fixed position relative to the optical axis, rs = 0.5, see text. These

spectra were calculated with the on-line interface [37].

� 1.3 × 103 keV
(

1014 kg
M

)(
1

1 + z

)
, (10)

for any model spectrum of the GRB. In Fig. 3 a femtolensing spectra is superimposed on the

spectral data of GRB 880205 for power law models of the GRB spectrum.

Because the amplitude of the femtolensing magnification function decays with frequency (and

the width of the source), detectors that have energy thresholds well below the first minima should be

used in femtolensing searches. According to Eq. (15) in [26], the first minimum of the magnification

function is located at

E1 �
3πE0

8rs

� 1.6 × 103 keV
(

1014 kg
M

)(
1

1 + z

)(
1
rs

)
. (11)
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FIG. 3: Ginga spectral data of GRB 880205 for a power law model of the incoming spectrum (dashed line),

which is ruled out at more than 99.99% confidence level [27]. The observed spectrum has line features at

hν � 20 and 40 keV, which could be due to gravitational lensing (diffraction) of a Gaussian source by a

∼ 1016 kg object at redshift z ∼ 1 (solid line). The spectral data depend on the model used and should not

be directly compared to the diffraction spectrum, which therefore has been shifted downwards to enhance

viewing [28]. The main concern here is the location of the line features.

Spectra from the Transient Gamma-Ray Spectrometer and the BATSE spectroscopy detectors

used in recent searches for absorption line features in GRB spectra were limited to E > 40 keV

and 20 keV, respectively, see [34, 38] and references therein. Consequently, the advantages of

these instruments fall short in searches for femtolenses of high mass due to the relatively high

lower-energy thresholds. The absorption features in GRB 870303, GRB 880205, and GRB 890306

observed in earlier missions would appear less significant if observed with these instruments. In

particular, the low-energy absorption features in these bursts would not be detected. The limit

on the abundance of femtolenses given in [36] should therefore not be taken too seriously for more
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massive femtolenses. For masses in the picolensing range, there are presently no limits on the

abundance of CPDM (other than ρCPDM ≤ ρCDM). A refined search for femto- and picolensing

features in high-resolution spectra of GRBs would therefore provide useful constraints on the

abundance of CPDM and similar compact dark matter objects.

IV. GRAVITATIONAL WAVES FROM BINARIES

While gravitational pico- and femtolensing can be used to detect and estimate the mass spectrum

of CPDM, these methods provide little information about the actual density of the lenses (R �

dLθE). Consequently, lensing methods alone cannot provide detailed information about the nature

of the objects and their constituents. One possibility to constrain the upper limit size of CPDM

is to measure high-frequency gravitational wave (GW) radiation emitted from binary systems. In

the following, we estimate the properties and expected rate of such events for objects with masses

in the range 1015 kg < M < 1023 kg, which roughly is the range unconstrained by gravitational

lensing searches.

Assuming that the objects are distributed randomly in the solar neighbourhood, the probability

distribution function for the semi-major axis, a, of binaries is [39]

P (a)da =
3
4

(a

x̄

)3/4
exp

[
−

(a

x̄

)3/4
]

da

a
, (12)

where x̄ is the mean separation. Typically, the tidal forces from nearby objects add angular

momentum to a binary and head-on collisions are thereby avoided. We assume that the dark halo

density in the solar neighbourhood is 0.0079M� pc−3 [40]. For simplicity, we also assume that

the bulk of the dark halo is in the form of CPDM of equal masses. The results can readily be

generalised to an arbitrary fraction of CPDM. The mean separation is

x̄ �

(
0.0079M�

M

)−1/3

pc. (13)

The remaining time before coalescence, τ , due to emission of GWs depends on the masses, the

semi-major axis, and the eccentricity of the orbit. For small τ the eccentricity can be neglected,

as the radiation reaction acts to reduce it. For a circular orbit, the coalescence time is [41]

τ =
5c5

512G3

a4

M3
. (14)

The probability distribution function (12) can be expressed in the coalescence time τ . Consequently,

the relative number of coalescence events within a time t is obtained by∫ t

0
P (τ)dτ = 1 − exp

[
−x̄−3/4 (κt)3/16

]
, (15)
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κ =
512G3M3

5c5
, (16)

where
∫∞

0 P (τ)dτ = 1. The exponent in (15) is small for all masses considered here, at any relevant

timescale, t. We therefore make the approximation 1− exp(−x) � x. The total number of objects,

N(D), within a distance D can be expressed in the local dark halo density and the mass of the

objects. The number of coalescence events, Nc, within a time t is Nc = N(D)
∫ t
0 P (τ)dτ , which

yields

Nc � 4.9
(

D

pc

)3 (1015 kg
M

)11/16 (
t

yrs

)3/16

. (17)

This estimate for the coalescence rate scales linearly with the fraction of CPDM, i.e., there is an

extra factor ρCPDM/ρCDM on the right-hand side of (17). In order to obtain a realistic event rate, a

detector sensitive enough to detect CPDM coalescence events at a distance of several pc is needed.

Next, we estimate the frequency and amplitude of such events.

The frequency of GWs, fg, emitted from a binary in a circular orbit is twice the Kepler frequency

fg =
1
π

(
2MG

a3

)1/2

� 6.0 × 1011 Hz
(sec

τ

)3/8
(

1015 kg
M

)5/8

, (18)

because the waves are essentially generated by the quadrupole moment of the binary. The power

emitted in GWs is [41]

Lg =
64G4

5c5

(
M

a

)5

� 1.4 × 1016 W
(

M

1015 kg
fg

GHz

)10/3

, (19)

and the amplitude of the GWs at a distance D from the source is

h =
(

GLg

π2c3

)1/2 1
fgD

� 1.9 × 10−36

(
M

1015 kg

)5/3 ( fg

GHz

)2/3 (pc
D

)
. (20)

The frequency dependent amplitude (20) is plotted in Fig. 4 for different masses, M , and distances,

D, chosen such that 10 coalescence events per year are expected with at least that amplitude

(if the CPDM fraction of CDM is less than one, the number of events per year is lowered by

the same factor). Also indicated in the plot are the coalescence time (14), the threshold of the

relativistic domain, where the orbital velocity, vorb = c(RS/a)1/2, is 10% of the speed of light, and
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FIG. 4: Amplitude vs. frequency for gravitational waves emitted from an equal-mass binary system in

circular orbit. The distance is such that 10 coalescence events per year is expected within that range, i.e.,

Nc = 10 in (17). The solid lines denote the frequency-amplitude relation for different masses, M , of the

CPDM objects, in steps of one order of magnitude. The coalescence time (14) is denoted by the dotted lines,

also in steps of one order of magnitude. The dash-dotted line corresponds to an orbital velocity of 10% of

the speed of light. Dashed lines denote the lower sensitivity curves for an observational time of 5 years with

EURO, according to two different design specifications (shot-noise limited antenna with a knee-frequency

of 1000 Hz and a xylophone-type interferometer). The sensitivity of the first prototype 100 MHz detector

in the UK [43] is presently insufficient to detect CPDM coalescence events. The shaded region, h < 10−30,

apparently is beyond reach of experiments and could be polluted by the relic gravitational wave background,

see [42] and references therein.

an estimate for the sensitivity of future detectors, hmin ∼ 10−30, see [42] and references therein.
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Even if this estimate for the sensitivity could be exceeded, coalescence events with significantly

lower amplitudes would be difficult to distinguish from the stochastic GW background, created by

quantum fluctuations in the early universe. This background exists in most popular cosmological

models and, due to the expansion of the universe, the amplitudes of the initial fluctuations are

amplified and should approach the h ∼ 10−30 level [42]. Because h ∝ N
−1/3
c , the amplitudes in

Fig. 4 will increase only by a factor two for an order of magnitude decrease of the event rate. We

therefore choose Nc = 10, to compensate for the simplifying assumption that ρCPDM/ρCDM = 1.

The planned spectral noise density for the European Gravitational Wave Observatory (EURO)

in the range 10-10000 Hz is [44]

Sn(f) = 10−50

[(
f

245Hz

)−4

+
(

f

360Hz

)−2

+
(

fk

770Hz

)(
1 +

f2

f2
k

)]
Hz−1, (21)

where fk = 1000 Hz is the knee frequency. Alternatively, EURO will be based on a xylophone-type

interferometer, which has higher sensitivity at high frequencies. The spectral noise density for the

latter choice is described by (21) when the last fk-dependent term is omitted. The characteristic

amplitude of a GW is hc = h
√

n, where n = fgΔT is the number of cycles during an observational

time of ΔT . The wave strength of GWs from a monochromatic source observed with an interfer-

ometer is hs = hc/
√

5fg. Consequently, the minimum amplitude, hmin, that can be resolved with

EURO after an observational time ΔT is hmin =
√

5Sn(f)/ΔT . This estimate for the sensitivity of

EURO is plotted in Fig. 4 for an observational time of five years. High-mass CPDM is marginally

within range of the next generation of gravitational wave detectors. However, the semi-major axis

of a binary is

a = RS

(
c3

2πGMfg

)2/3

� 1.6 × 107RS

(
1015 kg

M

GHz
fg

)2/3

, (22)

so in order to get useful constraints on the compactness of CPDM, a detector sensitive at higher

frequencies is needed. Interestingly, high-frequency GW detectors are laboratory-scale devices that

are relatively inexpensive to construct. A first 100 MHz prototype has recently been built in the

UK [43]. If the sensitivity of such detectors would approach the estimates given in [42], they would

provide useful constraints on CPDM. The range 1015 kg < M � 1018 kg would, however, only be

accessible by rare nearby events.
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V. CONCLUSION & DISCUSSION

If quarks and leptons are composite particles, superdense preon stars (or “nuggets”) could exist

[9, 10, 11]. While the microscopic motivation for such objects is still somewhat schematic and the

exact process of formation uncertain, the consequences of their eventual existence are far-reaching.

In the present paper we briefly investigate their phenomenology, assuming that they formed in

the early universe and contribute significantly to CDM. Their maximum mass is limited by the

horizon at the time of formation, ∼ 1024 kg g
−1/2
eff (TeV/Λ)2, where Λ is the quark compositeness

energy scale and geff is the number of microscopic degrees of freedom in the primordial preon

phase. This is a factor ∼ 2
√

geff Λ/TeV lower than the maximum mass for stable hydrostatic

configurations. However, the typical mass could be much lower than what is maximally allowed,

depending on the properties of the preons and their interactions. Gravitational lensing searches

put strong constraints on the abundance of CDM objects with masses in the ranges M � 1023 kg

and 1014 � M � 1015 kg. Unexplained features in GRB spectra observed by, e.g., Ginga, Lilas,

and HEAO A-4 motivate a continued search for gravitational pico- and femtolenses. This would

provide useful constraints on the abundance of compact CDM objects with masses in the range

1015 � M � 1023 kg, corresponding to a maximum compositeness energy scale for CPDM of a

few thousand TeV. This observational technique, however, provides little information about the

nature of the lenses, because their size and density is limited only by the radius of their Einstein

ring. Future high-frequency gravitational wave detectors could provide complementary information

about the density of compact CPDM binaries, but it is presently unclear whether it is possible to

detect the chirp signal of a low-mass binary as the objects coalesce [45]. This would be necessary

in order to obtain a useful constraint on the radii and, consequently, a lower-limit for the density

of the objects. In an optimistic scenario where the mass of the CPDM objects is comparable to

the maximum mass, this method could be useful to indirectly detect compositeness up to a few

hundred TeV. Another possibility to detect compact CDM objects and to constrain their density

is by seismology, i.e., by measuring the seismic waves generated as they pass through the Earth

or the Moon, see [46] and references therein. Unlike the observational methods discussed above,

this method is useful in scenarios where the typical mass of the objects is low, as the collision rate

increases with the number density of objects. The cross-section of a CPDM object would be at

least six orders of magnitude smaller than for a quark nugget of equal mass, making it possible to

distinguish them. Should CPDM objects exist, their observational detection may well be the only

means, for quite a long time, to discover compositeness beyond the reach of the LHC and other
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near-future accelerators. As the observational techniques discussed here are useful also for other

purposes, and are already in operation to some extent, they constitute a comparatively simple and

inexpensive way to test the CPDM and compositeness hypothesis.
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Selected

Posters and Awards

Comments

The poster “Compact stars in the standard model – and beyond” was presented
at the International School of Subnuclear Physics in Erice, 2004. The title of the
course was “How and Where to Go Beyond the Standard Model”. The directors of
the school were Professors Gerard ’t Hooft and Antonino Zichichi.

The award for “An original work in theoretical physics” was designated to the pre-
ceding poster and the talk that I gave on the same topic, which were based on
the results presented in Paper I. The jury included the directors of the School and
other professors from the high-energy physics and astrophysics communities, no-
tably Gabriele Veneziano and Sergio Ferrara. The essence of the talk is presented
in Paper II.
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