
RESEARCH REPORT

Computing Maximum-Scoring
Segments Optimally

2007:03

Luleå University of Technology
Department of Computer Science and Electrical Engineering

2007:03|: -1528|: -fr -- 07⁄03� -- 

Fredrik Bengtsson
JingsenChen

Computing Maximum-Scoring

Segments Optimally

Fredrik Bengtsson

Jingsen Chen

Department of Computer Science and Electrical Engineering

Lule̊a University of Technology

S-971 87 Lule̊a

Sweden

Phone: +46 920 492431

Fax: +46 920 493111

e-mail: bson@sm.luth.se

Abstract

Given a sequence of length n, the problem studied in this paper is to
find a set of k disjoint subsequences of consecutive elements such that
the total sum of all elements in the set is maximized. This problem
arises in the analysis of DNA sequences. The previous best known
algorithm requires Θ(nα(n, n)) time in the worst case, where α(n, n)
is the inverse Ackermann function. We present a linear-time algorithm,
which is optimal, for this problem.

1 Introduction

In the analysis of biomolecular sequences, one is often interested in find-
ing biologically meaningful segments, e.g. GC-rich regions, non-coding RNA
genes, transmembrane segments, and so on [12, 13, 14]. Fundamental algo-
rithmic problems arising from such sequence analysis are to locate consecu-
tive subsequences with high score (given a suitable scoring function on the
subsequences). In this paper, we present a linear-time algorithm that takes
a sequence of length n together with an integer k and computes a set of k
non-overlapping segments of the sequence that maximizes the total score. If
a general segment scoring function (other than the sum of the segments as
in this paper) is used, then the problem of finding a k-cover with maximum
score can be solved in O(n2k) time [1, 4]. When the score of a segment is the
sum of the elements in the segment, the problem can be solved faster. Pre-
vious algorithms requires Θ(n log n) time [12] and Θ(nα(n, n)) time [5, 6].
In this paper, we show how the algorithmic ideas presented in [5] leads to
an optimal worst-case O(n)-time algorithm.

The problem studied can be viewed as a generalization of the classical
maximum sum subsequence problem introduced by Bentley [8]. The latter is
to find the continuous segment with largest sum of a given sequence and can
be solved in linear time [9, 17]. Several other generalizations of this classical
problem have been investigated as well. For example when one is interested
in not only the largest, but also k continuous largest subsequences (for some
parameter k) [2, 3, 7, 15]. Another generalization arising from bioinformat-
ics is to look for an interesting segment (or segments) of constrained length
[10, 11, 16].

The paper is organized as follows. In Section 2 the problem is defined.
Section 3 gives an overview of the algorithmic ideas in [5]. The refined
algorithm and its linear-time implementation are presented in Section 4.
The analysis of our algorithm appears in Section 5.

2 Problem and Notations

Given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers, let Xi,j denote the
subsequence of consecutive elements of X starting at index i and ending
at index j; i.e, the segment Xi,j = 〈xi, xi+1, . . . , xj〉. A segment Xi,j is

positive (negative) if its score (sum or value)
j

∑

ℓ=i

xℓ > 0 (< 0). Call Xi,j a

non-negative run (or negative run) of X if

• xℓ ≥ 0 (or < 0) for all i ≤ ℓ ≤ j;

• xi−1 < 0 (or ≥ 0) if i > 1; and

• xj+1 < 0 (or ≥ 0) if j < n.

1

Given an integer 1 ≤ k ≤ n, a k-cover for the sequence X is a set of k
disjoint non-empty segments of X. The score (sum or value) of a k-cover is
determined by adding up the sums of each of its segments.

Definition 1. An optimal k-cover for a given sequence X is a k-cover of
X whose score is the maximum over all possible k-covers of X.

3 The Algorithm

By refining the algorithmic ideas proposed by Bengtsson et al. [5] we redesign
that algorithm and achieve an optimal linear-time solution. We are able
to avoid the union-find data structure that was employed in the previous
algorithm [5]. This yields optimal performance.

The algorithm in [5] consists of three phases: Preprocessing, Partition-
ing, and Concatenating. The preprocessing phase deals with some trivial
cases of the problem and simplifies the input for the rest of the algorithm.
The latter two phases choose subsequences of which candidate segments
to the optimal k-cover are examined and will be executed in an iterative
fashion.

Definition 2. A sequence Y = 〈y1, y2, . . . , ym〉 of real numbers is an alter-
nating sequence if m is odd, y1, y3, . . . , and ym are positive, and y2, y4, . . . ,
and ym−1 are negative. An alternating sequence is an a-sequence if its ele-
ments are mutually distinct.

The following fact implies that finding an optimal k-cover in some alter-
nating sequences needs no further computation.

Observation 1. [5] All the positive elements of an alternating sequence of
length 2k − 1 represent an optimal k-cover of the sequence.

3.1 Preprocessing

This phase processes special cases of the problem and, if needed, finds the
segmentation of the input into runs. The segmented input will be of alter-
nating type and work as input for the two phases that follows.

The problem becomes trivial when k ≥ m (the number of positive runs of
the input sequence). For the case when k < m, the following segmentation
of the input is performed:

1. Find all the non-negative runs and negative runs of X.

2. Construct a new sequence Y from X by replacing every run with its
score.

3. Negative elements at both ends of Y (if any) are removed from Y .

2

By storing the indices of all the runs of X, one can easily refer each
element of Y to its corresponding segment of X. Clearly, the whole prepro-
cessing phase takes at most O(n) time in the worst case. Furthermore, any
optimal k-cover of Y corresponds to an optimal k-cover of X, if k < m. For
details, se [6].

3.2 Partitioning and Concatenating

The other two phases presented in [5] for computing an optimal k-cover for
a given a-sequence Y is to construct a series of a-sequences from Y while
the lengths of the sequences are decreasing and the optimal k-cover remains
the same.

More precisely, a shorter a-sequence Y ′ from Y is first constructed. Such
a construction is accomplished with concatenation operations run on an odd
number of consecutive elements of Y [5]. By partitioning Y into smaller
pieces and concatenating carefully chosen segments, the number of candidate
segments for the optimal k-cover is decreased fast. If the length of Y ′ equals
2k−1, one has the solution; otherwise, the construction is repeated starting
from Y ′. Such a procedure is run iteratively.

For a given a-sequence Y of length m and an integer k, 1 ≤ k ≤ m , we
consider only the case when k < ⌈m/2⌉. Otherwise, the problem is taken
care of by our preprocessing phase. Let Yt (t = 1, 2, · · ·) be an a-sequence
of length mt associated with a working sequence St of length nt, where
Y1 = Y and S1 = Y . The working sequence contains elements of Y that
are currently interesting for the algorithm. In the following, each element
of Yt and St refers to the block of concatenated elements that the element
currently corresponds to. The tth iteration of the algorithm (in particular,
the partitioning and concatenating procedure) is as follows. Let ξ0 be the
largest absolute value of the elements in Y and let r1 = ⌈‖S1‖/2⌉.

Input: Yt, St, a threshold rt, and a pivot ξt−1, where k < ⌈mt/2⌉
Output: Yt+1, St+1, rt+1, and ξt, where mt+1 ≤ mt and nt+1 < nt.

1. Partition

(a) Compute the (rt)
th largest absolute value ξt of all the elements

in St.

(b) Let Dt be the sequence containing all the elements of St whose
absolute value is less than or equal to ξt. Preserve the ordering
among the elements from Yt; the indices of the elements are in
increasing order.

2. Concatenation

3

(a) Let Y ′
t be the sequence resulting from, for each element y in Dt,

repeatedly replacing some blocks in Yt of odd lengths around y
with their score until every element has an absolute value not less
than ξt. Let k′ be the number of positive elements in Y ′

t .

(b) If k < k′ (that is, we merged too few blocks in the previous step),
then

• St+1 ← 〈All the elements now in St whose absolute value
lies between ξt and ξt−1; if some elements now belong to the
same block, then just insert one of them into St+1〉

• rt+1 ← ⌈‖St+1‖ /2⌉

• Yt+1 ← Y ′
t

• ξt ← ξt−1.

(c) If k > k′ (that is, we merged too many blocks in the previous
step), then St+1 ← Dt, rt+1 ← ⌈‖St+1‖/2⌉, and Yt+1 ← Yt.

(d) If k = k′, then one has the solution.

The goal is to eventually construct an a-sequence of length 2k − 1 and
hence the optimal k-cover is found due to Observation 1. Notice all the
sequences Yt (t = 1, 2, · · ·) are not actually constructed; otherwise the time
complexity would be Ω(m log m). The idea is to operate directly on Y all
the time, without actually constructing Yt.

4 Linear-Time Algorithm

In this section we present our linear-time refinement of the algorithm in
[5]. It is not obvious how to achieve linear time by using some simple data
structures. The crucial point here is how to compute the block resulting
from a series of concatenation of blocks (called merges) in the desired time
bound.

The previous best algorithm [5] used a union-find data structure for
finding the currently resulting block, for any given block in D or S. This
was necessary in order to be able to compute the blocks resulting after a
series of merges. Since there was a find operation performed for each block
during computation, a performance of O(nα(n, n)) was achieved.

In this paper we are able to bypass need for the union-find data struc-
ture by utilizing linear-time sorting on arrays containing only the blocks
that participated in a concatenation step. We observe that, by sorting the
elements involved in a concatenation step on their left (low) index, it is pos-
sible to extract the resulting blocks from a concatenation step faster than
with find operations on the union-find data structure. The worst-case linear
time stems from the fact that we sort the blocks using the indexes as keys

4

and hence, the universe for the sorting procedure is linear in the number of
elements sorted.

During the operation of our algorithm, we maintain the following data
structures:

• A linked list L, containing the currently existing segments. This list
will be shorter, as segments are merged with its neighbours. Initially,
this list contains the same elements as Y .

• A linked list Dt, containing, before each merge step, the blocks to be
merged. This list is empty when the merge step is completed.

• A linked list, M , containing one element for each merge performed by
the merge step. Each element is a triple (v, i, j), where (i, j) is the
start- and end-index of the resulting merged block, respectively, and
v is the value of the block.

4.1 Partitioning and Concatenation

In the partitioning step, the data is partitioned into blocks that are to be
merged and blocks that are not.

• Partitioning

– Let ξt be the rth largest element of St.

– Let Dt = {x|x ∈ St ∧ x ≤ ξt}. Since Dt is a linked list, preserve
the ordering among elements from St.

• Concatenation

– Merge all elements in Dt. During merge, save all modifications
to all data structures.

The concatenation step merges all elements contain in the list Dt with
its respective neighbouring elements in L. This is performed as follows. For
each (v, i, j) ∈ Dt (as long as Dt is not empty):

• Let (vleft, ileft, jleft) and (vright, iright, jright) be the left and right neigh-
bour of (v, i, j) in L, respectively.

• Let (v′, i′, j′) = (vleft + v + vright, ileft, jright) be the new block created
by the merge.

• In L, replace all three blocks (vleft, ileft, jleft), (v, i, j), and
(vright, iright, jright) with (v′, i′, j′).

• In Dt, if the left neighbour of (v, i, j) is (vleft, ileft, jleft), then delete
(vleft, ileft, jleft) from Dt.

5

• In Dt, if the right neighbour of (v, i, j) is (vright, iright, jright), then
delete (vright, iright, jright) from Dt.

• In Dt, delete (v, i, j).

4.2 Iterating

Now, based upon the number of blocks resulting after the concatenation
step, we either merge more blocks, or we cancel the concatenation step and
merge fewer blocks instead. Let k′ be the number of positive blocks in L
after the merge step. We have two cases.

4.2.1 Too Few Blocks

If k < k′, then we have essentially performed too many merges in the latest
merge step. In such case, we cancel the latest concatenation step altogether.
This is possible if all updates performed during the latest concatenation step
are saved. Thus, we save all updates performed on all data structures during
the latest concatenation step. After the concatenation step is performed and
there are not too many resulting blocks, we can throw away the data saved
before. Hence, there is only need for saving the updates performed in a
single concatenation step.

Now, let St+1 ← Dt and ξt ← ξt−1 (we cancel the effect of updating ξ).
Let t ← t + 1 and perform the partition step (Section 4.1) again with Dt

computed from this new St+1.

4.2.2 Too Many Blocks

If, on the other hand, the number of positive blocks (in L) after the con-
catenation step are still to many, we use the procedure of block filtering to
filter out the blocks resulting from the previous concatenation step. This
will be the new list St+1.

4.3 Block Filtering

In the following, we will present, the procedure to find the blocks after merg-
ing all the elements in Dt. The difficulty of this task lies in the requirement
to find only the resulting blocks and not all blocks that have occurred during
the merges. Notice that after a merge, it might be the case that the v′ ≤ ξt.
In such a case the block (v′, i′, j′) should still be in Dt and merged further.
For instance, an element of Dt that is to be merged with its neighbouring
elements in L results in one new element in L and one new element in Dt,
if the resulting block is still smaller than ξt. Hence the intermediate block,
(v′, i′, j′), is not interesting as a result of our block filtering procedure. We
compute only the final blocks greater than ξt.

6

To resolve this issue, we use another linked list, M and, for each merge,
insert a tuple (v, i, j), with the range of the resulting block [i, j] with respect
to Y , and the value of the block. For each tuple, we also maintain a reference
to the corresponding block in L. Now, when all merges are done, we copy
M to a sequence (an array) M ′. After this, we sort the elements of M ′ with
respect to index i by using counting sort, which takes linear time since the
keys i used in sorting are integers from 1 to n. Call the sorted sequence M ′′.
Observe that we can write M ′′ as follows.

M ′′ =〈(v(1,1), i1, j(1,1)), (v(1,2), i1, j(1,2)), . . . , (v(1,p1), i1, j(1,p1)),

(v(2,1), i2, j(2,1)), (v(2,2), i2, j(2,2)), . . . , (v(2,p2), i2, j(2,p2)),

...

(v(q,1), iq, j(q,1)), (v(q,2), iq, j(q,2)), . . . , (v(q,pq), iq, j(q,pq))〉

where i1 < i2 < · · · < iq. For each iℓ, ℓ ∈ [1, q], let (vℓ, , iℓ, jℓ) =
max1≤j≤pq

(v(ℓ,j), iℓ, j). That is, we find the largest j-index for each iℓ. Now,
the tuple (vℓ, iℓ, jℓ) for ℓ ∈ [1, q] is the new blocks created by the merge
procedure.

5 Analysis

The correctness of the above algorithm follows directly from the results in
[5, 6]. Our refined method and its implementation require linear time in the
worst case. In fact, given a sequence X = 〈x1, x2, . . . , xn〉 of real numbers,
the preprocessing step of our algorithm takes O(n) time. After that, the
iterations have been run on the working sequences St for t = 1, 2, · · · , where
S1 = Y (the segmented version of X). The time needed for the tth iteration
(in particular, the partitioning and concatenating procedure) is O(‖St‖).
Notice from the design of our algorithm that ‖St+1‖ ≤

2
3 ‖St‖ and ‖S1‖ =

‖Y ‖ = m ≤ n. Hence, the time complexity of our algorithm satisfies the
recurrence T (n) = T

(

2
3n

)

+ O(n) and thus equals O(n). To sum up,

Theorem 1. Given a sequence X of n real numbers and an integer 1 ≤ k ≤
n, the problem of computing an optimal k-cover of the sequence can be done
in O(n) time in the worst case, which is optimal.

7

References

[1] I. E. Auger and C. E. Lawrence. Algorithms for the optimal identifi-
cation of segment neighbourhoods. Bulletin of Mathematical Biology,
51(1):39–54, 1989.

[2] S. E. Bae and T. Takaoka. Algorithms for the problem of k maximum
sums and a VLSI algorithm for the k maximum subarrays problem. In
Proceedings of the 7th International Symposium on Parallel Architec-
tures, Algorithms and Networks, pages 247–253, 2004.

[3] S. E. Bae and T. Takaoka. Improved algorithms for the k-maximum
subarray problem for small k. In Proceedings of the 11th Annual Inter-
national Conference on Computing and Combinatorics, volume 3595 of
LNCS, pages 621–631, 2005.

[4] T. R. Bement and M. S. Waterman. Locating maximum variance seg-
ments in sequential data. Mathematical Geology, 9(1):55–61, 1977.

[5] F. Bengtsson and J. Chen. Computing maximum-scoring segments in
almost linear time. In Proceedings of the 12th Annual International
Computing and Combinatorics Conference, volume 4112 of LNCS,
pages 255–264, 2006.

[6] F. Bengtsson and J. Chen. Computing maximum-scoring segments in
almost linear time. Technical Report 2006:14, Department of Computer
Science and Electrical Engineering, Lule̊aUniversity of Technology, Swe-
den, 2006. http://epubl.ltu.se/1402-1528/2006/14/.

[7] F. Bengtsson and J. Chen. Efficient algorithms for k maximum sums.
Algorithmica, 46(1):27–41, 2006.

[8] J. L. Bentley. Programming pearls: Algorithm design techniques. Com-
munications of the ACM, 27:865–871, 1984.

[9] J. L. Bentley. Programming pearls: Perspective on performance. Com-
munications of the ACM, 27:1087–1092, 1984.

[10] A. Bergkvist and P. Damaschke. Fast algorithms for finding disjoint
subsequences with extremal densities. In Proceedings of the 16th Annual
International Symposium on Algorithms and Computation, volume 3827
of LNCS, pages 714–723, 2005.

[11] K.M. Chung and H.I. Lu. An optimal algorithm for the maximum-
density segment problem. In Proceedings of 11th Annual European
Symposium on Algorithms, volume 2832 of LNCS, pages 136–147, 2003.

9

[12] M. Csűrös. Maximum-scoring segment sets. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 1(4):139–150, 2004.

[13] P. Fariselli, M. Finelli, D. Marchignoli, P.L. Martelli, I. Rossi, and
R. Casadio. Maxsubseq: An algorithm for segment-length optimiza-
tion. The case study of the transmembrane spanning segments. Bioin-
formatics, 19:500–505, 2003.

[14] X. Huang. An algorithm for identifying regions of a DNA sequence
that satisfy a content requirement. Computer Applications in the Bio-
sciences, 10:219–225, 1994.

[15] T. C. Lin and D. T. Lee. Randomized algorithm for the sum selection
problem. In In Proceedings of the 16th Annual Internatinal Symposium
on Algorithms and Computation, volume 3827 of LNCS, pages 515–523,
2005.

[16] W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all
maximal scoring subsequences. In Proceedings of the 7th Annual In-
ternational Conference on Intelligent Systems for Molecular Biology,
pages 234–241, 1999.

[17] D.R. Smith. Applications of a strategy for designing divide-and-conquer
algorithms. Science of Computer Programming, 8:213–229, 1987.

10

